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We study the scattering of scalar waves propagating on the global monopole background. Since the
scalar wave operator in this topological defect is not essentially self-adjoint, its solutions are not uniquely
determined until a boundary condition at the origin is specified. As we show, this boundary condition
manifests itself in the differential cross section and can be inferred by measuring the amplitude of the
backscattered wave. We further demonstrate that whether or not the spacetime is stable under scalar
perturbations also depends on the chosen boundary condition. In particular, we identify a class of such
boundary conditions that significantly affects the differential cross section without introducing an
instability.
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I. INTRODUCTION

Topological defects are formed during phase transitions
in the early Universe. They originate from the breakdown
of gauge symmetries and are believed to seed the formation
of large-scale structure in the Universe [1,2]. Depending on
which symmetry is broken, they are classified as domain
walls, cosmic strings or global monopoles [2]. Global
monopoles, in particular, arise when the global Oð3Þ
symmetry of the Lagrangian,

L ¼ 1

2
∂μϕ

a∂μϕa −
1

4
λðϕaϕa − η2Þ2; ð1Þ

where ϕa (a ¼ 1, 2, 3) is a triplet of scalar fields, is
spontaneously broken to Uð1Þ [3].
The metric around a global monopole, once its core size

has been neglected, can be approximated by

ds2 ¼ −dt2 þ dr2 þ α2r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ

where the parameter α ¼ 1–8πGη2 depends on the sym-
metry breaking energy scale (typically 8πGη2 ≈ 10−5 in
grand unified theories). This metric describes a spacetime
with a deficit solid angle (the section θ ¼ π=2 coresponds
to a cone with deficit angle Δ ¼ 8π2Gη2). The spacetime is

not flat, being characterized by the curvature scalar R ¼
2ðα−2 − 1Þr−2 [4]. The energy density, determined by the
00th component of the stress-energy-momentum tensor
Tμν, is given by T00 ∼ Gη2=r2 so that the total energy
EðrÞ ∼ 4πGη2r is linearly divergent for large r. Despite the
fact that the Ricci scalar goes to zero when r → ∞, the
global monopole is not asymptotically flat since there are
nonzero components of the Riemann curvature tensor
Rρσμν for arbitrarily large r. In particular, the Rθϕθϕ ¼
ð1 − α2Þ sin2 θ component is nonzero if α ≠ 1. In this paper,
we will consider scattering on the global monopole
spacetime. We argue that our results are valid in the
α ⪅ 1 (i.e. Δ ≪ 1) regime, which is the realistic one
predicted by grand unified theories.
The propagation of a massless scalar field Ψ around the

global monopole background is governed by the Klein
Gordon equation, ð∇ν∇ν − μ2ÞΨ ¼ 0. Its solutions, how-
ever, are not uniquely determined by the initial data. In fact,
if the spatial part of the wave equation is seen as an operator
A acting on a certain L2 Hilbert space, an infinite number of
sensible dynamical prescriptions may be defined, each one
corresponding to a different choice of a self-adjoint
extension for A [5]. These various extensions are encoded
in the arbitrary specification of a boundary condition at
r ¼ 0.
According to Horowitz and Marolf [6], a classically

singular spacetime is said to be quantum mechanically
singular when the evolution of a wave packet on the
spacetime background depends on extra information not
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predicted by the theory. In this sense, the evolution of a
wave packet in the global monopole spacetime is as
uncertain as the evolution of a classical particle due to
the presence of the classical singularity at r ¼ 0. Even
though the chosen boundary condition cannot be directly
observed, we should expect that some physical observable
quantities will depend on it. The phase difference between
incident and scattered waves is an example of that [7], but
in this paper we will focus on the differential scattering
cross section. As we show, this cross section is not
determined until we specify a boundary condition.
Stated in another way, one could use observable informa-
tion obtained from a scattering experiment (i.e. the cross
section) to determine the boundary condition favored by
nature.
In Ref. [8], the scattering of scalar waves by a global

