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We study a five-dimensional Horava-Lifshitz–like scalar QED with dynamical exponent z ¼ 2.
Consistency of the renormalization procedure requires the presence of four quartic and one sixfold scalar
couplings besides the terms bilinear in the scalar fields. We compute one-loop radiative corrections to the
parameters in the original Lagrangian, employing dimensional regularization in the spatial part of the
Feynman integrals and prove the relevant Ward identities. By using renormalization group methods, we
determine the behavior of the coupling constants with changes in the energy and discuss the emergence of
Lorentz symmetry at low energies.
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I. INTRODUCTION

The use of Lagrangians exhibiting space-time anisotropy
and equipped with high spatial derivative terms, Horava-
Lifshitz (HL)-like models [1,2], has attracted considerable
attention in the recent years. This is because they allow for
an ultraviolet completion of otherwise nonrenormalizable
models and, in particular, may lead to a consistent quantum
gravity theory [1,3]. It should be noticed that originally
high spatial derivatives were used in the description of
Lifshitz points in statistical mechanics studies [2]. Further
applications to statistical mechanics and condensed matter
may be found in [4,5].
A considerable amount of work has been devoted to

study different facets of HL models. These studies encom-
pass quantum gravitational issues, such as black holes [6],
renormalization features [7], and other aspects [8]. Besides
that, many studies have also been dedicated to nongravita-
tional models [9]. In particular, for scalar models, renorm-
alization aspects have been treated in [10,11], gauge
theories similar to QED were studied in [12,13], and
Ward identities and anomalies were considered in [14–16].
The basic assumption behind these proposals is that,

asymptotically, the equations of motion are invariant under
the rescaling xi → bxi, t → bzt, where z, the so-called
dynamical critical exponent, is related with the ultraviolet
behavior of the models. As space-time anisotropy breaks
Lorentz symmetry, to physically validate HL models at the
low-energy scale of the present Universe, it is necessary to
prove that Lorentz invariance is at least approximately
realized at small energies. Renormalization group argu-
ments indicate that, to achieve this behavior, it is required
that the effective coefficients of the high derivative terms in
the Lagrangian should monotonically decrease as the
energy decreases.

In the last two decades, models in more than four
dimensions have aroused a great deal of interest (see
[17] and references therein). The reason is that compacti-
fication of extra dimensions introduces new scales and new
physics in the desert separating the electroweak unification
scale (102 GeV) from the Planck scale (1019 GeV) of
the quantization of gravitation, the hierarchy problem.
However, usual quantum field models (z ¼ 1) are, in
general, nonrenormalizable in more than four dimensions.
This work is dedicated to the study of z ¼ 2 scalar quantum
electrodynamics in five-dimensions, the highest dimension
where this model is renormalizable. Actually, the model is
super renormalizable or nonrenormalizable for dimensions
lower or higher than five, respectively.
We would like to point out some earlier studies related to

this subject. Reference [13] provided a study of Lorentz
symmetry restoration and a discussion of anomalies in a four-
dimensional HL-like spinor and scalar QED. That work was
followed by [18], in which, also in four dimensions, the
anomalous magnetic momentum was determined and a
complete one-loop renormalization analysis was presented.
In five-dimensions, we are aware of the work [12] on spinor
HL-like QED showing that a great simplification occurs at
very high energies where the usual spatial terms, i.e., linear
terms in the spatial derivatives, may be neglected; in
particular, the gauge coupling constant is not renormalized.
This simplicity was also pursued in [13,18], the usual term
being also absent. Differently,we consider here the dynamics
of the more general renormalizable scalar model obeying
gauge symmetry and charge conjugation. The presence of
usual terms, quadratic in the spatial derivatives, make the
complete calculation of the Green functions infeasible. In
spite of this, it is still possible to obtain one-loop renorm-
alization constants that allow for the determination of
relevant renormalization group β functions. Using these
results, we analyze the evolution of the parameters of the
theory and determine a range for which Lorentz symmetry
may be restored.
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One possible usefulness of this work is the following.
five-dimensional scalar QED with z ¼ 1 is nonrenormaliz-
able; in this situation, one may still use it as an effective
theory for small energies up to some scale Λ. To fix Λ, we
may consider the Lagrangian with z ¼ 2, which is renor-
malizable but breaks Lorentz symmetry. However, if we
could find, for small energies, a range of values for which
the Lorentz symmetry is approximately realized, we may
take these energies as the ones where the effective theory
with z ¼ 1 is approximately correct.
This work is organized as follows. In Sec. II we

introduce the model, state the Feynman rules needed to
compute the radiative corrections, present the degree of
superficial divergence, and show the results for the one-
loop vertex functions. Explicit calculations of the diver-
gences and renormalization are provided in the Appendix,
where we also verified the Ward identities obeyed by the
vertex functions. In Sec. III, by using renormalization
group methods, the relevant β functions are computed.
Finally, in Sec. IV we present a summary and the
conclusions of this work.

II. THE MODEL

In this work, we study a z ¼ 2 version of five-
dimensional scalar QED described by the Lagrangian
density

L ¼ 1

2
F0iF0i −

; a21
4

FijFij −
a22
4
∂lFij∂lFij þ ðD0ϕÞ�D0ϕ

− b21ðDiϕÞ�Diϕ − b22ðDiDjϕÞ�DiDjϕ −m2ϕ�ϕ

− ieb23FijðDiϕÞ�Djϕ −
e2

2
b24FijFijϕ

�ϕ; ð1Þ

whereD0;i ¼ ∂0;i − ieA0;i is the gauge covariant derivative.
The parameters a2 and bi with i ¼ 2, 3, 4, which control the
high derivative terms, are taken to be dimensionless in
momentum units. From that, and taking into account the
dimension six of L, we get that the dimensions of ϕ and Ai
are equal to one, whereas the dimension of A0 is two. The
parameters a21, b

2
1, and m have dimension two and e is

dimensionless. The above expression is the most general
gauge invariant Lagrangian containing, at most, two scalar
fields. Integrating by parts, other possible terms, for
example, ∂jFij∂lFil, may be reduced to the ones in (1).
We choose to work in a strict Coulomb gauge by adding

to (1) the gauge fixing Lagrangian

LGF ¼
η

2
ð∂iAiÞ2 ð2Þ

and letting η tend to infinity. Notice that gauge invariance
and charge conjugation (ϕ ↔ ϕ� and Aμ → −Aμ) forbid
the appearance of pure gauge monomials, without scalar
field factors and containing more than two gauge fields.

