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We construct walls of mass-deformed Kéhler nonlinear sigma models on SO(2N)/U(N), by using the
moduli matrix formalism and the simple roots of SO(2N). Penetrable walls are observed in the nonlinear

sigma models on SO(2N)/U(N) with N > 3.
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I. INTRODUCTION

The moduli matrix formalism, which was developed in
Refs. [1,2], is one of the powerful tools for studying
Bogomol'nyi-Prasad-Sommerfield (BPS) objects. The
moduli matrices contain all the moduli parameters of BPS
solutions. In Refs. [1,2], moduli matrices of walls are
constructed in a mass-deformed hyper-Kihler nonlinear
sigma model of which the target space is the cotangent
bundle over the complex Grassmann manifold TGy, ..
which is the strong coupling limit of supersymmetric U(N )
gauge theory with Ny > N Cl [3]. It is also shown that the
vacua and the walls are on the Kihler manifold.

In the moduli matrix formalism, walls are generated by
operators, which are positive root generators of the system.
Elementary wall operators are generators of simple roots
[4]. Thus, elementary walls and compressed walls can be
labeled by simple roots and by linear combinations of
simple roots, respectively. We can also figure out structures
of multiwalls from the linear combinations of simple roots.

Various BPS objects are constructed in the moduli matrix
formalism. Domain walls and domain wall webs are
discussed in Refs. [5-7]. Other BPS objects and composite
objects are discussed in Refs. [8—14].

Moduli matrices, which are constrained by a single
quadratic constraint SO(2N) or Sp(N), are constructed
for walls in Ref. [6] and for kink monopoles [14]. In
Ref. [6], walls of mass-deformed Kihler nonlinear sigma
models on SO(2N)/U(N) with N = 2, 3 are discussed. It
is known that there are isomorphisms,

SO(4)/U(2) = CP',

S0(6)/U(3)=CP3. (1.1)

Therefore, the nonlinear sigma models discussed in Ref. [6]
are Abelian theories. In Abelian theories, the ordering of
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walls is absolute. In non-Abelian theories, however, walls
can pass through each other. Penetrable walls are observed
in nonlinear sigma models on the Grassmann manifold [2].

The purpose of this paper is to construct walls of mass-
deformed Kihler nonlinear sigma models on SO(2N)/
U(N) with N > 3, which are non-Abelian theories. We use
the convention and part of the formalism used in Ref. [14].
In Sec. II, we review the moduli matrix method discussed in
Refs. [2,6,14]. In Sec. III, we review the results of Ref. [6]
with the O(2N) invariant tensor, which is used in Ref. [14].
We also identify elementary walls with the simple roots of
SO(2N). In Sec. IV, we study elementary walls of non-
linear sigma models on SO(2N)/U(N) with N = 4,5, 6,7,
which are labeled by the simple roots of SO(2N). In Sec. V,
we discuss the vacuum structure connected to the maxi-
mum number of elementary walls. In Sec. VI, we make
some observations about walls of the nonlinear sigma
model on SO(12)/U(6), which is the simplest nontrivial
case. In Sec. VII, we summarize our result.

II. MODULI MATRICES ON SO(2N)/U(N)

In this section, we review the formalism of Refs. [6,14].
The mass-deformed Kéhler nonlinear sigma model on
SO(2N)/U(N) in (2+ 1) dimensions [6] is obtained
by dimensional reduction [15] of the N =1 3+ 1)-
dimensional Kihler nonlinear sigma model on SO(2N)/
U(N) [16]. As we are interested in solitonic objects, we
consider only the bosonic part of the model. The
Lagrangian in (2 + 1) dimensions is

‘c = _‘Dﬂ¢ai|2 - |i¢aiji - izab¢bi|2
+ |Fai|2 + (Dab¢bi$ia - Daa)
+ ((Fo) ey J ", + ¢8beiJij¢£j

+ (¢0)ah¢bijijFTja + (H.c.)). (2.1)

where the greek letter 4 denotes three-dimensional space-

time indices and the covariant derivative is defined by
(D), = 0,," — iA,,"¢p". The indices i, j(=1,...,2N)
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are flavor indices, and the indices a, b(= 1, ..., N) are color

indices. The last term (h.c.) stands for the Hermitian

conjugate. The O(2N) invariant tensor J is defined by
J:Gl ®IN’ (22)

where [ stands for the N x N identity matrix. In this basis,
the SO(2N) Cartan generators are

h
H, = . (n=1,...,N),
( _hn> (n )

with N x N matrix &,,, which has a unit component only in
the (n, n) element. The mass matrix is a linear combination
of the Cartan generators. By defining vectors

(2.3)

m = (my,m, L my),
EZ(HI’H27 .,HN), (24)
the mass matrix is formulated as
M=m-H. (2.5)

In the basis of SO(2N) with the invariant tensor (2.2), the
mass matrix (2.5) is

M = o3 ® diag(my, m,, ..., my). (2.6)

