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We study spontaneous supersymmetry breaking in spatially modulated stable or metastable vacua in
supersymmetric field theories. Such spatial modulation can be realized in a higher derivative chiral model
for which vacuum energies are positive, negative, or zero, depending on the model parameters. There
appears a Nambu-Goldstone boson associated with the spontaneous breaking of the translational and Uð1Þ
symmetries without the quadratic kinetic term and with a quartic derivative term in the modulated direction,
and a gapless Higgs mode. We show that there appears a Goldstino associated with the supersymmetry
breaking at a metastable vacuum, where energy is positive, while it becomes a fermionic ghost in
the negative energy vacuum, and zero norm state and disappears from the physical sector in the zero
energy vacuum.
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I. INTRODUCTION

Finding vacua where supersymmetry (SUSY) is sponta-
neously broken is an important problem in supersymmetric
field theories, since it is obviously broken if it exists in
nature. The famous examples of spontaneous SUSY break-
ing include the O’Raifeartaigh model for chiral superfields
[1] and supersymmetric gauge theories [2], where the
positive energy vacuum is characterized by a constant
vacuum expectation value of scalar fields. Remarkably, it is
desirable that these spontaneous SUSY breakings are
caused by the dynamics of models [3]. However, the severe
constraint by the Witten index [4] makes it hard to construct
a phenomenologically viable model where dynamical
SUSY breaking is possible. A large number of efforts
has been devoted to construct a model for the dynamical
SUSY breaking. The constraint of the Witten index can be
circumvented if one employs a local minima, not the global
minimum, for the SUSY breaking vacua. Even though the
local minima are metastable false vacua decaying into the
global vacuum in a finite time, they are nevertheless useful
candidates of phenomenologically possible vacua if the
lifetime of the vacua is longer than that of our Universe.
This is the idea of the SUSY breaking in the metastable
vacua [5,6]. It is worthwhile to emphasize that almost all of
the SUSY breaking vacua discussed in the literature respect
the translational symmetry in the relativistic field theories,
for which the order parameter of vacua is constant.
On the other hand, space-time symmetry breakings have

been discussed in a vast literature. Nonlinear realizations

for spontaneously broken space-time symmetry were first
formulated in Ref. [7] as the so-called inverse Higgs
mechanism, and corresponding Nambu-Goldstone (NG)
modes were discussed in Ref. [8]. Phenomenology of the
spontaneous Lorentz symmetry breakings have been inten-
sively studied in the past [9–13]. The ghost condensation
[14] also gives an example. The presence of a brane or
soliton also breaks translational symmetry perpendicular to
the brane as well as a Lorentz symmetry tilting the brane. In
this case, the NG modes associated with the broken
symmetries appear as massless fields in the world-volume
theory [15–17] (and references in [18]). Spontaneous
breakings of the (super-)Poincaré symmetry have also been
discussed in the context of Bogomol’nyi-Prasad-
Sommerfield (BPS) [19–21] as well as non-BPS branes
[22]. In addition to spontaneous breakings, there are also
studies on the explicit Lorentz violations from the view-
points of quantum gravity [23,24], massive gravity [25,26],
and particle physics [27–29]. The explicit Lorentz sym-
metry violations in SUSY theories [30–32], including
formal aspects of Lorentz violating SUSY breaking [33],
have been also discussed.
Among other things, it is becoming more important to

consider the possibility of spatially inhomogeneous ground
states in condensed matter physics [34,35] and QCD [36–
38]. For such a kind of ground states, the order parameter is
characterized by a spatially varying function, and several
translational symmetries are spontaneously broken there.
We have recently proposed that such modulation can occur
in relativistic field theories [39], and we have found that the
NG boson appears as a consequence of spontaneous
symmetry breaking of translational and Uð1Þ symmetries.
Despite the physical importance of the spatially modulated
vacua, there have been no studies on such vacua in
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supersymmetric contexts. It would therefore be plausible to
admit SUSY breaking in spatially inhomogeneous vacua
where parts of space-time symmetries in theories are also
broken.
In this paper, we study spontaneous SUSY breaking in

modulated vacua where the translational symmetry is
broken. This possibility may open up phenomenologically
viable model buildings based on a new kind of SUSY
breaking. Our model contains a SUSY breaking modulated
vacuum in addition to the SUSY preserving vacuum. The
modulated vacuum that we find is metastable with positive
vacuum energy, stable and degenerated with the SUSY
preserving vacuum that has zero vacuum energy, or
unstable with negative vacuum energy, depending on the
model parameters. In addition to the NG boson associated
with spontaneously broken translational symmetry [39],
there appears a massless fermion, a Goldstino, in any case,
as a consequence of the SUSY breaking. In the case of the
positive energy vacuum, the Goldstino propagates with the
correct sign of the kinetic term along both the modulation
and the transverse directions. For the zero energy vacuum,
the Goldstino has zero norm and disappears from the
spectrum, even in the presence of the SUSY breaking.
Although the negative energy vacuum is stable in the
bosonic sector [39], it is unstable in the fermionic sector:
the Goldstino becomes a fermionic ghost in the orthogonal
direction, thereby leading to the instability. It can have a
kinetic term with the wrong sign even along the modulated
direction when the vacuum energy is negative or zero. One
of the interesting features of our model is that SUSY is
broken even though auxiliary field F does not have a
vacuum expectation value (VEV), unlike usual SUSY
breakings.
To find such a kind of modulated vacua, we introduce

supersymmetric higher derivative chiral models. From a
viewpoint of low-energy effective theories, supersymmet-
ric field theories generically receive higher derivative
corrections. Here “the higher derivative” means that terms
contain more than two space-time derivatives. There are a
variety of higher derivative supersymmetric chiral mod-
els. We concentrate on models where only the single
space-time derivative acts on fields, such as ∂mφ. In this
paper, we never consider terms that contain more than
two derivatives on one field such as ∂2φ that cannot be
removed by partial integrations in the action. Terms with
this kind of interactions suffer from a potential instability
of systems [40]. This instability results in the existence of
ghosts, and it is known as the Ostrogradski instability
[41].1 It is convenient to employ the off-shell superfield
formalism to construct supersymmetric theories. One
often encounters the so-called auxiliary field problem
implying that the equation of motion for the auxiliary

