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We use the SUð2Þ ’t Hooft-Polyakov monopole configuration, and its Bogomolny-Prasad-Sommerfield
(BPS) version, to test the integral equations of the Yang-Mills theory. Those integral equations involve two
(complex) parameters which do not appear in the differential Yang-Mills equations, and if they are
considered to be arbitrary, it then implies that non-Abelian gauge theories (but not Abelian ones) possess an
infinity of integral equations. For static monopole configurations, only one of those parameters is relevant.
We expand the integral Yang-Mills equation in a power series of that parameter and show that the ’t Hooft-
Polyakov monopole and its BPS version satisfy the integral equations obtained in first and second order of
that expansion. Our results point to the importance of exploring the physical consequences of such an
infinity of integral equations on the global properties of the Yang-Mills theory.
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I. INTRODUCTION

Thepurpose of this paper is to performa test of the integral
equations of Yang-Mills theories, recently proposed in [1,2],
using the SUð2Þ ’t Hooft-Polyakov monopole solution
[3,4] as well as its exact analytical Bogomolny-Prasad-
Sommerfield (BPS) version [5,6]. The main motivation for
such a test is that these integral equations involve two
complex parameters that are not present in the Yang-Mills
partial differential equations. If those parameters are arbi-
trary, it means that contrary to Abelian electromagnetism,
Yang-Mills theories possess, in fact, an infinity of integral
equations. Indeed, by expanding the Yang-Mills integral
equations in power series of those parameters, we check that
theSUð2Þ ’tHooft-Polyakovmonopole, and itsBPSversion,
do satisfy the integral equations appearing in that expansion,
up to second order in one of the parameters. The cancella-
tions involved in such a check are highly nontrivial and give
strong evidence for the arbitrariness of those parameters.
As shown in [1,2], the integral Yang-Mills equations lead,

in a quite natural way, to gauge-invariant conserved charges.
Such charges involve those two parameters in a way that, if
they are indeed arbitrary, it would imply that, in principle,
the number of charges is infinite. However, due to some
special properties of BPS multidyon solutions [7,8], shown
in [9], the higher charges are not really independent for such
solutions, being in fact powers of the first ones (the electric
and magnetic charges). The same is true for the SUð2Þ
’t Hooft-Polyakov monopole. It remains to be investigated
whether or not other non-BPS solutions also present such
special properties and so possess an infinity of charges.
In order to discuss the role of such parameters in a more

concrete way, let us start by the theory of electromagnetism
described by the Maxwell equations,

∂μfμν ¼ jν ∂μ
~fμν ¼ 0; ð1:1Þ

where fμν ¼ ∂μaν − ∂νaμ, ~fμν ¼ 1
2
εμνρλfρλ, jμ being the

external four current, and aμ the electromagnetic four-
vector potential. The integral version of those equations is
obtained through the Abelian Stokes theorem for a rank-
two antisymmetric tensor bμν on a spacetime 3-volume Ω,
as

R
∂Ω b ¼ R

Ω d ∧ b, where ∂Ω is the border of Ω. Taking
bμν as a linear combination of fμν and its Hodge dual, and
using (1.1), one getsZ

∂Ω
½αfμν þ β ~fμν�dΣμν ¼

Z
Ω
β~jμνρdVμνρ; ð1:2Þ

where ~jμνρ ¼ εμνρλjλ is the Hodge dual of the external
current and α and β are arbitrary parameters used in the
liner combination. By considering α and β to be arbitrary,
the integral equations (1.2) correspond to the four usual
integral equations of electromagnetic theory, which in fact
preceded Maxwell differential equations. Indeed, taking
α ¼ 0 and Ω to be a purely spatial 3-volume, one gets the
Gauss law. On the hand, taking β ¼ 0 and Ω to be a solid
cylinder with its height in the time direction, and its base
on a spatial plane, one gets the Faraday law, and so on.
The role of the parameters α and β are not really important
here because (1.2) is linear in them. The situation becomes
more complex in a non-Abelian gauge theory.
The Yang-Mills theories were formulated à la Maxwell

in terms of partial differential equations, the so-called
Yang-Mills equations [10],

DμFμν ¼ Jν Dμ
~Fμν ¼ 0; ð1:3Þ

where Fμν ¼ ∂μAν − ∂νAμ þ ie½Aμ; Aν�, with e being the
gauge coupling constant, ~Fμν ¼ 1

2
εμνρλFρλ, Jμ being the
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external matter current, Dμ ¼ ∂μ þ ie½Aμ; �, and Aμ being
the non-Abelian gauge field taking value on the Lie algebra
of the gauge group G.
In order to construct the integral form of Yang-Mills

equations (1.3), one needs the non-Abelian version of the
Stokes theorem for a (non-Abelian) rank-two antisymmetric
tensorBμν on a spacetime 3-volumeΩ. Even though the non-
Abelian Stokes theorem for a one-form connection on a
2-surface was known for some time, the same theorem for a
two-form connection was constructed only more recently in
[11,12] using concepts on generalized loop spaces. Concep-
tually, everythingbecomesmoreclear if oneuses the two-form
Bμν, defined on spacetime, to construct a one-form connection
on the generalized loop space. Using such a generalized non-
Abelian Stokes theorem, the integral form of Yang-Mills
equations was constructed in [1,2]. The formulas involve
path-, surface-, and volume-ordered integrals as follows.
Consider a spacetime 3-volumeΩ, and choose a reference

point xR on its border ∂Ω. Scan Ω with closed 2-surfaces
based on xR, labeled by a variable ζ, such that ζ ¼ 0
corresponds to the infinitesimal surface around xR, and
ζ ¼ ζ0 to the border ∂Ω. Then scan each closed 2-surface
with loops, starting and ending at xR, labeled by a variable τ.
Each loop is parametrized by a variable σ. The integral form
of the Yang-Mills equations (1.3) is given by [1,2]

Vð∂ΩÞ≡ P2e
ie
R
∂Ω dτdσW−1ðαFμνþβ ~FμνÞW∂xμ∂σ ∂xν∂τ

¼ P3e
R
Ω
dζdτVJV−1 ≡UðΩÞ; ð1:4Þ

where P2 and P3 mean surface- and volume-ordered inte-
gration, respectively, as explained above, and

J ¼
Z

σf

σi

dσ

�
ieβ ~JWμνλ

dxμ

dσ
dxν

dτ
dxλ

dζ

þe2
Z

σ

σi

dσ0½ððα−1ÞFW
κρþβ ~FW

κρÞðσ0Þ;ðαFW
μνþβ ~FW

μνÞðσÞ�

×
dxκ

dσ0
dxμ

dσ

�
dxρðσ0Þ
dτ

dxνðσÞ
dζ

−
dxρðσ0Þ
dζ

dxνðσÞ
dτ

��
ð1:5Þ

with ~Jμνλ ¼ εμνλρJρ, being the Hodge dual of the external
matter current. In order to simplify the formulas,wehave used
the notation

XW ≡W−1XW ð1:6Þ

with X standing for the field tensor, its Hodge dual, or
the dual of the matter currents. The quantity W appearing
above stands for the Wilson line, defined on a path para-
metrized by σ through the equation

dW
dσ

þ ieAμ
dxμ

dσ
W ¼ 0 ð1:7Þ

and so

W ¼ 1 − ie
Z

σ

σi

dσ0Aμðσ0Þ
dxμ

dσ0

þ ðieÞ2
Z

σ

σi

dσ0Aμðσ0Þ
dxμ

dσ0

Z
σ0

σi

dσ00Aνðσ00Þ
dxν

dσ00
−…:

ð1:8Þ
The quantity V, called the Wilson surface, is defined on a
surface parametrized by σ and τ, through the equation

dV
dτ

− VTðτÞ ¼ 0; ð1:9Þ

with

TðτÞ ¼ ie
Z

σf

σi

dσW−1ðαFμν þ β ~FμνÞW
∂xμ
∂σ

∂xν
∂τ ; ð1:10Þ

and the integration being on the closed loops used in the
scanning ofΩ, as explained above. The initial and final values
of σ, denoted σi and σf, respectively, correspond to the initial
and final points of the loop, which in fact are the same point
since the loop is always closed. Therefore, the solution of
(1.9) is the surface-ordered series:

VðτÞ¼ 1þ
Z

τ

τi

dτ0Tðτ0Þþ
Z

τ

τi

dτ0
Z

τ0

τi

dτ00Tðτ00ÞTðτ0Þþ � � � :