The constraints of the Lagrangian (2.1) are
ba' " —8," =0, (2.7)
¢4 Jij¢", =0, (Hermitian conjugate) = 0.  (2.8)

Equation (2.7) is from the D-term constraint, which defines
the Grassmann manifold G,y y, and Egs. (2.8) are from the
F-term constraints, which correspond to the (anti)holomor-
phic embedding of the SO(2N) manifold. By eliminating
auxiliary fields, the potential term of the Lagrangian
becomes

V=lig/M;" = iZ, ' P + (o) Hy . (2.9)
Therefore, the vacuum conditions are
/M — Lo =0, (2.10)
(¢ho)®® = 0. (2.11)
2 can be diagonalized as
¥ =diag(X;, %, ..., Zy), (2.12)

by a U(N) gauge transformation. Then, the vacua are
labeled by
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(X1, 2%, ... Zy) = (£my, £my, ..., £my). (2.13)
Since the tensor (2.2) is invariant under O(2N) trans-
formation, only the half of the vacua in Eq. (2.13) belong to
a nonlinear sigma model, and the other half belong to the
other nonlinear sigma model, which is related by parity.
Therefore, the number of vacua of the model is 2V~!. This
number is the Euler characteristic of the manifold on which
the nonlinear sigma model lives [17-20].

The BPS equation for wall solutions is derived from the
Bogomol’'nyi completion of the Hamiltonian. It is assumed
that fields are static and all the fields depend only on the
x; = x coordinate. It is also assumed that there is Poincaré
invariance on the two-dimensional world volume of walls
to set Ag =A, =0. The energy density along the x
direction is

E=(I(DP)'[* + b’ M} =Z, "> + 4] (o) ')
= (D), F (/M =2, Py )|> +4|(do)* ' P) £ T
> +T. (2.14)

This is also constrained by Egs. (2.7) and (2.8). The tension
of the wall is

T = (MG (2.15)

We choose the upper sign for the BPS equation and the
lower sign for the anti-BPS equation. The BPS equation is

(D#)y' = (¢a'M;' =2, ¢y") = 0. (2.16)

By introducing complex matrix functions S,”(x) and
fa'(x), which are defined by

S —iAS = (57108), . g = (ST S (2.07)
Eq. (2.16) is solved by
ba' = (S71)"Hop' (") . (2.18)

The coefficient matrix H, is called the moduli matrix. X, A,
and ¢ are invariant under transformations

Sb=vest,  Hy =V, H{,  (2.19)
where V € GL(N,C). V defines an equivalent class of
(S, Hy). This is called the world volume symmetry [1,2].
The constraints (2.7) and (2.8) correspond to

HOai(ezMx)in(-gjb = (Ss')ab = 'Q'ab’ (220)

Ho,'J;jH",, =0, (Hermitian conjugate) =0,  (2.21)
respectively. The world volume symmetry of H, in

Eq. (2.19) defines the Grassmann manifold. The constraint
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(2.21) is a holomorphic embedding of SO(2N). Therefore,
moduli matrices H,’s parametrize SO(2N)/U(N).
There are quantities that we can consider:

1
trX = E@ln det Q,

T= %82 Indet Q. (2.22)
In Ref. [2], walls are algebraically constructed from
elementary walls. In the nonlinear sigma model on the
Grassmann manifold, the two nearest vacua have the same
color number and differ by one flavor number. The
elementary wall interpolating the two nearest vacua,
vacuum (A) and vacuum (B), which are in the flavor /
and 7+ 1 in the same color, is Hoyp = Hopuye",
where E;(r) = e"E;, (r € C). The elementary wall oper-
ator E; is defined by
(M, E] = c(m; —my)Ep = Ty E (2.23)
where c is a constant, M is the mass matrix, and E; is an
Ny X Ny square matrix generating an elementary wall.
T(;—ry1y is the tension of the wall. E; has a nonzero
component only in the (7,1 + 1)th element. However, in
the nonlinear sigma model on SO(2N)/U(N), the defi-
nitions of the nearest vacua and the elementary wall are not
valid due to the quadratic constraint (2.21). Moduli
matrices, which are constrained by a single quadratic
constraint SO(2N) or Sp(N), are studied in Refs. [6,14].
We review the methods for walls of nonlinear sigma models
on SO(2N)/U(N).

Since the mass matrix is a linear combination of the
Cartan generators as it is defined in Eq. (2.6), we can
generalize Eq. (2.23) as

cM.E;] =c(m-a,)E; = T,E;. (2.24)
E; are the elementary wall operators that are the positive
root generators of the simple roots a; of SO(2N). The
elementary wall Hos.p) = H0<A>eEf(’> where E;(r)=¢e"E;,
(r € C) can be labeled by the simple root «;. The wall has
tension 7;. We can restrict ourselves to the case in which
my > my > --- > my. Then, the vector m of Eq. (2.4) is a
vector in the interior of the positive Weyl chamber,

m-a; > 0. (2.25)
Elementary walls can be identified with simple roots [4].
The corresponding positive root generators are elementary
wall operators. The formula (2.24) is valid in nonlinear
sigma models on the Grassmann manifold as well.