field F ceases to be algebraic [43]. Then it is not so easy
to write down the on-shell Lagrangians. This has been
seen in various supersymmetric higher derivative models,
such as a supersymmetric Wess-Zumino-Witten (WZW)
term [44] and supersymmetric Skyrme models [45]. The
supersymmetric higher derivative models free from the
auxiliary field problem have been discussed in various
contexts. For example, higher derivative corrections to the
ordinary quadratic kinetic terms appear in low-energy
effective theories of supersymmetric models [46,47].
Other examples include the supersymmetric generaliza-
tion of the Wess-Zumino-Novikov-Witten (WZNW) term
[48], the world-volume action of supersymmetric branes
[49], higher derivative chiral models coupled with super-
gravities [50], supersymmetric Skyrme-like models
[51,52], and an inflation model driven by supersymmetric
higher derivative terms of inflatons [53]. Two of the
present authors have studied BPS states in supersym-
metric higher derivative theories [54] and higher deriva-
tive corrections to manifestly supersymmetric nonlinear
realization of the NG multiplet [55]. In particular, all four
possible derivative terms free from the auxiliary field
problem and ghosts have been classified in Ref. [56], and
they have been generalized to an arbitrary number of
derivatives in Refs. [54,55], which we use in this paper.
The organization of this paper is as follows. In Sec. II,

we introduce the supersymmetric chiral model with
higher derivative terms that is free from the auxiliary
field problem in the bosonic sector. In Sec. III, we focus
on a specific model where spatially modulated ground
states are allowed. Supersymmetry is spontaneously
broken in the modulated vacua. We show that the
modulated vacuum is classified according to the vacuum
energy. In Sec. IV, we discuss the NG modes in the
modulated vacua. We demonstrate that the quadratic
kinetic terms of bosonic NG modes associated with
the spontaneous breaking of bosonic symmetries in the
modulated vacua vanish in general. On the other hand, a
Higgs mode, perpendicular to the NG mode, appears as a
massless boson. For the spontaneous breaking of SUSY,
the corresponding NG mode, i.e., the Goldstino, becomes
a ghost when the vacuum energy is negative while it
becomes a zero norm state when the vacuum has zero
energy. In Sec. V, we introduce a superpotential in our
model. Section VI is devoted to the conclusion and
discussions. The component expansions of the higher
derivative parts of the chiral superfield are found in the
Appendix.

II. SUPERSYMMETRIC HIGHER
DERIVATIVE MODEL

In this section we introduce the supersymmetric higher
derivative model that is free from the auxiliary field
problem in the bosonic sector. The Lagrangian of the
model is given by

1There is a way to remove a ghost by gauging [42], but we do
not consider such a possibility.
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L ¼
Z

d4θKðΦi;Φ†j̄Þ

þ 1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

þ
�Z

d2θWðΦiÞ þ H:c:

�
: ð1Þ

Here Φi ¼ φiðyÞ þ ffiffiffi
2

p
θαψ i

αðyÞ þ θ2FiðyÞði ¼ 1;…; NÞ
are the four-dimensional N ¼ 1 chiral superfields in the
chiral base ym ¼ xm þ iθσmθ̄ðm ¼ 0; 1; 2; 3Þ whose com-
ponent fields are complex scalars φi, Weyl fermions ψ i, and
auxiliary fields Fi. K is a Kähler potential, W is a
superpotential, and Λikj̄ l̄ is a (2,2) Kähler tensor whose
(anti)holomorphic indices are symmetrized. We basically
follow the conventions and notations of Wess and Bagger
[57]. The flat metric is given by ηmn ¼ diagð−1; 1; 1; 1Þ.
The first and the third terms in (1) are the ordinary kinetic
and potential terms of supersymmetric chiral models while
the second term provides higher derivative terms. A
specific property of the second term is that the purely
bosonic components included in there saturate the
Grassmann coordinates,

1

16
DαΦiDαΦkD̄ _αΦ̄†j̄D̄ _αΦ†l̄

¼ θ2θ̄2½ð∂mφ
i∂mφkÞð∂nφ̄

j̄∂nφ̄l̄Þ
− 2∂mφ

iFk∂mφ̄j̄F̄l̄ þ FiF̄j̄FkF̄l̄� þ If : ð2Þ
Here If represents terms that include fermions. Therefore
only the lowest components in the Kähler tensor
Λikj̄ l̄ðΦ;Φ†Þ contribute to the purely bosonic parts of
the Lagrangian. Then the component Lagrangian is
given by

L ¼ ∂2K

∂φi∂φ̄j̄
ð−∂mφ

i∂mφ̄j̄ þ FiF̄j̄Þ þ ∂W
∂φi F

i þ ∂W̄
∂φ̄j̄

F̄j̄

þ Λikj̄ l̄ðφ; φ̄Þfð∂mφ
i∂mφkÞð∂nφ̄

j̄∂nφ̄l̄Þ
− 2∂mφ

i∂mφ̄j̄FkF̄l̄ þ FiF̄j̄FkF̄l̄g
þ Lfermions; ð3Þ

where Lfermions are terms that include fermionic fields. Note
that Λikj̄ l̄ðΦ;Φ†Þ generically contains space-time deriva-
tives of the chiral superfields and there is an arbitrary order
of derivative terms in the Lagrangian (3). The equation of
motion for F̄ is

∂2K

∂φi∂φ̄j̄
Fi−2Λikj̄ l̄∂mφ

iFk∂mφ̄l̄þ2Λikj̄ l̄F
iFkF̄l̄þ ∂W̄

∂φ̄j̄
¼ 0:

ð4Þ

As we have advertised, this equation does not contain any
space-time derivatives on F. Then, in principle, Eq. (4) is

algebraically solvable. However, it is not so straightforward
to solve the equation for generalN since it is a simultaneous
equation of cubic order. Only a few solutions have been
known. For example, for N ¼ 1 single chiral superfield
models, one can solve the cubic order equation (4) by
Cardano’s method [53]. Consequently, there are multiple
distinct on-shell branches associated with the independent
solutions to the auxiliary fields. To see this explicitly, let us
begin with a single superfield model without superpoten-
tial. The equation for F̄ becomes

Kφφ̄F − 2Λ∂mφ∂mφ̄F þ 2ΛF2F̄ ¼ 0; ð5Þ

where Kφφ̄ is the Kähler metric. There are two kinds of
solutions to this equation. One is the trivial solution F ¼ 0,
and the bosonic part of the on-shell Lagrangian for this
solution is

