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We consider a real, massive scalar field in Bañados-Teitelboim-Zanelli spacetime, a 2þ 1-dimensional
black hole solution of Einstein’s field equations with a negative cosmological constant. First, we analyze
the space of classical solutions in a mode decomposition, and we characterize the collection of all
admissible boundary conditions of Robin type which can be imposed at infinity. Second, we investigate
whether, for a given boundary condition, there exists a ground state by constructing explicitly its two-point
function. We demonstrate that for a subclass of the boundary conditions it is possible to construct a ground
state that locally satisfies the Hadamard property. In all other cases, we show that bound state mode
solutions exist and, therefore, such construction is not possible.
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I. INTRODUCTION

Quantum field theory on curved backgrounds is a well-
established branch of theoretical and mathematical physics
which allows one to study matter systems in the presence of
a nonvanishing gravitational field (for a recent review, see
Ref. [1]). In this framework, it is always assumed both that
no proper quantum gravitational effect has to be accounted
for and that the backreaction in Einstein’s equations is
negligible.
Although this entails that the geometry of the spacetime

is fixed, it is not at all necessary to consider metrics which
are small perturbations over a flat background. Actually,
quantum field theory in the presence of a strong gravita-
tional field, e.g., a black hole, is of great interest since one
can unveil some novel phenomena, the most famous
example being Hawking radiation [2], which have no
counterpart on Minkowski spacetime.
For this reason, a lot of attention has always been given

to the investigation and to the formulation of quantized free
field theories on black hole spacetimes. Especially under
the additional assumption of spherical symmetry, many
results have been obtained, leading to an almost complete
understanding of these matter systems both at the structural
and at the physical levels [3–9].
Much more complicated is the scenario when the under-

lying black hole solution of Einstein’s equations is rotating,
hence only axisymmetric, the most notable example being
Kerr spacetime. In this case, even the analysis of free

quantum theories is more elusive, and simple questions like
the construction of a ground state in the region outside the
event horizon are difficult to answer [10]. As a byproduct,
the computation of renormalized physical observables has
been a daunting task [11–14], and only very recently a
promising renormalization scheme has been applied with
success [15,16]. The main reason for this quandary can be
ascribed to a peculiarity of such rotating geometries,
namely the absence of a complete, everywhere timelike
Killing field. If it existed, the latter would allow for the
identification of a canonical and natural choice for the
notion of positive frequency, which can be used in turn to
select a distinguished two-point function for the underlying
theory. This defines uniquely and unambiguously a full-
fledged quantum state, dubbed the “ground state,” with
notable physical and structural properties [17]. Among
them, we recall in particular that all quantum observables
have finite fluctuations and that, starting from such a state,
it is possible to construct the algebra of all Wick poly-
nomials, including relevant objects such as the stress-
energy tensor [18].
Therefore, on account of the lack of a global timelike

Killing field, our understanding of quantum field theories
in the presence of rotating black holes is not as advanced as
one could hope. The main goal of this paper is to discuss a
concrete scenario where most of the problems mentioned
above can be circumvented. We refer to the so-called
Bañados-Teitelboim-Zanelli (BTZ) black hole [19,20], a
solution of the (2þ 1)-dimensional Einstein equations with
a negative cosmological constant. This geometry possesses
some rather peculiar features. On the one hand, it can be
obtained directly from the anti-de Sitter (AdS) metric with
an appropriate identification of boundaries—see Ref. [20];
hence, locally it is a region of constant curvature. On the
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other hand, the BTZ solution is both stationary and
axisymmetric and possesses an inner and an outer horizon,
as well as two canonical Killing fields, say ∂t and ∂ϕ,
associated to these symmetries. In addition, contrary to
what happens in the Kerr spacetime, although none of these
vector fields is everywhere timelike, there exists a suitable
linear combination which enjoys such a property every-
where in the region exterior of the black hole.
This feature prompts the possibility of analyzing free field

theories in the BTZ background constructing an associated
ground state. In this paper, we will address this issue
thoroughly for the case of a real, massive Klein-Gordon
field obeying Robin boundary conditions at conformal
infinity. In this respect, we generalize and complement
the results of Ref. [21], which considers a massless,
conformally coupled scalar field with either Dirichlet or
Neumann boundary conditions at infinity.
Our analysis starts from the construction, via a mode