ð1:11Þ
The lhs of (1.4) is obtained by integrating (1.9) on the
2-surface ∂Ω, i.e., the border ofΩ. On the other hand the rhs
of (1.4) is obtained by integrating the equation

dU
dζ

−KU ¼ 0 ð1:12Þ

on the 3-volume Ω, and where

K ¼
Z
Σ
dτVJV−1; ð1:13Þ

with Σ being the closed 2-surfaces scanning Ω, labeled
by ζ, and J given by (1.5). The solution of (1.12) is given
by the volume-ordered series

UðζÞ ¼ 1þ
Z

ζ

0

dζ0Kðζ0Þ

þ
Z

ζ

0

dζ0
Z

ζ0

0

dζ00Kðζ0ÞKðζ00Þ þ � � � : ð1:14Þ

Note that (1.4) does reduce to (1.2) in the case that the
gauge group G is Uð1Þ. However, for non-Abelian gauge
groups the dependence of both sides of (1.4) on the
parameters α and β are highly nonlinear. Indeed, if such
parameters are arbitrary one can expand both sides of (1.4)
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in a power series on them. The coefficient of each term of
such series on the lhs of (1.4) will have to equal the
corresponding coefficient of the series on the rhs, leading to
an infinity of integral equations. Consequently any solution
of the Yang-Mills equations (1.3) will have to satisfy such
an infinity of integral equations. It is this test that we want
to perform with the ’t Hooft-Polyakov monopole, and its
exact analytical BPS version [8]. We shall consider the
3-volume Ω to be purely spatial, and consequently only the
spatial components of the field tensor and its dual, i.e., Fij

and ~Fij, i, j ¼ 1, 2, 3, will be present on both sides of (1.4).

However, ~Fij is proportional to the electric field and so it
vanishes for those static monopole solutions. In addition,
only the component ~J123 ∼ J0 appears on the rhs of (1.4),
and that vanishes because the solution is static and we shall
work in the gauge where A0 ¼ 0. Remember that the only
contribution for the matter current for such a solution
comes from the triplet Higgs field ϕ, and that is of the form
Jμ ∼ ½ϕ; Dμϕ�. Therefore, all terms involving the parameter
β are not present on both sides of (1.4), for static monopoles
when Ω is purely spatial, and so it reduces to

P2e
ieα

R
∂Ω dτdσW−1FijW

∂xi∂σ ∂x
j

∂τ ¼ P3e
αðα−1Þ

R
Ω
dζdτVĴV−1

; ð1:15Þ
with

Ĵ ¼ e2

2

�Z
σf

σi

dσ0FW
k;lðσ0Þ;

Z
σf

σi

dσFW
ij ðσÞ

� ∂xk
∂σ0

∂xi
∂σ

×

�∂xl
∂τ ðσ0Þ ∂x

j

∂ζ ðσÞ − ∂xl
∂ζ ðσ0Þ ∂x

j

∂τ ðσÞ
�

ð1:16Þ

where i, j, k, l ¼ 1, 2, 3, repeated indices are summed,
and where we have denoted FW

ij ≡W−1FijW. Note that

we have explored the symmetry of Ĵ in σ and σ0 to
replace

R σf
σi dσ

R
σ
σi
dσ0 → 1

2

R σf
σi dσ

R σf
σi dσ

0.
Equation (1.15) is what we call the generalized integral

Bianchi identity. Note that one would expect the integral
Bianchi identity to be (1.15) for α ¼ 1, i.e.,

P2e
ie
R
∂Ω dτdσW−1FijW

∂xi∂σ ∂x
j

∂τ ¼ 1: ð1:17Þ
Indeed, that is what leads to the quantization of the

magnetic charge. From a physical point of view it is
intriguing that by rescaling the field tensor (magnetic field)
as Fij → αFij, leads to the appearance of a term like the rhs
of (1.15), making the magnetic flux through ∂Ω to change
drastically. However, the validity of (1.4), and so of (1.15), is
guaranteed by the generalized non-Abelian Stokes theorem
for a two-form Bμν and the partial differential Yang-Mills
equations (1.3) as proved in [1,2,11,12]. The intriguing
nonlinear phenomenon that we want to directly check in this
paper, is if one can expand both sides of (1.15) in powers of
α, and if the SUð2Þ ’t Hoot-Polyakov monopole and its exact

analytical BPS version, satisfy each one of the integral
equations obtained through such an expansion.
The paper is organized as follows. In Sec. II, we perform

the expansion of the generalized integral Bianchi identity
(1.15) in powers of the parameter α, and we show that each
term of the expansion can be expressed solely in terms of the
Wilson line operator. In Sec. III, we calculate explicitly the
Wilson line operator for the SUð2Þ ’t Hooft-Polyakov and
BPS monopoles using a suitable scanning of surfaces and
volumes. The result is quite simple and it is given in (3.14). In
Sec. IV, we check the validity of the integral equation in first
order of the α expansion and, in Sec. V,we do the same for the
integral equation in second order of that same expansion. We
present our conclusions in Sec. VI, and in Appendix, we give
the results of the numerical calculations of the integrals
needed to perform the check of the integral equations.

II. THE EXPANSION OF THE YANG-MILLS
INTEGRAL EQUATIONS

Assuming that α and β are indeed arbitrary we expand
both sides of (1.4) in power series in those parameters. As
we have said the lhs of (1.4) is obtained by integrating (1.9),
and its rhs by integrating (1.12). By writing the expressions
on the lhs and on the rhs of the integral equation (1.4) in
terms of (1.11) and (1.4), and collecting the coefficients at
first order in α and zeroth order in β, we get the integral
equation at first order in α

Z
τf

τi

dτ
Z

σf

σi

dσFW
μν
∂xμ
∂σ

∂xν
∂τ

����
ζ¼ζ0

¼ ie
Z

ζ0

0

dζ
Z

τf

τi

dτ
Z

σf

σi

dσ
Z

σ

σi

dσ0½FW
κρðσ0Þ;FW

μνðσÞ�

×
dxκ

dσ0
dxμ

dσ

�
dxρðσ0Þ
dτ

dxνðσÞ
dζ

−
dxρðσ0Þ
dζ

dxνðσÞ
dτ

�
; ð2:1Þ

where ζ0 is the value of ζ corresponding to the closed
surface ∂Ω, in the scanning of the 3-volume Ω, which is
the border of Ω [see explanation of the scanning in the
paragraph above (1.4)]. On the other hand, the integral
equation appearing in order β and zeroth order in α, in the
expansion of (1.4) is given by

Z
τf

τi

dτ
Z

σf

σi

dσ ~FW
μν
∂xμ
∂σ

∂xν
∂τ

����
ζ¼ζ0

¼
Z

ζ0

0

dζ
Z

τf

τi

dτ
Z

σf

σi

dσ

�
~JWμνλ

dxμ

dσ
dxν

dτ
dxλ

dζ

þ ie
Z

σ

σi

dσ0½FW
κρðσ0Þ; ~FW

μνðσÞ�

×
dxκ

dσ0
dxμ

dσ

�
dxρðσ0Þ
dτ

dxνðσÞ
dζ

−
dxρðσ0Þ
dζ

dxνðσÞ
dτ

��
:

ð2:2Þ
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Note that in the case where the gauge group G is the
Abelian group Uð1Þ, Eq. (2.1) corresponds to (1.2) for
α ¼ 1 and β ¼ 0. Equation (2.2) corresponds to (1.2) for
α ¼ 0 and β ¼ 1. Note in addition that in the case where the
3-volume Ω is purely spatial, the commutator term in (2.1)
involving the field tensors can be interpreted as a density
of non-Abelian magnetic charge associated to the gauge
field configuration inside Ω. The commutator term in (2.2)
involving the field tensor and its Hodge dual can be
interpreted as a density of non-Abelian electric charge
associated to the gauge field configuration inside Ω. In the
case whereΩ has time components, those commutators will
be associated to flows of non-Abelian electric and magnetic
charges. We have explored further those facts to obtain the
integral form of the non-Abelian Gauss, Faraday, etc., laws,
and the physical implications of these new terms (the
commutator terms) should be further explored in some
other opportunity.
As one goes higher in the expansion, the integral

equations become more and more complex. However,
for the case we are considering in this paper, namely the
static ’t Hooft-Polyakov monopole and its BPS version,
and where the 3-volume Ω is purely spatial, there is an
important simplification. As we have argued in the para-
graph above (1.15), only the spatial components of the
field tensor (magnetic field) appear in the formulas, since
the spatial components of its Hodge dual (electric field)
vanish. As explained in Sec. II of [11], or in the Appendix
of [2], if one performs an infinitesimal variation,
xμðσÞ → xμðσÞ þ δxμðσÞ, of the curve where the Wilson
line W (1.7) is calculated, but keeping its end points fixed,
the infinitesimal variation of the Wilson line operator is
given by