L ¼ −Kφφ̄∂mφ∂mφ̄þ Λð∂mφ∂mφÞð∂nφ̄∂nφ̄Þ: ð6Þ

We call the theory for the solution F ¼ 0 canonical branch.
The Lagrangian (6) represents the ordinary quadratic
kinetic term of the complex scalar field φ with the higher
derivative interactions governed by the tensor Λðφ; φ̄Þ. It is
evident that the higher derivative corrections are introduced
as a perturbation to the quadratic kinetic term.
On the other hand, there is another nontrivial solution to

the auxiliary field equation (5),

FF̄ ¼ −
Kφφ̄

2Λ
þ ∂mφ∂mφ̄: ð7Þ

The bosonic part of the on-shell Lagrangian for solution
(8) is

L ¼ ðj∂mφ∂mφj2 − ð∂mφ∂mφ̄Þ2ÞΛ −
ðKφφ̄Þ2
4Λ

: ð8Þ

In this branch, the quadratic canonical kinetic term
disappears and the last term is interpreted as a potential
term. We call this a noncanonical branch. Compare to
the canonical branch, the higher derivative terms are not
introduced perturbatively. We cannot take the limit Λ → 0
in this branch.
Even though the higher derivative interactions appear in

a different way in Lagrangians (6) and (8), SUSY is
manifestly realized in each branch. A specific feature,
for example, BPS states in the single chiral superfield
models, is discussed in Refs. [51,54]. The higher derivative
corrections to the NG supermultiplets in supersymmetric
vacua were discussed in Ref. [55]. For multiple or matrix-
valued fields models, it is not so straightforward to solve
the equation for the auxiliary fields, but only one example
can be found in Ref. [52] in which the authors solved the
equation corresponding to Eq. (4) for the SUð2Þ-valued
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auxiliary field and found a supersymmetric extension of the
Skyrme model.
In the next section we focus on a single chiral superfield

model and discuss SUSY breaking in spatially modu-
lated vacua.

III. SPATIALLY MODULATED VACUUM IN
SUPERSYMMETRIC HIGHER

DERIVATIVE MODEL

In this section, we investigate spatially modulated vacua
in the supersymmetric field theories with higher derivative
terms. For simplicity, we consider single superfield models
without superpotential where the Kähler metric is a con-
stant Kφφ̄ ¼ k > 0 and we focus on the canonical branch.
For a generic Λ, the energy density is given by

E ¼ kðj _φj2 þ j∂iφj2Þ þ Λf3j _φj4 − _φ2ð∂iφ̄Þ2
− _̄φ2ð∂iφÞ2 − ð∂iφÞ2ð∂jφ̄Þ2g

−
∂Λ
∂ _φ j _φj2fð− _φ2 þ ð∂iφÞ2Þð− _̄φ2 þ ð∂iφ̄Þ2Þg

−
∂Λ
∂ _̄φ j _φj2fð− _φ2 þ ð∂iφÞ2Þð− _̄φ2 þ ð∂iφ̄Þ2Þg; ð9Þ

where i, j ¼ 1, 2, 3 and _φ ¼ ∂φ
∂x0, _̄φ ¼ ∂φ̄

∂x0. Note that, in
general, the Hermitian Kähler tensor Λ is a function of φ,
∂mφ and their Hermitian conjugate. Vacua are defined such
that the configurations minimize the energy density E. We
are interested in models where static, spatially modulated
configurations are realized as vacua. Namely, we look for a
Kähler tensor Λ for which a spatial derivative of the field φ
develops constant nonzero VEVs. The simplest example is
the one-dimensional spatial modulation. To determine Λ,
which realizes a modulated vacuum, we assume the
configuration _φ ¼ ∂2φ ¼ ∂3φ ¼ 0 and nonzero ∂1φ.
Then the energy density becomes

E ¼ kj∂1φj2 − Λj∂1φj4: ð10Þ

Configurations ∂1φ ¼ const ≠ 0 that minimize (10) are
spatially modulated vacua along the x1 direction. Since ∂1φ
appears as the absolute value in (10), we further assume that
Λ is a function of j∂1φj only. This results in the situation
where the shift symmetry φ → φþ c is preserved. Here c is
a constant. Then the energy density (10), which is a
function of X ≡ j∂1φj ≥ 0, is interpreted as a potential
for X,

E ¼ kX2 − ΛðXÞX4; k > 0; X ≥ 0: ð11Þ

One easily finds that for the simplest choiceΛ ¼ λ ¼ const,
there are no minima other than X ¼ 0. The next simplest
choice of Λ is

Λ ¼ λ − αj∂1φj2; ð12Þ

where α is a real constant. This corresponds to the choice

Λ ¼ λ − α∂mΦ∂mΦ†: ð13Þ

Then the energy density for a one-dimensional modulation
∂1φ ≠ 0 becomes

E ¼ αX6 − λX4 þ kX2: ð14Þ

As we will see below, for λ > 0, α > 0 there are local
(global) minima at X ≠ 0. Note that for this choice ofΛ, the
bosonic part of Lagrangian (6) becomes the one that we
studied in Ref. [39] which allows for a spatially modulated
vacuum. In the following, we make a brief summary of the
modulated vacuum found in Ref. [39]. We also note that
although the theory manifestly realizes SUSY, the energy
functional (9) is not positive (semi)definite. Therefore,
vacua of the theory need not have zero energy in general
even in supersymmetric theories. Indeed, the spatially
modulated vacuum allows the negative energy as we will
see below.
Since the energy density is a function of j∂1φj2, it

is convenient to define x≡ j∂1φj2 and treat E as a function
of x,

EðxÞ≡ αx3 − λx2 þ kx; x ≥ 0: ð15Þ

All minima of the function EðxÞ that satisfy the equation of
motion are vacua of the model. At first, one finds the
minimum x ¼ 0 in which the scalar field has a constant or
vanishing VEV. In addition to this trivial vacuum, the
function EðxÞðx ≥ 0Þ can have another minimum at x ≠ 0
in which the space-time derivative of φ has nonzero VEVs.
This is indeed the case when the parameters k, λ, α satisfy
the condition λ2 − 3αk > 0. The potential EðxÞ has a
minimum at

xþ ¼ λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 3αk

p

3α
; ð16Þ

which is obviously nonzero. At the vacuum j∂1φj2 ¼ xþ,
we found the following spatially modulated configuration:

φðx1Þ ¼ φ0eipx
1

; φ0; p ∈ R; ð17Þ

where the constants p;φ0 satisfy p2φ2
0 ¼ xþ. The period of

the modulation is given by 2π=p. In the previous paper
[39], we have found that the configuration (17) satisfies the
equation of motion, and it is a completely consistent
vacuum of the theory. The modulated vacuum (17) sponta-
neously breaks the translational symmetry along the x1

direction and the rotational symmetries in the ðx1; x2Þ,
ðx1; x3Þ planes, as well as the Uð1Þ symmetry φ → eiθφ.
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We have shown that there remain symmetries of the
(2þ 1)-dimensional Poincaré group ISOð2; 1Þ and simul-
taneous operations of the translation P1 along the x1

direction and the Uð1Þ transformation ½P1 ×Uð1Þ�sim.
We have also pointed out that only the breaking pattern
P1 ×Uð1Þ → ½P1 × Uð1Þ�sim gives rise to an NG boson.
To clarify the SUSY breaking in the modulated vacuum

(17), we recall the SUSY variation of the fermion ψ . In the
canonical branch, this is given by

δψα ¼ i
ffiffiffi
2

p
ðσmÞα _αξ̄ _α∂mφþ

ffiffiffi
2

p
ξαFðφ; φ̄Þ ¼ i

ffiffiffi
2

p
σ1ξ̄∂1φ:

ð18Þ

Here, ξ, ξ̄ are parameters of the SUSY transformation. It is
clear that SUSY is preserved in the vacuum x¼ j∂1φj2¼ 0.
On the other hand, in the modulated vacuum (17), one finds
that the variation (18) does not vanish and SUSY is
spontaneously broken there. A particular emphasis is
placed on the fact that nonzero values of the auxiliary
field F are not an order parameter of the SUSY breaking
anymore. This is a reflection of the fact that the energy
density (9) of this model is not positive (semi)definite. To
illustrate this issue, we examine the sign of the vacuum
energy E. The vacuum energy at x ¼ xþ is calculated as

EðxþÞ ¼ −
1

27α2
ðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 3αk

p
Þ

× f−6αkþ λðλþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 3αk

p
Þg: ð19Þ

It is evident that the quantity (19) is not always positive
semidefinite. We have found that the sign of the vacuum
energy is classified according to the discriminant condition
of the function αx2 − λxþ k. Depending on the parameters
k, λ, α, we have three distinct types of vacua. In the
following, we assume that all the parameters satisfy the
condition λ2 − 3αk > 0, which guarantees that the potential
has a local minimum given in Eq. (16).

(i) Positive energy vacuum: When the parameters
satisfy the discriminant condition λ2 − 4αk < 0,
then the function EðxÞ ¼ αx3 − λx2 þ kx is positive
definite. If this is the case, the potential function
EðxÞ looks like Fig. 1(a). We find that the local
vacuum energy at x ¼ xþ is positive EðxþÞ > 0 and
the SUSY breaking vacuum at x ¼ xþ is metastable.
It seems that the metastable vacuum decays to the
global supersymmetric vacuum at x ¼ 0 within a
finite time. However, we can make the lifetime of the
metastable vacuum longer by choosing parameters
of the potential appropriately. If the lifetime is longer
than that of the Universe, this kind of metastable
vacuum becomes a possible candidate of a phenom-
enologically viable grand state. Indeed, the dynami-
cal SUSY breaking in a metastable vacua was
discussed in the framework of supersymmetric
effective theories [5].

(ii) Zero energy vacuum: When the parameters k, λ, α
satisfy the condition λ2 − 4αk ¼ 0, then a schematic
picture of the function EðxÞ is given by Fig. 1(b). In
addition to the SUSY vacuum x ¼ 0, we have a local
vacuum x ¼ xþ in which EðxþÞ ¼ 0. They are
actually degenerated global vacua. Interestingly,
although EðxþÞ ¼ 0, this does not imply that the
vacuum preserves SUSY. In fact, we have seen that
SUSY is broken by the condition in Eq. (18). This
results in the fact that the Goldstino in this vacuum
becomes nondynamical and does not propagate in
the directions transverse to the modulation as wewill
see later.

(iii) Negative energy vacuum: Finally, we consider the
condition λ2 − 4αk > 0. When this is the case, the
function EðxÞ looks like Fig. 1(c). Now the super-
symmetric vacuum x ¼ 0 becomes metastable and
the SUSY breaking vacuum at x ¼ xþ is energeti-
cally favored. Therefore the global vacuum is
located at x ¼ xþ in which EðxþÞ < 0. In this
vacuum, SUSY is again broken by the condition

FIG. 1. Profiles of the energy function EðxÞ. The vertical and the horizontal axes stand for the energy EðxÞ and x. The local vacua for
(a) positive, (b) zero, and (c) negative vacuum energies with examples of the parameters are shown.
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(18). We will discuss the Goldstone mode associated
with the SUSY breaking in the negative vacuum
state in the next section.

IV. NAMBU-GOLDSTONE MODES IN
SUPERSYMMETRY BREAKING

MODULATED VACUUM

In this section, we study NG modes in the SUSY-
breaking spatially modulated vacuum (17). There are
two kinds of NG modes. One is the bosonic mode that
appears due to the spontaneously broken symmetry P1 ×
Uð1Þ → ½P1 × Uð1Þ�sim in the modulated vacuum. We note
that the translation P1 and the rotations in the ðx1; x2Þ and
ðx1; x3Þ planes are not independent of each other [58]. This
is a particular example of the inverse Higgs effect [7].
Therefore, there is only one bosonic NG mode. The other is
the fermionic NG mode (Goldstino) associated with the
SUSY breaking. In the following, we discuss bosonic and
fermionic NG modes separately.