expansion, of the space of solutions for the underlying
equation of motion. This must be approached delicately,
since the underlying spacetime shares both locally and
asymptotically the geometry of anti-de Sitter spacetime. In
particular, this entails that a BTZ black hole spacetime is
not globally hyperbolic, which is tantamount to saying that
an acausal spacelike surface can be at most partially
Cauchy (at least some complete timelike curves will never
intersect it) and that the solutions of the equations of motion
for a free field theory cannot be obtained only by imposing
suitable initial data on such a partial Cauchy surface. As a
matter of fact, the existence of a timelike conformal
boundary at infinity requires additional boundary condi-
tions thereon. Here, we follow the same path taken in the
analysis of a pure AdS spacetime, recently investigated in
Refs. [22,23]. This was based on a careful use of the Sturm-
Liouville theory for ordinary differential equations (ODEs)
[24,25] which complements the earlier analyses in
Refs. [26–28]. By using and extending similar methods,
we will show that also in the BTZ spacetime there exists a
one parameter family of admissible boundary conditions, of
Robin type, depending on the value of the effective squared
mass in the Klein-Gordon equation. From a physical point
of view, this guarantees vanishing energy flux through
conformal infinity [29]. These conditions are different from
the “transparent boundary conditions” used in Ref. [30] to
compute the renormalized stress-energy tensor for a mass-
less, conformally coupled scalar field in the BTZ
black hole.
A thorough discussion of this feature is of paramount

importance for the core goal of this work: the construction
of the two-point function of a ground state. In fact, each
different boundary condition identifies, for all practical
purposes, a separate dynamical theory. To each of these,
one can compute a distinguished two-point function asso-
ciated to the ground state defined with respect to the
timelike Killing field which exists in the region outside the

outer horizon. In the main body of the paper, we not only
construct such two-point functions explicitly, but we also
investigate their physical properties. Most notably, we
show that, for a large class of the Robin boundary
conditions, including the Dirichlet one, only positive
frequencies contribute to the mode expansion of the
two-point function. Hence, for each of these admissible
boundary conditions, we identify a full-fledged ground
state, which moreover is locally of Hadamard form on
account of some structural results of quantum field theory
on curved backgrounds proven in Ref. [17]. By saying
“locally,” we distinguish from the global feature observed
in Refs. [22,23] for a free quantum field theory in the
Poincaré patch of anti-de Sitter spacetime: on account of
the presence of the boundary and independently of the
chosen boundary condition, the two-point function is
singular not only at those pairs of points connected by a
null geodesic but also at those which can be reached after
such a geodesic is reflected at the conformal boundary. The
presence of these additional singularities cannot be inferred
from the standard structural properties proven in Ref. [17],
and it requires a more involved mathematical analysis,
which is outside the scope of the present work. It is worth
stressing once more that the two-point functions, that we
shall construct, are all expressed in terms of a mode
expansion, hence involving both a sum along a discrete
Fourier parameter and an integral along a continuous one,
representing the energy frequencies. One might wonder
whether, at least for the simplest boundary condition, the
Dirichlet one, it is possible to obtain a closed form
expression for the two-point function. To the best of our
knowledge, a direct evaluation, especially of the integral
along the frequencies, does not appear to be possible. Yet,
in this special case, one can resort to a different approach to
the construction of the two-point function and of the
propagators with Dirichlet boundary conditions. Such a
procedure relies on BTZ being realizable from the three-
dimensional AdS spacetime via a suitable identification. In
Refs. [31–34], this property was used to construct the
propagators with Dirichlet boundary conditions starting
from the AdS counterpart and applying the method of
images, ultimately obtaining an expression which involves
only a sum along a remaining discrete Fourier parameter.
Uniqueness of the propagators and of the ground state for
the massive Klein-Gordon theory with Dirichlet boundary
conditions entails that this and our method yield the same
result. Yet they highlight different structural properties. On
the one hand, the method of images allows for better and
more direct control of auxiliary structures, such as the bulk-
to-boundary propagators which are of relevance in the
AdS=CFT correspondence; see, for example, Ref. [35]. On
the other hand, the mode expansion allows one to indi-
viduate directly all admissible boundary conditions and to
construct two-point functions which are associated to a
ground state.
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In addition, by using this method, we confirm the
existence of a rather peculiar feature which was already
observed in the analysis of a real, massive scalar field in the
Poincaré patch of anti-de Sitter spacetime [22]. There exists
a class of Robin boundary conditions for which the mode
expansion of the two-point function necessarily includes
the contribution of bound state mode solutions. For these
boundary conditions, one cannot claim that the constructed
two-point function is that of a ground state and, more
importantly, that it is of Hadamard form. As a last remark,
we observe that our results are consistent with those
obtained in Ref. [36] by looking at the class of admissible
self-adjoint extensions of the Hamiltonian operator, asso-
ciated to a massive, real scalar field in the static region of a
nonrotating BTZ spacetime.
The paper will be organized as follows. In Sec. II, we