W−1ðσfÞδWðσfÞ ¼ ie
Z

σf

σi

dσW−1FμνW
dxμ

dσ
δxν: ð2:3Þ

The Wilson line operators W appearing in the Yang-Mills
integral equations (1.4) are evaluated on the paths that scan

the closed surfaces which in their turn scan the 3-volumeΩ.
Therefore, as we vary the parameter τ which labels the
loops, we vary the loop along a given surface, and so
δxμ ¼ dxμ

dτ δτ. When we vary the parameter ζ which labels
the surfaces, the loops vary perpendicular to that surface
and so δxμ ¼ dxμ

dζ δζ. Consequently, from (2.3) we get the
following two useful formulas

ie
Z

σf

σi

dσW−1FμνW
dxμ

dσ
dxν

dτ
¼ W−1 dW

dτ

ie
Z

σf

σi

dσW−1FμνW
dxμ

dσ
dxν

dζ
¼ W−1 dW

dζ
: ð2:4Þ

As we have shown, for the static ’t Hooft-Polyakov
monopole and its BPS version, and a purely spatial
3-volume Ω, the integral Yang-Mills equation (1.4)
becomes the generalized integral Bianchi identity (1.15).
Therefore, from (1.11), (1.10), and (2.4), one gets that the
lhs of (1.15) is given by

Vð∂ΩÞ≡ P2e
ieα

R
∂Ω dτdσW−1FijW

∂xi∂σ ∂x
j

∂τ

¼ 1þ α

Z
τf

τi

dτW−1 dW
dτ

ðτÞ
����
ζ¼ζ0

þ α2
Z

τf

τi

dτ
Z

τ

τi

dτ0W−1 dW
dτ0

ðτ0ÞW−1 dW
dτ

ðτÞ
����
ζ¼ζ0

þ � � �
¼ 1þ αVð1Þ þ α2Vð2Þ þ � � � : ð2:5Þ

From (2.4) one gets that (1.16) becomes

Ĵ ¼ −
�
W−1 dW

dτ
;W−1 dW

dζ

�
: ð2:6Þ

Therefore, from (1.14) and (2.6), the rhs of (1.15) becomes

UðΩÞ≡ P3e
αðα−1Þ

R
Ω
dζdτVĴV−1

¼ 1 − αðα − 1Þ
Z

ζ0

0

dζ
Z

τf

τi

dτV

�
W−1 dW

dτ
;W−1 dW

dζ

�
V−1

þ ½αðα − 1Þ�2
Z

ζ0

0

dζ
Z

ζ

0

dζ0
Z

τf

τi

dτ
Z

τf

τi

dτ0
�
V

�
W−1 dW

dτ
;W−1 dW

dζ

�
V−1

�
ðτ; ζÞ

×

�
V

�
W−1 dW

dτ0
;W−1 dW

dζ0

�
V−1

�
ðτ0; ζ0Þ þ � � �

¼ 1þ αUð1Þ þ α2Uð2Þ þ � � � ; ð2:7Þ

where V in (2.7) is evaluated with the same expansion as in (1.11) with β ¼ 0, and so an expansion similar to (2.5).
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Therefore, by equating (2.5) to (2.7), one gets that the term in first order in α leads to the integral equation

Vð1Þ ¼
Z

τf

τi

dτW−1 dW
dτ

����
ζ¼ζ0

¼
Z

ζ0

0

dζ
Z

τf

τi

dτ

�
W−1 dW

dτ
;W−1 dW

dζ

�
¼ Uð1Þ: ð2:8Þ

Similarly, the term in order α2 gives the following integral equation:

Vð2Þ ¼
Z

τf

τi

dτ
Z

τ

τi

dτ0W−1 dW
dτ0

W−1 dW
dτ

����
ζ¼ζ0

¼ −
Z

ζ0

0

dζ
Z

τf

τi

dτ

�
W−1 dW

dτ
;W−1 dW

dζ

�
þ
Z

ζ0

0

dζ
Z

τf

τi

dτ
Z

τ

τi

dτ0
�
W−1 dW

dτ0
;

�
W−1 dW

dτ
;W−1 dW

dζ

��

þ
Z

ζ0

0

dζ
Z

ζ

0

dζ0
Z

τf

τi

dτ
Z

τf

τi

dτ0
�
W−1 dW

dτ
;W−1 dW

dζ

��
W−1 dW

dτ0
;W−1 dW

dζ0

�
¼ Uð2Þ: ð2:9Þ

We are going to verify if the SUð2Þ ’t Hooft-Polyakov
monopole and its BPS version [3–6,8], satisfy the integral
equations (2.8) and (2.9). Note that the only quantity
appearing in (2.8) and (2.9) is the Wilson loop W. In the
next section, we evaluate it for those monopole solutions.

III. THE WILSON LOOP FOR
’t HOOFT-POLYAKOV AND BPS MONOPOLES

The spherically symmetric ’t Hooft-Polyakov ansatz
[3,4] for a SUð2Þ static magnetic monopole reads

ϕ ¼ 1

er
HðζÞr̂ · T

A0 ¼ 0

Ai ¼ −
1

e
ϵijk

xj
r2
ð1 − KðζÞÞTk; ð3:1Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p
, r̂i ¼ xi=r, ζ ¼ ear, a being the

vacuum expectation value of the Higgs field in the triplet
representation, and Ti being the generators of the SUð2Þ
Lie algebra:

½Ti; Tj� ¼ iεijkTk: ð3:2Þ

The exact analytical BPS monopole solution corresponds
to the functions [5,6]

KðζÞ ¼ ζ

sinh ζ
HðζÞ ¼ ζ coth ζ − 1: ð3:3Þ

For the ’t Hooft-Polyakov monopole, the functions KðζÞ
and HðζÞ are obtained numerically, but they have quali-
tatively the same behavior as (3.3); i.e., we have that
Kð0Þ ¼ 1, and then it decays monotonically (exponen-
tially) to zero as r → ∞, and Hð0Þ ¼ 0, and then it grows
monotonically with r and for r → ∞, such grow is linear
in r. The function HðζÞ will not be important in our
calculations because the Higgs field does not appear in our

integral equations for the case of static solutions and for Ω
being purely spatial [see (2.8) and (2.9)]. The important
simplification we obtain in our calculations is due to the
fact that KðζÞ is a monotonic function of ζ, and so it admits
an inverse function. We will then trade the parameter ζ by
the function K, and our calculations will not depend upon
the explicit form of the function KðζÞ.
We have chosen to evaluate both sides of the integral

equations (2.8) and (2.9) on a purely spatial 3-volume Ω
which is a ball centered at the origin of the Cartesian
coordinate system xi, i ¼ 1, 2, 3, used in the ansatz (3.1).
We then scan that volume Ωwith closed surfaces which are
spheres also centered at the origin of the Cartesian
coordinate system, with radii varying from zero to the
radius of Ω. However, since the reference point xR have to
lie on the border ∂Ω of Ω, and since the surfaces scanning
it have to be based at xR, we shall attach to the ball Ω a
infinitesimally thin cylinder lying on the negative x1 axis,
and locate the reference point xR at ðx1; x2; x3Þ ¼
ð−∞; 0; 0Þ. The cylinder has a radius ε, which will be
taken to zero at the end of the calculations. The surfaces
scanning Ω will have the form depicted in Fig. 2, i.e., an
infinitesimally thin cylinder on the negative x1 axis and a
sphere centered at the origin of the Cartesian coordinate
system. With the attachment of the thin cylinder we can
keep the surfaces based at xR, and centered at the origin.
In addition, xR being at infinity allows us to have the
volume Ω with any radius. We shall label the surfaces
scanning Ω with the parameter ζ, which is the same as the
one appearing in the ansatz (3.1). Then ζ ¼ 0 corresponds
to the surface made of the thin cylinder and a sphere of
radius zero attached to it, and ζ ¼ ζ0 corresponds to the
border ∂Ω, made of the thin cylinder attached to a sphere of
radius ζ0, the same as the radius ofΩ, centered at the origin.
The loops will be labeled by a parameter τ, they start and
end at the reference point xR, and there will be three types
of loops, as follows:
(1) Loops of type (I), scanning the thin cylinder, as

depicted in Fig. 1. For such loops, the parameter τ
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varies from −∞ to − π
2
, with τ ¼ −∞ corresponding

to the infinitesimal loop around xR, and τ ¼ − π
2

corresponding to a straight line from xR to the border
of the sphere, then encircling the joint of the cylinder
with the sphere, and coming back to xR through the
same straight line. The three parts of such loops will
be denoted (I.1), the first straight line, (I.2), the circle
and (I.3) the second straight line. We parametrize the
loops with σ, such that the points on the loops have
the following coordinates:

ðI:1Þ x1 ¼ τ þ σ − ζ þ π

2
x2 ¼ 0

x3 ¼ −ε ð−∞ ≤ σ ≤ 0Þ
ðI:2Þ x1 ¼ τ − ζ þ π

2
x2 ¼ ε sin σ

x3 ¼ −ε cos σ ð0 ≤ σ ≤ 2πÞ
ðI:3Þ x1 ¼ τ þ 2π − σ − ζ þ π

2
x2 ¼ 0

x3 ¼ −ε ð2π ≤ σ ≤ ∞Þ

with fixed ζ and −∞ ≤ τ ≤ − π
2
.

(2) Loops of type (II), scanning the thin sphere, as
depicted in Fig. 2. For such loops the parameter τ
varies from − π

2
to π

2
. A loop of this type is made of a

straight line from xR to the border of the sphere, then
making a circle on the surface of the sphere, starting
and ending at the junction of the cylinder with the
sphere, and lying on a plane perpendicular to the
plane x1x3, that makes an angle τ with the plane
x1x2. Finally, it returns to xR through the same
straight line. Again, the three parts of such loops will
be denoted as (II.1) for the first straight line, (II.2)
for the circle and (II.3) labels the second straight
line. We parametrize the loops with σ, such that the
points on the loops have the following coordinates:

ðII:1Þ x1 ¼ σ − ζ x2 ¼ 0

x3 ¼ −ε ð−∞ ≤ σ ≤ 0Þ
ðII:2Þ x1 ¼ ζðcos2τð1 − cos σÞ − 1Þ

x2 ¼ ζ cos τ sin σ ð0 ≤ σ ≤ 2πÞ
x3 ¼ ζ cos τ sin τð1 − cos σÞ

ðII:3Þ x1 ¼ −σ þ 2π − ζ x2 ¼ 0

x3 ¼ −ε ð2π ≤ σ ≤ ∞Þ:

with fixed ζ and where in (II.2) the parameter τ
varies from − π

2
to π

2
.

(3) Loops of type (III), scanning the thin cylinder
backwards, as depicted in Fig. 3. For such loops
the parameter τ varies from π

2
to ∞, and they are

made of two straight lines. The first one starting at
xR and ending on some point on the side of the
cylinder with coordinates ðx1; x2; x3Þ ¼ ðx1; 0;−εÞ.
The second part of the loop is the same straight line
(reversed) going back to xR. We shall denote the
first straight line (III.1) and the second (III.2). We
parametrize the loops with σ, such that the points on
the loops have the following coordinates:

ðIII:1Þ x1 ¼
π

2
− τ − ζ þ σ x2 ¼ 0

x3 ¼ −ε ð−∞ ≤ σ ≤ 0Þ
ðIII:2Þ x1 ¼

π

2
− τ − ζ − σ x2 ¼ 0

x3 ¼ −ε ð0 ≤ σ ≤ ∞Þ

with fixed ζ, and where π
2
≤ τ ≤ ∞.

An important simplification is made by observing that
the Wilson line is constant along loops scanning the thin
cylinder. Indeed, we observe that on the segments (I.1),
(I.3), (II.1), (II.3), (III.1) and (III.2), the coordinate x1 is
linear in σ, and x2 and x3 are independent of it. Therefore,
using (3.1), we have that

Ai
dxi

dσ

����
straight lines

¼ �A1 ¼∓ 1

e
ε

r2
ð1 − KÞT2 → 0 as ε → 0

ð3:4Þ

with the upper signs valid for the segments (I.1), (II.1) and
(III.1), and the lower signs valid for (I.3), (II.3) and (III.2).
On the segment (I.2), on the other hand, we get that

FIG. 1. Scanning of type (I). The gap between the straight lines
is only a visual resource.

FIG. 2. Scanning of type (II). FIG. 3. Scanning of type (III).
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Ai
dxi

dσ

����
ðI:2Þ

¼ ε½cos σA2 þ sin σA3�

¼ −
ε

e
ð1 − KÞ

r2

�
−εT1 þ

�
τ − ζ þ π

2

�

× ð− cos σT3 þ sin σT2Þ
�
→ 0 as ε → 0:

ð3:5Þ

The only nonvanishing contribution comes from the seg-
ment (II.2), which gives

Ai
dxi

dσ

����
ðII:2Þ

¼ 1

e
ð1 − KÞ cos τ½cos τ sin τð1 − cos σÞT1

þ sin τ sin σT2 þ ðsin2τð1 − cos σÞ − 1ÞT3�

¼ −
1

e
ð1 − KÞ cos τeiτT2eiσT3e−iτT2

× T3eiτT2e−iσT3e−iτT2 : ð3:6Þ

Therefore, integrating (1.7) one gets that the Wilson lines
on the loops of type I and III are trivial, i.e., WðIÞ ¼
WðIIIÞ ¼ 1. On the loops of type II one gets that
WðIIÞ ¼ W3W2W1, where Wa are the Wilson lines
obtained by integrating (1.7) on the segments (II.a),
a ¼ 1, 2, 3. Due to (3.4) we have that W1 ¼ W3 ¼ 1.
Under a gauge transformation Ai→ Āi¼gAig−1þ i

e∂igg−1,
with g ¼ eiτT2e−iσT3e−iτT2 , one gets that

W2 → W̄2 ¼ gfW2g−1i ¼ eiτT2e−i2πT3e−iτT2W2; ð3:7Þ

where gi and gf are the values of g at the initial and
final points of the loop (II.2), and so gi ¼ 1, and
gf ¼ eiτT2e−i2πT3e−iτT2 . Therefore, one gets that

Ai
dxi

dσ

����
ðII:2Þ

→ Āi
dxi

dσ

����
ðII:2Þ

¼ 1

e
½K cosτT3− sinτT1�; ð3:8Þ

and the Eq. (1.7) for W̄2 becomes

dW̄2

dσ
þ i½K cos τT3 − sin τT1�W̄2 ¼ 0: ð3:9Þ

Since the connection term ½KðζÞ cos τT3 − sin τT1� is
independent of σ it follows that the path ordering is
unimportant and the integration on the loops (II.2)
gives

W̄2 ¼ e−i2π½K cos τT3−sin τT1�: ð3:10Þ

Using the fact that ei2πT3 ¼ �1, depending if the repre-
sentation used is of integer (þ) or half-integer (−) spin, we
get that gf ¼ �1, and so

W ¼ WðIIÞ ¼ W2 ¼ �e−i2π½KðζÞ cos τT3−sin τT1�; ð3:11Þ

where we have equated W to WðIIÞ, because, as shown
above WðIÞ ¼ WðIIIÞ ¼ 1. Therefore, in (3.11) we have τ
varying from − π

2
to π

2
. The calculations concerning the

Wilson line can be simplified defining γ as

cos γ ¼ K cos τ
F

; sin γ ¼ sin τ
F

ð3:12Þ

with

Fðζ; τÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ðζÞcos2τ þ sin2τ

q
: ð3:13Þ

Then (3.11) can be written as

W ¼ �eiγT2e−i2πFT3e−iγT2 ; ð3:14Þ

from which we get

W−1∂W ¼ ieiγT2f−2π∂FT3 þ ∂γ½ðcos ð2πFÞ − 1ÞT2

þ sin ð2πFÞT1�ge−iγT2

¼ if½2π∂F sin γ þ ∂γ sin ð2πFÞ cos γ�T1

þ ∂γ½cos ð2πFÞ − 1�T2

þ ½−2π∂F cos γ þ ∂γ sin ð2πFÞ sin γ�T3g:
ð3:15Þ

We then have

W−1 dW
dτ

¼ i cos τNjðK; τÞTj ð3:16Þ

with

N1ðK; τÞ ¼ 1

F2

�
2πð1 − K2Þsin2τ þ K2 sin ð2πFÞ

F

�

N2ðK; τÞ ¼ −
K

F2 cos τ
½1 − cos ð2πFÞ�

N3ðK; τÞ ¼ K sin τ
F2 cos τ

�
−2πð1 − K2Þcos2τ þ sin ð2πFÞ

F

�
:

ð3:17Þ

In addition,
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�
W−1 dW

dτ
;W−1 dW

dζ

�

¼ 2πi

�
dF
dτ

dγ
dζ

−
dγ
dτ

dF
dζ

�

× eiγT2 ½ð1 − cos ð2πFÞÞT1 þ sin ð2πFÞT2�e−iγT2

¼ −i2πK0cos2τMjðK; τÞTj ð3:18Þ

with

M1ðK; τÞ ¼
K cos τ
F2

½1 − cos ð2πFÞ�

M2ðK; τÞ ¼
sin ð2πFÞ

F

M3ðK; τÞ ¼
sin τ
F2

½1 − cos ð2πFÞ�; ð3:19Þ

where K0 stands for dK
dζ , and where we have used the

formulas

dF
dτ

¼ sin τ cos τ
F

ð1 − K2Þ; dF
dζ

¼ Kcos2τ
F

K0;

dγ
dτ

¼ K
F2

;
dγ
dζ

¼ −
sin τ cos τ

F2
K0: ð3:20Þ

With these expressions we are ready to perform the
calculations of Sec. II for the SUð2Þ monopoles.

IV. CHECK OF FIRST-ORDER INTEGRAL
EQUATIONS FOR SUð2Þ MONOPOLES

The integral equation for a purely spatial volume Ω,
in first order in α, for the SUð2Þ monopoles (’t Hooft-
Polyakov or BPS) is given by expression (2.8). However,
since the Wilson line is unit for the loops of type I and III
(see Sec. III), we get that (2.8) is only nontrivial for loops of
type II, where τ varies from − π

2
to π

2
, and so (2.8) becomes

Vð1Þ ¼
Z π

2

−π
2

dτW−1 dW
dτ

����
ζ¼ζ0

¼
Z

ζ0

0

dζ
Z π

2

−π
2

dτ

�
W−1 dW

dτ
;W−1 dW

dζ

�
¼ Uð1Þ; ð4:1Þ

where the lhs is an integration on a closed surface of radius
ζ0 and the rhs is an integration in the volume contained
inside that surface. Our goal is to evaluate both sides of this
equation using the results obtained in the expressions (3.16)
and (3.18). In order to perform the integration of the lhs
term, a better choice of variables is the following:

y ¼ sin τ; −1 ≤ y ≤ 1;

z ¼ KðζÞ cos τ; 0 ≤ z ≤ 1; ð4:2Þ

with 0 ≤ ζ ≤ ∞, 0 ≤ KðζÞ ≤ 1, and − π
2
≤ τ ≤ π

2
. Note that

we are using the fact that KðζÞ is monotonically decreasing
function of ζ for both, the ’t Hooft-Polyakov and BPS
monopole solutions. The explicit form of the function KðζÞ
is not important here. In these variables we get

F2 ¼ y2 þ z2 ¼ K2 þ ð1 − K2Þy2; ð4:3Þ

and so using (3.16) and (3.17) we get that the lhs of (4.1)
becomes

Vð1Þ ¼ i
Z

1

−1
dyNjðK0; yÞTj; ð4:4Þ

with K0 ≡ Kðζ0Þ, and

N1ðK; yÞ ¼ 2π

F2

�
y2ð1 − K2Þ þ K2 sinð2πFÞ

2πF

�

N2ðK; yÞ ¼ −
Kffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2
p

F2
f1 − cos ð2πFg

N3ðK; yÞ ¼ 2π
Kyffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2
p

F2

�
F2 − 1þ sin ð2πFÞ

2πF

�
: ð4:5Þ

Note thatN3 is an odd function of y and, thus, integrating
we get

Vð1ÞðK0Þ ¼ iJ1ðK0ÞT1 þ iJ2ðK0ÞT2; ð4:6Þ

with

J1ðK0Þ¼2π

Z
1

−1
dy

1

K2
0þð1−K2

0Þy2

×

8<
:ð1−K2

0Þy2þ
K2

0 sin


2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0þð1−K2
0Þy2

p �
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0þð1−K2
0Þy2

p
9=
;

J2ðK0Þ¼−
Z

1

−1
dy

K0ffiffiffiffiffiffiffiffiffiffiffi
1−y2

p
ðK2

0þð1−K2
0Þy2Þ

×

�
1−cos



2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0þð1−K2
0Þy2

q ��
:

Note that as ζ varies from 0 to ζ0, one has that K varies
from 1 to K0 ≡ Kðζ0Þ < 1. Therefore, the integration
domain on the rhs of (4.1) is a truncated semidisc shown
in Fig. 4. The absolute value of the Jacobian of the
variable transformation ðζ; τÞ → ðy; zÞ, given in (4.2), is
jK0jcos2τ ¼ −K0cos2τ, since K0 is strictly negative. In
addition, it is more appropriate to perform a further change
of variables to evaluate the integration on the rhs of (4.1).
We define the polar type coordinates ðs; θÞ as
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y ¼ s cos θ; z ¼ s sin θ;

SðK0; θÞ ≤ s ≤ 1; 0 ≤ θ ≤ π ð4:7Þ

with

SðK; θÞ≡ Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2θð1 − K2Þ

p : ð4:8Þ

Therefore, one has that

Z
ζ0

0

dζ
Z π

2

−π
2

dτK0cos2τ ¼ −
Z
truncated semidisc

dzdy

¼ −
Z

π

0

dθ
Z

1

SðK0;θÞ
dss: ð4:9Þ

We then have that the Mi’s, defined in (3.19), become

M1 ¼
z
F2

½1 − cos ð2πFÞ� ¼ sin θ
s

½1 − cos ð2πsÞ�

M2 ¼
sin ð2πFÞ

F
¼ sin ð2πsÞ

s

M3 ¼
y
F2

½1 − cos ð2πFÞ� ¼ cos θ
s

½1 − cos ð2πsÞ�: ð4:10Þ

Using (3.18) we get that in these coordinates the rhs of
(4.1), denoted by Uð1Þ, reads

Uð1Þ ¼ i2π
Z

π

0

dθ
Z

1

SðK0;θÞ
dsfsin θð1 − cosð2πsÞÞT1

þ sinð2πsÞT2 þ cos θð1 − cosð2πsÞÞT3g; ð4:11Þ

from which we can easily perform the integration in s,
obtaining

Uð1ÞðK0Þ ¼ iI1ðK0ÞT1 þ iI2ðK0ÞT2; ð4:12Þ

where

I1ðK0Þ ¼
Z

π

0

dθ sin θ

�
2π −

2πK0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2θð1 − K2

0Þ
p

þ sin

�
2πK0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos2θð1 − K2
0Þ

p
��

I2ðK0Þ ¼ −
Z

π

0

dθ

�
1 − cos

�
2πK0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos2θð1 − K2
0Þ

p
��

ð4:13Þ

The integral along the T3 direction in (4.11) vanishes
since the integrand is odd, under reflection around θ ¼ π

2
,

in the interval 0 ≤ θ ≤ π (note that S0ðθÞ is even in that
interval).
Therefore, in order to check the validity of the integral

equation at first order in α, given in (4.1), we have to verify
the equalities of the coefficients of Ti in (4.6) and in (4.12).
We have performed the numerical integration of the
quantities IiðK0Þ and JiðK0Þ for several values of K0,
covering the range 1 ≥ K0 ≥ 0, corresponding to
0 ≤ ζ0 ≤ ∞. Note that the actual value of K0 for a given
value of ζ0 is different for the ’t Hooft-Polyakov and BPS
monopoles. However, the fact that KðζÞ is a monotonically
decreasing function of ζ, for both solutions, allowed us to
trade the coordinate ζ by K, and perform one check that is
valid for the two monopole solutions. In Sec. A 1 we give
the results of the numerical integrations of the quantities
IiðK0Þ and JiðK0Þ, i ¼ 1, 2. As one observes in those
tables, the values of IiðK0Þ and JiðK0Þ are remarkably
identical, differing in the worst case around the eighth
decimal place, due to the numerical approximation. This
indicates that the ’t Hooft-Polyakov and BPS SUð2Þ
monopoles are indeed solutions of the first-order integral
equation (2.1), or equivalently (4.1), appearing in the
expansion in α of the integral non-Abelian Gauss law in
(2.5) and (2.7).

