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We use the SU(2) ’t Hooft-Polyakov monopole configuration, and its Bogomolny-Prasad-Sommerfield
(BPS) version, to test the integral equations of the Yang-Mills theory. Those integral equations involve two
(complex) parameters which do not appear in the differential Yang-Mills equations, and if they are
considered to be arbitrary, it then implies that non-Abelian gauge theories (but not Abelian ones) possess an
infinity of integral equations. For static monopole configurations, only one of those parameters is relevant.
We expand the integral Yang-Mills equation in a power series of that parameter and show that the ’t Hooft-
Polyakov monopole and its BPS version satisfy the integral equations obtained in first and second order of
that expansion. Our results point to the importance of exploring the physical consequences of such an
infinity of integral equations on the global properties of the Yang-Mills theory.
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I. INTRODUCTION

The purpose of this paper is to perform a test of the integral
equations of Yang-Mills theories, recently proposed in [1,2],
using the SU(2) 't Hooft-Polyakov monopole solution
[3.4] as well as its exact analytical Bogomolny-Prasad-
Sommerfield (BPS) version [5,6]. The main motivation for
such a test is that these integral equations involve two
complex parameters that are not present in the Yang-Mills
partial differential equations. If those parameters are arbi-
trary, it means that contrary to Abelian electromagnetism,
Yang-Mills theories possess, in fact, an infinity of integral
equations. Indeed, by expanding the Yang-Mills integral
equations in power series of those parameters, we check that
the SU(2) 't Hooft-Polyakov monopole, and its BPS version,
do satisfy the integral equations appearing in that expansion,
up to second order in one of the parameters. The cancella-
tions involved in such a check are highly nontrivial and give
strong evidence for the arbitrariness of those parameters.

As shown in [1,2], the integral Yang-Mills equations lead,
in a quite natural way, to gauge-invariant conserved charges.
Such charges involve those two parameters in a way that, if
they are indeed arbitrary, it would imply that, in principle,
the number of charges is infinite. However, due to some
special properties of BPS multidyon solutions [7,8], shown
in [9], the higher charges are not really independent for such
solutions, being in fact powers of the first ones (the electric
and magnetic charges). The same is true for the SU(2)
’t Hooft-Polyakov monopole. It remains to be investigated
whether or not other non-BPS solutions also present such
special properties and so possess an infinity of charges.

In order to discuss the role of such parameters in a more
concrete way, let us start by the theory of electromagnetism
described by the Maxwell equations,
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O frv =j* 0" =0, (L.1)
where f,, = 0,a, —8,a,, f* =1e,,,.f" j* being the
external four current, and a, the electromagnetic four-
vector potential. The integral version of those equations is
obtained through the Abelian Stokes theorem for a rank-
two antisymmetric tensor b,, on a spacetime 3-volume Q,
as [yob = [od A b, where 9Q is the border of Q. Taking
b,, as a linear combination of f** and its Hodge dual, and
using (1.1), one gets

/ (af + BFuld2 = / BiupdV?. (1.2)
0Q Q

where ;'W, = Eups j* is the Hodge dual of the external
current and « and f are arbitrary parameters used in the
liner combination. By considering « and f to be arbitrary,
the integral equations (1.2) correspond to the four usual
integral equations of electromagnetic theory, which in fact
preceded Maxwell differential equations. Indeed, taking
a =0 and Q to be a purely spatial 3-volume, one gets the
Gauss law. On the hand, taking # = 0 and Q to be a solid
cylinder with its height in the time direction, and its base
on a spatial plane, one gets the Faraday law, and so on.
The role of the parameters a and f are not really important
here because (1.2) is linear in them. The situation becomes
more complex in a non-Abelian gauge theory.

The Yang-Mills theories were formulated a la Maxwell
in terms of partial differential equations, the so-called
Yang-Mills equations [10],

D, F* =J* D, F*" =0, (1.3)
where F,, = 0,A, — 0,A, +ie[A, A, with e being the

gauge coupling constant, F** =le, ,FP*, J* being the
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external matter current, D, = 0, + ie[A,.], and A, being
the non-Abelian gauge field taking value on the Lie algebra
of the gauge group G.

In order to construct the integral form of Yang-Mills
equations (1.3), one needs the non-Abelian version of the
Stokes theorem for a (non-Abelian) rank-two antisymmetric
tensor B, on a spacetime 3-volume Q. Even though the non-
Abelian Stokes theorem for a one-form connection on a
2-surface was known for some time, the same theorem for a
two-form connection was constructed only more recently in
[11,12] using concepts on generalized loop spaces. Concep-
tually, everything becomes more clear if one uses the two-form

B,,, defined on spacetime, to construct a one-form connection
on the generalized loop space. Using such a generalized non-
Abelian Stokes theorem, the integral form of Yang-Mills
equations was constructed in [1,2]. The formulas involve
path-, surface-, and volume-ordered integrals as follows.

Consider a spacetime 3-volume €, and choose a reference
point xp on its border 0Q. Scan Q with closed 2-surfaces
based on xp, labeled by a variable ¢, such that { =0
corresponds to the infinitesimal surface around xp, and
¢ = ¢, to the border JQ. Then scan each closed 2-surface
with loops, starting and ending at xz, labeled by a variable 7.
Each loop is parametrized by a variable . The integral form
of the Yang-Mills equations (1.3) is given by [1,2]

Pzeie fOQ d’rd(rW'](aFwﬁ»/}IN’ )W‘?:%‘b

V(0Q) =

— Pye fQ dcdev gv-!

=U(Q), (1.4)

where P, and P; mean surface- and volume-ordered inte-
gration, respectively, as explained above, and

dxt dx* dx*
d W
J= / "{’eﬁ WA d dr dt

L / do'[((a—1)FY +BFY)(o). (aFY +BFY) ()]

i ALl dx;(;—’) dx;£0)> } (15)

dx" dx* (dx’(c')dx" (o)
d6 do

with J i = €uipd’, being the Hodge dual of the external
matter current. In order to simplify the formulas, we have used
the notation

XV =w-lxw (1.6)
with X standing for the field tensor, its Hodge dual, or
the dual of the matter currents. The quantity W appearing

above stands for the Wilson line, defined on a path para-
metrized by o through the equation

"
dW—f—wA dx —W=0

- e (1.7)
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and so

c dx*
W=1 —ie/‘ da’A#(J’)%

c dxt [ dx?
+ (ie)? / Cdo', (o) / o', (0") -
(1.8)

The quantity V, called the Wilson surface, is defined on a
surface parametrized by ¢ and 7, through the equation

e VT(z) =0, (1.9)
with

or Ox* Ox¥
/ doW! (aF,, +,BFW) S0 87

T(7) = ie (1.10)