However, we will show shortly that terms with four and six
scalar fields have to be included. Using the above
Lagrangian, we obtain the propagators and interacting
vertices:
(1) For the gauge field,

hTAiðkÞAjð−kÞi ¼ i
δij −

kikj
k⃗2

k20 − a21k⃗
2 − a22k⃗

4 þ iϵ
;

hTA0ðkÞA0ð−kÞi ¼
i

k⃗2
; ð3Þ

and hTA0ðkÞAið−kÞi ¼ 0.
(2) For the scalar field,

hTϕðkÞϕ�ð−kÞi ¼ i

k20 − b21k⃗
2 − b22k⃗

4 −m2 þ iϵ
:

ð4Þ
There are four three-linear vertices, which we label as

V3X, X ¼ A, B, C, D. By taking the Fourier transforms of
these interaction terms and taking the momenta always
entering at the vertex, one finds their expressions in
momenta space to be

V3Aðp; k; k0Þ ¼ eA0ðpÞϕðkÞϕ�ðk0Þ × ðp0 þ 2k0Þ; ð5Þ

V3Bðp; k; k0Þ ¼ −eb21AiðpÞϕðkÞϕ�ðk0Þ × ðpi þ 2kiÞ; ð6Þ

V3Cðp; k; k0Þ ¼ −eb22AiðpÞϕðkÞϕ�ðk0Þ
× ðpj þ 2kjÞfðpi þ kiÞðpj þ kjÞ þ kikjg;

ð7Þ

V3Dðp; k; k0Þ ¼ −eb23AiðpÞϕðkÞϕ�ðk0Þ
× fkiðk⃗02 þ k⃗0 · k⃗Þ − k0iðk⃗2 þ k⃗0 · k⃗Þg; ð8Þ

where k0 ¼ −k − p. There are also five four-linear vertices,

V4Aðp; p0; k; k0Þ ¼ e2A0ðpÞA0ðp0ÞϕðkÞϕ�ðk0Þ; ð9Þ

V4Bðp; p0; k; k0Þ ¼ −e2b21AiðpÞAiðp0ÞϕðkÞϕ�ðk0Þ; ð10Þ

V4Cðp; p0; k; k0Þ ¼ −e2b22AiðpÞAjðp0ÞϕðkÞϕ�ðk0Þ
× fkikj þ k0ik

0
j − k0ikj − kik0j

− 2k⃗ · k⃗0δij − p⃗ · p⃗0δij−p0
iðkj þ k0jÞ

− p⃗0 · ðk⃗þ k⃗0Þδijg; ð11Þ

V4Dðp; p0; k; k0Þ ¼ −e2b23AiðpÞAjðp0ÞϕðkÞϕ�ðk0Þ
× fp0

iðkj þ k0jÞ − δijp⃗0 · ðk⃗þ k⃗0Þg
ð12Þ
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V4Eðp; p0; k; k0Þ ¼ −e2b24AiðpÞAjðp0ÞϕðkÞϕ�ðk0Þ
× fp0

ipj − δijp⃗0 · p⃗g; ð13Þ

where the momenta satisfy k0 ¼ −k − p − p0. There is also
a vertex with five fields given by

V5ðp1; p2; p3; k; k0Þ ¼ −2e3b22Aiðp1ÞAiðp2ÞAjðp3ÞϕðkÞ
× ϕ�ðk0Þðkj − k0jÞ; ð14Þ

where p1 þ p2 þ p3 þ kþ k0 ¼ 0, and a vertex with six
fields,

V6ðp1; p2; p3; p4; k; k0Þ
¼ e4Aiðp1ÞAiðp2ÞAjðp3ÞAjðp4ÞϕðkÞϕ�ðk0Þ; ð15Þ

with the momenta satisfying
P

4
i¼1 pi þ kþ k0 ¼ 0.

By using these expressions, we may compute the degree
of superficial divergence for a generic Feynman diagram γ

δðγÞ ¼ 6 − Nϕ − NAi
− 2NA0

− 2ν3B − 2ν4B; ð16Þ

where NO denotes the number of external lines of the field
O and νO is the number of vertices of the type VO in γ.
Notice from (16) that graphs without external gauge field
lines, but either with four or six external scalar lines, are
quadratically and logarithmically divergent, respectively.
Therefore, for consistency of the renormalization process,
one should enlarge our model and add to (1) the terms
given by

Lϕ ¼ ξ1½ϕ�ðDiDiϕÞ þ ðDiDiϕÞ�ϕ�ϕ�ϕ

þ ξ2½ϕ�ðDiϕÞϕ�ðDiϕÞ þ ðDiϕÞ�ϕðDiϕÞ�ϕ�

þ ξ3ϕ
�ðDiϕÞðDiϕÞ�ϕ −

λ

4
ðϕ�ϕÞ2 − g

6
ðϕ�ϕÞ3: ð17Þ

Notice that, except for the term with λ, all these vertices
have ultraviolet dimension six and are therefore renorma-
lizable; they do not modify the power counting given in
(16). The vertex with the coupling λ has operator dimension
four, it is super renormalizable, and modifies the power
counting; a term −2νλ has to be added to the rhs of (16).
To keep the ultraviolet divergences under control, the
spatial part of the Feynman integrals will be regularized
to d ¼ 4 − ϵ dimensions. It is also convenient to introduce a
parameter μ with momentum dimension two and make the
following replacements:

e → eμϵ=4; λ → λμϵ=2; g → gμϵ; ξn → ξnμ
ϵ=2;