We should only consider positive roots that correspond
to the BPS solutions. Any linear combinations of positive
roots and negative roots break supersymmetries. These
linear combinations are called non-BPS sectors.
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The simple roots of SO(2N) are
a; =(1,-1,0,...,0,0,0),
a =(0,1,-1,...,0,0,0),

aAN-_1 = (0707 O? [EEY) Oa 17 _1>7

ay = (0,0,0,...,0,1,1). (2.26)

These simple roots describe elementary walls of nonlinear
sigma models on SO(2N)/U(N). The corresponding
elementary wall operators are

i+1 i+N
i 1
E; = S . (i=1,...N-1),
i+N+1 -1
2N—12N
N-1 1
Ey= A I (2.27)

The elementary wall, which connects the two nearest vacua
(A) and (B), is defined by

Hyacpy = Hoa) efalr)

E,(r)=¢€¢"E,, (a=1,...,N), (2.28)

where E,, is the elementary wall operator and r is a complex
parameter ranging from —oo < Re(r) < oo. Elementary
walls can be compressed to a single compressed wall. A
compressed wall of level n, which connects (A) and (A), is
defined by

Hoyacpny = Hoa) elEar[Eay [Eay [ [Eay Ea,, , [11-11(7)

(ai = 1,,N)

’

(2.29)

There can exist multiwalls that connect two vacua (A)
and (B),

H0<A<—B> — H0<A>6Eal (rl)eEaz(rZ) e eE"n (rn)’ (230)

where parameters r;(i = 1,2, ...) are complex parameters
ranging from —oo < Re(r;) < oo. Elementary walls can

pass through each other if
E,.. Euj] =0. (2.31)

These walls are called penetrable walls.
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ITI. REVIEW ON SO(2N)/U(N) WITHN =2, 3

In this section, we review the moduli matrices of vacua
and walls of the nonlinear sigma models on SO(2N)/U(N)
with N = 2, 3 [6] by using the formalism of Ref. [14] and
the simple roots of SO(2N) (2.26), which are summarized
in Sec. II. The moduli matrices of the vacua are discussed in
A. We label the moduli matrices of vacua in descending
order as

(Z1, g, oo 2y, Zy) = (my my, .omy_y, my),

(Z],zz, ey ZN—]’ ZN) = (ml, My, ...,—MmMp_y, —mN),

(Z],zz, ey ZN—]’ ZN) = (Zl:m], —MNMy, ..., —Mpy_1q, —mN),

(3.1)

where the sign + is + for odd N and — for even N. Hy 4
and (A) denote a vacuum. Hop ca,..ca,) and (A} <
Ay < --- < A,) denote a wall that connects vacua
(A1) < (Ag) < -~ < (A,).

The vacua of the nonlinear sigma model on SO(4)/U(2)
(A4) are
|

E,

1 0
Hyyy = 1 ,
1
1
Hoyp) = 0 ,
0
0
Hoysy = 1 ,
0
0
Houy = 0 .
1

E,
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0
0>, (Z1,%,) = (my,my),

1
1>7 (X1, X%p) = (=my, —my).

(3.2)
There is only one elementary wall operator:
E= (3.3)
The elementary wall is
50) 1 0 e
Hy gy = Hoye™'" = 1 —e 0] (34)

This is the only wall of the nonlinear sigma model
on SO(4)/U(2).

The vacua of the nonlinear sigma model on SO(6)/U(3)
(A8) are

(21’ 22’ 23) = (mlv my, m3)a

(21,25, %3) = (my, —my, —m3),

(Zl’ 221 2‘3)

(—mhmz, —m3)’

(21722523) = (—mlv—mz,’%)- (3-5)

0 0
0 0 1
0 -1 0
0 0
-1 0 0
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The elementary walls are

1 0
Hy1g) = H0<1>€E3(”) = 1 0 e |,
1 -0
1 e 0
Hops) = Hopeh'") = 0 —e 1 ,
0 1
0 1
Hopes = Hogpe) = Ioen 0 : (3.7)
0 - 1

There are two compressed walls of level 1. These are generated by the following operators:
E, = [E3, Ey), Es = [E). E,). (3.8)
We have used ~ to distinguish the operators from elementary wall operators. The walls are

eE:l(rl)

’

Ho3y = Hoy

Hypeqy = Hoppye(), (3.9)