T

and the integration being on the closed loops used in the
scanning of €, as explained above. The initial and final values
of ¢, denoted o, and o ¢, respectively, correspond to the initial
and final points of the loop, which in fact are the same point
since the loop is always closed. Therefore, the solution of
(1.9) is the surface-ordered series:

/dr/ d'T(Z"T(7)+

The lhs of (1.4) is obtained by integrating (1.9) on the
2-surface 9Q, i.e., the border of Q. On the other hand the rhs
of (1.4) is obtained by integrating the equation

V(r)=1 +/ d'T(r

(1.11)

dUu
——-KU=0 1.12
on the 3-volume €, and where
K :/dTVJV", (1.13)
b

with X being the closed 2-surfaces scanning €, labeled
by ¢, and J given by (1.5). The solution of (1.12) is given
by the volume-ordered series

U@) =1+ A CdC’IC(g’)
¢ 4
d/ d//IC /,C /A
+A (:A C(EK(L") +

Note that (1.4) does reduce to (1.2) in the case that the
gauge group G is U(1). However, for non-Abelian gauge
groups the dependence of both sides of (1.4) on the
parameters a and S are highly nonlinear. Indeed, if such
parameters are arbitrary one can expand both sides of (1.4)

(1.14)
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in a power series on them. The coefficient of each term of
such series on the lhs of (1.4) will have to equal the
corresponding coefficient of the series on the rhs, leading to
an infinity of integral equations. Consequently any solution
of the Yang-Mills equations (1.3) will have to satisfy such
an infinity of integral equations. It is this test that we want
to perform with the 't Hooft-Polyakov monopole, and its
exact analytical BPS version [8]. We shall consider the
3-volume € to be purely spatial, and consequently only the
spatial components of the field tensor and its dual, i.e., F;;

and F,j, i,j=1,2,3, will be present on both sides of (1.4).

However, F ij 18 proportional to the electric field and so it
vanishes for those static monopole solutions. In addition,
only the component J 123 ~ J appears on the rhs of (1.4),
and that vanishes because the solution is static and we shall
work in the gauge where A, = 0. Remember that the only
contribution for the matter current for such a solution
comes from the triplet Higgs field ¢, and that is of the form
J, ~ [¢. D,¢]. Therefore, all terms involving the parameter
f are not present on both sides of (1.4), for static monopoles
when Q is purely spatial, and so it reduces to

Paee oW PR _ p gt [aerit (g gs)
with
R 62 oy 8x"8xi
TS| aorto. [ askyie] 250
Oy ox’ Ox! Ox’
1.1
><< ()8§() 8@'() (6)) (1.16)

where i, j, k, [ =1, 2, 3, repeated indices are summed,
and where we have denoted F}; = W~'F;;W. Note that

we have explored the symmetry of J in ¢ and ¢ to
replace [,/ do J2dd -5 > do [5) do.

Equation (1. 15) is what we call the generalized integral
Bianchi identity. Note that one would expect the integral
Bianchi identity to be (1.15) for a =1, i.e.,

Ov ('J)c/
Pe’eﬁ drde W™ FW e — 1.

(1.17)

Indeed, that is what leads to the quantization of the
magnetic charge. From a physical point of view it is
intriguing that by rescaling the field tensor (magnetic field)
as F;; — aF;;, leads to the appearance of a term like the rhs
of (1.15), making the magnetic flux through 0Q to change
drastically. However, the validity of (1.4), and so of (1.15), is
guaranteed by the generalized non-Abelian Stokes theorem
for a two-form B, and the partial differential Yang-Mills
equations (1.3) as proved in [1,2,11,12]. The intriguing
nonlinear phenomenon that we want to directly check in this
paper, is if one can expand both sides of (1.15) in powers of
a, and if the SU(2) *t Hoot-Polyakov monopole and its exact
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analytical BPS version, satisfy each one of the integral
equations obtained through such an expansion.

The paper is organized as follows. In Sec. II, we perform
the expansion of the generalized integral Bianchi identity
(1.15) in powers of the parameter o, and we show that each
term of the expansion can be expressed solely in terms of the
Wilson line operator. In Sec. III, we calculate explicitly the
Wilson line operator for the SU(2) 't Hooft-Polyakov and
BPS monopoles using a suitable scanning of surfaces and
volumes. The result is quite simple and it is given in (3.14). In
Sec. IV, we check the validity of the integral equation in first
order of the @ expansion and, in Sec. V, we do the same for the
integral equation in second order of that same expansion. We
present our conclusions in Sec. VI, and in Appendix, we give
the results of the numerical calculations of the integrals
needed to perform the check of the integral equations.

II. THE EXPANSION OF THE YANG-MILLS
INTEGRAL EQUATIONS

Assuming that @ and f are indeed arbitrary we expand
both sides of (1.4) in power series in those parameters. As
we have said the lhs of (1.4) is obtained by integrating (1.9),
and its rhs by integrating (1.12). By writing the expressions
on the lhs and on the rhs of the integral equation (1.4) in
terms of (1.11) and (1.4), and collecting the coefficients at
first order in a and zeroth order in 3, we get the integral
equation at first order in a

JofW Oxt Ox¥

7
/ dr/ " 0o Ot |, %
_le/ dC/ dT/ dG/ dU K/) , ;w(o—)]

xdx"dx” dx’(o')dx* (o) dx(c’)dx" (o)
do’ do dr d¢ d¢ dr )’

(2.1)

where { is the value of { corresponding to the closed
surface 0L, in the scanning of the 3-volume Q, which is
the border of Q [see explanation of the scanning in the
paragraph above (1.4)]. On the other hand, the integral
equation appearing in order f and zeroth order in @, in the
expansion of (1.4) is given by

IS
% dx* dx¥ dx*
- ["a d dod T, ——————
/ éV/ T/ ”{ W de dr dg
vie ["ddIP(). (o)

dx dx* (dx’(6')dx"(c) dx’(6’) dx* (o)
*do da< de  d.  di  dr )}

(2.2)

105024-3



CONSTANTINIDIS, FERREIRA, and LUCHINI

Note that in the case where the gauge group G is the
Abelian group U(1), Eq. (2.1) corresponds to (1.2) for
a =1 and # = 0. Equation (2.2) corresponds to (1.2) for
a = 0and = 1. Note in addition that in the case where the
3-volume Q is purely spatial, the commutator term in (2.1)
involving the field tensors can be interpreted as a density
of non-Abelian magnetic charge associated to the gauge
field configuration inside Q. The commutator term in (2.2)
involving the field tensor and its Hodge dual can be
interpreted as a density of non-Abelian electric charge
associated to the gauge field configuration inside Q. In the
case where Q has time components, those commutators will
be associated to flows of non-Abelian electric and magnetic
charges. We have explored further those facts to obtain the
integral form of the non-Abelian Gauss, Faraday, etc., laws,
and the physical implications of these new terms (the
commutator terms) should be further explored in some
other opportunity.