A. Bosonic sector

We first summarize the bosonic NG mode in the
modulated vacuum in the model characterized by (13),
which is identical to the one studied in Ref. [39]. We shift
the field from the modulated vacuum (17) and introduce the
fluctuation ~φ as a dynamical field,

φ → hφi þ ~φ; ð20Þ
where hφi ¼ φ0eipx

1

is the modulating VEV. The quadratic
terms of the dynamical scalar field ~φ are extracted from
Lagrangian (6). The result is

Lquad ~φ ¼ −
1

2
φ⃗†Mφ⃗: ð21Þ

Here we have defined the following quantities:

φ⃗ ¼

0
BBB@

∂m̂ ~φ

∂m̂ ~φ†

∂1 ~φ

∂1 ~φ
†

1
CCCA; M ¼

�
M1 0

0 M2

�
: ð22Þ

We have separated the terms to the SOð2; 1Þ invariant
transverse sector ðm̂ ¼ 0; 2; 3Þ and the modulation sector.
In the 4 × 4 Hermitian matrix M, each block element is
given by

M1 ¼
�

kþ αx2þ 2ðλ − αxþÞxþe−2ipx1

2ðλ − αxþÞxþe2ipx1 kþ αx2þ

�
;

M2 ¼
�

9αx2þ − 4λxþ þ k 2ðλ − 3αxþÞxþe−2ipx1

2ðλ − 3αxþÞxþe2ipx1 9αx2þ − 4λxþ þ k

�
:

ð23Þ

The eigenvalues ofM1 andM2 determine the coefficients of
the quadratic kinetic terms in the SOð2; 1Þ invariant trans-
verse and the modulation directions, respectively. In our
previous paper [39], we have found that M1 and M2 have
zero and positive eigenvalues, respectively. The quadratic
kinetic term for the zero eigenvalue modes vanish. We
pointed out that the mode associated with the zero
eigenvalue of M2 in the modulation direction corresponds
to the NG mode that appears due to the spontaneous
breaking of P1 ×Uð1Þ. We have also shown that cubic
derivative terms for the bosonic NG mode are absent and a
quartic derivative term of the NG mode appears in the
Lagrangian. On the other hand, the positive eigenvalue
mode in the M2 sector is the Higgs mode, which has a
quadratic kinetic term. This is apparently a gapless mode.
This is a generalization of the ordinary NG theorem where
the NG and the Higgs modes appear as zero and positive
eigenvalue modes for the quadratic curvature of the
potential energy. The difference from the ordinary NG
theorem is that we have VEVs for the derivative of fields
but not fields themselves. The zero eigenvalue ofM1 in the
SOð2; 1Þ invariant sector corresponds to a flat direction of
the potential.

B. Fermionic sector

We next investigate fermions in the modulated vacuum.
The situation is quite different from the bosonic sector. To
see this, let us consider the N ¼ 1 SUSY algebra,

fQα; Q̄ _αg ¼ 2ðσmÞα _αPm; ð24Þ

where Qα, Q̄ _α are supercharges and Pm is the generator of
translation. Then, the energy for a state jΨi is given by

EΨ ¼ hΨjP0jΨi ¼ 1

4

X
α; _α¼1;2

ð∥QαjΨi∥2 þ ∥Q̄ _αjΨi∥2Þ:

ð25Þ

From the expression (25), one finds that when the energy
for a state jΨi is negative EΨ < 0, then there are negative
norm states (ghosts) in the system. In particular, for a
vacuum j0i, since SUSY is spontaneously broken there, the
states Qαj0i; Q̄ _αj0i ≠ 0 are identified with the Goldstino in
the zero-momentum associated with the SUSY breaking.
We therefore expect that there are ghost Goldstino in the
negative energy modulated vacuum.
To see this explicitly, we evaluate the coefficient of the

kinetic term of ψ in the chiral multiplet which is a unique
candidate of the Goldstino. As one finds in Eq. (A2) in the
Appendix, the fermion field in the Lagrangian appears with
the auxiliary field accompanied by the space-time deriva-
tive. Eventually, the equation of motion for the auxiliary
field becomes nonalgebraic when the fermion field is
included. To write down the quadratic kinetic term of
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the fermion in the canonical branch, we solve the auxiliary
field equation in the perturbation of ψ . Since the fermion
emerges as a bilinear in the solution of F, we have F ¼
0þOðψ2Þ in the canonical branch. Using this fact, the
quadratic terms of the fermion ψ in the Lagrangian are
found to be

Lquadψ ¼ if−kþ ðλ − αxþÞxþgψ̄ σ̄m̂∂m̂ψ

þ i
2
f−kþ 3ðλ − αxþÞxþ þ 2αx2þe2ipx

1gψ̄ σ̄1∂1ψ

þ i
2
f−kþ 3ðλ − αxþÞxþ þ 2αx2þe−2ipx

1gψσ1∂1ψ̄

þ pxþfαxþ − ðλ − αxþÞpxþφ0gψσ1ψ̄ : ð26Þ

Here we have again separated the terms to the SOð2; 1Þ
invariant transverse and the modulation sectors. The
coefficient of the SOð2; 1Þ Lorentz invariant fermion
kinetic term can be calculated as

C≡ −kþ xþðλ − αxþÞ ¼ −kþ 1

3α
ðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 3αk

p
Þ

×

�
λ −

1

3
ðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 3αk

p
Þ
�
: ð27Þ

Whether the fermion becomes a ghost or not can be read off
from the sign of the coefficient C. When C > 0 (C < 0),
this is the wrong (correct) sign of the fermionic kinetic
term, and then ψ is (not) a fermionic ghost. The sign of C is
determined by the parameters k, λ, α, which are related to
the sign of the vacuum energy we have classified before.
The parameter regions of the positive and negative vacuum
energies are found in Fig. 2(a). The regions where the
coefficient of the fermion kinetic term C has the correct
C < 0 and the wrong C > 0 signs are shown in Fig. 2(b).