There is only one compressed wall of level 2, which is generated by

E¢ = [E3, Es] = [Ey, E). (3.10)
The moduli matrix for the wall is
Ho(1ay = Hogpyefen). (3.11)
There are four double walls,
1 e 0
Hyjoae3y = Ho(opyeB1?) = 1 0 e,
1 er1+r2 —e'l 0
1 en elitn 0
Hopeseqy = Hopozye?) = 0 —et 1 :
0 —e ]
1 e 0
Hyoeqy = Ho<1<—2>€ES(’2) = 1 —entn 0 e ||
1 - 0
1 O er1+r2 _er]
H0<]<_3(_4> = H0<1<_3>eE2(r2) = 1 e 0 , (312)
1 el 0

105017-5
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and one triple wall,

>e 2(7‘3) =

Hy1eae3eqy = Hojre2e3

We investigate the walls by using positive roots. The SO(6)
Cartan generators are

H, = diag(1,0,0,-1,0,0),
H, = diag(0,1,0,0,—1,0),

H; = diag(0,0,1,0,0,-1), (3.14)
and the simple roots are
ay = (1,—1,0),
a = (0,1,-1),
az = (0,1,1). (3.15)

The subscripts correspond to the subscripts of the elemen-
tary wall operators in Eq. (3.6). We indicate the root that
connects two vacua (i) < (j) as g;j. Then, the elemen-
tary walls are

92y = a3,
93y = Ay,
(3.16)

9(34) = A2,

and the roots of compressed walls are

i3y = a3 +ay,
sy = 0 + A,

Gleay = a1 + & + a3. (3.17)
Diagrams of simple roots that connect the vacua of non-
linear sigma models on SO(4)/U(2) and SO(6)/U(3) are
drawn in Fig. 1.

Once we identify the moduli matrices of vacua and the
simple roots that connect the vacua, we can construct all the
operators and the moduli matrices of walls. From Sec. IV,
we concentrate only on the moduli matrices of vacua and
the simple roots.

2 3 1 2

<P o) P o) & %
(a) (b)

FIG. 1. (a) SO(4)/U(2); (b) SO(6)/U(3).
indicate the subscript i’s of roots a;.

The numbers
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e er2+r3 0
1 3 —pl1tr3 T
e e e (3.13)
1 el +ry el 0

IV. SO(2N)/U(N) WITH N=4, 5, 6, 7

As discussed in the Introduction, nonlinear sigma
models on SO(2N)/U(N) with N > 3 are non-Abelian
theories. Therefore, we expect that some of the walls are
penetrable.

For N = 4, there are 8(=2%) vacua. The moduli matrices
of vacua are defined by

Hyy: (24,20, 23, %y) = (my, my, m3, my),
Ho(z) (Z 2, 23, 4) = (ml’m —my, —my),
Hogyt (21,2, 23, Zy) = (my, —my, m3, —my),
Howy: (21,20, 23, %4) = (my, —my, —m3, my),
Hogs)t (Z1.29, 23, 5) = (—my, my, m3, —my),
Hoyey ' (Z1, 20,23, 2y) = (=my, my, —m3, my),
Hoygy o (21,2, 23, 2y) = (=my, —my, my, my),
Hog): (21,2, 23, 2y) = (=my, —my, —my, —my).  (4.1)
The simple roots of SO(8) are
=(1,-1,0, O)
=(0,1,-1,0),
a3 = (0,0,1,-1),
a, = (0,0,1,1). (4.2)
Then, the roots of elementary walls g, are
934y = 9(5<6) = 21,
93y = Gl6<7) = X2,
9(3<5) = Jiae6) = A3,
Ja<2) = 9(18) = %4- (4-3)
The roots of penetrable walls are orthogonal
a;-a;=0. (4.4)

The vacua and the roots are depicted in Fig. 2. A pair of
orthogonal simple roots in this diagram makes a parallelo-
gram. The roots a; and a3 are orthogonal. Therefore,
elementary walls (3 < 5) and (5 < 6) are penetrable.
Elementary walls (3 < 4) and (4 « 6) are also penetrable.
The observable quantities trX and 7 (2.22) of double wall
(3 <« 5 « 6) are plotted in Fig. 3.

105017-6
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(b)

FIG. 2. (a) Vacua of SO(8)/U(4). The numbers indicate the labels of vacua. (b) Elementary walls of SO(8)/U(4). The numbers
indicate the subscript i’s of simple roots a; (i =1, ...,4).
Double wall (2 < 3 « 5) can be compressed. The moduli matrix is

H0<2<—3<—5> = H0<2>6E2(r1)eE1(r2>

1 e 0
1 en 0
= O er1+r2 —e' 1 (45)
0 1
Under the world volume symmetry transformation, Hy,.3s, can be transformed to
1 —en 1 e 0
1 I en 0
H0(2<—3<—5> - 1 0 et _en 1
1 0 1
—e' +r 0
1 e 0
= O er1+r2 _erl 1 (46)

Trx Trz Trz

30¢ 30¢ 30

20 20 20

10¢ 10¢ 10

: - X : X
_10l _10l 5 0 15 207 o 5 10 15 20
-20} -20} -20
-30% -30} -30f
T T T
400f 400 400f
300} 300¢ 300¢
200 200 200
100} A 100} 100} A
5 10 15 20% 5 10 15 20% 5 10 15 20%
(a) () (©

FIG. 3.