As one goes higher in the expansion, the integral
equations become more and more complex. However,
for the case we are considering in this paper, namely the
static 't Hooft-Polyakov monopole and its BPS version,
and where the 3-volume € is purely spatial, there is an
important simplification. As we have argued in the para-
graph above (1.15), only the spatial components of the
field tensor (magnetic field) appear in the formulas, since
the spatial components of its Hodge dual (electric field)
vanish. As explained in Sec. II of [11], or in the Appendix
of [2], if one performs an infinitesimal variation,
(o) = x*(c) + 6x* (o), of the curve where the Wilson
line W (1.7) is calculated, but keeping its end points fixed,
the infinitesimal variation of the Wilson line operator is
given by

o dx*
W1 (0,)6W (0}) = ie / ! daw—lFWWdiaxv. (2.3)
o; o

The Wilson line operators W appearing in the Yang-Mills
integral equations (1.4) are evaluated on the paths that scan
|

U(Q) = P3ea(a—1)fQ dedrv v
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the closed surfaces which in their turn scan the 3-volume €.
Therefore, as we vary the parameter = which labels the
loops, we vary the loop along a given surface, and so
oxt = %51. When we vary the parameter { which labels
the surfaces, the loops vary perpendicular to that surface
and so ox* = dx” 7 6. Consequently, from (2.3) we get the

following two useful formulas

/ doWF, WAy W
o do dt dr
dx* dx? dw
doW-'F, —w1Y . (24
/ W W e ag Y

As we have shown, for the static 't Hooft-Polyakov
monopole and its BPS version, and a purely spatial
3-volume €, the integral Yang-Mills equation (1.4)
becomes the generalized integral Bianchi identity (1.15).
Therefore, from (1.11), (1.10), and (2.4), one gets that the
lhs of (1.15) is given by

V(0Q) = Pye* S oW Fu W5
. aw
—l—l—a/deW—l (1)
de c %
aw
d dr w1 w-1
+a/ 1/1 d’ () d7<):€0
From (2.4) one gets that (1.16) becomes
5 ,daw AW
- W 2.6
7 [ dr’ acl (2.6)

Therefore, from (1.14) and (2.6), the rhs of (1.15) becomes

¢

dw dW} -

zl—a(a—l/ dC/ dV{W‘—Wl

+ [a(a—1)] /C(’dg/ dg'/ dr/ d’[( [W‘ ‘il—w w-! Z?]V“>(T,C)

(o

" ae
:1+aU(1)+a U(2>—|—,

(2.7)

where V in (2.7) is evaluated with the same expansion as in (1.11) with f = 0, and so an expansion similar to (2.5).
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Therefore, by equating (2.5) to (2.7), one gets that the term in first order in « leads to the integral equation

L dw
V(l) [ dTW dT

e T
:/OdC/fdr[W 1AW - 1dW] U.
=g Jo 5 dr dg

Similarly, the term in order o gives the following integral equation:

/ dr/ dTW] WldW
dr’ dr

{=Co

:_/ dc/ df[w——wl }+/§°dc/ dr/df{w—

+/ dC/dC’/ dr/ dr[W‘

We are going to verify if the SU(2) ’t Hooft-Polyakov
monopole and its BPS version [3-6,8], satisfy the integral
equations (2.8) and (2.9). Note that the only quantity
appearing in (2.8) and (2.9) is the Wilson loop W. In the
next section, we evaluate it for those monopole solutions.

III. THE WILSON LOOP FOR
’t HOOFT-POLYAKOV AND BPS MONOPOLES

The spherically symmetric 't Hooft-Polyakov ansatz
[3,4] for a SU(2) static magnetic monopole reads

1 .
¢ = ;H(C)r T
AO :0
1 X
Ai - eeljk b} (1 K(a))Tkv (31)

with r = \/x% —|—x% +x%, 7 = x;/r, { = ear, a being the
vacuum expectation value of the Higgs field in the triplet
representation, and T; being the generators of the SU(2)
Lie algebra:

[Ti’ Tj] = igl'.]'ka‘ (32)
The exact analytical BPS monopole solution corresponds
to the functions [5,6]

¢

K@) =G c

H(@)=Ccoth—1.  (3.3)

For the "t Hooft-Polyakov monopole, the functions K({)
and H({) are obtained numerically, but they have quali-
tatively the same behavior as (3.3); i.e., we have that
K(0) =1, and then it decays monotonically (exponen-
tially) to zero as r — oo, and H(0) = 0, and then it grows
monotonically with r and for r — oo, such grow is linear
in r. The function H({) will not be important in our
calculations because the Higgs field does not appear in our

(2.8)
ld_W 1 dW
de”’ {W " dg”
AW aw aw
dz::| [W_IW’ -1 dC/:| - U(z) (29)

integral equations for the case of static solutions and for Q
being purely spatial [see (2.8) and (2.9)]. The important
simplification we obtain in our calculations is due to the
fact that K({) is a monotonic function of ¢, and so it admits
an inverse function. We will then trade the parameter { by
the function K, and our calculations will not depend upon
the explicit form of the function K(¢).

We have chosen to evaluate both sides of the integral
equations (2.8) and (2.9) on a purely spatial 3-volume Q
which is a ball centered at the origin of the Cartesian
coordinate system x;, i = 1, 2, 3, used in the ansatz (3.1).
We then scan that volume Q with closed surfaces which are
spheres also centered at the origin of the Cartesian
coordinate system, with radii varying from zero to the
radius of Q. However, since the reference point x; have to
lie on the border Q2 of Q, and since the surfaces scanning
it have to be based at xp, we shall attach to the ball Q a
infinitesimally thin cylinder lying on the negative x; axis,
and locate the reference point xp at (xi,x,,x3) =
(—0,0,0). The cylinder has a radius e, which will be
taken to zero at the end of the calculations. The surfaces
scanning Q will have the form depicted in Fig. 2, i.e., an
infinitesimally thin cylinder on the negative x; axis and a
sphere centered at the origin of the Cartesian coordinate
system. With the attachment of the thin cylinder we can
keep the surfaces based at xp, and centered at the origin.
In addition, xp being at infinity allows us to have the
volume € with any radius. We shall label the surfaces
scanning Q with the parameter ¢, which is the same as the
one appearing in the ansatz (3.1). Then { = 0 corresponds
to the surface made of the thin cylinder and a sphere of
radius zero attached to it, and { = {, corresponds to the
border 0Q, made of the thin cylinder attached to a sphere of
radius {, the same as the radius of 2, centered at the origin.
The loops will be labeled by a parameter 7, they start and
end at the reference point xg, and there will be three types
of loops, as follows:

(1) Loops of type (I), scanning the thin cylinder, as

depicted in Fig. 1. For such loops, the parameter 7
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I/ 7;’

FIG. 1. Scanning of type (I). The gap between the straight lines
is only a visual resource.

varies from —oo to — 7, with 7 = —oo corresponding
to the infinitesimal loop around xg, and 7 = -2
corresponding to a straight line from xp to the border
of the sphere, then encircling the joint of the cylinder
with the sphere, and coming back to xp through the
same straight line. The three parts of such loops will
be denoted (I.1), the first straight line, (I.2), the circle
and (I.3) the second straight line. We parametrize the
loops with o, such that the points on the loops have
the following coordinates:

(I.l)xlzr—i—a—cj—i—g x=0

X3 = —¢ (—0 <06 <0)

(L.2) xlzr—C—Fg X, = esino

X3 = —€COSO (0<o0<2n)

(13) x, :1—|—2ﬂ—0—C—|—g =0

X3 = —¢ (27 <0 < )

with fixed { and —c0o <7 < —7.

(2) Loops of type (Il), scanning the thin sphere, as
depicted in Fig. 2. For such loops the parameter 7
varies from — 7 to 7. A loop of this type is made of a
straight line from xp to the border of the sphere, then
making a circle on the surface of the sphere, starting
and ending at the junction of the cylinder with the
sphere, and lying on a plane perpendicular to the
plane x;x3, that makes an angle = with the plane
Xx1X,. Finally, it returns to xp through the same
straight line. Again, the three parts of such loops will
be denoted as (II.1) for the first straight line, (II.2)
for the circle and (II.3) labels the second straight
line. We parametrize the loops with &, such that the
points on the loops have the following coordinates:

T2

T3

FIG. 2. Scanning of type (II).

PHYSICAL REVIEW D 96, 105024 (2017)
(L) x; =06—-¢(  x,=0
X3 = —¢ (0 <0<0)
(IL2) x; = ¢(cos’z(1 —coso) — 1)
X, ={coszsine (0<o0<2n)
x3 ={coszsinz(l —coso)
(IL3) xy = -0+ 27 —-¢

(27 <06 < ™).

X2:0

X3 = —€&

with fixed { and where in (I1.2) the parameter
varies from —7 to 7.

(3) Loops of type (Ill), scanning the thin cylinder
backwards, as depicted in Fig. 3. For such loops
the parameter 7 varies from 7 to oo, and they are
made of two straight lines. The first one starting at
xr and ending on some point on the side of the
cylinder with coordinates (x;,x,,x3) = (x1,0, —¢).
The second part of the loop is the same straight line
(reversed) going back to xp. We shall denote the
first straight line (II.1) and the second (II1.2). We
parametrize the loops with &, such that the points on
the loops have the following coordinates:

(IH.])xlzg—T—C-f-G X =0

X3 = —¢ (—0<06<0)
(II1.2) xlzg—r—cj—a X =0
x3=—¢ (0<06< )

with fixed £, and where % <7< o00.

An important simplification is made by observing that
the Wilson line is constant along loops scanning the thin
cylinder. Indeed, we observe that on the segments (I.1),
(1.3), dI.1), (I.3), (IIT.1) and (II1.2), the coordinate x; is
linear in o, and x, and x5 are independent of it. Therefore,
using (3.1), we have that

dx!

1
i = +A, ::F;%(I—K)Tz—>0 ase— 0

straight lines

(3.4)

with the upper signs valid for the segments (I.1), (IL.1) and
(II1.1), and the lower signs valid for (1.3), (IL.3) and (II1.2).
On the segment (I.2), on the other hand, we get that

xRQ""””**——ﬂmw,_,,,,,,,ﬁ]\

FIG. 3.

Scanning of type (III).
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dx!

o - = ¢[cos 6A, + sin 6A;]
12

__c=K) {—eTl + <T—C+g)

e r
X (—cosoTs + sino-Tz)} -0 ase—0.

(3.5)

The only nonvanishing contribution comes from the seg-
ment (I1.2), which gives

dx! 1 )
i— =—(1=K)cosz[costsinz(l —coso)T,
do m2) €
+ sinzsinoT, + (sin’z(1 — cos 6) — 1)T3]
=— ! (1 — K) cosze’™T2eioTs g=i7T2
e
% TgeiTT2e_i6T3 e—iTTz_

(3.6)

Therefore, integrating (1.7) one gets that the Wilson lines
on the loops of type I and II are trivial, i.e., W(I) =
W(III) = 1. On the loops of type II one gets that
W(I) = WsW,W,, where W, are the Wilson lines
obtained by integrating (1.7) on the segments (Il.a),
a=1, 2, 3. Due to (3.4) we have that W; = W3 = 1.
Under a gauge transformation A; > A; = gA;g™"' +£9,997",
with g = e"T2e=°T3¢77"12 one gets that

WQ N W2 — ngZ.gi_l — eiTTze_i2”T3€_iTT2W2, (37)

where g; and g, are the values of g at the initial and
final points of the loop (IL.2), and so g; =1, and
gy = €2e72 =Tz Therefore, one gets that

dx!

1
f— —>A— =—[KcostT5—sinzT;], (3.8)
do (11.2) do (ar2) €
and the Eq. (1.7) for W, becomes
aw )
d—2 +i[KcostTy —sineT |W, =0.  (3.9)
O

Since the connection term [K({)coszT3 —sinzT,| is
independent of o it follows that the path ordering is
unimportant and the integration on the loops (IL.2)
gives

Wz — e—i2n[Kcos1T3—sian1]

(3.10)
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Using the fact that ¢”*’s = £1, depending if the repre-
sentation used is of integer (4) or half-integer (—) spin, we
get that g, = +1, and so

W = W(H) =W, = ie—i2n[1((§) cosrT3—sin7T1]’ (311)

where we have equated W to W(II), because, as shown
above W(I) = W(IIl) = 1. Therefore, in (3.11) we have 7
varying from —% to 4. The calculations concerning the
Wilson line can be simplified defining y as

Kcost sint

cosy =—r—1 siny:T (3.12)
with
F({ 1) = \/Kz(cj)coszr + sin’z. (3.13)
Then (3.11) can be written as
W = teirT2g=i2nFT; g=iyT2 (3.14)

from which we get

WLOW = ie2{—270FT; + Oy|(cos (2zF) — 1)T,
+ sin (27F)T,|}e 71>
= i{[270F siny + Oy sin (27 F) cos y|T
+ Oy[cos (2zF) — 1]T,
+ [-270F cosy + Oy sin (2zF) siny|T5}.