review the geometry of a BTZ black hole, emphasizing in
particular the presence of an everywhere timelike Killing
field in the exterior region of the black hole. In Sec. III, we
analyze the massive Klein-Gordon equation with an arbi-
trary coupling to scalar curvature on this background. Via a
Fourier expansion, the field equation is reduced to an ODE
in the radial direction, which can be solved explicitly. The
solutions are classified in terms of their square integrability
near the horizon and the conformal infinity, which gives us
the range of the effective squared mass of the scalar field for
which Robin boundary conditions have to be imposed at
conformal infinity. Finally, in Sec. IV, we obtain our main
result, namely the explicit construction for the two-point
function of the ground state for a large class of Robin
boundary conditions. Those not in this set are shown not to
possess a ground state, given the presence of bound state
mode solutions. In Sec. V, we draw our conclusions. In
Appendix A, we discuss how to handle a key technical
problem in our construction of the two-point function:
contrary to what happens when dealing with a scalar field in
a static spacetime, the ODE obtained out of the Fourier
analysis cannot be interpreted as a simple eigenvalue
problem with ω2 as the spectral parameter, where ω is
the frequency. In fact, the ensuing equation, having also a
linear dependence in ω, can be read as a so-called quadratic
operator pencil. In Appendix B, we present all the steps of
the calculation of the two-point function for the ground state,
the results of which are presented in Sec. IV. We leave some
of the most mathematical details for Appendices C, D,
and E.
Throughout the paper, we employ natural units in which

c ¼ GN ¼ ℏ ¼ 1 and use the signature ð−þþÞ.

II. BTZ BLACK HOLE AND 2+ 1 GEOMETRY

The BTZ black hole is a stationary, axisymmetric,
(2þ 1)-dimensional solution of the vacuum Einstein field
equations with a negative cosmological constant Λ ¼
−1=l2 [19,20]. It is diffeomorphic as a manifold to

M≡ R × I × S1, where I is an open interval of the real
line. Its metric g can be realized in several, different, albeit
equivalent ways, e.g., by a suitable identification of points
in the Poincaré patch of the three-dimensional AdS
spacetime [20]. The ensuing line element reads

ds2 ¼ −N2dt2 þ N−2dr2 þ r2ðdϕþ NϕdtÞ2; ð1Þ

where t ∈ R, ϕ ∈ ð0; 2πÞ, r ∈ ðrþ;∞Þ, while

N2 ¼ −M þ r2

l2
þ J2

4r2
; Nϕ ¼ −

J
2r2

; ð2Þ

M being interpreted as the mass of the black hole and J
being interpreted as its angular momentum. The value of rþ
can be inferred, observing that, in the range M > 0,
jJj ≤ Ml, N vanishes at

r2� ¼ l2

2

 
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

J2

l2

s !
: ð3Þ

These loci are coordinate singularities, and, thus, as
customary in rotating black hole spacetimes, the BTZ
solution possesses an inner ðr ¼ r−Þ and an outer horizon
ðr ¼ rþÞ. The Penrose diagrams of this spacetime are
shown in Fig. 1.
In addition, the event horizon turns out to be a Killing

horizon of which the generator reads

χ ≐ ∂t þ ΩH∂ϕ; ð4Þ

where ΩH ≐ NϕðrþÞ ¼ r−
lrþ

is the angular velocity of the
horizon. It is of paramount relevance for this paper that χ is
a well-defined, global, timelike Killing vector field across
the whole exterior region ðr > rþÞ of BTZ spacetime. This
is the sharpest difference in comparison to other models of
rotating black hole spacetimes, e.g., the Kerr solution of
Einstein’s equation with vanishing cosmological constant.