ð18Þ
with n ¼ 1, 2, 3. After the pole part of the integrals have
been removed, we will let ϵ → 0. In the Appendix, we

determined the counterterms needed to eliminate these
would be divergences. Using those results, we obtain the
gauge field two-point vertex functions

Γð2Þ
00 ðpÞ ¼

�
1þ α

8
ln μ

�
p⃗2 þ ðfinite partÞ; ð19Þ

Γð2Þ
0i ðpÞ ¼ Γð2Þ

i0 ¼
�
1þ α

8
ln μ

�
p0pi þ ðfinite partÞ; ð20Þ

and

Γð2Þ
ij ðpÞ ¼

�
1þ α

8
ln μ

�
δijp2

0

−
�
a21 −

α

8
R ln μ

�
ðδijp⃗2 − pipjÞ

−
�
a22 −

α

8
S ln μ

�
ðδijp⃗2 − pipjÞp⃗2

þ ðfinite partÞ; ð21Þ

where α ¼ e2

16π2b2
, and R and S are defined in (A12).

It should be stressed that the two-point vertex function of
the gauge field that we are considering is restricted to its
transverse part because its longitudinal part is meaningless.
We have also

Γð2ÞðpÞ ¼
�
1 −

α

2
ln μ

�
p2
0 −

�
b21 −

Q1

2
ln μ

�
p⃗2

−
�
b22 −

Q2

2
ln μ

�
p⃗4 −

�
m2 −

Q3

2
ln μ

�
þ ðfinite partÞ; ð22Þ

for the renormalized two-point function of the scalar field,
with Q1, Q2, and Q3 given in (A18)–(A20),

Γð3Þ
0 ðp − p0Þ ¼ e

�
1 −

α

2
ln μ

�
ðp0 þ p0

0Þ þ ðfinite partÞ;

ð23Þ

for the three-point vertex function hA0ϕ
�ϕi, and

Γð3Þ
i ðp;−p0Þ

¼ e

�
b21 −

Q1

2
ln μ

�
ðpi þ p0

iÞ

× e

�
b22 −

Q2

2
ln μ

�
ðpiðp⃗2 þ p⃗ · p⃗0Þ þ p0

iðp⃗02 þ p⃗ · p⃗0ÞÞ

× e

�
b23 −

K3

2
ln μ

�
ðpiðp⃗02 − p⃗ · p⃗0Þ þ p0

iðp⃗2 − p⃗ · p⃗0ÞÞ

þ ðfinite partÞ; ð24Þ
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for the three-point vertex function hAiϕ�ϕi, with K3

defined in (A27). As argued in the Appendix, these
functions satisfy the simplest Ward identities associated
with current conservation.
In the next section, we employ these expressions to find

some of the β functions of the model.

III. RENORMALIZATION GROUP AND
EFFECTIVE COUPLINGS

We may now fix the renormalization group flows of
the parameters of the model. The vertex functions
ΓðNA0

;NAi
;NϕÞðpÞ satisfy the ’t Hooft–Weinberg renormali-

zation group equation

�
μ
∂
∂μþ a1βa1

∂
∂a1 þ βa2

∂
∂a2 þ b1βb1

∂
∂b1 þ βb2

∂
∂b2

þ βb3
∂
∂b3 þ βb4

∂
∂b4 þ βe

∂
∂eþ λβλ

∂
∂λþ βg

∂
∂g

þ
X3
n¼1

βξn
∂
∂ξn þm2δ

∂
∂m2

− γΓ

�
ΓðNÞ ¼ 0; ð25Þ

where 2γΓ ¼ Nϕγϕ þ NA0
γA0

þ NAi
γAi

, and

βa1 ¼
μ

a1

da1
dμ

; βa2 ¼ μ
da2
dμ

; βb1 ¼
μ

b1

db1
dμ

;

βb2 ¼ μ
db2
dμ

; βb3 ¼ μ
db3
dμ

; βb4 ¼ μ
db4
dμ

;

βe ¼ μ
de
dμ

; βλ ¼
μ

λ

dλ
dμ

; βg ¼ μ
dg
dμ

;

βξn ¼ μ
dξn
dμ

; δ ¼ μ

m2

dm2

dμ
; and γΓ ¼ μ

ZΓ

dZΓ

dμ
:

ð26Þ

To obtain the above functions, we proceed as follows.
We substitute the vertex functions listed in the previous
section in the renormalization group equation and equate to
zero the coefficient of each power of the momentum and
each power of the coupling constants. In the case of the
pure gauge functions, for instance, we determine

βa1 ¼
α

16

�
Rþ a21
a21

�
and βa2 ¼

α

16

�
Sþ a22
a2

�
; ð27Þ

and also

γA ≡ γA0
¼ γAi

¼ α

8
: ð28Þ

Furthermore, by inserting the scalar field two-point func-
tion into the renormalization group equation, we get

δ ¼ 1

2

�
Q3 − αm2

m2

�
; ð29Þ

γϕ ¼ −
α

2
; ð30Þ

and

βb1 ¼
1

4

�
Q1 − αb21

b21

�
and βb2 ¼

1

4

�
Q2 − αb22

b22

�
: ð31Þ

Similarly, using the three-point vertex function, we get

βe ¼
eα
16

; βb3 ¼
1

4

�
K3 − αb23

b23

�
: ð32Þ

Even without calculating the radiative corrections for the
vertices with more than three fields, the results obtained so
far, together with some reasonable assumptions, allow us to
examine relevant questions related to the possible emer-
gence of Lorentz symmetry at low energies. For that
purpose, we recall that, as a function of the momenta
and the parameters of the model, ΓðNÞ has dimension
6 − Nϕ − NAi