(3.15)
We then have
aw |
W"E:lcoerj(K,T)Tj (3.16)
with
1 K?sin (2zF
N,(K,7) = ﬁ [27:(1 — Kz)sinzr + %}
No(K,7) = _m[l — cos (2zF))
Ksinz sin (2zF)
N3(K’ T) = m |:—27[(1 - KZ)COSZT +T:| .
(3.17)

In addition,
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aw dw
W—l - W—] A
{ dr’ dC}
o (AFdr _dydr
drdl drd
x e"2[(1 = cos (2zF))T| + sin (2zF)T,|e” 71>
= —i2nK'cos’tM (K, 7)T (3.18)
with
K
M(K,7) = %[1 — cos (2zF))
sin (27F)
M,(K,7) = ——=
2( ’ T) F
My(K.7) = 071 cos (22F)). (3.19)
where K’ stands for ‘2—’;, and where we have used the
formulas
dF sintcost dF  Kcos*t
= (1-K?), — = K,
dr F ( ) dc F
dy K dy sin7cos T
dr _K - dr__sinweosty, 320
dr  F? d¢ F? ( )

With these expressions we are ready to perform the
calculations of Sec. II for the SU(2) monopoles.

IV. CHECK OF FIRST-ORDER INTEGRAL
EQUATIONS FOR SU(2) MONOPOLES

The integral equation for a purely spatial volume €,
in first order in a, for the SU(2) monopoles ('t Hooft-
Polyakov or BPS) is given by expression (2.8). However,
since the Wilson line is unit for the loops of type I and III
(see Sec. III), we get that (2.8) is only nontrivial for loops of
type II, where 7 varies from —7 to 7, and so (2.8) becomes

5 aw
V(l):/zd W
Tle=¢

:/ dg“/ dr[W‘—Wli;;V

where the lhs is an integration on a closed surface of radius
{op and the rhs is an integration in the volume contained
inside that surface. Our goal is to evaluate both sides of this
equation using the results obtained in the expressions (3.16)
and (3.18). In order to perform the integration of the lhs
term, a better choice of variables is the following:

=Uy, (4.1)

y =sint; -1<y<1;

0<z<1, (4.2)
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with 0 < { < 00,0 < K({) <1, and -5 < 7 < 5. Note that
we are using the fact that K(¢) is monotonically decreasing
function of ¢ for both, the 't Hooft-Polyakov and BPS
monopole solutions. The explicit form of the function K ()
is not important here. In these variables we get

F?2 =324+ 72 =K>+ (1 - K?)y? (4.3)

and so using (3.16) and (3.17) we get that the lhs of (4.1)
becomes

1

2r
Nl(K,)’):ﬁ{)’2(1—K2)+ 2F

K

K? sin(27rF)}

NZ(K,y):—W{I—COS(zﬂF}
B Ky ) sin (27F)
NﬂKJ)hW{F _1+27T7F . (45)

Note that N5 is an odd function of y and, thus, integrating
we get

= iJ,(Ko)T + iJ,(Ky)T>,

Vi (Ko) (4.6)

with

1
J](KO):27T‘/_1dy(1_I<2)

K3sin (271\/1((2) +(1 —K(z))yz)
27\/K§+(1-K5)y?
Ko

1
VTR (1-K3)?)

X {1—cos (277 K3+ (1 —K(z))yz) }

Note that as ¢ varies from 0 to ¢, one has that K varies
from 1 to Ky= K({y) < 1. Therefore, the integration
domain on the rhs of (4.1) is a truncated semidisc shown
in Fig. 4. The absolute value of the Jacobian of the
variable transformation ({,7) — (y,z), given in (4.2), is
|K'|cos?>t = —K'cosz, since K’ is strictly negative. In
addition, it is more appropriate to perform a further change
of variables to evaluate the integration on the rhs of (4.1).
We define the polar type coordinates (s, ) as

x{ (1-K3)y*+
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lk

0.8

0.6 -

04

FIG. 4. The integration domain in the new “polar” coordinates.
Each value of K, fixes a new domain by shortening the area of the
disk from below.

y = scosb; z = ssin@;
S(Kp,0) <s<1; 0<0<r (4.7)
with
K
S(K,0) = . (4.8)
V/1—=cos?0(1 — K?)
Therefore, one has that
o Z
/ dC/ drK'cos’t = —/ dzdy
0 -3 truncated semidisc
F4 1
= —/ d9/ dss. (4.9)
0 S(Ky.0)

We then have that the M;’s, defined in (3.19), become

in @
M, = %[] —cos (2zF)] = SIL[I — cos (27s)]
N

sin (2zF)  sin (27xs)
2 pr— pr—
F s

cos 6

M3:%[1—cos(2ﬂF)]: [l —cos (2zs)].  (4.10)

Using (3.18) we get that in these coordinates the rhs of
(4.1), denoted by Uy, reads

n 1
Uy = i277:/ dG/ ds{sin0(1 — cos(2zs))T,
0 S(Ko.0)

+ sin(27s)T, + cosO(1 — cos(2xs))T3},  (4.11)

PHYSICAL REVIEW D 96, 105024 (2017)

from which we can easily perform the integration in s,
obtaining

Uny(Ko) = il | (Ko)T, +il,(Ko)T>,  (4.12)

where

277,'K0
/1 =cos?0(1 — K3)

- Sin<\/1 = cjg;(()l = K§)>}
I,(Ky) = _Aﬂ dg{l - cos(\/1 = CZZI;(()I = K%)) }

(4.13)

1(Ky) = A”dﬁsine{mz—

The integral along the 75 direction in (4.11) vanishes
since the integrand is odd, under reflection around 6 = 7,
in the interval 0 < 6 < x (note that Sy(0) is even in that
interval).

Therefore, in order to check the validity of the integral
equation at first order in a, given in (4.1), we have to verify
the equalities of the coefficients of 7; in (4.6) and in (4.12).
We have performed the numerical integration of the
quantities 7;(K,) and J;(K,) for several values of Kj,
covering the range 12> K,>0, corresponding to
0 < ¢y < 0. Note that the actual value of K for a given
value of { is different for the 't Hooft-Polyakov and BPS
monopoles. However, the fact that K ({) is a monotonically
decreasing function of ¢, for both solutions, allowed us to
trade the coordinate { by K, and perform one check that is
valid for the two monopole solutions. In Sec. A 1 we give
the results of the numerical integrations of the quantities
I;(Ky) and J;(Ky), i =1, 2. As one observes in those
tables, the values of 7;(K,) and J;(K,) are remarkably
identical, differing in the worst case around the eighth
decimal place, due to the numerical approximation. This
indicates that the 't Hooft-Polyakov and BPS SU(2)
monopoles are indeed solutions of the first-order integral
equation (2.1), or equivalently (4.1), appearing in the
expansion in « of the integral non-Abelian Gauss law in
(2.5) and (2.7).