FIG. 1. Penrose diagrams of the BTZ black hole for the rotating
0 < r− < rþ (left) and the static 0 ¼ r− < rþ (right) cases.
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In these cases, one is forced to cope with the existence of a
speed of light surface at which the analog Killing field
is null.
In view of the distinguished role of χ, it is natural to

introduce the new coordinate system ð~t; r; ~ϕÞ, which is
related to ðt; r;ϕÞ in such a way that ∂~t ¼ χ. The simplest
choice consists of defining t ¼ ~t and ϕ ¼ ~ϕþΩH~t; the line
element becomes

ds2 ¼ −N2d~t2 þ N−2dr2 þ ðd ~ϕþ ðNϕ þΩHÞd~tÞ2: ð5Þ

Observe that, while the range of ~t is still R, that of
~ϕ is no longer simply the interval ð0; 2πÞ, but rather
ð−ΩH~t; 2π −ΩH~tÞ, with the end points still identified.
Especially in the next section, we will be working mainly
with (1), although when we address the construction of a
ground state, Eq. (5) will turn out to be extremely useful.

III. MASSIVE SCALAR FIELD IN BTZ

A. Klein-Gordon equation

We consider a real, massive scalar field Φ∶ M → R
satisfying the Klein-Gordon equation,

PΦ ¼ ð□g −m2 − ξRÞΦ ¼ 0; ð6Þ

where □g and R are, respectively, the D’Alembert wave
operator and the scalar curvature built out of (1), ξ ∈ R
while m2, is the mass parameter of the scalar field. Since
R ¼ −6=l2, it is convenient to introduce the dimensionless
parameter μ2 ≐ m2l2 − 6ξ. In addition, we assume that
m2 and ξ are such that the Breitenlohner-Freedman bound
μ2 ≥ −1 holds [37].
For our ultimate goal of quantizing (6) and constructing

the associated ground state(s), the first step in this direction
consists of a careful study of the solutions of the Klein-
Gordon equation. Since the underlying spacetime is not
globally hyperbolic, these cannot be constructed only by
assigning initial data, for example, on a constant time-t
hypersurface. One needs to supplement such information
with the choice of an admissible boundary condition.
A priori, it is not obvious how to proceed since one might
wish to assign such a condition either at the horizon r ¼ rþ,
at infinity r → ∞, or possibly at both ends. This quandary
is easily solved by showing that (6) can be reduced to a
second order ODE, the boundary conditions of which are
much easier to analyze.
To this end, we work with the coordinates ðt; r;ϕÞ, so

that (6) reads�
−

1

N2
∂2
t þ

1

r
∂rðrN2Þ∂r þ

�
1

r2
−
Nϕ

N

�
2

∂2
ϕ

þ 2
Nϕ

N2
∂t∂ϕ −

μ2

l2

�
Φ ¼ 0: ð7Þ

Since both ∂t and ∂ϕ are Killing fields of (1), we can take
a Fourier expansion of Φ,

Φðt; r;ϕÞ ¼ 1

2π

X
k∈Z

Z
R
dωe−iωtþikϕΨωkðrÞ: ð8Þ

It is convenient to introduce a new coordinate, z ∈ ð0; 1Þ,

z ≐ r2 − r2þ
r2 − r2−

; ð9Þ

so that, starting from (7), ΨωkðzÞ obeys

LωΨωkðzÞ ≐ d
dz

�
z
dΨωkðzÞ

dz

�
þ qðzÞΨωkðzÞ ¼ 0; ð10Þ

with

qðzÞ ¼ 1

4ð1 − zÞ
�
l2ðωlrþ − kr−Þ2

ðr2þ − r2−Þ2z

−
l2ðωlr− − krþÞ2

ðr2þ − r2−Þ2
−

μ2

1 − z

�
: ð11Þ

This is indeed the sought second order ODE, written in
Sturm-Liouville form, defined on the interval (0,1). We
need to clarify which are the admissible boundary con-
ditions that can be assigned at z ¼ 0 (the horizon) or at
z ¼ 1 (infinity). For ordinary differential equations, this
problem can be solved in full generality by using Sturm-
Liouville theory; see, e.g., Refs. [24,25] or Ref. [22] for an
application to the study of a real, massive scalar field in the
Poincaré patch of anti-de Sitter spacetime of an arbitrary
dimension. The nomenclature and the procedure that we
will be using is the same employed in the last reference. For
the sake of brevity, we will not recapitulate it fully here, and
we refer the reader to the works cited above.