V. CHECK OF SECOND-ORDER INTEGRAL
EQUATIONS FOR SUð2Þ MONOPOLES

The integral equation for a purely spatial volume Ω, in
second order in α, for the SUð2Þ monopoles (’t Hooft-
Polyakov or BPS) is given by expression (2.9). However,
since the Wilson line is unit for the loops of type I and III
(see Sec. III) we get that (2.9) is only nontrivial for loops
of type II, where τ varies from − π

2
to π

2
, and so (2.9)

becomes

FIG. 4. The integration domain in the new “polar” coordinates.
Each value ofK0 fixes a new domain by shortening the area of the
disk from below.
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Vð2Þ ¼
Z π

2

−π
2

dτ
Z

τ

−π
2

dτ0W−1 dW
dτ0

W−1 dW
dτ

����
ζ¼ζ0

¼ −
Z

ζ0

0

dζ
Z π

2

−π
2

dτ

�
W−1 dW

dτ
;W−1 dW

dζ

�
þ
Z

ζ0

0

dζ
Z π

2

−π
2

dτ
Z

τ

−π
2

dτ0
�
W−1 dW

dτ0
;

�
W−1 dW

dτ
;W−1 dW

dζ

��

þ
Z

ζ0

0

dζ
Z

ζ

0

dζ0
Z π

2

−π
2

dτ
Z π

2

−π
2

dτ0
�
W−1 dW

dτ
;W−1 dW

dζ

��
W−1 dW

dτ0
;W−1 dW

dζ0

�

≡ −Uð1Þ þ G2 þ G3 ¼ Uð2Þ; ð5:1Þ

where we have denoted G2 and G3 the terms appearing on the second and third lines, respectively, of (5.1). In addition,
we have used the fact that the first term on rhs of the first line of (5.1) is the same (up to a minus sign) as Uð1Þ given on
the rhs of (4.1).
We start by evaluating the lhs of (5.1), using (3.16), and (4.5) to get

Z π
2

−π
2

dτ
Z

τ

−π
2

dτ0W−1 dW
dτ0

W−1 dW
dτ

����
ζ¼ζ0

¼ −
Z

1

−1
dy

Z
y

−1
dy0

X3
i;j¼1

NiðK0; y0ÞNjðK0; yÞTiTj

¼ −
1

2

X3
i¼1

�Z
1

−1
dyNiðK0; yÞ

�
2

T2
i −

Z
1

−1
dy

Z
y

−1
dy0

X3
i≠j¼1

NiðK0; y0ÞNjðK0; yÞTiTj;

ð5:2Þ

where in the first term on the rhs of (5.2) we have used the symmetry of the integrand in y and y0 to transform the integral on
the triangle −1 ≤ y ≤ 1 and y0 ≤ y, to the integral on the square −1 ≤ y; y0 ≤ 1. We now use the fact that
NiðK0;−yÞ ¼ εiNiðK0; yÞ, with εi ¼ 1 for i ¼ 1, 2 and ε3 ¼ −1 [see (4.5)]. Then we can write

Z
1

−1
dy

Z
y

−1
dy0NiðK0; y0ÞNjðK0; yÞ ¼

1

2

Z
1

−1
dy

Z
y

−1
dy0NiðK0; y0ÞNjðK0; yÞ þ

εiεj
2

Z
1

−1
dy

Z
1

y
dy0NiðK0; y0ÞNjðK0; yÞ:

Therefore, for the case where εiεj ¼ 1, one can write further that

Z
1

−1
dy

Z
y

−1
dy0NiðK0; y0ÞNjðK0; yÞ ¼

1

2

Z
1

−1
dy

Z
1

−1
dy0NiðK0; y0ÞNjðK0; yÞ; εiεj ¼ 1:

ð5:3Þ

For the case εiεj ¼ −1, we do not use (5.3), but instead write

TiTj ¼
1

2
fTi; Tjg þ

1

2
½Ti; Tj� ¼

1

2
fTi; Tjg þ iεijkTk: ð5:4Þ

Note that we are dealing here with products, and not only commutators, of the SUð2Þ Lie algebra generators. We have,
therefore, to work with a basis in the enveloping algebra of SUð2Þ, which in the case of quadratic terms we shall take to be
the nine quantities Ti, and the anticommutators fTi; Tjg, i, j ¼ 1, 2, 3. If one works with the spinor representation given by
the Pauli matrices σi, i ¼ 1, 2, 3, then one has σiσj ¼ iεijkσk þ δij1, and nondiagonal terms vanish, i.e., fσi; σjg ¼ 0, for
i ≠ j. However, if one works with the triplet or higher representations one has fTi; Tjg ≠ 0 even for i ≠ j. So, we have to
consider the coefficients of all the nine elements of the basis of the enveloping algebra to be independent. Therefore, using
(5.4), one gets that

Vð2Þ ¼
Z π

2

−π
2

dτ
Z

τ

−π
2

dτ0W−1 dW
dτ0

W−1 dW
dτ

����
ζ¼ζ0

¼ −½N 1ðK0ÞT2
1 þN 2ðK0ÞT2

2 þN 12ðK0ÞfT1; T2g þN þ
13ðK0ÞfT1; T3g þN þ

23ðK0ÞfT2; T3g
− iN −

13ðK0ÞT2 þ iN −
23ðK0ÞT1�; ð5:5Þ

CONSTANTINIDIS, FERREIRA, and LUCHINI PHYSICAL REVIEW D 96, 105024 (2017)

105024-10



where

N iðK0Þ ¼
1

2

�Z
1

−1
dyNiðK0; yÞ

�
2

i ¼ 1; 2

N 12ðK0Þ ¼
1

2

�Z
1

−1
dyN1ðK0; yÞ

��Z
1

−1
dy0N2ðK0; y0Þ

�
N �

13ðK0Þ

¼ 1

2

�Z
1

−1
dy

Z
y

−1
N1ðK0; y0ÞN3ðK0; yÞ �

Z
1

−1
dy

Z
y

−1
dy0N3ðK0; y0ÞN1ðK0; yÞ

�

N �
23ðK0Þ ¼

1

2

�Z
1

−1
dy

Z
y

−1
dy0N2ðK0; y0ÞN3ðK0; yÞ �

Z
1

−1
dy

Z
y

−1
dy0N3ðK0; y0ÞN2ðK0; yÞ

�
; ð5:6Þ

with the Ni’s defined in (4.5), and where we have dropped
the term proportional to T2

3 because N3 is an odd function
of y, and so its integral on the interval −1 ≤ y ≤ 1,
vanishes.
Using (3.16), (3.18) and (4.2), the term on the second

line of (5.1), denoted G2, becomes

G2 ¼ −i2πεijkTk

Z
K0

1

dK
Z

1

−1
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
MjðK; yÞ

×
Z

y

−1
dy0NiðK; y0Þ

≡ −i4π2RkðK0ÞTk: ð5:7Þ

Using (3.18) and (4.10) the term on the third line of (5.1),
denoted G3, becomes

G3 ¼ −4π2
Z

π

0

dθ
Z

1

SðK0;θÞ
dss

Z
π

0

dθ0

×
Z

1

SðK;θ0Þ
ds0s0

X3
i;j¼1

Miðs; θÞMjðs0; θ0ÞTiTj; ð5:8Þ

with K ≥ K0, and so ζ ≤ ζ0. Note that in the ðθ0; s0Þ
integration, K has to be taken as a function of θ and s.
From (4.2) and (4.7) one gets that K ¼ s sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−s2cos2θ
p . Note that

the ðθ0; s0Þ integration is the same as the one performed in
(4.11), with K0 replaced by K. Therefore, similar to what
happened, there will be no terms in the direction of Tj for
j ¼ 3, since M3ðs0; θ0Þ is odd under reflection of θ0 around
θ0 ¼ π

2
[see (4.10)]. SinceK and SðK0; θÞ are even under the

reflection of θ around θ ¼ π
2
, there will be no terms in the

direction of Ti for i ¼ 3, since M3ðs; θÞ is odd under that
reflection. Using (5.4) one gets that