monopole was analyzed for a Dirichlet boundary condition
and an approximation for the total cross section was
obtained. More recently, in Ref. [9], Anacleto et al.
considered the scattering of scalar waves by a black hole
with a global monopole and showed that the differential
cross section for small angles contains explicitly the α
parameter of the global monopole. Here, on the other hand,
we consider not only a Dirichlet boundary condition (which
is usually assumed since it leads to regular solutions at the
origin), but all possible boundary conditions allowed by
self-adjointness. We investigate how much the differential
cross section of the global monopole for scalar waves
depends on the choice of the boundary condition.
To be physically relevant, a spacetime should be stable

(or, if unstable, should have an instability time scale small
enough compared to the time scales of the effects under
investigation). Because of that, we also study the stability
of the global monopole. Similar work was done in
Refs. [10,11]. In Ref. [10], for instance, it was demon-
strated that the global monopole is stable under a radial
rescaling r → κr. That is, if we impose a cutoff r ¼ Rc in a
cosmological setup, the energy EðRcÞ has a minimum at
κ ¼ 1. In Ref [11], it was shown that the global monopole
is stable under axisymmetric perturbations of the triplet ϕa.
In this paper, on the other hand, we follow a different
approach by considering perturbations of a scalar test field.
Encoding the arbitrary boundary condition as a free
parameter, we search for solutions of the scalar wave
equation which correspond to unstable modes, i.e. purely
outgoing modes at spatial infinity that grow exponentially
in time.
Our work is organized as follows: in Sec. II, we briefly

review the necessity of choosing a boundary condition to
solve the wave equation in the global monopole spacetime.
We follow Ref. [12], where the singular nature of the global
monopole spacetime was analyzed and the authors found
that a Robin boundary condition is necessary to make the
spatial part of the wave operator self-adjoint. Next, in
Sec. III, we use the method of partial waves to find the

differential cross section for scalar waves and investigate its
relation to the boundary condition. In Sec. IV, we analyze
the stability of the global monopole under scalar perturba-
tions of a test field and show that the spacetime is stable for
a class of boundary conditions. The last part, Sec. V, is
reserved for our final considerations.

II. BOUNDARY CONDITIONS FOR THE
KLEIN-GORDON EQUATION

Consider a massless scalar field Ψ propagating on the
global monopole background. (The massive case, discussed
in Ref. [12], only brings unnecessary complications). The
associated Klein-Gordon equation, in view of (2), can be
cast as

∂2Ψ
∂t2 ¼ 1

r2

�
r2
∂2Ψ
∂r2

�
þ 1

α2 sin θ
∂
∂θ

�
sin θ

∂Ψ
∂θ

�

þ 1

α2r2sin2θ
∂2Ψ
∂φ2

: ð3Þ

Due to the spherical symmetry, the above equation is
separable under the ansatz Ψðt; r; θ;φÞ ¼ RωlðrÞ
Ym
l ðθ;φÞe−iωt, where Ym

l ðθ;φÞ are the usual spherical
harmonics, l ∈ N is the orbital quantum number, m ∈ Z
(−l ≤ m ≤ l) is the azimuthal number, and ω ∈ C is the
complex wave frequency. A straightforward calculation
transforms Eq. (3) into an equation for the radial function
Rωl,

R00
ωlðrÞ þ

2

r
R0
ωlðrÞ þ

�
ω2 −

lðlþ 1Þ
α2r2

�
RωlðrÞ ¼ 0: ð4Þ

Note that scalar waves are only affected by the α
parameter of the global monopole through the inverse
square potential VlðrÞ ¼ lðlþ 1Þ=ðα2r2Þ. In other words,
only nonzero (l ≠ 0) angular momentum waves will
perceive the angular deficit. Spherical waves (l ¼ 0), on
the other hand, are unaffected by the parameter and will
propagate as in Minkowski spacetime. Therefore, the true
classical singularity at r ¼ 0 will be perceived only by
l ¼ 0 waves since, for l ≠ 0 waves, it becomes “invisible”
due to the strong repulsive potential.
Let us now understand how the remark above translates

into the necessity of a boundary condition for spherical
waves. The general solution of Eq. (4) is simply