− 2NA0
and therefore satisfies

�
2p0

∂
∂p0

þ p
∂
∂pþ 2μ

∂
∂μþ a1

∂
∂a1 þ b1

∂
∂b1 þ 2λ

∂
∂λ

þ 4m2
∂

∂m2
− ð6 − Nϕ − NAi

− 2NA0
Þ
�
ΓðNÞ ¼ 0; ð33Þ

where p0 and p symbolically stand for the sets of timelike
and spacelike parts of the momenta. From (33) and the
renormalization group equation, we may now write

�
−

∂
∂tþ

�
βa1 −

1

2

�
a1

∂
∂a1 þ

�
βb1 −

1

2

�
b1

∂
∂b1

þ ðβλ − 1Þλ ∂
∂λþ βa2

∂
∂a2 þ

X4
i¼2

�
βbi

∂
∂bi

�

þ
X3
n¼1

βξn
∂
∂ξn þ βe

∂
∂e

þ βg
∂
∂g

þ ðδ − 2Þm2
∂

∂m2

þ 1

2
ð6 − Nϕ − NAi

− 2NA0
Þ − γΓ

�
ΓðNÞðetp0; et=2p; xÞ

¼ 0; ð34Þ

where x designates the set of parameters of the model,
specified in (1) and (17). To solve this equation, we
introduce running couplings. For the coefficients of the
renormalizable (marginal) vertices, generically denoted by
āða; tÞ, they obey
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∂ā
∂t ¼ βā ð35Þ

and the initial condition āða; 0Þ ¼ a. On the other hand, the
running couplings associated with the coefficients of the
super-renormalizable (relevant) vertices m̄ðm; tÞ, ā1ða1; tÞ,
b̄1ðb1; tÞ, and λ̄ðλ; tÞ must satisfy

∂m̄2

∂t ¼ ðδ − 2Þm̄2;
∂ā1
∂t ¼

�
βā1 −

1

2

�
ā1;

∂b̄1
∂t ¼

�
βb̄1 −

1

2

�
b̄1;

∂λ̄
∂t ¼ ðβλ̄ − 1Þλ̄; ð36Þ

also subject to the condition that at t ¼ 0 they are equal to
the original parameters. Thus, for the couplings a2, bi with
i ¼ 2, 3, 4 and ξn with n ¼ 1, 2, 3, Lorentz symmetry
demands that the corresponding β functions be positive for
small energies. This, however, will not be enough if
a1 ≠ b1. Thus, we set a1 ¼ b1 ¼ c as a starting condition
for these parameters in the original Lagrangian and require
βā1 ¼ βb̄1 so that they remain equal as t varies.

We may now factorize c2 out from the Lagrangian
and redefine c−1∂0 → ∂0, c−1A0 → A0, c−2m2 → m2,
c−2λ → λ and c−2g → g. We get a new Lagrangian
with the usual terms of the 4þ 1 scalar QED and with the
high derivative terms divided by c2. For the emergence of
the Lorentz symmetry to take place, the coefficients of
these terms should be small. Let a2=c2 be one of these
coefficients; we shall have then

∂
∂t

�
ā2

c̄2

�
¼ 2ā

c̄2

�
βā − ā

�
βc̄ −

1

2

��
> 0: ð37Þ

One simplification is to set the ξn ¼ 0, assuming that, at
least to one loop, they are not generated by the radiative
corrections. The choice a1 ¼ b1 ¼ c corresponds to the
assumption that, in the absence of high derivatives terms,
the speed of light is well defined. The imposition that
βā1 ¼ βb̄1 implies that this velocity remains well defined,
although it may change with the energy. However, the
system of equations is still very complicated, so we restrict
our analysis to the situation in which βc̄ ¼ 0. This con-
dition allows one to fix b3 and b4 as functions of a2 and b2

b3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
3ða22 þ a2b2 þ b22Þ

s
½3b2ð3a22 − a2b2 − b22Þ �

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2a62 − 4a52b2 þ 8a42b2 þ 7a32b

3
2 þ 18a22b

4
2 þ 18a2b52 þ 9b62

q
�1=2

ð38Þ

and

b4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
6ða22 þ a2b2 þ b22Þ

s
½3b2ða22 − 7a2b2 − 7b22Þ � 4

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2a62 − 4a52b2 þ 8a42b2 þ 7a32b

3
2 þ 18a22b

4
2 þ 18a2b52 þ 9b62

q
�1=2;

ð39Þ

with the use of the signsþ or − in these expressions to be discussed shortly. By using (38), we can eliminate the dependence
on b3 and b4 from βa2 , βb2 , and βb3 so that they become

βa2¼
e2

27648π2a2b2

�
108a22þ27b22þ

42b2ð3b2P1ða2;b2Þ∓ 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ða2;b2Þ

p Þ
P3ða2;b2Þ

þð3b2P1ða2;b2Þ∓ 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ða2;b2Þ

p Þ2
ðP3ða2;b2ÞÞ2

�
;