B. Solutions

The next step consists of identifying a basis of the vector
space of solutions of (10). Using the Froebenius method,
we infer that ΨωkðzÞ ¼ zαð1 − zÞβFωkðzÞ, with

α2 ¼ −
l4r2þ ~ω2

4ðr2þ − r2−Þ2
; β2 þ β −

μ2

4
¼ 0; ð12Þ

where we define ~ω ≐ ω − kΩH to be the square root of ~ω2

such that Im½ω� ¼ Im½ ~ω� ≥ 0. By setting

α ¼ −i
l2rþ ~ω

2ðr2þ − r2−Þ
; β ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

q �
ð13Þ

and plugging ΨωkðzÞ in (10), we obtain the Gaussian
hypergeometric equation,
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zð1 − zÞ∂2
zFωk þ ½c − ðaþ bþ 1Þz�∂zFωk − abFωk ¼ 0;

ð14Þ

where

8>>><
>>>:

a ¼ 1
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
− il ~ωl

rþ−r−
þ il k

rþ

�
;

b ¼ 1
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
− il ~ωl

rþþr−
− il k

rþ

�
;

c ¼ 1 − i l
2rþ ~ω

r2þ−r
2
−
:

ð15Þ

For future convenience, we note that, under the substitution
~ω ↦ ~̄ω, these parameters behave as

a ↦ b − cþ 1; α ↦ −α;

b ↦ a − cþ 1; β ↦ β;

c ↦ 2 − c: ð16Þ
Generic solutions of (14) can be written in closed form in

terms of Gaussian hypergeometric functions that depend on
the three parameters a, b, and c of the equation. When
choosing two linearly independent solutions, the depend-
ence on these parameters forces us to disentangle two cases,
accordingly to the values of μ2.

1. General case: μ2 ≠ ðn− 1Þ2 − 1, n = 1;2;3;…

In this case, we choose as a basis of solutions

Ψ1ðzÞ ¼ zαð1 − zÞβFða; b; aþ b − cþ 1; 1 − zÞ; ð17aÞ

Ψ2ðzÞ ¼ zαð1 − zÞ1−β
× Fðc − a; c − b; c − a − bþ 1; 1 − zÞ; ð17bÞ

For future reference and inspired by the terminology used
for Sturm-Liouville problems [24], we call Ψ1 the “princi-
pal solution” at z ¼ 1, that is, the unique solution (up to
scalar multiples) such that limz→1Ψ1ðzÞ=ΨðzÞ ¼ 0 for
every solution Ψ that is not a scalar multiple of Ψ1.
Note that Ψ2 is not defined when the third argument
becomes a nonpositive integer [38]. From (15), we getffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
þ 1 ∉ N ∪ f0g, which identifies exactly the

special range of values for μ2 which has been excluded.
Observe in particular that this set includes the case μ2 ¼ −1
which saturates the Breitenlohner-Freedman (BF) bound
[37]. This is a very special case, which would require a
lengthy analysis on its own. For this reason, we will not
consider it further in this paper.
Note that the above definitions obey Ψ1 ↦ Ψ1 and

Ψ2 ↦ Ψ2 under the substitution ~ω ↦ ~̄ω. This can be
checked using the conjugation identities (16), the symmetry
Fða; b; c; zÞ ¼ Fðb; a; c; zÞ and the second equality from
(15.10.13) of Ref. [38]:

Fða; b; aþ b − cþ 1; 1 − zÞ
¼ z1−cFða − cþ 1; b − cþ 1; aþ b − cþ 1; 1 − zÞ:

2. Special cases: μ2 = ðn− 1Þ2 − 1, n = 2;3;…

In this case, we choose the following basis of solutions
for (10) (see Ref. [38], Sec. 15.10.8),

Ψ1ðzÞ ¼ zαð1 − zÞβFða; b; n; 1 − zÞ; ð18aÞ

Ψ2ðzÞ ¼ zαð1 − zÞβ
× ½Fða; b; n; 1 − zÞ logð1 − zÞ þ KnðzÞ�; ð18bÞ

where

KnðzÞ ¼ −
Xn−1
p¼1

ðn − 1Þ!ðp − 1Þ
ðn − p − 1Þ!ð1 − aÞpð1 − bÞp

ðz − 1Þ−p

þ
X∞
p¼0

ðaÞpðbÞp
ðnÞpp!