One finds that the regions of the positive energy and the
correct sign C < 0 and those of the negative energy and the
wrong sign C > 0 completely coincide. With this result at
hand, we find that the Goldstino propagates in the trans-
verse direction in the correct way; i.e., it never becomes a
ghost in the metastable modulated vacuum. On the other
hand, the Goldstino becomes a ghost in the negative energy
vacuum. This is consistent with the SUSY algebra in
Eq. (25). The norm of the Goldstino is positive (negative)
for positive (negative) vacuum energies.
Since the sign of C changes continuously, one notices

that at the boundary of two regions, the kinetic term
vanishes. Indeed, the parameter curves for the zero vacuum
energy and C ¼ 0 coincide as in Fig. 2(c). We therefore
expect that the Goldstino becomes nondynamical in the
zero energy vacuum. This is a conceivable result from the
observation of the SUSY algebra in Eq. (25). The fact that
SUSY is broken in the zero vacuum energy results in the
relation

0 ¼
X

α; _α¼1;2

ð∥Qαj0i∥2 þ ∥Q̄ _αj0i∥2Þ; ð28Þ

for the state Qαj0i ≠ 0. Namely, the Goldstino becomes a
zero norm state, and it disappears from the physical sector.
This is quite different from the ordinary SUSY breaking.
Things get more involved when we look at the kinetic

term in the modulation direction. To clarify the sign of the
coefficient of the kinetic term in the modulation direction,
we perform the partial integration in the third term in
Eq. (26). We then find

Lquadψ ¼ iCψ̄ σ̄m̂∂m̂ψ þ iCmodψ̄ σ̄
1∂1ψ

þ px2þfα − ðλ − αxþÞpφ0 − 2pe−2ipx
1gψσ1ψ̄ :

ð29Þ

FIG. 2. (a) The parameter regions ðα; λÞ for the modulated vacuum with positive and negative energies. (b) The parameter region
where the coefficient C of the fermionic kinetic term has wrong sign C > 0. (c) The parameter region (curves) of ðα; λÞ for the zero
energy vacuum and the vanishing fermion kinetic term C ¼ 0. Here all the examples are shown with k ¼ 1 fixed.
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Here we have defined

Cmod ≡ C − 2αx2þð1 − cosð2px1ÞÞ: ð30Þ

Because of the modulated vacuum, the coefficient Cmod

oscillates in the x1 direction. However, since the inequality
Cmod ≤ C always holds, the coefficient Cmod takes negative
values in the parameter region for C < 0. We therefore
conclude that the Goldstino in the positive energy vacuum
propagates in the correct way even in the modulation
direction. Then the modulated vacuum with positive energy
we found is a completely consistent (meta)stable vacuum
even in the fermionic sector.
On the other hand, because the minimum value

of Cmod,

minCmod ¼ −kþ ðλ − αxþÞxþ − 4αx2þ
¼ −2αx2þ − λxþ < 0; ð31Þ

is negative even in the region for C ≥ 0, the modulation
direction can have the correct sign of the fermionic kinetic
term even in the negative or zero energy vacua. This also
indicates the fact that the Goldstino has a nonzero kinetic
term along the modulated direction even in the zero energy
vacuum. Presumably, this is because the modulated vacuum
(17) breaks the translational symmetry along x1. We can
perform the Lorentz boost of the zero-momentum
Goldstino Qαj0i, whether it is a ghost or not, to obtain
the one that has a nonzero momentum Pm̂. The resulting
Goldstino has nonzero kinetic term ψ̄ σ̄m̂∂m̂ψ in the
SOð2; 1Þ Lorentz invariant sector. Since the sign of the
norm does not change under the Lorentz transformation,
there is a one-to-one correspondence between the sign of C
and the norm of Qαj0i in the Lorentz invariant sector.
However, this discussion does not hold in the modulated
direction. We are not able to perform the translational
transformation along the x1 direction to obtain ψ that has a
nonzero kinetic term ψ̄ σ̄1∂1ψ . Therefore the sign of Cmod
does not help in judging the existence of ghosts in the
modulated direction. In summary, we cannot say anything
about ghosts in the modulated direction.

V. ANALYSIS WITH SUPERPOTENTIAL

In this section we introduce an example of the higher
derivative chiral model where a superpotentialW exists. We
demonstrate that superpotentials generically change the
“potential” of the derivative terms and a variety of
modulated vacua is possible. The equation of motion for
the auxiliary field in the single superfield model with
general Λ becomes

Kφφ̄F þ ð−2F∂mφ∂mφ̄þ 2F2F̄ÞΛþ ∂W̄
∂φ̄ ¼ 0; ð32Þ

where we have introduced only the bosonic fields. After
eliminating F̄ in the above equation, we have the equation
only for F,

2Λ
∂W
∂φ F3 þ ∂W̄

∂φ̄ ðKφφ̄ − 2Λ∂mφ∂mφ̄ÞF þ
�∂W̄
∂φ̄

�
2

¼ 0:

ð33Þ
The solutions are given by the Cardano’s formula,

FðaÞ ¼ ωa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q
2

�
2

þ
�
p
3

�
3

s
3

vuut

þ ω3−a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q
2

�
2

þ
�
p
3

�
3

s
3

vuut : ð34Þ

Here ω3 ¼ 1 and a ¼ 0, 1, 2. We have defined the
following quantities:

p ¼ 1

2Λ

�∂W
∂φ

�
−1
�∂W̄
∂φ̄

�
ðKφφ̄ − 2Λ∂mφ∂mφ̄Þ; ð35Þ

q ¼ 1

2Λ

�∂W
∂φ

�
−1
�∂W̄
∂φ̄

�
2

: ð36Þ

The purely bosonic terms of the on-shell Lagrangian is
calculated as

LðaÞ ¼ −Kφφ̄∂mφ∂mφ̄þ Λð∂mφ∂mφÞð∂nφ̄∂nφ̄Þ
þ FðaÞF̄ðaÞð−Kφφ̄ þ 2Λ∂mφ∂mφ̄Þ − 3ðFðaÞF̄ðaÞÞ2Λ:

ð37Þ
Here FðaÞ, F̄ðaÞ are one of the solutions for a ¼ 0, 1, 2 in
Eq. (34). Apparently there are three distinct branches
corresponding to a ¼ 0, 1, 2.
For simplicity, we choose the a ¼ 0 branch and employ

the ansatz for static, one-dimensional spatial configurations
along the x1 direction, φ ¼ φðx1Þ. Then the energy func-
tional becomes

E ¼ Kφφ̄j∂1φj2 − Λð∂1φÞ2ð∂1φ̄Þ2
− jFð0Þj2ðKφφ̄ − 2Λj∂1φj2Þ − 3jFð0Þj4Λ: ð38Þ

Again, we consider the model characterized by the tensor
(13) with the following simplest superpotential:

W ¼ βΦ: ð39Þ
Here β is a real constant. The energy functional becomes a
function of x ¼ j∂1φj2,