ð40Þ

βb2 ¼
e2

2304π2

�
−36þ 1

a2ða2 þ b2Þ3
�
9b22ð23a22 þ 37a2b2 þ 16b22Þ −

a2ða2 þ 3b2Þð3b2P1ða2; b2Þ ∓ 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ða2; b2Þ

p Þ2
ðP3ða2; b2ÞÞ2

−
6b2ð7a22 þ 9a2b2 þ 4b22Þð3b2P1ða2; b2Þ ∓ 2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ða2; b2Þ

p Þ
P3ða2; b2Þ

��
; ð41Þ

and
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βb3 ¼
e2P3ða2; b2Þ

2304π2a2b2ða2 þ b2Þ3ð−3b2P1ða2; b2Þ � 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ða2; b2Þ

p Þ

×
�
9b2ð3a42 þ 9a32b2 þ 25a22b

2
2 þ 41a2b32 þ 20b42Þ

þ 3ð21a42 þ 63a32b2 þ 23a22b
2
2 − 63a2b32 − 40b42Þð3b2P1ða2; b2Þ ∓ 2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ða2; b2Þ

p Þ
P3ða2; b2Þ

þ 2b2ð8a22 þ 15a2b2 þ 6b22Þð3b2P1ða2; b2Þ ∓ 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ða2; b2Þ

p Þ2
ðP3ða2; b2ÞÞ2

�
; ð42Þ

where the polynomials P1ða2; b2Þ, P2ða2; b2Þ, and
P3ða2; b2Þ were introduced to simplify the writing of the
above expressions; they are given by

P1ða2; b2Þ ¼ −3a22 þ a2b2 þ b22;

P2ða2; b2Þ ¼ −2a62 − 4a52b2 þ 8a42b
2
2 þ 7a32b

3
2 þ 18a22b

4
2

þ 18a2b52 þ 9b62;

P3ða2; b2Þ ¼ a22 þ a2b2 þ b22: ð43Þ

Because of the complexity of these expressions, we
will employ numerical methods to find regions where the
parameters decrease by lowering the energy: first, we find
zeros of (42) and then analyze the behavior of these
functions as perturbed around the zeros. Then, we do
the same for (40) and (41) and obtain the following:
(1) In the interval 0 ≤ b2

a2
< 0.62429879, we have

βa2 > 0.
(2) In the interval b2

a2
> 0.48792827, we have βb2 > 0.

(3) In the interval b2
a2
> 0.49508332, we have βb3 > 0.

Finally, concerning the behavior of βb4 we notice that, as
b4 is a function of a2 and b2,

βb4 ¼ βa2
∂b4
∂a2 þ βb2

∂b4
∂b2 ; ð44Þ

and performing the same analysis described above, we find
that βb4 is positive for

b2
a2
> 0.50848002. Thus, by collecting

all these results, we find that, in the interval

0.50848002 <
b2
a2

< 0.62429879; ð45Þ

all β functions are positive. Lorentz symmetry may emerge
but this requires a fine tuning procedure, as described.

IV. SUMMARY AND CONCLUSIONS

In this work, we studied the z ¼ 2 scalar quantum
electrodynamics in five spacetime dimensions. We regu-
larized the Feynman amplitudes by promoting the spatial
part of the Feynman integrals to d ¼ 4 − ϵ and the

renormalization of the model was accomplished by remov-
ing the pole parts of the result (minimum subtraction
procedure). We explicitly checked that these pole parts
satisfy, as they should, the Ward identities characteristics of
the model. By determining the relevant β functions, we
analyzed possible scenarios for the evolution of various
coupling constants. We verified that the emergence of the
Lorentz symmetry may occur in the low-energy limit, but
this requires a fine tuning procedure. Another possibility is
to have an ultraviolet regime in which the usual, quadratic
terms in the derivatives, become negligible. This is a great
simplification, making it possible to completely determine
the one-loop integrals. As a third scenario, there is the
opposite situation in which the usual terms may be very
large, which would be interesting for applications to the
physics of the early Universe.
Finite temperature/density effects may be considered

using standard methods. In particular, that extension does
not significantly alter the ultraviolet structure we analyzed
in this work. This is so because the conserved charge
density still has the usual form

j0ðxÞ ¼ iðϕ�D0ϕ − ϕðD0ϕÞ�Þ; ð46Þ

and therefore the chemical potential vertex μ0j0 is super-
renormalizable. Its impact on the UV behavior manifests
itself through the inclusion of a term −2νμ0 in the power
counting. A finite temperature T may also be considered
by discretizing the temporal part of the momenta through
the Matsubara replacement p0 → ð2iπnÞT. Of course, the
resulting ultraviolet structure is the same as before the
replacement.
Similarly, to make contact with the four-dimensional

physics, we may compactify one spatial dimension in a
circle. Imposing to the fields periodic boundary conditions
in that fifth dimension, we get towers of Kaluza-Klein
modes of increasing masses. As in the case of finite
temperature, this construction does not alter the ultraviolet
structure discussed in this work. The phenomenological
aspects of this structure have not been treated here and will
be the subject of future work.
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APPENDIX: ONE-LOOP CORRECTIONS
AND RENORMALIZATION

In this Appendix, we will examine the ultraviolet
structure of the model by analyzing the possible divergen-
ces as specified by (16). As mentioned before, our
Feynman integrals are dimensionally regulated by promot-
ing their spatial parts to d ¼ 4 − ϵ dimensions. These
integrals are not analytically feasible, and to extract their
divergent parts, we Taylor expand their integrands in
powers of the external momenta. For a Feynman amplitude
IΓ of a graph Γ we use

IΓðpÞ ¼
X½δðΓÞ2

�

s¼0

ps
0

s!
∂s

∂ps
0

XδðΓÞ−2s
n¼0

pi1…pin

n!
∂

∂pi1

…
∂

∂pin

IΓ

þ finite part; ðA1Þ

where δðΓÞ is the degree of superficial divergence of Γ, [x]
is the greatest integer less than or equal to x, ps