RωlðrÞ ¼ Aωl
JνlðωrÞffiffiffiffiffiffi

ωr
p þ Bωl

NνlðωrÞffiffiffiffiffiffi
ωr

p ; ð5Þ

where Aωl, Bωl, and νl ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4lðlþ1Þ

α2

q
are constants,

and JνðωrÞ and NνðωrÞ are the νth-order Bessel and
Neumann functions, respectively. Note that if we restrict
the frequency to be real, i.e. ω ∈ R, the function
JνlðωrÞ=

ffiffiffiffiffiffi
ωr

p
is square-integrable near the origin for all

l ∈ N:
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Z
c

0

���� JνlðωrÞffiffiffiffiffiffi
ωr

p
����2r2dr < ∞; ð6Þ

where c is an arbitrary positive constant. On the other hand,
the function NνlðωrÞ=

ffiffiffiffiffiffi
ωr

p
, with ω ∈ R, is square-

integrable near the origin only for l ¼ 0. In view of that,
to avoid non-square-integrable solutions, the boundary
condition Bωl ¼ 0 naturally arises for l ≠ 0 waves.
For l ¼ 0, since both solutions are square-integrable, an
arbitrary boundary condition at r ¼ 0 must be chosen.
It is important to remark here that, even though the wave

equation is the same for the Minkowski spacetime and for
the global monopole (when l ¼ 0), there is a crucial
difference between the two cases. In the first one, the
origin is not a singularity of the spacetime. Consequently,
the coefficient Bω0 must also vanish since the Laplacian of
Nν0ðωrÞ=

ffiffiffiffiffiffi
ωr

p
is proportional to the Dirac delta function

δ3ðr; θ;ϕÞ, which fails to be square-integrable [13]. The
global monopole, however, has a singularity at the origin
r ¼ 0, which is not part of the manifold. As a result,
Nν0ðωrÞ=

ffiffiffiffiffiffi
ωr

p
is square-integrable and the mode l ¼ 0 is

allowed.
It is convenient to define a new radial function GωlðrÞ ¼

rRωlðrÞ so that, in terms of Gωl, Eq. (4) becomes

d2GωlðrÞ
dr2

þ ½ω2 − VlðrÞ�GωlðrÞ ¼ 0: ð7Þ

Another way to understand why a boundary condition is
needed when l ≠ 0 is that the inverse square potential
VlðrÞ falls off faster than 3=4r2, which is a well-known
requirement for having a function whichf is not square-
integrable [14]. When l ¼ 0, the repulsive potential is
absent, and the equation above reads

d2Gω0ðrÞ
dr2

þ ω2Gω0ðrÞ ¼ 0: ð8Þ

The most general boundary condition for GðrÞ is the
Robin mixed boundary conditions (see Refs. [7,13]),

Gω0ð0Þ þ βG0
ω0ð0Þ ¼ 0; ð9Þ

where β ∈ R ∪ f−∞;þ∞g is an arbitrary parameter.
When this boundary condition is taken into account, the
solution of (8), written in terms of the parameter β, becomes

Gβ
ω0ðrÞ ∼

�
sin ðωrÞ − βω cos ðωrÞ; for β ¼ �∞;

cos ðωrÞ; for β ≠ �∞:
ð10Þ

To the best of our knowledge, all previous work on
scattering by the global monopole spacetime assumed a
Dirichlet boundary condition (β ¼ 0), which does not allow
for the existence of bound states. For some other values of
the boundary condition parameter β, however, bound states
do exist. In fact, if we let the frequency ω be imaginary so
that ω2 ¼ −λ2 < 0, the general solution of Eq. (8) becomes