(@) r; = 80, r, = 100; (b) r; = 200, r, = 100; (c) r; = 250, r, = 100.

105017-7
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(a) (b)
FIG. 4. (a) Vacua of SO(10)/U(5). The numbers indicate the labels of vacua. (b) Elementary walls of SO(10)/U(5). The numbers
indicate the subscript i of simple roots a; (i = 1, ...,5). Since facing sides are the same, only one side of each parallelogram is labeled.

In the limit where r; + r, = r (finite) and r; —» —oo,
double wall Hg;_3.5 becomes a compressed wall of
level 1, H0(2<_5> = H0<2>€[E2‘E1](r).

In SO(10)/U(5), there are 16(=2*) vacua. The five
simple roots of SO(10) are

a; = (1,-1,0,0,0),
a, == (0,1,-1,0,0),
a3 :=(0,0,1,-1,0),
a,:=(0,0,0,1,-1),
as:=(0,0,0,1,1). (4.7)
The roots of elementary walls are
9(a4<s) = 9(1<8) = 9(9<10) = 9(12<13) = 91,
93<4) = Gl6<7) = J(10<11) = J(13<14) = X2,
923) = 9(7<9) = 9(8<10) = Y(14<15) — A3,
93<6) = 9(a<7) = 9(5-8) = J(15<16) = %4,
9J<2) = 99<12) = 9(10<13) = J(11<14) = A5 (4-8)

FIG. 5. Elementary walls of SO(12)/U(6). The numbers
indicate the subscript i of simple roots ; (i =1, ...,06).

FIG. 6. Elementary walls of SO(14)/U(7).
indicate the subscript i of simple roots ; (i =1, ..., 7).

The numbers

The roots of elementary walls are depicted in Fig. 4. As
before, a pair of facing sides of each parallelogram is the
same, and a pair of adjacent sides of each parallelogram is
orthogonal.

The roots of elementary walls of SO(12)/U(6) and
SO(14)/U(7) are depicted in Figs. 5 and 6. We present the
same diagrams labeled by the vacua in B to avoid cluttering

up pages.

V. GENERALIZATION

The vacua are parametrized by (Xi,...,Zy) = (+my,
...,tmy) as mentioned previously. The half of the vacua
that differ by even numbers of minus signs belong to one
nonlinear sigma model, and the other half of the vacua
belong to the other nonlinear sigma model, which is related
by parity. Therefore, there are 2V~! vacua in the nonlinear
sigma models on SO(2N)/U(N).

From the diagrams for N =2,...,7, we make the
following observations:

i N=2:
(1) <2,
2 (). (5.1)
(i) N =3:
3e2)ele(3) <2 (5.2)
(iil)) N =4:
42«3 {L3} < <{L3} < (6
2«4, (5.3)
(iv) N=5:
S5 {24} < (6) < {L3} <
e {L3} < (1) « {25} <-4 (54)
(v) N=6:
6« {24} < (11) < {136} < ---
- {L3.6} < (22) < {2.4} - <6
(5.5)

105017-8
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vi) N=17:

7= {2.47) < (22) « {1,3,5} « -
- {1,3,5} « (43) « {2,4,6} < -

(5.6)

The vacuum structures that are connected to the maximum
number of simple roots are as follows:
i) N=4m-2 (m>2):

N(=4m—-2) « ---
e {24 dm =4 < (A) <
o
<{L3, ....4m=54m =2} « -

(2m=2)

(2m-1)
e {1,3,....,4m—5,4m =2} « (B) «
(2m-1)
—{2.4,.. Am—4} — ...
<« N(=4m-2).

(5.7)

() N=4m—-1 (m >2):

N=4m—1)«---

(2m=2)

(2m-1)
~{1,3,....,4m—54m -3} ---
(2m-1)
e {1,3,...,4m —5,4m =3} « (B) <
(2m-1)
«{2,4,....,4m =2} « ---
T
«N-1(=4m-2).

(5.8)

PHYSICAL REVIEW D 96, 105017 (2017)
(i) N =4m (m >2):

N(=4m) « ---
e {2.4, .. Am =2} « (A) «
(_{%,_2_,_\,:1_711_7—-1} — e

(2m)
-« {1,3,...,4m — 1} « (B) <
P —

(2m)
«{2,4,....4m =2} « ---
P —
(2m—-1)

-+« N(=4m). (5.9)

iv) N=4m+1 (m>2):

e {2,4,....4m} « (A) <
—_——
(2m)
« {lyi,,m} — e
——
(2m)
e {1y§,-..