0 symboli-
cally stands for the product of s timelike components of an
independent set of external momenta; pi denotes the ith
spacelike component and all derivatives are computed at
zero external momenta.
By using (A1), for the coefficients of the Taylor

expansion we obtain integrals of the type

Jðx; y; zÞ ¼
Z

dk0
2π

ddk
ð2πÞd

kx0jk⃗jy
½k20 − b21k⃗

2 − b22k⃗
4 −m2�z

ðA2Þ

or

Z
dk0
2π

ddk
ð2πÞd

1

ðk20 − b21k⃗
2 − a21ðk⃗2Þ2 −m2

1Þz1

×
1

ðk20 − b22k⃗
2 − a22ðk⃗2Þ2 −m2

2Þz2
; ðA3Þ

if there are propagators with different denominators in the
loop integral. In this last case, we use Feynman’s trick

1

Az1Bz2
¼ Γðz1 þ z2Þ

Γðz1ÞΓðz2Þ
Z

1

0

dx
xz1−1ð1 − xÞz2−1

½Axþ Bð1 − xÞ�z1þz2
ðA4Þ

to obtain an integral similar to (A2). The divergent part of
this integral may be calculated using standard methods (see
appendix in [14] for details), yielding the result

Jðx; y; zÞ ¼ i1þx−2z

ð4πÞðdþ2Þ=2
½ð−1Þx þ 1�

2

Γðxþ1
2
Þ

Γðd
2
ÞΓðzÞ

×
X2
n¼0

ð−b21Þn
n!

Γðdþyþ2n
4

ÞΓðωþ ðn−1Þ
2

Þ
ðb22Þðdþyþ2nÞ=4ðm2Þωþðn−1Þ

2

; ðA5Þ

where w ¼ ð4z − 2x − y − dÞ=4. We now analyze the
possible divergences on the effective action, as indicated
in (16). We have:
1. Pure gauge sector, i.e., graphs with Nϕ ¼ 0. In what

follows, Πμν will denote the correction to the kernel of
the term with two gauge fields in the effective action, i.e.,
the term AμðpÞΠμνAνð−pÞ. Due to gauge invariance, the
counterterms must depend on the potential Aμ only through
the gauge field strength Fμν. Also, charge conjugation
symmetry restricts the number of external lines to be even.
1a. ForNA0

¼ 2, the divergences are quadratic. Using the
Feynman rules stated before, we found the following
contributions coming from the graphs depicted in Fig 1,

Π00ðpÞ ¼ e2
�
−
Z

½dk� 1

Ωb½k2�

þ 1

2

Z
½dk� ðp0 þ 2k0Þ2

Ωb½k2�Ωb½ðkþ pÞ2�
�
; ðA6Þ

where here and henceforth we employ the notationΩbðkÞ≡
k20−b21k⃗

2−b22k⃗
4−m2 and ½dk�≡ μϵ=2dk0ddk=ð2πÞdþ1.

Due to the presence of quadratic and quartic terms in
the denominators of the integrands, the above integrals do
not produce simple analytic expressions. The pole part of
the result may nevertheless be easily computed by expand-
ing the integrands in power series and using (A5) as
described before. Proceeding in this way, we found

Π00ðpÞ ¼
i
4
αμϵ=2

�
1

ϵ
p⃗2 þ ðfinite partÞ

�
; ðA7Þ

where α ¼ e2

16π2b2
. For NA0

¼ 1 and NAi
¼ 1, the graphs

have the same topology as before but different polynomials
at the vertices. We have

FIG. 1. Graphs contributing to the polarization tensor (the
continuous and wavy lines represent the scalar and gauge field
propagators): (a) tadpole graph and (b) fish graph.
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Π0iðpÞ ¼ −
e2

4

�
b21

Z
½dk� ðp0 þ 2k0Þðpi þ 2kiÞ

Ωb½k2�Ωb½ðkþ pÞ2� þ b22

Z
½dk� ðp0 þ 2k0Þðpl þ 2klÞfðpi þ kiÞðpl þ klÞ þ kiklg

Ωb½k2�Ωb½ðkþ pÞ2�
�
; ðA8Þ

yielding

Π0iðpÞ ¼ Πi0ðpÞ ¼
i
4
αμϵ=2

�
1

ϵ
p0pi þ ðfinite partÞ

�
: ðA9Þ

1b. Similarly, for NAi
¼ 2, divergences arise only if ν3B ¼ 0 and, in that case, the degree of superficial divergence is four.

Explicit calculation gives

ΠijðpÞ ¼ −e2δij
�
ðb21 þ b22p⃗

2Þ
Z

½dk� 1

Ωb½k2�
þ 2

dðdþ 2Þ b
2
2

Z
½dk� k⃗2

Ωb½k2�
�

þ e2

2

Z
½dk�

�
b41

ðpi þ 2kiÞðpj þ 2kjÞ
Ωb½k2�Ωb½ðkþ pÞ2�

þ b42
ðpl þ 2klÞðpm þ 2kmÞfðpi þ kiÞðpl þ klÞ þ kiklgfðpj þ kjÞðpm þ kmÞ þ kjkmg

Ωb½k2�Ωb½ðkþ pÞ2�

þ 2b21b
2
2

ðpi þ 2kiÞðpl þ 2klÞfðpj þ kjÞðpl þ klÞ þ kjklg
Ωb½k2�Ωb½ðkþ pÞ2�

�
; ðA10Þ

so that

ΠijðpÞ ¼
iαμϵ=2

4

�
1

ϵ
ðδijp2

0 þ Rðδijp⃗2 − pipjÞ

þ Sðδijp⃗2 − pipjÞp⃗2Þ þ ðfinite partÞ
�
; ðA11Þ

where

R ¼ 2b21
b22

ð2b22 − b23 þ b24Þ and

S ¼ 1

12b22
ð3b42 − 14b22b

2
3 þ b43Þ: ðA12Þ

Thus, the counterterms have the forms C1Fi0Fi0, C2FijFij,
and C3∂lFij∂lFij, where