V. CHECK OF SECOND-ORDER INTEGRAL
EQUATIONS FOR SU(2) MONOPOLES

The integral equation for a purely spatial volume €, in
second order in a, for the SU(2) monopoles ("t Hooft-
Polyakov or BPS) is given by expression (2.9). However,
since the Wilson line is unit for the loops of type I and III
(see Sec. III) we get that (2.9) is only nontrivial for loops
of type II, where 7 varies from —7 to 7, and so (2.9)
becomes
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dW
dr/ erl ;
/ d dr =4
——/ a’C/%dT{W‘d—WW1 }—i—/godé‘/%dr/ dr[W‘ d/7|: _ICZV,W‘ICZ—V;”
/ _ aw AW L awe o dw
+/ | dC/ / [W e d:HW i " d:'}

“Uny + G+ Gy =V, (5.1)

where we have denoted G, and G5 the terms appearing on the second and third lines, respectively, of (5.1). In addition,
we have used the fact that the first term on rhs of the first line of (5.1) is the same (up to a minus sign) as U;) given on

the rhs of (4.1).
We start by evaluating the lhs of (5.1), using (3.16), and (4.5) to get

dw __ dW ! Ve
dr [ arw—' == w! — [ ay [ dy S Ni(Kyy)N;(Ko.y)T,T;
[rae [Larwa GG =] y/yz (Ko N, (Ko )T,

13 1 2 1 y

i=1 i#j=1

C(o

(5.2)

where in the first term on the rhs of (5.2) we have used the symmetry of the integrand in y and y’ to transform the integral on
the triangle —1 <y <1 and y <y, to the integral on the square —1 <y,y’ <1. We now use the fact that
N;(Ky,—y) = &;N;(Kgy,y), with &, = 1 for i = 1, 2 and &3 = —1 [see (4.5)]. Then we can write

/d}’/dyNKoy (Kovy) = /dy/dy’NKw)N(Koy ”/dy/dyNKoy>N<Koy>

Therefore, for the case where ¢;¢; = 1, one can write further that

/dy/ dy'N;(Ko,y)N;(Ko.y) = /dy/ dy'N;(Koy, Y )N;(Ko,y); eigj = 1.
(5.3)

For the case ¢;¢; = —1, we do not use (5.3), but instead write

1 1 1 .
TlTj = E{Ti, T/} + 5 [Tl', Tj] = E{Ti, Tj} + leijka' (54)

Note that we are dealing here with products, and not only commutators, of the SU(2) Lie algebra generators. We have,
therefore, to work with a basis in the enveloping algebra of SU(2), which in the case of quadratic terms we shall take to be
the nine quantities 7';, and the anticommutators {7, T}, i, j = 1, 2, 3. If one works with the spinor representation given by
the Pauli matrices o;, i = 1, 2, 3, then one has 6,6, = ie;;0, + 6;;1, and nondiagonal terms vanish, i.e., {6;,0;} = 0, for
i # j. However, if one works with the triplet or higher representations one has {7;, T;} # 0 even for i # j. So, we have to
consider the coefficients of all the nine elements of the basis of the enveloping algebra to be independent. Therefore, using

(5.4), one gets that

5 T aw aw
Vi —/Zdr/ diw ! — w-!
_ _z dr dr =t

z
2

= —[N1(Ko)TT + N2 (Ko)T5 + N 1o (Ko){T1. T} + N (Ko {T1. T3} + N33 (Ko){T>. T3}
— iNT;(Ko)T, + iN55(Ko)T]. (5.5)
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where

PHYSICAL REVIEW D 96, 105024 (2017)

1 2
1 1
N12(Ko) 5( dyN, (Ko, )’)) </1 dlez(Ko’y/)>N1i3(Ko)
1 1 y
5( dy/ Ny (Ko, Y")N3(Ko. y) i/ dY/ dy’N3(K0,y’)N1(KO,y)>
1
N3 (Ko) = =5 (/ dy/ dy'N,(Ko.y')N3(Ko, y) / d)’/ dy'N3(Ko, Y )N2 (Ko, y)) (5.6)
|
with the N,’s defined in (4.5), and where we have dropped B ™ ! L
the term proportional to 73 because N is an odd function Sa(Ko) = 7 0 do S(Ko.0) dss 0 do
of y, and so its integral on the interval —1 <y <1, 1
vanishes. x/ ds's'M,(s,0)M,(s",6); a=1,2
Using (3.16), (3.18) and (4.2), the term on the second k&)
line of (5.1), denoted G,, becomes S(Ko) = / 4o / dss / a0 / o s
S(Ko,0 K.0)
K 1
G, = _izﬂgijka/ OdK/ dy\/1-y*M(K,y) (5,0) Mz(s ') + My(s,0)M,(s',¢')]
1 -1
y d6/ dss/ dQ’/ s's!
X/ dy'N;(K,y) / S(Ko.0 K0
-1
= —i47l'2Rk(K0)Tk- (57) X [ I(S’Q)M2(S ’9/) _M2(s’9) I(S ’Gl)]'
(5.9)
Using (3.18) and (4.10) the term on the third line of (5.1),
denoted G, becomes The s" integration can be performed analytically and so,
: _ ssin @
using (4.10) and the fact that K = Toeaay We get

:—471' / d@/ dss/ do
Ko

X ds's’' M;(s,0)M;(s',0)T;T;,
AW) S M. 0)M, (. O)T.T,

i,j=1

(5.8)

with K > K, and so ¢ <{,. Note that in the (¢',s)
integration, K has to be taken as a function of € and s.
From (4.2) and (4.7) one gets that K = \/%“fe Note that
the (¢, s") integration is the same as the one performed in
(4.11), with K, replaced by K. Therefore, similar to what
happened, there will be no terms in the direction of T; for
J = 3, since M5(s’,0') is odd under reflection of " around
0’ = % [see (4.10)]. Since K and S(K, 6) are even under the
reflection of 6 around @ = 7, there will be no terms in the
direction of T; for i = 3, since M5(s,0) is odd under that
reflection. Using (5.4) one gets that

G3 = —471'[S1 (Ko)T% + SQ(K())T%
+ 81T, T2} + iS3(K) T3]

with

1
/ ds's'M,(s',80)

S(K.)
ssin@
\/52sin%0 + (1 — s?)sin’6’

=sin® [1 -

27s sin @

_L (\/s Zsin%0 + (1 — s?)sin? Qﬂ (510)

and

1
/ ds's’M,(s',0")
s

(K.6")

1 [ 1—|—COS< 27s sin @ >]
27 /52520 + (1 — s%)sin2¢’ ) |

(5.11)