fp;nð1 − zÞp; ð19Þ

while ðaÞp ¼ Γðaþ pÞ=ΓðaÞ,

fp;n ¼ ψðaþ pÞ þ ψðbþ pÞ − ψð1þ pÞ − ψðnþ pÞ;

and ψ is the digamma function. Observe that, also in these
special cases, Ψ1 is the principal solution at z ¼ 1.
Note thatΨ1 ↦ Ψ1 under the substitution ~ω ↦ ~ω, by the

same argument as in the generic case. We do not need to
check this property for Ψ2 since, as will be clear in next
section, Ψ1 is the only solution which plays a role for the
admissible boundary conditions.

C. End point classification

Having specified a basis of solutions of (10), we can
continue in our quest to identify the admissible boundary
conditions at the end points 0 and 1 for (6). These will
depend on the square integrability of the solutions near the
end points, in a way completely analogous to the case of the
Poincaré patch of AdS analyzed in Ref. [22].
We start by identifying the falloff behavior of the

solutions of (10) separately at the end points z ¼ 0 and
at z ¼ 1. This allows us to classify the end points in the
following way: we call the end point 0 (respectively, 1) the
“limit circle” if, for some ~ω ∈ C, all solutions of (10) are in
L2ðð0; z0Þ;J ðzÞdzÞ for some z0 ∈ ð0; 1Þ [respectively,
L2ððz1; 1Þ;J ðzÞdzÞ for some z1 ∈ ð0; 1Þ]; otherwise, we
call it the “limit point.” The measure J ðzÞdz, with

J ðzÞ ¼ 1

1 − z
þ r2þ
zðr2þ − r2−Þ

; ð20Þ

satisfies the relation dνðgÞ ¼ π�I ðJ ðzÞdzÞdφ, where
dνðgÞ ¼ r=N2drdφ and πI∶ M → I is the projection along
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the z direction. Notice that the operator S ~ωΨðzÞ ≐
1

J ðzÞL ~ωΨðzÞ, with L ~ω from (10), is Hermitian with respect

to the measure J ðzÞdz.
A direct inspection of (17a) and (17b) as well as of (18a)

and (18b), supplemented with the asymptotic behavior of
the hypergeometric function at z ¼ 0 and z ¼ 1, yields the
sought result for the basis elements of the space of solutions
of (10). For convenience, we summarize the results
described below in Table I.

1. End point z = 1

At z ¼ 1, since the hypergeometric function is equal to 1
when evaluated at the origin, the behavior of (17a) and
(17b) can be inferred from that of ð1 − zÞβ and ð1 − zÞ1−β,
respectively. By accounting also for the integration measure
and using (13), it turns out that Ψ1 lies in L2ððz1; 1Þ;
J ðzÞdzÞ for all values of μ2 > −1 and regardless of z1 ∈
ð0; 1Þ and of ~ω. On the contrary, Ψ2 lies in L2ððz1; 1Þ;
J ðzÞdzÞ if −1 < μ2 < 0, again regardless of z1 ∈ ð0; 1Þ
and of ~ω. Therefore, we say that z ¼ 1 is the limit point if
μ2 ≥ 0, while it is the limit circle if −1 < μ2 < 0.
For the special cases μ2 ¼ ðn − 1Þ2 − 1, n ¼ 2; 3;…, the

first basis elementΨ1 as in (18a) behaves exactly like (17a).
At the same time, Ψ2 as in (18b) never lies in
L2ððz1; 1Þ;J ðzÞdzÞ on account of the singularities of
KnðzÞ. Hence, z ¼ 1 is always the limit point of μ2 ≥ 0.