Gλ0ðrÞ ¼ Cλ0e−λr þDλ0eλr; ð11Þ

where Cλ0 and Dλ0 are constants (without loss of generality
we can assume λ > 0). Since we are looking for square-
integrable solutions, we must haveDλ0 ¼ 0. In such a case,
the boundary condition (9) transforms into

Cλ0ð1 − λβÞ ¼ 0: ð12Þ
In order to have nontrivial solutions, the parameters must
be related by λ ¼ 1=β, which only makes sense when β > 0
(otherwise λ would be negative). The associated solution is
then the bound state

RboundðrÞ ∼
e−r=β

r
: ð13Þ

When β ¼ 0 or β ¼ �∞, it is straightforward to show that
no bound states are allowed.

III. WAVE SCATTERING

In this section, we study the scattering of incident scalar
waves on the global monopole. Using the method of partial
waves, our main goal is to determine the differential cross
section of the global monopole as a function of the
boundary condition parameter β. We reemphasize that
our results must be applied to the realistic case considered
in grand unified theories 8πGη2 ≈ 10−5 (α ⪅ 1), where
Rθϕθϕ ≈ 10−5sin2θ. However, even for such small angular
defects, the equatorial plane corresponding to a cone with a
very small deficit angle. Scattering in conical spacetimes
was discussed in Refs. [15,16]. In [15] the authors showed
that even though the partial wave analysis in conical
spacetimes leads to divergences, it is possible to redefine
the incident wave in order to absorb the divergent terms. In
[16], the authors showed that the same procedure can be
done when an arbitrary boundary condition is chosen at the
origin. Since the global monopole is plagued with the same
problem (the spacetime is not asymptotically Minkowski),
we also expect divergences in the partial wave analysis of
our work. As we will see, these divergences can be handled
by smoothing the singularities of the scattering amplitude
[see Eq. (22) below]. Despite the fact that the spacetime is
topologically nontrivial, we are able to analyze, at least
qualitatively, the scattering of waves satisfying different
boundary conditions.
To accomplish that, we consider an incident wave

Ψin ¼ eikze−iωt, with wave number k ¼ ω, propagating
along the z axis. It is convenient to expand it into spherical
waves using the standard plane wave decomposition,

eikz ¼
X∞
l¼0

ð2lþ 1ÞiljlðωrÞPlðcos θÞ; ð14Þ

where jlðωrÞ is the lth-order spherical Bessel function and
Plðcos θÞ is the lth-order Legendre polynomial.
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This incident plane wave is scattered by the global
monopole, so that the total wave can be written as

Ψ ¼ Ψin þ Ψsc; ð15Þ

where Ψsc corresponds to the scattered part. Far away from
the singularity (as r → ∞), this scattered part is an outgoing
wave of the form

Ψsc ¼
fðθÞ
r

eikr: ð16Þ

Similarly, the large-r behavior of the incident part can be
easily determined from Eq. (14) with the help of the
asymptotic expression for the spherical bessel function.
To determine the scattering amplitude fðθÞ, we need the

asymptotic behavior of the solutions we found in the
previous section. From Eqs. (5) and (10), we find that
the general radial solution of the wave equation for an
arbitrary parameter β is given by

RωlðrÞ ∼
8<
:

J1=2ðωrÞffiffiffiffi
ωr

p þ βω
N1=2ðωrÞffiffiffiffi

ωr
p ; for l ¼ 0;

Jνl ðωrÞffiffiffiffi
ωr

p ; for l ≠ 0.
ð17Þ

Therefore, the full solution (15), when decomposed into the
mode solutions, becomes

Ψðt; r; θ;ϕÞ ¼ a00

�
J1=2ðωrÞffiffiffiffiffiffi

ωr
p þ βω

N1=2ðωrÞffiffiffiffiffiffi
ωr

p
�
e−iωt

þ
X∞
l¼1

Xl
m¼−l

alm
JνlðωrÞffiffiffiffiffiffi

ωr
p Plðcos θÞeimϕe−iωt;