Note that the above integrals are symmetric under the
reflection of § and ¢ around 5. The quantities M, (s,0),
M,(s,0), S(K,0) and K(s, 0) are also symmetric under the
reflection of & around 7. Therefore, the integration in ¢ and
@' can be performed in the interval from zero to 3, by
multiplying the result by two. So, we then get that
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z 1 b4
S (Ky) = 2/2 de/ ds /2 d0' (1 — cos (2zs)) sin O sin ¢/
0 S(Ko,0) 0

(5.12)

{ o 27s sin 0

- +s
\/s%sin%0 + (1 — s%)sin¢’

z 1 z
P (Ky) = 2/2d¢9/ ds /ZdQ’(l —cos (2zs)) sin@sin & {—1 +Cos<
0 S(Ko.0 0

27s sin O

( 2zs sin 0 )]
\/s%sin%0 + (1 — s?)sin¢/

2ns sinf
\/s%sin%0 + (1 — s?)sin

29/)] (5.13)

z 1 z
Py (Ky) =2 / " do / ds / *d# sin (27s) [27[
0 So(0) 0

27 sin 0
S, (Ko) _2/ d9/ ds/ d¢' sin (27s) [ 1—|—Cos( s Sin >]
S(Ko.0 \/s%sin%0 + (1 — s2)sin’@’

where we have introduced

Sia :%(PD(KO) + Py (Ky))

- \/s%sin%0 + (1 — s?)sin?¢’

+sin ( 2zs sin@ ) }
\V/s%sin%0 + (1 — s?)sin’@’
(5.14)

(5.15)

3 = 5 (P12(Ko) = P21 (Ko)).-

NI'—‘

Summarizing, we have obtained both sides of the integral equation in second order in « for a given K, given in (5.1).

From (5.5) we have that
Vi = =iNuT +iN[T, = N\ T

and, from (5.1), (4.12), (5.7), and (5.9), we have that

Up) = —i(ly +47°R\)T| + —i(I, + 47°Ry)T, — i(47° Ry + 47S5)T5 — 478, T — 478, T3

We have to check the equality between the coefficients of
each element of the basis of the SU (2) enveloping algebra
on the expansion of V() and U(,). Those coefficients
involve integrals which are calculated numerically for a set
of values of K. The results are presented in the tables of
Sec. A 2 in the Appendix. The consistency is remarkable
and with that check we can state clearly that the 't Hooft-
Polyakov monopole and its BPS version satisfy the integral
Yang-Mills equations up to second order in a.

VI. CONCLUSIONS

The integral Yang-Mills equations appeared from an
attempt to understand integrability in higher dimensional
spacetimes [1,2]. Through a loop space formulation [11,12]
one can construct a suitable generalization of the non-
Abelian Stokes theorem for two-form fields that can be
used naturally to define conservation laws, thus mimicking
the so-called zero curvature representation of integrable
field theories in (1 + 1) dimensions. That has led us to
consider the applications of such non-Abelian Stokes
theorem to construct the integral equations for non-
Abelian gauge theories, generalizing the well-known

—NLT5 = N AT 1. To} = NG{T . T3} = N{T». T3},

(5.16)

—47TS12{T1,T2}. (517)

Abelian version of such integral equations used to describe
the laws of electrodynamics. That was indeed possible, as
we have shown in [1,2], and the usual differential Yang-
Mills equations are obtained from these integral equations
when the appropriate limit is taken.

The present paper shows that there is more to be
explored. The integral Yang-Mills equations allow the
introduction of two c-numbers as parameters which arise
naturally in the construction of the equations, and as being
nonlinear, produce a quite nontrivial dependence on those
parameters of the surface- and volume-ordered integrals
appearing on both sides of the equation.

We have tested the assumption that the integral Yang-
Mills equations are in fact a collection of an infinite number
of equations, each one corresponding to the coefficients
of the above-mentioned expansion in powers of those
parameters. This was done by considering the fact that,
by construction, a solution of the differential Yang-Mills
equation is also a solution of the integral Yang-Mills
equation. Thus, using the 't Hooft-Polyakov and BPS
monopoles as such configurations, we tested the validity
of the equations arising at first and second order in the
parameter expansion of the integral Yang-Mills equation.
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Despite the quite different structures of the terms resulting
from the surface- and volume-ordered integrals, we have
checked their equalities with a high numerical precision of
at least one part in 107, In addition, much of the check has
been done analytically, and we have obtained an exact
expression for the Wilson line operator, on each loop
scanning the surfaces and volumes, for the SU(2) ’t Hooft-
Polyakov monopole solution and its BPS version [see
(3.14)]. That result can certainly be useful in many other
applications.

The fact that those configurations are solutions of both of
the highly nontrivial equations at each order of the expan-
sion, indicates that the parameters could indeed be arbitrary.
The arbitrariness of the parameters leads to a variety of
important consequences which can now be considered, such
as their role in the conserved charges that arise dynamically
from the integral equations and the significance of having an
infinite number of integral equations.
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APPENDIX: NUMERICAL RESULTS

In this section, we show the results of the numerical
integrations related to the terms on the lhs and rhs of the
expansion of the integral equation performed at first and
second order in a. The coefficients of the generators of the
algebra (eventually, up to a common factor of i = v/—1) are
compared for different values of K, and the results are
presented in Tables I, II, III, IV, and V below. For each
integral estimative, there is an associated upper bound on
the error, which we represent by using the following
notation: 1.372 £ 0.008 = 1.37(2 + 8).

1. Equation V(l) = U(l)

TABLEI. Numerical verification of the validity of Eq. (4.1): the
coefficients of T; and T, in (4.6) and in (4.12) agree up to the
eighth order.

Coefficients of T

Ko 1,(Ky) J1(Ko)

0.01 12.5614010(8 +2) 12.561401086
0.1 12.077187419(9 +6) 12.0771874199
0.2 10.70071291(6 +2) 10.7007129168
0.3 8.6878758(4 £+ 8) 8.68787584542
0.4 6.38863592(8 +-4) 6.38863592858

(Table continued)

PHYSICAL REVIEW D 96, 105024 (2017)
TABLE 1. (Continued)

Coefficients of T

Ky 1,(Ky) J1(Ko)

0.5 4.169079306 4.169079306
0.6 2.3285155680(5 £ 6) 2.32851556805
0.7 1.0380042(9 + 1) 1.0380042978
0.8 0.3151104413(2 +9) 0.315110441326
0.9 0.039159443823 0.039159443823

0.99 0.000037982(0 £ 3) 0.00003798206260(6 £ 1)

Coefficients of T,

Ky 1, (Ky) J2(Ko)

0.01 ~0.19171684(4 £ 3) —0.1917168(4 + 1)
0.1 —1.85828511(5 £ 9) ~1.85828511(2 +2)
0.2 ~3.3769476(8 + 1) ~3.3769476(8 + 4)
0.3 —4.29785670058 —4.2978567(0 +6)
0.4 —4.50418166(9 = 8) —4.5041816(6 + 2)
0.5 —4.04299388345 —4.0429938(8 £ 2)
0.6 —3.1056196(0 £ 2) —3.1056196(0 £ 2)
0.7 —1.97241848(8 £ 6) _1.9724184(8 + 1)
0.8 —0.9381858850(1 + 6) —0.93818588(5 + 8)
0.9 —0.23901332(5 + 3) —0.23901332(5 £ 9)
0.99 —0.00233660398(4 + 4) —0.00233660(3 + 7)

2. Equation V3 =U )

The tables below show the values of the coefficients of
the algebra elements of (5.16) and (5.17). The fact that they
agree implies on the validity of the equation obtained after
expanding the Yang-Mills integral equation to second order
in « and, therefore, on the validity of the integral equation
itself for any value of a, at least up to that order.