2. End point z = 0

In order to understand the behavior of the solutions of
(10) at z ¼ 0, we need to consider a different, more
convenient basis,

Ψ3ðzÞ ¼ zαð1 − zÞβFða; b; c; zÞ; ð21aÞ

Ψ4ðzÞ ¼ z−αð1 − zÞβ
× Fða − cþ 1; b − cþ 1; 2 − c; zÞ: ð21bÞ

where a, b, and c are defined in (15). Observe that Ψ3 and
Ψ4 form a well-defined basis of solutions for all μ2 > −1,

except when c ¼ 1 (α ¼ 0), the case of which is dealt with
separately below.
Since the hypergeometric function is equal to 1 when

evaluated at z ¼ 0, the leading behavior of the two
solutions at the origin is regulated by zα in the first case
and by z−α in the second one. It is easy to verify that Ψ3 ∈
L2ðð0; z0Þ;J ðzÞdzÞ for Im½ ~ω� > 0, irrespectively of
z0 ∈ ð0; 1Þ, while Ψ4 ∈ L2ðð0; z0Þ;J ðzÞdzÞ if Im½ ~ω� < 0.
For Im½ ~ω� ¼ 0, none of the solutions is square integrable
since a logarithmic singularity occurs. Therefore, we say
that z ¼ 0 is the limit point.
If c ¼ 1, then ω ¼ k r−

lrþ
¼ kΩH satisfies a synchroniza-

tion condition with the black hole angular velocity, a case
extensively studied in Ref. [29]. The solutions Ψ3 and Ψ4

no longer form a basis of solutions of (10), and hence we
consider the following basis (Ref. [38], Sec. 15.10.8),

ð1 − zÞβFða; b; 1; zÞ;
ð1 − zÞβ½Fða; b; 1; zÞ logðzÞ þ K1ð1 − zÞ�; ð22Þ

where K1 is as in (19). A close inspection of these two
solutions unveils that the leading behavior at z ¼ 0 is
dominated by a constant in the first case and by logðzÞ
in the second one. Hence, none of the solutions lies in
L2ðð0; z0Þ;J ðzÞdzÞ regardless of z0 ∈ ð0; 1Þ. This is in
agreement with the previous point.
Note that for ~ω ∉ R, hence excluding the c ¼ 1 case,

the above definitions obey Ψ3 ↦ Ψ4 and Ψ4 ↦ Ψ3

under the substitution ~ω ↦ ~̄ω. This can be checked
using the conjugation identities (16) and the symmetry
Fða; b; c; zÞ ¼ Fðb; a; c; zÞ.

D. Robin boundary conditions

We can address finally the question of which are the
admissible boundary conditions at the two end points z ¼ 0
and z ¼ 1. Tentatively, as in the simple example of a
massive scalar field in the Poincaré patch of AdS studied in
Ref. [22], we wish to impose Robin boundary conditions at
z ¼ 1 for a range of the mass parameter μ2 of the scalar
field. In fact, as pointed out in Ref. [29], imposing Robin
boundary conditions is equivalent to requiring zero energy
flux through the conformal boundary, a the natural physical
condition.
To start with, we focus our attention on the ODE (10) at

fixed values of ~ω and k. Since we deal with a singular
Sturm-Liouville problem, it is not possible to assign Robin
boundary conditions by specifying the value of a linear
combination between a solution and its derivative. This
statement is supported also by the observation that
at z → 1 both solutions Ψ2ðzÞ as per (17b) and per
(18b) are divergent.
This problem can be overcome by using Sturm-Liouville

theory. While we do not wish to enter in a full explanation
of the technical details, which are fully accounted for in

TABLE I. Summary of the square integrability at z ¼ 0 and at
z ¼ 1 of a basis of solutions for (10) depending on the parameters
μ2 and ~ω of the equation. The integration measure is J ðzÞdz as
per (20).

Range of μ2 Range of ~ω L2 at z ¼ 0 L2 at z ¼ 1

−1 < μ2 < 0 Im½ ~ω� > 0 Ψ3 Ψ1 and Ψ2

Im½ ~ω� ¼ 0 None Ψ1 and Ψ2

Im½ ~ω� < 0 Ψ4 Ψ1 and Ψ2

μ2 ≥ 0 Im½ ~ω� > 0 Ψ3 Ψ1

Im½ ~ω� ¼ 0 None Ψ1

Im½ ~ω� < 0 Ψ4 Ψ1
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Refs. [22] and in [24], we outline the main idea of the
procedure. The rationale consists of observing that, in a so-
called regular Sturm-Liouville problem, a generic Robin
boundary condition can be expressed equivalently either in
terms of a linear combination between a solution and its
derivative or in terms of a linear combination between the
Wronskians of such a solution with respect to two linearly
independent solutions, one of which is chosen to be the
principal solution.
In the case at hand, this translates to the following: we