4m—1} < (B) <
(2m)
«{2,4,....4m =2, 4m + 1} « ---
—_—

(2m-1)

(2m)

e N—1(=4m). (5.10)
(A) and (B) are the vacua that are connected to the
maximum number of elementary walls. (A) denotes the
vacuum near (1), and (B) denotes the vacuum near (2V=1),
Equations (5.7), (5.8), (5.9), and (5.10) are proved in C.

VI. WALLS OF NONLINEAR SIGMA
MODEL ON S0(12)/U(6)

We have studied the vacuum structures that are con-
nected to the maximum number of elementary walls for
general N. Walls can be penetrable or compressed to a
single wall. We discuss some physical consequences on
SO(12)/U(6), which is the simplest nontrivial case. As it
was shown previously, the vacua that are connected to the
maximum number of elementary walls are (11) and (22).
The structure near (11) is
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7 5 1« (19) In Eq. (6.1), a4 - a; = 0. Therefore, the elementary wall
(7) <2 < (11) « 3 « (13) (6.1)  thatinterpolates (10) and (11) and the elementary wall that
(10) < 4 6_<— (12) interpolates (11) and (19) are penetrable. The moduli matrix

of the double wall that connects (10), (11), and (19) is

H0<10<—11<—19> = H0<10>eE4(’1)eEl(Vz)

1 2 0 0 0 O 00 O 00
0O 0 0 0 0 —-e” 1 0 0 0 0
0O 0 1 0 0 0 0 0 0 0 0
- (6.2)
0O 0 0 1 e 0 O 00 0 00
0O 0 0 0 0 0 0 0 —em 1 0
0O 0 0 O 1 O 00 O 00

The tension of the walls is plotted in Fig. 7. Elementary wall (10 < 11) and elementary wall (11 < 19) pass through each
other.

In Eq. (6.1), a4 - a3 # 0. Therefore, elementary wall (10 « 11) and elementary wall (11 « 13) can be compressed to a
single wall. The moduli matrix of double wall (10 « 11 « 13) is

1 00 0 0 0 0 0 00
0 0 O 0 0 1 0 0 00
0 01 e»2 0 O 0 0 0 0 00
= (6.3)
000 1 e 0 0 0 0 0 00
0 0 O 0 0 0 et —en 1 0
0 0 O 1 0 0 0 0 00
By using the world volume symmetry, the moduli matrix can be transformed to
T T T
400¢ 500¢f 400¢
300} 400y 300}
300}
2001 200¢
200¢
100} A 1001 100} A
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
(a) (b) (c)

FIG. 7. Double wall (10 « 11 « 19) in SO(12)/U(6), which consists of two penetrable walls. m; = 80, m, = 60, m; = 40,
my =20, ms = 10, mg = 5. () r, = 50, r, = 20; (b) r, = 50, r, = 100; (c) r, = 50, r, = 150.
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T T T
400¢ 400}
800
300¢ [
300 600%
200¢ 200} 400F
1001 A 100¢ 200F
-3 -2 -1 1 2 3 X -3 -2 -1 1 2 3 X -3 -2 -1 1 2 3 X
(a) (b) (©)

FIG. 8. Double wall (10 < 11 « 13) in SO(12)/U(6), which

m4:20, m5:10, m6:5. (a) r =20, F2:6; (b) ry =10, Iy =

1 o0 o o0o0\/! 0O
o010 o o0o0]]0O00
u 001 —= 0 0][0 01
0(10<11<13) = 00 0 1 0 0 00 0
000 O 10f]0O00O
000 o0 o0 1/\0 00O
1000 0 0] 00
0000 0 0101
0 01 0 —nt2 0| 0 0
oo 01 e 0] 00
00 00 0| 00
0000 O 1|00

In the limit where r; + r, = r (finite) and r; — —oo,
double wall (10 « 11 « 13) becomes a compressed wall
of level 1. The tension of double wall (10 « 11 « 13) is
plotted in Fig. 8. Two elementary walls are compressed to a
single wall.

VII. DISCUSSION

We have discussed the vacua and the walls of mass-
deformed Kihler nonlinear sigma models on SO(2N)/
U(N) with N > 2 by using the moduli matrix formalism
and the simple roots of SO(2N). We have observed that
there are penetrable walls in the cases of N > 3, which are
non-Abelian theories. We have discussed the vacuum
structures that are connected to the maximum number of
elementary walls and proved them by induction.
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APPENDIX A: VACUUM STRUCTURE
OF NONLINEAR SIGMA MODELS
ON SO(2N)/U(N) WITH N=2, 3

The vacua of nonlinear sigma models are obtained from
the vacuum condition (2.10) in Sec. I
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The vacua of nonlinear sigma model on SO(4)/U(2)
are

1 0
D, = < 1 O)’ (Z1.%) = (my,my),

0 1
®, = ( 0 1>’ (Z1, %) = (=my, —my),

5
[

(21, %) = (my, —m,),

—_
=)
=
—_
N~

(Zl ’ 22) - (_ml’ m2)'