TABLE II. Comparison between the coefficients of 7; and T’
of Egs. (5.16) and (5.17).

Coefficients of T,

Ky I,(Ko) + 47°R; (K) N3;(Ko)

0.01 0.0106581(0 +2) 0.010658107(5 £ 3)
0.1 1.013915115(8 + 6) 1.01391511(5 + 4)
0.2 3.47985977(0 + 2) 3.4798597(7 + 1)
0.3 6.0261611(3 + 8) 6.0261611(4 + 6)
0.4 7.31167856(3 = 4) 7.3116785(6 £ 1)
0.5 6.7762177776(6 = 5) 6.77621777(7 + 9)
0.6 4.8526187817(7 £ 6) 4.85261878(1 £ 4)
0.7 2.5695934(4 + 1) 2.56959344117
0.8 0.8721002092(6 £ 9) 0.872100209(2 + 9)
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TABLE 1I. (Continued)
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TABLE III. (Continued)

Coefficients of T

Coefficients of T3

Ky 1,(Ky) + 47°R, (Ky) N3;5(Ko) Ky 478,(Ky) N> (Ko)

0.9 0.115252473857 0.115252473(8 + 3) 0.6 4.82243658089 4.8224365(8 + 3)

0.99 0.000113925(3 + 3) 0.00011392533(9+1) 0.7 1.9452173(4 + 2) 1.9452173(4 £ 1)
0.8 0.4400963774(2 + 5) 0.4400963(7 £ 1)

Coefficients of T, 0.9 0.0285636848378 0.0285636(8 + 1)

K, —(I1(Ky) + 47*R,(K,)) N7 (Ko) 0.99 2.72985908954¢-06 2.729(8 + 8)e-06

0.01 —0.46994245(7 + 3) —0.46994245(7 + 1)

0.1 —4.38319034(2 + 9) —4.3831903(4 + 1)

0.2 ~7.0567939(8 + 1) —7.0567939(8 + 1)

0.3 —7.20852026286 —7.2085202(6 + 1)

0.4 —5.26717871(7 + 8) —5.26717871(7+6)  TABLE IV. Comparison between the coefficients of {T,T,}

0.5 —2.5185733549(6 + 9) —2.51857335(4+2)  of Egs. (5.16) and (5.17).

0.6 —0.2961954(3 + 2) —0.29619543(4 + 7) Cocfficients of {T1.7,]

0.7 0.71488621(2 + 6) 0.71488621(2 + 7) L2

0.8 0.6675901030(5 + 6) 0.667590103 £4) Ko 4751(Ko) N12(Ko)

0.9 0.22170728(6 + 3) 0.22170728(6 +1)  0.01  —1.2041160882(4 + 2) —1.20411608813

0.99 0.00233492080(0 + 4) 0.00233492(0+8) 0.1 —11.2214288(0 + 5) —11.2214288084
0.2 —18.0678738(4 + 7) —18.0678738427
0.3 —18.669622708 —18.6696227077
0.4 —14.3877884(2 £ 1) —14.3877884224
0.5 —8.4277810668(8 + 6) —8.42778106684

TABLE . Comparison between the coefficients of 72 and 73~ 06 —3.6157418(0 £ 4) —3.6157418051

of Egs. (5.16) and (5.17). 0.7 —1.02368943(3 + 4) —1.02368943394
0.8 —0.1478160841(3 = 1) —0.147816084139

Coefficients of 72

Ko 478 (Ko) N1(Kp)

0.01 78.894398(6 + 2) 78.8943986254

0.1 72.92922798(7 + 8) 72.9292279882

0.2 57.2526284(6 £ 2) 57.2526284639

0.3 37.7395933527 37.7395933527

0.4 20.4073345(1 + 3) 20.4073345139

0.5 8.690611129(8 £ 2) 8.69061112984

0.6 2.7109923(7 + 3) 2.71099237533

0.7 0.5387264(6 + 1) 0.538726461126

0.8 0.0496472951(1 £+ 2) 0.0496472951165

0.9  0.0007667310202(6 £+ 1) 0.000766731020264

0.99  7.21318539905 x 1010 7.213185398(9 + 2) x 1010
Coefficients of T3

Ky 475, (Ko) N> (Ko)

0.01 0.018377674(1 £2) 0.0183776(7 + 1)

0.1 1.7266117(8 + 1) 1.7266117(8 + 2)

0.2 5.7018878(2 + 4) 5.7018878(2 + 7)

0.3 9.2357861093(6 + 1) 9.235786(1 + 1)

0.4 10.1438262(5 + 4) 10.1438262(5 + 5)

0.5 8.172899770(8 + 4) 8.1728997(7 + 4)

(Table continued)

0.9  —0.0046798144427(1 + 3)
099  —4.43745194072 x 1078

—0.00467981444135
—4.437470(7 +£7) x 1078

TABLE V. The coefficients above are the ones that should
vanish in the equation obtained at second order in «; indeed,
within a numerical precision, they are zero.

Coefficients of T3, {T,, T3} and {T, T3}

Ky 47’Ry(Ky) + 47S5(Ko) 33(Ko) N15(Ko)

0.01 +2x 1078 +7 x 1071 49 x 10710
0.1 +7 x 1078 +2 x 107~ +6 x 10~
0.2 +1x 1077 +7 x 107 +1x1078
0.3 +2 x 107! +1x 1078 +4 x 107
0.4 +7x 1078 +1x1078 +6 x 107
0.5 +7 x 10710 +9 x 107 +7 x 107
0.6 +5x 107 +4 x 107 +7 x 107
0.7 —4.44(5+2) x 107! +6 x 1071 +5x 1070
0.8 —1+7x10™1 49 x 10710 43 x 1070
09  -3.(7+7)x10783 +3 x 10710 +5x 1077
0.99 9.599(04+4) x 1071 —1.(6 £2) x 107" +8 x 107°
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