C1 ¼
α

8

1

ϵ
; C2 ¼

α

4

b21
b22

ð2b22 − b23 þ b24Þ
ϵ

;

C3 ¼
α

96b22

ð3b42 − 14b22b
2
3 þ b43Þ

ϵ
: ðA13Þ

The above results also show that the wave renormalization
functions for the fields A0 and Ai are equal. Observe that
for b1 ¼ 0 there is no contribution to the term FijFij, as
expected, because of conformal invariance.
1c. NAi

¼ 4. Here the relevant graphs are quadratically
divergent, but because the counterterms necessarily depend
on the potential only through the field strength, four
momentum factors are needed to produce a nonzero result.
In this case, the contribution is finite.
2. Matter/gauge field mixed sector. First, we have

NA ¼ 0 and Nϕ ¼ 2. In this case, we found one-loop
corrections of the form ϕ�ΔΓð2Þϕ, coming from graphs with
three different topologies, as shown in Fig 2. The tadpole
graphs [Fig 2(a)] have one internal scalar line and the vertex
is either the λ vertex or one of the vertices with the
couplings ξn. They furnish

ΔΓð2Þ
1 ¼ λ

Z
½dk� 1

Ωb½k2�
þ ð4ξ1 − ξ3Þ

×

�Z
½dk� k⃗2

Ωb½k2�
þ p⃗2

Z
½dk� 1

Ωb½k2�
�
: ðA14Þ

FIG. 2. Radiative corrections for the scalar matter field: (a) tadpole graph with an internal scalar line, (b) tadpole graph with internal
gauge field line, and (c) graph with two vertices.
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There is a also a tadpole graph with internal spatial gauge
field propagator, as shown in Fig 2(b) (notice that, since the
spatial part is dimensionally regularized, the would-be
contribution of the tadpole graph with internal timelike
gauge propagator vanishes),

ΔΓð2Þ
2 ¼ −e2ð1 − dÞ

Z
½dk�b

2
1 þ b22ðk2 þ 4

d p⃗
2Þ

Ωa½k2�
: ðA15Þ

There are, finally, the contributions from the graphs with
two trilinear vertices (see Fig. 2(c))

ΔΓð2Þ
3 ¼ e2

Z
½dk�

� ðk0 þ 2p0Þ2
k⃗2Ωb½ðkþ pÞ2�

þ
4b41pipjðδij − kikj

k⃗2
Þ

Ωa½k2�Ωb½ðkþ pÞ2�

þ
b42pipjðk⃗þ 2p⃗Þ4ðδij − kikj

k⃗2
Þ

Ωa½k2�Ωb½ðkþ pÞ2�

þ
4b21b

2
2pipjðk⃗þ 2p⃗Þ2ðδij − kikj

k⃗2
Þ

Ωa½k2�Ωb½ðkþ pÞ2�
�
: ðA16Þ

By performing the indicated integrals in the above expres-

sions, we obtain the total correction ΔΓð2Þ ¼ ΔΓð2Þ
1 þ

ΔΓð2Þ
2 þ ΔΓð2Þ

3 to the two-point vertex function for the
scalar field,

ΔΓð2Þ ¼ iμϵ=2
�
1

ϵ
ð−αp2

0 þQ1p⃗2 þQ2p⃗4 þQ3Þ

þ ðfinite partÞ
�
; ðA17Þ

where Qi with i ¼ 1, 2, 3 are

Q1¼
3α

8a32b
2
2ða2þb2Þ2

f2a21a2b22ð11b42−2b22b
2
3−b43Þ

þa21b
3
2ð11b42−2b22b

2
3−b43Þþa32b

2
1ð7b42þ6b22b

2
3−b43Þ

þ2a22b2ð6a21b42þb21ð3b42þ2b22b
2
3−b43ÞÞg

þð4ξ1−ξ3Þ
b21

32π2b32
; ðA18Þ

Q2 ¼
α

4a2ða2 þ b2Þ3
fb42ð23a22 þ 37a2b2 þ 16b22Þ

þ 2b22ð7a22 þ 9a2b2 þ 4b22Þb23 − a2ða2 þ 3b2Þb43g;
ðA19Þ

and

Q3 ¼
α

8a52b
2
2

f12a21a22b21b32 − 9a41b
3
2ðb22 þ b24Þ þ a52b

4
1

− 4a52b
2
2m

2gþ λ
b21

32π2b32
þð4ξ1 − ξ3Þ

ð4b22m2 − 3b21Þ
32π2b52

:

ðA20Þ
It should be noted that, for a1 ¼ b1 ¼ 0, Q1 vanishes so
that corrections to the lowest order terms in the spatial
derivatives do not occur. Observe that, if also m ¼ 0, then
Q3 vanishes so that conformal invariance is preserved.
3. Three-point vertex function associated with the

product ϕðpÞϕ�ð−p0ÞAμðp − p0Þ (see graphs in Fig 3).
3a. The contributions for the correction for the vertex

V3A (NA0
¼ 1 and Nϕ ¼ 2) was found to be

FIG. 3. General aspect of graphs contributing to the three point vertex function: (a) tadpole graph with an internal gauge field line,
(b) tadpole graph with an internal scalar line, (c) graph with one sclar four vertex, (d) and (e) graphs with two vertices and (f) graph with
three vertice.
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ΔΓð3Þ0
1 ¼ e3