(A1)

There are four solutions to the vacuum condition (2.10),
but only the half of them are the vacua of a nonlinear
sigma model on SO(4)/U(2), and the other half are the
vacua of the other nonlinear sigma model, which is
related by a parity transformation. Let us define a rotation
transformation R and a parity transformation P as
follows:

1 0
o, = 1 0 ,
1 0
1 0
®,=| 0 o
0 1
0 1
o= | | U
0 1
0 1
®,=| 0 o
1 0
1 0
®s=| 1 o
0 1
1 0
O = 0 1 i
1 0

PHYSICAL REVIEW D 96, 105017 (2017)

R= , P= (A2)
The vacua are related by
(I)ZICDI'R, (I)4:(I)3’R,
CI)SI(I)]'P, (I)4:(I)2’P. (A3)

The vacua @, and @, are on the same manifold. ®; and
@, are on the other manifold and are related by the parity
transformation P. Therefore, we can focus only on @,
and ®, without loss of generality. The corresponding
moduli matrices of the vacua, which are related to the
vacuum solution by (2.18), are

1
Hypy = |

0
Hopy=|

The vacua of the
SO(6)/U(3) are

0
O)’ (Z1,Zy) = (my,my),

1
1), (Z1.%) =(-m,—my). (A4)

nonlinear sigma model on

(2]7227 23) - (ml,m2,l’}’l3),
(21,29, 2%3) = (my, —my, —m3),
(21722’23) = (—ml,mz, —m3),

(21,2, %5)

(—ml, —ni,, I’I’l3),

(thza 23) = (mhmz, —m3),

(2]’ 22’ 2’3) = (mlv —my, m3)’

105017-12



VACUA AND WALLS OF MASS-DEFORMED KAHLER ... PHYSICAL REVIEW D 96, 105017 (2017)

0 1
@7 = 1 0 ) (21722723) = (_ml’mz’m3)’

o= | 0 Pl (3050 5s) = (—my, —my, —ms). (A3)

There are eight vacua, but only the half of them are the vacua of a nonlinear sigma model on SO(6)/U(3). We can identify
them by rotational transformations. We have three rotational transformations:

The vacua are related by
Dy, =P - Ry, D3 =D - Ry, Oy = @ - R;. (A7)

The solutions @, ®,, ®3, and @, are the vacua of a nonlinear sigma model on SO(6)/U(3), and the others are the
vacua of a nonlinear sigma model on the other SO(6)/U(3) and are related by parity. The moduli matrices of the
vacua are

1 0
Hoqy = ! 0 , (X1, 2y, X3) = (my, my, m3),
1 0
1 0
H0<2> = 0 1 ) (21722’23) = (ml’_mZv_m3)
0 1
0 1
Hys) = 1 0 ) (21,59, Z3) = (=my, my, —m3)
0 1
0 1
H0<4> = 0 1 s (21,22,23) = (—ml, —my, ms)- (A8)
1 0
We use the same method to compute moduli matrices of vacua for any N. All the vacua are labeled by sets of (X4, ..., Zy) =
(£my, ..., £my) of which the numbers of minus signs differ by even numbers.
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APPENDIX B: VACUA

FIG. 10. Vacua of SO(14)/U(7). The numbers indicate the labels of vacua.

APPENDIX C: VACCUUM STRUCTURES

We prove Egs. (5.7), (5.8), (5.9), and (5.10). The vacua that are connected to the maximum number of elementary walls
can be found by decomposing the diagrams into two-dimensional diagrams. The only rule is that simple roots that already
have appeared in the previous diagrams should not be repeated.

.L.
ar A
(a) (b)

FIG. 11. N = 6 case. The vacuum structure near (1) decomposes into two diagrams. Diagram (b) is the same as Fig. 1(a).

7(6) 5(5) 6(7)

QD Q2> 23> Q4>
«44>) «445) «43%) «425) «41>)

(a) (b)

FIG. 12. N =7 case. Diagrams near (1)({64)). Diagram (b) is the same as Fig. 1(b).
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(«88)

(a)

FIG. 13.

481>
«176)

(a)

PHYSICAL REVIEW D 96, 105017 (2017)

41>
K88

43>
(<86

46>
<83

48>
(K81>)

(b)

N = 8 case. Diagrams near (1)((128)). Diagram (b) is the same as Fig. 2.

81>

<86»
K176y 171))

(b)

FIG. 14. N =9 case. Diagrams near (1)((256)). Diagram (b) is the same as Fig. 4.

In Figs. 5 and 9, the vacuum that is connected to the
maximum number of simple roots near (1) is (11). The
vacuum structure near (1) decomposes into two diagrams,
as is shown in Fig. 11. From this, we can conclude that (11)
is connected to the maximum number of elementary walls.
Figure 11(b) is the same as Fig. 1(a). In Figs. 5 and 9, the
vacuum, which is connected to the maximum number of
simple roots near (32), is (22). This can also be seen by
decomposing the vacuum structure near (32). We get the
same two-dimensional diagrams as in Fig. 11 by replacing
(11) and (12) with (22) and (21). In this case, the vacua on

FIG. 15.