ð18Þ

where alm are constants to be determined.
Due to the spherical symmetry, all m ≠ 0 modes are

irrelevant for the scattering, so that alm ¼ 0 for them. By
comparing the asymptotic behavior of solution (18) with
the asymptotic behavior of (15), we can determine the
coefficients al0 to be

al0 ¼
( ffiffi

π
2

p
i

i−βω ; for l ¼ 0;ffiffi
π
2

p ð2lþ 1Þileiδl ; for l ≠ 0;
ð19Þ

where the phase shifts are given by δl ¼ π
2
ðlþ 1

2
− νlÞ.

Similarly, the scattering amplitude fðθÞ can be written as

fðθÞ ¼
X∞
l¼0

bl
2iω

Plðcos θÞ; ð20Þ

where

bl ¼
(

2βω
i−βω ; for l ¼ 0;

ð2lþ 1Þðe2iδl − 1Þ; for l ≠ 0.
ð21Þ

Now, we would like to use the expression above for the
scattering amplitude to calculate the differential cross
section dσ=dΩ ¼ jfðθÞj2. However, as in Refs. [8,9], the
infinite sum in (20) is, depending on the angle θ, either
poorly convergent or divergent [9,17,18]. While nothing
can be done for divergent sums, slow convergence can be
dealt with the method described below [18].
The first step is to multiply the scattering amplitude by

ð1 − cos θÞn, where n ∈ N, and expand the obtained
function in terms of the Legendre polynomials,

ð1 − cos θÞnfðθÞ ¼ 1

2iω

X∞
l¼0

bðnÞl Plðcos θÞ; ð22Þ

where bðnÞl are constant coefficients. By resorting to
Bonnet’s recursion formula for the Legendre polynomials,
it is possible to show that the new coefficients are related to

the old ones through bðnÞl ¼ bl, if n ¼ 0, and through the
recursive relation

bðnÞl ¼ bðn−1Þl −
lþ 1

2lþ 3
bðn−1Þlþ1 −

l
2l − 1

bðn−1Þl−1 ; ð23Þ

if n ≥ 1. In the end, the scattering amplitude can be written
as a so-called reduced series,

fðθÞ ¼ 1

2iω

X∞
l¼0

bðnÞl
Plðcos θÞ
ð1 − cos θÞn ; ð24Þ

which converges faster than the series appearing in Eq. (20).
The last step consists in the numerical implementation

of the of the recursive relation (23), followed by the
calculation of the differential cross section. Using
MATHEMATICA, we were able to show that taking n ¼ 6
is enough to guarantee enough precision when computing
the partial sum of the first few terms of the reduced series
for π=4 ≤ θ ≤ π, ω ¼ β ¼ 1. This precision does not seem
to change much when different values of β and ω are used.
To understand the effect of the boundary conditions on the
scattering, we choose ω ¼ 1 and plot in Fig. 1 the differ-
ential cross section as a function of the scattering angle θ
for different boundary condition parameters β. Even though
we use an exaggerated α parameter (α ¼ 0.95) for better
visualization of the effects of the boundary condition, the
qualitative behavior is the same for the more realistic
value α ≈ 1 − 10−5.
The most evident effect of the boundary condition

appears to be on the backscattered part (π=2 ≤ θ ≤ π) of
the wave. The dirichlet boundary condition, which is
usually considered in the literature, produces no back-
scattering, while the Neumann boundary condition produ-
ces the most. We have tested different values of the
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frequency ω and different values of the parameter α, and
this behavior seems to be universal. As seen in Fig. 1, the
amount of backscattering is uniquely related to the chosen
boundary condition. By measuring the amplitude of the
backscattered wave, one is able in principle to determine
which boundary condition has been specified by nature.