G3 ¼ −4π½S1ðK0ÞT2
1 þ S2ðK0ÞT2

2

þ S12fT1; T2g þ iS3ðK0ÞT3�

with

SaðK0Þ ¼ π

Z
π

0

dθ
Z

1

SðK0;θÞ
dss

Z
π

0

dθ0

×
Z

1

SðK;θ0Þ
ds0s0Maðs; θÞMaðs0; θ0Þ; a ¼ 1; 2

S12ðK0Þ ¼
π

2

Z
π

0

dθ
Z

1

SðK0;θÞ
dss

Z
π

0

dθ0
Z

1

SðK;θ0Þ
ds0s0

× ½M1ðs; θÞM2ðs0; θ0Þ þM2ðs; θÞM1ðs0; θ0Þ�

S3ðK0Þ ¼
π

2

Z
π

0

dθ
Z

1

SðK0;θÞ
dss

Z
π

0

dθ0
Z

1

SðK;θ0Þ
ds0s0

× ½M1ðs; θÞM2ðs0; θ0Þ −M2ðs; θÞM1ðs0; θ0Þ�:
ð5:9Þ

The s0 integration can be performed analytically and so,
using (4.10) and the fact that K ¼ s sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−s2cos2θ
p , we get

Z
1

SðK;θ0Þ
ds0s0M1ðs0; θ0Þ

¼ sin θ0
�
1 −

s sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2sin2θ þ ð1 − s2Þsin2θ0

p

−
1

2π
sin

�
2πs sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2sin2θ þ ð1 − s2Þsin2θ0
p

��
; ð5:10Þ

andZ
1

SðK;θ0Þ
ds0s0M2ðs0; θ0Þ

¼ 1

2π

�
−1þ cos

�
2πs sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2sin2θ þ ð1 − s2Þsin2θ0
p

��
:

ð5:11Þ
Note that the above integrals are symmetric under the
reflection of θ and θ0 around π

2
. The quantities M1ðs; θÞ,

M2ðs; θÞ, SðK; θÞ and Kðs; θÞ are also symmetric under the
reflection of θ around π

2
. Therefore, the integration in θ and

θ0 can be performed in the interval from zero to π
2
, by

multiplying the result by two. So, we then get that
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S1ðK0Þ ¼ 2

Z π
2

0

dθ
Z

1

SðK0;θÞ
ds

Z π
2

0

dθ0ð1 − cos ð2πsÞÞ sin θ sin θ0

×

�
2π −

2πs sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2sin2θ þ ð1 − s2Þsin2θ0

p þ sin

�
2πs sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2sin2θ þ ð1 − s2Þsin2θ0
p

��
ð5:12Þ

P12ðK0Þ ¼ 2

Z π
2

0

dθ
Z

1

SðK0;θÞ
ds

Z π
2

0

dθ0ð1 − cos ð2πsÞÞ sin θ sin θ0
�
−1þ cos

�
2πs sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2sin2θ þ ð1 − s2Þsin2θ0
p

��
ð5:13Þ

P21ðK0Þ ¼ 2

Z π
2

0

dθ
Z

1

S0ðθÞ
ds

Z π
2

0

dθ0 sin ð2πsÞ
�
2π −

2πs sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2sin2θ þ ð1 − s2Þsin2θ0

p þ sin

�
2πs sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2sin2θ þ ð1 − s2Þsin2θ0
p

��

ð5:14Þ

S2ðK0Þ ¼ 2

Z π
2

0

dθ
Z

1

SðK0;θÞ
ds

Z π
2

0

dθ0 sin ð2πsÞ
�
−1þ cos

�
2πs sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2sin2θ þ ð1 − s2Þsin2θ0
p

��
; ð5:15Þ

where we have introduced

S12 ¼
1

2
ðP12ðK0Þ þ P21ðK0ÞÞ S3 ¼

1

2
ðP12ðK0Þ − P21ðK0ÞÞ:

Summarizing, we have obtained both sides of the integral equation in second order in α for a given K0, given in (5.1).
From (5.5) we have that

Vð2Þ ¼ −iN −
23T1 þ iN −

13T2 −N 1T2
1 −N 2T2

2 −N 12fT1; T2g −N þ
13fT1; T3g −N þ

23fT2; T3g; ð5:16Þ

and, from (5.1), (4.12), (5.7), and (5.9), we have that

Uð2Þ ¼ −iðI1 þ 4π2R1ÞT1 þ −iðI2 þ 4π2R2ÞT2 − ið4π2R3 þ 4πS3ÞT3 − 4πS1T2
1 − 4πS2T2

2 − 4πS12fT1; T2g: ð5:17Þ

We have to check the equality between the coefficients of
each element of the basis of the SUð2Þ enveloping algebra
on the expansion of Vð2Þ and Uð2Þ. Those coefficients
involve integrals which are calculated numerically for a set
of values of K0. The results are presented in the tables of
Sec. A 2 in the Appendix. The consistency is remarkable
and with that check we can state clearly that the ’t Hooft-
Polyakov monopole and its BPS version satisfy the integral
Yang-Mills equations up to second order in α.

VI. CONCLUSIONS

The integral Yang-Mills equations appeared from an
attempt to understand integrability in higher dimensional
spacetimes [1,2]. Through a loop space formulation [11,12]
one can construct a suitable generalization of the non-
Abelian Stokes theorem for two-form fields that can be
used naturally to define conservation laws, thus mimicking
the so-called zero curvature representation of integrable
field theories in (1þ 1) dimensions. That has led us to
consider the applications of such non-Abelian Stokes
theorem to construct the integral equations for non-
Abelian gauge theories, generalizing the well-known

Abelian version of such integral equations used to describe
the laws of electrodynamics. That was indeed possible, as
we have shown in [1,2], and the usual differential Yang-
Mills equations are obtained from these integral equations
when the appropriate limit is taken.
The present paper shows that there is more to be

explored. The integral Yang-Mills equations allow the
introduction of two c-numbers as parameters which arise
naturally in the construction of the equations, and as being
nonlinear, produce a quite nontrivial dependence on those
parameters of the surface- and volume-ordered integrals
appearing on both sides of the equation.
We have tested the assumption that the integral Yang-

Mills equations are in fact a collection of an infinite number
of equations, each one corresponding to the coefficients
of the above-mentioned expansion in powers of those
parameters. This was done by considering the fact that,
by construction, a solution of the differential Yang-Mills
equation is also a solution of the integral Yang-Mills
equation. Thus, using the ’t Hooft-Polyakov and BPS
monopoles as such configurations, we tested the validity
of the equations arising at first and second order in the
parameter expansion of the integral Yang-Mills equation.
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Despite the quite different structures of the terms resulting
from the surface- and volume-ordered integrals, we have
checked their equalities with a high numerical precision of
at least one part in 107. In addition, much of the check has
been done analytically, and we have obtained an exact
expression for the Wilson line operator, on each loop
scanning the surfaces and volumes, for the SUð2Þ ’t Hooft-
Polyakov monopole solution and its BPS version [see
(3.14)]. That result can certainly be useful in many other
applications.
The fact that those configurations are solutions of both of

the highly nontrivial equations at each order of the expan-
sion, indicates that the parameters could indeed be arbitrary.
The arbitrariness of the parameters leads to a variety of
important consequences which can now be considered, such
as their role in the conserved charges that arise dynamically
from the integral equations and the significance of having an
infinite number of integral equations.
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APPENDIX: NUMERICAL RESULTS

In this section, we show the results of the numerical
integrations related to the terms on the lhs and rhs of the
expansion of the integral equation performed at first and
second order in α. The coefficients of the generators of the
algebra (eventually, up to a common factor of i≡ ffiffiffiffiffiffi

−1
p

) are
compared for different values of K0 and the results are
presented in Tables I, II, III, IV, and V below. For each
integral estimative, there is an associated upper bound on
the error, which we represent by using the following
notation: 1.372� 0.008≡ 1.37ð2� 8Þ.

1. Equation Vð1Þ =Uð1Þ

2. Equation Vð2Þ =Uð2Þ
The tables below show the values of the coefficients of

the algebra elements of (5.16) and (5.17). The fact that they
agree implies on the validity of the equation obtained after
expanding the Yang-Mills integral equation to second order
in α and, therefore, on the validity of the integral equation
itself for any value of α, at least up to that order.

TABLE I. Numerical verification of the validity of Eq. (4.1): the
coefficients of T1 and T2 in (4.6) and in (4.12) agree up to the
eighth order.