(2" N-2

(a)

the left-hand side are in the x — —oo limit, and the vacua on
the right-hand side are in the x — oo limit. In the same
manner, Figs. 6 and 10 decompose as is shown in Fig. 12.
The vacua that are connected to the maximum number of
simple roots are (22) and (43). Figure 12(b) is the same as
Fig. 1(b). The N =8 and N =9 cases are depicted in
Figs. 13 and 14. The vacuum structures repeat the four
diagrams in Figs. 1, 2, and 4.

The vacuum structure near (1) decomposes into the
diagrams in Fig. 15, while the vacuum structure near (2V=!)
decomposes into the diagrams in Fig. 16. In both figures,

(b)

First two diagrams of the vacuum structure near (1) for N.

N-1(N)

(b)

FIG. 16. First two diagrams of the vacuum structure near (2V=!) for N.
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C—
(@)

@? (d)

FIG. 17. Four types of vacuum structures. The circle indicates
the vacuum that is connected to the maximum number of simple

roots.
2 1 6 5 4m-6 4m-7
4 3 8 7 4m-4 4m-5
Common part of the vacuum structure near (

FIG. 18.
1 2 5 6 4m-7
3 4 7 8 4m-5 4m-4

FIG. 19. Common part of the vacuum structure near (

®

only the first two diagrams are shown. By repeating them
all, the cases fall into four categories. The vacuum that is
connected to the maximum number of simple roots is
circled in each diagram in Fig. 17.

There are two vacua that are connected to the maximum
number of elementary walls. (A) denotes the vacuum near
(1), and (B) denotes the vacuum near (2¥~!). The common
parts of each vacuum structure are shown in Figs. 18 and
19. The rest of the vacuum structure can be derived from
Fig. 17. The vacuum structures near (A) and (B) are
illustrated in Figs. 20 and 21, respectively.

4m-2

4m-1 4m-3
A A
(a) (b)
4m-2 4m-3
<A> 4m-1
(©) (d)

FIG. 20. Remaining part of the vacuum structure near (A).

PHYSICAL REVIEW D 96, 105017 (2017)

Figures 18 and 20 lead to the following:
i) N=4m-2, (m>2):

{2,4,...,4m — 4} < (A)
2m—-2
—{L.3,...4m—54m—-2}. (Cl)
2m-2
(i) N=4m-1, (m>2):
{25&5-"74m_494m__1}(_<14>
2m-2
«{1,3,...,4m —5,4m — 3}. (C2)
2m—1
(i) N =4m, (m > 2):
{2.4....4m =2} < (A) < {L.3,...4m —1}.
2m—1 2m
(C3)
iv) N=4m+1, (m >2):
2,4,....4m} « (A) < {1,3,....,4m —1}. C4
{2.4....4m} < (A) < {1.3 ;oo (C4)
2m 2m

Each case with m = 2 is shown in Figs. 11, 12, 13, and 14.
Let us assume that Egs. (C1), (C2), (C3), and (C4) are true.
Then, these are true for m’ = m + 1 since it corresponds to
adding one more diagram in Fig. 18. Therefore, Egs. (C1),
(C2), (C3), and (C4) are true.

Figures 19 and 21 lead to the following:

i N=4m-2, (m >2):

{1,3,....,.4m = 5,4m — 2} « (B)
2m-2
«{2,4,...,4m —4}. (C5)
2m-2
4m-2 4m-2 4m-3
B> B B>
(a) (b)
4m-2 4m-3
<B> 4m-1
(© (d)
FIG. 21. Remaining part of the vacuum structure near (B).
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() N=4m—-1, (m>2):
{1,3,...,4m = 5,4m — 3}. < (B)
2m—1
«{2.,4,....4m -2}.
S —

2m—1

(iii) N =4m, (m>2):

(Co)

{1,3,....,4m—1} « (B) « {2,4,....4m —2}:
—— ~—
2m 2m-1
(C7)
(iv) N=4m+1, (m>2):
{1,3,...,4m =1} « (B)
N —
2m
«{2,4,....4m =2, 4m + 1}.
—

2m—1

(C8)

PHYSICAL REVIEW D 96, 105017 (2017)

Each case with m =2 is shown in Figs. 11, 12, 13,
and 14. Let us assume that Egs. (C5), (C6), (C7), and
(C8) are true. Then, these are true for m' = m+ 1
since it corresponds to adding one more diagram in
Fig. 19. Therefore, Egs. (C5), (C6), (C7), and (C8)
are true.

The vacuum structure is

for odd N.
Therefore, Egs. (5.7), (5.8), (5.9), and (5.10) are
proved.
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