IV. STABILITY

Everything we did so far would be less relevant if the
spacetime happens to be highly unstable. In view of that,
our final task is to analyze how the stability of the system
depends on the boundary condition. To do so, we recall that
global monopoles allow for the existence of bound states
only when β > 0. For β ≤ 0 and β ¼ �∞, only scattering
modes ω2 > 0 are allowed and, therefore, the system is
mode stable. If β > 0, on the other hand, the l ¼ 0 case
admits a bound state of the form (13), so that an arbitrary
solution of the Klein-Gordon equation has to include not
only the scattering states but also these bound states.
More precisely, the most general scalar wave can be

decomposed as

Ψβðt; r; θ;φÞ

¼ A
e−r=β

r
e−t=β þ B

e−r=β

r
et=β

þ
X∞
l¼0

Xl
m¼−l

Z
∞

−∞
dωe−iωtCωlmYm

l ðθ;φÞRβ
ωlðrÞ; ð25Þ

where A, B, and Cωlm are constants. The first term in the
expansion above decays exponentially in time, becoming
irrelevant after a sufficient long time (of order β). The
second term of (25), however, grows exponentially in time.
Nonetheless it still corresponds to a square-integrable
solution because, for a fixed time t, the integralZ

∞

0

���� e−ðr−tÞ=βr

����2r2dr ¼ β

2
e2t=β ð26Þ

is finite. Since this mode represents a growing perturbation,
after a sufficient long time (of order β), nonlinear effects
will become important. While these effects may be able to
control the exponential growth and restore the stability of
the system, a full nonlinear treatment of the Einstein-Klein-
Gordon equations would be required to investigate that.
For now, what we can say is that test scalar fields on the
global monopole are mode unstable for β > 0.

V. FINAL REMARKS

We have seen that the propagation of scalar waves
around a global monopole is not determined until a
boundary condition at the origin is prescribed. This
characterizes the global monopole as a quantum mechan-
ically singular spacetime. The propagation of waves is as
uncertain as the evolution of point particles reaching the
classical singularity at r ¼ 0. Assuming nature has a
preferred physical evolution scheme, this could be, as
we discuss, inferred phenomenologically, allowing us to
identify the boundary condition, for theory by itself is
unable to predict it.
It is important to mention that the necessity of a

boundary condition is due to the idealization of the global
monopole’s core. If we do not neglect its finite size, the
boundary condition can, in principle, be related to the way
the core is modelled (see, for instance, Ref. [19]). Thus,
perhaps a more physical and less mathematical way to
interpret the main results of our analysis is that the
differential cross section, instead of being related to
the boundary condition chosen by nature, is related to
the specific details of the monopole’s core.
In more detail, our analysis shows that the scattering

amplitude and the differential cross section encode the
arbitrariness of the boundary condition. In particular,
the amount of backscattering is intimately related to the
boundary condition parameter β. Consequently, in princi-
ple, by measuring the amplitude of a wave which is
scattered by the global monopole (specially the back-
scattered part), one could determine the boundary condition
in a given experiment (and, according to the reasoning
above, extract information about the monopole core).
Another important question we address in this paper

concerns the stability of the global monopole. As we have
shown, its stability under scalar perturbations depend on
the boundary condition parameter. For β > 0, the spacetime
is unstable while for β ≤ 0 and β ¼ �∞, the spacetime is
mode stable under perturbations of a test scalar field. Note,
however, that the final word on the stability of the global
monopole background requires a fully nonlinear treatment
of the problem. We also remark that the scalar test field
under consideration here is not the same as the scalar fields
ϕa that determine the global monopole background through
(1). The analysis developed in Ref. [11] involving pertur-
bations of such fields has shown no instabilities.
Finally, the ideas presented here can, in theory, be

extended to other naked singularity spacetimes, like the

FIG. 1. Plot of the reduced series of the differential cross
section for ω ¼ 1, α ¼ 0.95, and several values of β.
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cosmic string, the negative-mass Schwarzschild, the over-
charged Reissner-Nordström, and the overspinning Kerr
spacetimes. The major technical difficulty in these cases,
however, is to determine the self-adjoint extensions for the
spatial part of the wave operator.
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