Coefficients of T1

K0 I1ðK0Þ J1ðK0Þ
0.01 12.5614010ð8� 2Þ 12.561401086
0.1 12.077187419ð9� 6Þ 12.0771874199
0.2 10.70071291ð6� 2Þ 10.7007129168
0.3 8.6878758ð4� 8Þ 8.68787584542
0.4 6.38863592ð8� 4Þ 6.38863592858

(Table continued)

TABLE I. (Continued)

Coefficients of T1

K0 I1ðK0Þ J1ðK0Þ
0.5 4.169079306 4.169079306
0.6 2.3285155680ð5� 6Þ 2.32851556805
0.7 1.0380042ð9� 1Þ 1.0380042978
0.8 0.3151104413ð2� 9Þ 0.315110441326
0.9 0.039159443823 0.039159443823
0.99 0.000037982ð0� 3Þ 0.00003798206260ð6� 1Þ

Coefficients of T2

K0 I2ðK0Þ J2ðK0Þ
0.01 −0.19171684ð4� 3Þ −0.1917168ð4� 1Þ
0.1 −1.85828511ð5� 9Þ −1.85828511ð2� 2Þ
0.2 −3.3769476ð8� 1Þ −3.3769476ð8� 4Þ
0.3 −4.29785670058 −4.2978567ð0� 6Þ
0.4 −4.50418166ð9� 8Þ −4.5041816ð6� 2Þ
0.5 −4.04299388345 −4.0429938ð8� 2Þ
0.6 −3.1056196ð0� 2Þ −3.1056196ð0� 2Þ
0.7 −1.97241848ð8� 6Þ −1.9724184ð8� 1Þ
0.8 −0.9381858850ð1� 6Þ −0.93818588ð5� 8Þ
0.9 −0.23901332ð5� 3Þ −0.23901332ð5� 9Þ
0.99 −0.00233660398ð4� 4Þ −0.00233660ð3� 7Þ

TABLE II. Comparison between the coefficients of T1 and T2

of Eqs. (5.16) and (5.17).

Coefficients of T1

K0 I1ðK0Þ þ 4π2R1ðK0Þ N −
23ðK0Þ

0.01 0.0106581ð0� 2Þ 0.010658107ð5� 3Þ
0.1 1.013915115ð8� 6Þ 1.01391511ð5� 4Þ
0.2 3.47985977ð0� 2Þ 3.4798597ð7� 1Þ
0.3 6.0261611ð3� 8Þ 6.0261611ð4� 6Þ
0.4 7.31167856ð3� 4Þ 7.3116785ð6� 1Þ
0.5 6.7762177776ð6� 5Þ 6.77621777ð7� 9Þ
0.6 4.8526187817ð7� 6Þ 4.85261878ð1� 4Þ
0.7 2.5695934ð4� 1Þ 2.56959344117
0.8 0.8721002092ð6� 9Þ 0.872100209ð2� 9Þ

(Table continued)
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TABLE II. (Continued)

Coefficients of T1

K0 I1ðK0Þ þ 4π2R1ðK0Þ N −
23ðK0Þ

0.9 0.115252473857 0.115252473ð8� 3Þ
0.99 0.000113925ð3� 3Þ 0.00011392533ð9� 1Þ

Coefficients of T2

K0 −ðI2ðK0Þ þ 4π2R2ðK0ÞÞ N −
13ðK0Þ

0.01 −0.46994245ð7� 3Þ −0.46994245ð7� 1Þ
0.1 −4.38319034ð2� 9Þ −4.3831903ð4� 1Þ
0.2 −7.0567939ð8� 1Þ −7.0567939ð8� 1Þ
0.3 −7.20852026286 −7.2085202ð6� 1Þ
0.4 −5.26717871ð7� 8Þ −5.26717871ð7� 6Þ
0.5 −2.5185733549ð6� 9Þ −2.51857335ð4� 2Þ
0.6 −0.2961954ð3� 2Þ −0.29619543ð4� 7Þ
0.7 0.71488621ð2� 6Þ 0.71488621ð2� 7Þ
0.8 0.6675901030ð5� 6Þ 0.66759010ð3� 4Þ
0.9 0.22170728ð6� 3Þ 0.22170728ð6� 1Þ
0.99 0.00233492080ð0� 4Þ 0.00233492ð0� 8Þ

TABLE III. Comparison between the coefficients of T2
1 and T2

2

of Eqs. (5.16) and (5.17).

Coefficients of T2
1

K0 4πS1ðK0Þ N 1ðK0Þ
0.01 78.894398ð6� 2Þ 78.8943986254
0.1 72.92922798ð7� 8Þ 72.9292279882
0.2 57.2526284ð6� 2Þ 57.2526284639
0.3 37.7395933527 37.7395933527
0.4 20.4073345ð1� 3Þ 20.4073345139
0.5 8.690611129ð8� 2Þ 8.69061112984
0.6 2.7109923ð7� 3Þ 2.71099237533
0.7 0.5387264ð6� 1Þ 0.538726461126
0.8 0.0496472951ð1� 2Þ 0.0496472951165
0.9 0.0007667310202ð6� 1Þ 0.000766731020264
0.99 7.21318539905 × 10−10 7.213185398ð9� 2Þ × 10−10

Coefficients of T2
2

K0 4πS2ðK0Þ N 2ðK0Þ
0.01 0.018377674ð1� 2Þ 0.0183776ð7� 1Þ
0.1 1.7266117ð8� 1Þ 1.7266117ð8� 2Þ
0.2 5.7018878ð2� 4Þ 5.7018878ð2� 7Þ
0.3 9.2357861093ð6� 1Þ 9.235786ð1� 1Þ
0.4 10.1438262ð5� 4Þ 10.1438262ð5� 5Þ
0.5 8.172899770ð8� 4Þ 8.1728997ð7� 4Þ

(Table continued)

TABLE III. (Continued)

Coefficients of T2
2

K0 4πS2ðK0Þ N 2ðK0Þ
0.6 4.82243658089 4.8224365ð8� 3Þ
0.7 1.9452173ð4� 2Þ 1.9452173ð4� 1Þ
0.8 0.4400963774ð2� 5Þ 0.4400963ð7� 1Þ
0.9 0.0285636848378 0.0285636ð8� 1Þ
0.99 2.72985908954e-06 2.729ð8� 8Þe-06

TABLE IV. Comparison between the coefficients of fT1; T2g
of Eqs. (5.16) and (5.17).

Coefficients of fT1; T2g
K0 4πS12ðK0Þ N 12ðK0Þ
0.01 −1.2041160882ð4� 2Þ −1.20411608813
0.1 −11.2214288ð0� 5Þ −11.2214288084
0.2 −18.0678738ð4� 7Þ −18.0678738427
0.3 −18.669622708 −18.6696227077
0.4 −14.3877884ð2� 1Þ −14.3877884224
0.5 −8.4277810668ð8� 6Þ −8.42778106684
0.6 −3.6157418ð0� 4Þ −3.6157418051
0.7 −1.02368943ð3� 4Þ −1.02368943394
0.8 −0.1478160841ð3� 1Þ −0.147816084139
0.9 −0.0046798144427ð1� 3Þ −0.00467981444135
0.99 −4.43745194072 × 10−8 −4.437470ð7� 7Þ × 10−8

TABLE V. The coefficients above are the ones that should
vanish in the equation obtained at second order in α; indeed,
within a numerical precision, they are zero.

Coefficients of T3, fT2; T3g and fT1; T3g
K0 4π2R3ðK0Þ þ 4πS3ðK0Þ N þ

23ðK0Þ N þ
13ðK0Þ

0.01 �2 × 10−8 �7 × 10−11 �9 × 10−10

0.1 �7 × 10−8 �2 × 10−9 �6 × 10−9

0.2 �1 × 10−7 �7 × 10−9 �1 × 10−8

0.3 �2 × 10−11 �1 × 10−8 �4 × 10−9

0.4 �7 × 10−8 �1 × 10−8 �6 × 10−9

0.5 �7 × 10−10 �9 × 10−9 �7 × 10−9

0.6 �5 × 10−9 �4 × 10−9 �7 × 10−9

0.7 −4.44ð5� 2Þ × 10−11 �6 × 10−11 �5 × 10−9

0.8 −1� 7 × 10−11 �9 × 10−10 �3 × 10−9

0.9 −3.ð7� 7Þ × 10−13 �3 × 10−10 �5 × 10−9

0.99 9.599ð0� 4Þ × 10−16 −1.ð6� 2Þ × 10−11 �8 × 10−9
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