E ¼ kx − ðλ − αxÞx2 − jFðxÞj2ðk − 2ðλ − αxÞxÞ
− 3ðλ − αxÞjFðxÞj4: ð40Þ

The auxiliary field in the a ¼ 0 branch is
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FðxÞ ¼
"
−
β

4
ðλ − αxÞ−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

16
ðλ − αxÞ−2 þ 1

63
ðλ − αxÞ−3ðk − 2ðλ − αxÞxÞ3

s #1
3

þ
"
−
β

4
ðλ − αxÞ−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

16
ðλ − αxÞ−2 þ 1

63
ðλ − αxÞ−3ðk − 2ðλ − αxÞxÞ3

s #1
3

: ð41Þ

A schematic picture of EðxÞ is found in Fig. 3. One finds
that for the region in 0 < x < 1, the potential is not
bounded from below and the system becomes unstable
(see the middle figure in Fig. 3). The origin is a metastable
supersymmetric vacuum (although the vacuum energy in
the example in Fig. 3 is negative and we expect that a ghost
appears there). However, in the region x > 1, there is a
global vacuum around x ¼ j∂1φj2 ∼ 1.280 where SUSY is
spontaneously broken (see the right figure in Fig. 3). The
vacuum at x ∼ 1.280 is clearly stable against decay, and it
has positive energy (E ∼ 8.126). This is an acceptable,
stable supersymmetry breaking vacuum. Even though the
system becomes unstable in the small x region, this is an
example where superpotential drastically changes the
stability of modulated vacua.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have studied the spatially modulated
vacua in a supersymmetric theory with higher derivative
terms. We have focused on the model where the famous
Ostrogradsky instability is absent. Even though the scalar
fields in the chiral multiplet appear with higher derivatives,
the model exhibits no propagating auxiliary fields. The
higher derivative part of the theory is defined by the Kähler
tensor Λ. There are distinct on-shell branches correspond-
ing to the different solutions to the equation of motion for
the auxiliary field. We first consider the canonical branch in
the model where the Kähler tensor Λ is given in Eq. (13)
and no superpotential. The energy functional of this model
is determined by the derivative terms of the scalar fields.
We have found that the potential for the derivative terms

allows a local vacuum where SUSY is spontaneously
broken. In the SUSY breaking vacuum, we have shown
that the translational symmetry along one direction and the
rotational symmetries in the ðx1; x2Þ; ðx1; x3Þ planes are
broken. However, the simultaneous transformation of P1

and Uð1Þ is preserved in the modulated vacuum. This
modulated vacuum is completely consistent with the
equation of motion. The vacuum energy depends on the
parameters of the Kähler metric and tensor. There are vacua
where the vacuum energy is positive, zero, and negative.
We have demonstrated that the quadratic canonical

kinetic term for the bosonic NG mode associated with
the breaking of P1 ×Uð1Þ vanishes while the Higgs boson
that is orthogonal to the NGmode remains nonzero with the
correct sign. This is a generalization of the NG theorem in
higher derivative theories. On the other hand, the nature
of the NG fermion (Goldstino) in the modulated vacua is
quite different from the bosonic modes. We have found
the SUSY breaking vacua where the vacuum energies
take positive, negative, and zero values. For the positive
vacuum energy, the modulated vacuum is metastable
against decaying to the global supersymmetric vacuum.
However, sufficiently large possibilities of allowed param-
eters k, α,Λ for the metastable vacuum indicate that one can
make the decay rate be so small compared with the lifetime
of the Universe [5]. The Goldstino in this vacuum is well
behaved; namely, it has the correct sign of the kinetic term
both in the SOð2; 1Þ Lorentz invariant and in the modulated
sectors. We have also shown that when SUSY is sponta-
neously broken in the vacuum where the vacuum energy is
zero, then the kinetic term of the Goldstino vanishes and it
becomes nondynamical. This is consistent with the SUSY

FIG. 3. Energy plot for Λ ¼ λ − αj∂mφj2, W ¼ βΦ with k ¼ 1, λ ¼ 1, α ¼ 1, β ¼ 1. Left: The global structure of the energy
functional E. Middle: Enlarged view of E around the origin 0 ≤ x ≤ 0.9. Right: Enlarged view E in the region x ≥ 1. The vertical and the
horizontal axes represent the energy EðxÞ and x ¼ j∂1φj2.
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algebra in which the norm of the zero-momentum
Goldstino states becomes zero. This is quite different from
the ordinary supersymmetric theories where the zero
energy vacuum corresponds to the supersymmetric vac-
uum. For the negative vacuum energy, the modulated
vacuum is the global minimum and it is the true vacuum.
The SUSY algebra together with the negative vacuum
energy implies that the Goldstino has a negative norm;
i.e., it becomes a fermionic ghost. We have explicitly
shown that there appears the wrong sign for the kinetic term
of ψ in the negative energy vacuum. Although goldstinos
accompanied by the negative vacuum energy are problem-
atic in a physical theory [59], there are several ways to
remove undesirable ghost states from the physical sector
[42,60,61]. We therefore conclude that the spatially modu-
lated state with positive vacuum energy is the physically
acceptable supersymmetry breaking vacuum in our model.
We have also studied a model with a superpotential.

Although the on-shell Lagrangian is complicated due to the
solution to the equation of motion for the auxiliary field, we
have been able to explicitly draw the potential energy for
the derivative terms. As an example, a simple model where
the linear superpotential is introduced to the prototypical
model is analyzed. We have found that at large x ¼ j∂1φj2,
there is a modulated vacuum that is stable against decaying.
We expect there are no ghost Goldstino in this vacuum.
However, in the vicinity of the origin, the energy is not
bounded from below and the system suffers from the
serious instability and ghosts. In particular, in the super-
symmetric vacuum in the origin, we expect a ghost
Goldstino. Alternative choices of K, Λ, and W would help
us to find a modulated vacuum that is the global minimum
and has positive energy.
We have explicitly shown that the spontaneous SUSY

breaking on a spatially inhomogeneous vacuum actually
occurs in a simple SUSY model where no propagating
auxiliary fields and no Ostrogradsky’s ghost [41] exist. We
stress that the spontaneous SUSY breaking in the spatially
modulated vacua—that attract the greater attention recently
[36–38]—together with the ubiquity of the Lorentz viola-
tion [28], opens up robust possibilities of model buildings
for particle physics and cosmology [26,62].
Before closing the paper, we give several discussions.