Z
½dk�

�
p0

ðk⃗þ p⃗Þ2Ωb½k2�
þ p0

0

ðk⃗þ p⃗0Þ2Ωb½k2�

�
; ðA21Þ

coming from the graphs with two vertices and

ΔΓð3Þ0
2 ¼ ie3

Z
½dk�ðp0 þ p0

0 þ 2k0Þ
� ðk0 þ 2p0Þðk0 þ 2p0

0Þ
k⃗2Ωb½ðkþ pÞ2�Ωb½ðkþ p0Þ2�

þ
4b41pip0

jðδij − kikj
k⃗2
Þ

Ωa½k2�Ωb½ðkþ pÞ2�Ωb½ðkþ p0Þ2�

þ
b42pip0

jðk⃗þ 2p⃗Þ2ðk⃗þ 2p⃗0Þ2ðδij − kikj
k⃗2
Þ

Ωa½k2�Ωb½ðkþ pÞ2�Ωb½ðkþ p0Þ2�

þ
2b21b

2
2pip0

jðk⃗þ 2p⃗0Þ2ðδij − kikj
k⃗2
Þ

Ωa½k2�Ωb½ðkþ pÞ2�Ωb½ðkþ p0Þ2� þ
2b21b

2
2pip0

jðk⃗þ 2p⃗Þ2ðδij − kikj
k⃗2
Þ

Ωa½k2�Ωb½ðkþ pÞ2�Ωb½ðkþ p0Þ2�
�
; ðA22Þ

coming from graphs with three vertices. After performing
the integrations, we obtain

ΔΓð3Þ0ðp; p0Þ≡ ΔΓð3Þ0
1 ðp; p0Þ þ ΔΓð3Þ0

2 ðp; p0Þ

¼ i
e3μϵ=2

16π2b2

�
−
1

ϵ
ðp0 þ p00Þ þ ðfinite partÞ

�
:

ðA23Þ
3b. The divergent contribution to the three-point vertex

function with spatial Ai is more cumbersome. It involves
graphs (ten with three vertices, six with two vertices, and
four tadpoles). The final result is

ΔΓð3Þiðp; p0Þ ¼ ieμϵ=2
�
1

ϵ
½K1ðpi þ p0

iÞ

þ K2ðpiðp⃗2 þ p⃗ · p⃗0Þ þ p0
iðp⃗02 þ p⃗ · p⃗0ÞÞ

þ K3ðpiðp⃗02 − p⃗ · p⃗0Þ

þ p0
iðp⃗2 − p⃗ · p⃗0ÞÞ� þ ðfinite partÞ

�
;

ðA24Þ
where

K1 ¼
3α

8a32b
2
2ða2 þ b2Þ2

f2a21a2b22ð11b42 − 2b22b
2
3 − b43Þ

þ a21b
3
2ð11b42 − 2b22b

2
3 − b43Þ

þ a32b
2
1ð7b42 þ 6b22b

2
3 − b43Þ

þ 2a22b2ð6a21b42 þ b21ð3b42 þ 2b22b
2
3 − b43ÞÞg

þ ð4ξ1 − ξ3Þb21
32π2b32

; ðA25Þ

K2 ¼
α

4a2ða2 þ b2Þ3
fb42ð23a22 þ 37a2b2 þ 16b22Þ

þ 2b22ð7a22 þ 9a2b2 þ 4b22Þb23 − a2ða2 þ 3b2Þb43g;
ðA26Þ

and

K3 ¼
α

12a2ða2 þ b2Þ3
f3a42b22 þ 9a32b

3
2 þ 25a22b

4
2

þ 41a2b52 þ 20b62 − 3a42b
2
3 − 9a32b2b

2
3

þ 31a22b
2
2b

2
3 þ 81a2b32b

2
3 þ 40b42b

2
3

þ 16a22b
4
3 þ 30a2b2b43 þ 12b22b

4
3g

þ ð3b23 − 7b22Þð4ξ2 − ξ3Þ
192π2b32

: ðA27Þ

These results allow us to prove the simplest Ward
identities of the model, namely,

pμΠμν ¼ 0 and ðp0
μ − pμÞΓð3Þμ ¼ e½Γð2Þðp0Þ − Γð2ÞðpÞ�;

ðA28Þ
where Γð2ÞðpÞ is the two-point vertex function of the scalar
fields and Γð3Þμ denotes the three-point vertex function of
the product of fields Aμðp0 − pÞϕ�ð−p0ÞϕðpÞ. The first
identity may be verified straightforwardly using the pre-
vious results for the components of the polarization tensor.
It shows that the radiative correction to the gauge field two-
point function is transversal; in the tree approximation, that
function also has a longitudinal part due to the gauge fixing.
The second identity may also be verified using that, before
renormalization,

Γð2Þ ¼ i½p2
0 − b21p⃗

2 − b22p⃗
4 −m2� þ ΔΓð2Þ

¼ i

��
1 −

α

ϵ

�
p2
0 −

�
b21 −

1

ϵ
Q1

�
p⃗2 −

�
b22 −

1

ϵ
Q2

�
p⃗4

−
�
m2 −

1

ϵ
Q3

�
þ ðfinite partÞ

�
ðA29Þ

and

Γð3Þ0 ¼ ie

��
1 −

α

ϵ

�
ðp0 þ p0

0Þ þ ðfinite partÞ
�
; ðA30Þ
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Γð3Þi ¼ −ie
��

b21 −
1

ϵ
K1

�
ðpi þ p0

iÞ þ
�
b22 −

1

ϵ
K2

�
ðpiðp⃗2 þ p⃗ · p⃗0Þ þ p0

iðp⃗02 þ p⃗ · p⃗0ÞÞ

þ
�
b23 −

1

ϵ
K3

�
ðpiðp⃗02 − p⃗ · p⃗0Þ þ p0

iðp⃗2 − p⃗ · p⃗0ÞÞ þ ðfinite partÞ
�
; ðA31Þ

where the expressions for Q1 ¼ K1, Q2 ¼ K2, Q3, and K3 were given in (A18), (A19), (A20), and (A27), respectively.
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