In this paper we have discussed a new mechanism for
spontaneous supersymmetry breaking based on the modu-
lated vacua studied in [39]. There are several interesting
issues on the modulated vacua in supersymmetric

theories. In this paper we have studied spatially modu-
lated vacua along only one direction. However, it is
possible to find higher dimensional modulation [63]. It is
also interesting to find a temporal modulation [64]. It
is conceivable that modulated vacua including the one
presented in this paper are ubiquitous in supersymmetric
higher derivative theories. We expect that these kinds of
modulated vacua are utilized for phenomenological
model buildings. Embedding to supergravity [50,56] is
one of the future directions.
Most notably, it is always true that the ordinary quadratic

kinetic term of the bosonic NG modes disappears in the
modulated vacua and there are derivative interactions of
quartic type [39]. Although these quartic derivative inter-
actions do not show any problematic behavior in the
classical mechanics, they may cause some (yet unknown)
problems in the quantum regime. To our knowledge, there
are no systematic analysis on consistent quantum theories
for such a vanishing quadratic kinetic term model. It would
therefore be interesting to study a quantum mechanical
model where no quadratic kinetic term of dynamical
variables exists. We will come back to these issues in
future research.
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APPENDIX: COMPONENT EXPANSION OF THE
HIGHER DERIVATIVE TERMS

The component expansion including fermions of the
N ¼ 1 chiral superfield in the central basis is

Φ ¼ φþ iðθσmθ̄Þ∂mφþ 1

4
θ2θ̄2□φþ

ffiffiffi
2

p
θαψα −

iffiffiffi
2

p θ2∂mψ
αðσmÞα _αθ̄ _α þ θ2F;

Φ† ¼ φ̄ − iðθσmθ̄Þ∂mφ̄þ 1

4
θ2θ̄2□φ̄þ

ffiffiffi
2

p
θ̄ _αψ̄

_α þ iffiffiffi
2

p θ̄2θαðσmÞα _α∂mψ̄
_α þ θ̄2F̄: ðA1Þ

The component expansion of the higher derivative term is [56]
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1

16
ðDΦÞ2ðD̄Φ†Þ2 ¼ θ2θ̄2

�
ð∂mφÞ2ð∂nφ̄Þ2 − 2F̄F∂mφ∂mφ̄þ F̄2F2

−
i
2
ðψσmσ̄nσp∂pψ̄Þ∂mφ∂nφ̄þ i

2
ð∂pψσ

pσ̄mσnψ̄Þ∂mφ∂nφ̄

þ iψσm∂nψ̄∂mφ∂nφ̄ − i∂mσnψ̄∂mφ∂nφ̄þ i
2
ψσmψ̄ð∂mφ̄□φ − ∂mφ□φ̄Þ

þ 1

2
ðF□φ − ∂mF∂mφÞψ̄2 þ 1

2
ðF̄□φ̄ − ∂mF̄∂mφ̄Þψ2

þ 1

2
F∂mφðψ̄ σ̄mσn∂nψ̄ − ∂nψ̄ σ̄

mσnψ̄Þ þ 1

2
F̄∂mφ̄ð∂nσ

nσ̄mψ − ψσnσ̄m∂nψÞ

þ 3

2
iF̄Fð∂mψσ

mψ̄ − ψσm∂mψ̄Þ þ
i
2
ψσmψ̄ðF∂mF̄ − F̄∂mFÞ

�

þ
ffiffiffi
2

p
iθ̄2ð∂mφÞ2ðθσnψ̄Þ∂nφ̄ −

ffiffiffi
2

p
iθ2ð∂mφ̄Þ2ðψσnθ̄Þ∂nφ

þ
ffiffiffi
2

p
θ2F∂mφ̄ðiF̄ðψσmθ̄Þ þ ðθ̄σ̄mσnψ̄Þ∂mφÞ

þ
ffiffiffi
2

p
θ̄2F̄∂mφð−iFðθσmψ̄Þ þ ðψσmσ̄nθÞ∂nφ̄Þ

−
1

2
θ̄2ð∂mφÞ2ψ̄ ψ̄ −

1

2
θ2ð∂mφ̄Þ2ψψ þ 2ðψσmθ̄Þðθσnψ̄Þ∂mφ∂nφ̄

þ 2F̄FðθψÞðθ̄ ψ̄Þ þ iðθσmθ̄ÞðF∂mφψ̄ ψ̄ −F̄∂mφ̄ψψÞ þ
1

2
θ2F2ψ̄ ψ̄ þ 1

2
θ̄2F̄2ψψ

þ
ffiffiffi
2

p
F̄FðF̄ðθψÞ þ Fðθ̄ ψ̄ÞÞ þ iðψσmψ̄ÞðF∂mφ̄ − F̄∂mφÞ: ðA2Þ

The component expansion of the Λ function for the model Λ ¼ λ − α∂mΦ∂mΦ† is calculated using the following
expression:

∂mΦ∂mΦ† ¼ ∂mφ∂mφ̄þ
ffiffiffi
2

p
ðθ∂mψÞ∂mφ̄þ

ffiffiffi
2

p
ðθ̄∂mψ̄Þ∂mφþ θ2∂mφ̄∂mF þ θ̄2∂mφ∂mF̄

þ θαθ̄ _α½iðσpÞα _αð∂mφ̄∂p∂mφ − ∂p∂mφ̄∂mφÞ − 2∂mψ̄ _α∂mψα�

þ θ2θ̄ _α

�
iffiffiffi
2

p ðσpÞα _αð∂mφ̄∂p∂mψα − ∂p∂mφ̄∂mψαÞ −
ffiffiffi
2

p ∂mF∂mψ̄ _α

�

þ θ̄2θα
�
−

iffiffiffi
2

p ðσpÞα _αð∂mψ̄
_α∂p∂mφ − ∂p∂mψ̄

_α∂mφÞ þ
ffiffiffi
2

p ∂mF̄∂mψα

�

þ θ2θ̄2
�
∂mF∂mF̄ þ 1

4
∂mφ̄□∂mφþ 1

4
□∂mφ̄∂mφ −

1

2
∂m∂pφ̄∂m∂pφ

þ i
2
∂m∂pψ̄ σ̄

p∂mψ −
i
2
∂mψ̄ σ̄

p∂p∂mψ

�
: ðA3Þ
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