say that a solution Ψζ of (10) satisfies a Robin boundary
condition at z ¼ 1 parametrized by ζ ∈ ½0; πÞ if

lim
z→1

fcosðζÞWz½Ψζ;Ψ1� þ sinðζÞWz½Ψζ;Ψ2�g ¼ 0; ð23Þ

where Ψ1 is the principal solution at z ¼ 1 [(17a) or (18a)],
Ψ2 is a second linearly independent solution [for instance,
Eq. (17b) or (18b)], and both are square integrable in a
neighborhood of z ¼ 1. Here, Wz½u; v� ≐ uðzÞv0ðzÞ −
vðzÞu0ðzÞ is the Wronskian computed with respect to
two differentiable functions u and v. As a consequence,
the solution Ψζ may be written as

ΨζðzÞ ¼ cosðζÞΨ1ðzÞ þ sinðζÞΨ2ðzÞ: ð24Þ

We note that ζ ¼ 0 corresponds to the standard Dirichlet
boundary condition since it guarantees that Ψζ coincides
with Ψ1. At the same time, if ζ ¼ π

2
, we say that Ψζ satisfies

a Neumann boundary condition, coinciding with Ψ2. Yet,
contrary to the Dirichlet boundary condition, this is not a
universal assignment as it depends on the choice of Ψ2.
The requirement of square integrability of both Ψ1 and

Ψ2 near z ¼ 1 implies that a Robin boundary condition can
only be applied when −1 < μ2 < 0, as analyzed in the last
section. For μ2 ≥ 0, only the principal solution Ψ1 is square
integrable near z ¼ 1, and, hence, no boundary condition is
required. In practice, this is as if the Dirichlet boundary
condition had been chosen.
A similar reasoning could be applied at z ¼ 0, but, as we

have shown in the preceding subsection, if we focus only
on square integrable solutions, only one exists, provided
that Im½ ~ω� ≠ 0. Therefore, at z ¼ 0, there is no need to
impose any boundary condition.

IV. TWO-POINT FUNCTION

In this section, we address the main question of this
paper, namely the construction of a class of two-point
functions, investigating whether or not they define a ground
state for a real, massive scalar field in the BTZ black hole
spacetime. We will follow the same procedure employed in
Ref. [22] in the Poincaré patch of an AdS spacetime of an
arbitrary dimension. As we will point out in the subsequent
discussion, the main structural difference lies in the

underlying metric being stationary, unless one considers
the static case (J ¼ 0) in (2).
Dropping for the moment the requirement of individu-

ating a ground state, in general, by the two-point function
(or Wightman function), we refer to a bidistribution Gþ ∈
D0ðM ×MÞ such that

ðP ⊗ IÞGþ ¼ ðI ⊗ PÞGþ ¼ 0; ð25Þ

and

Gþðf; fÞ ≥ 0; ∀ f ∈ C∞
0 ðMÞ: ð26Þ

In addition, the antisymmetric part of Gþ is constrained to
coincide with the commutator distribution, in order to
account for the canonical commutation relations (CCRs)
of the underlying quantum field theory.
In order to make this last requirement explicit, let us

consider the coordinate system ðt; z;ϕÞ introduced in (1)
with r replaced by z as in (9). Working at the level of the
integral kernel for Gþ and imposing the CCRs is tanta-
mount to requiring that the antisymmetric part iGðx; x0Þ,
x; x0 ∈ M, where

iGðx; x0Þ ¼ Gþðx; x0Þ −Gþðx0; xÞ

satisfies (25) together with the initial conditions

Gðx; x0Þjt¼t0 ¼ 0; ð27aÞ

−∂tGðx; x0Þjt¼t0 ¼ ∂t0Gðx; x0Þjt¼t0 ¼
δðz − z0Þδðϕ − ϕ0Þ

J ðzÞ ;

ð27bÞ

with J ðzÞ as in (20).
In order to construct explicitly the two-point function,

we assume that Gþ admits a mode expansion,

Gþðx; x0Þ ¼ lim
ϵ→0þ

X
k∈Z

Z
R

dω
ð2πÞ2 e

−iωðt−t0−iϵÞþikðϕ−ϕ0Þ

× Ĝωkðz; z0Þ; ð28Þ

where x; x0 ∈ M, iϵ has been added as a regularization,
while the limit has to be taken in the weak sense. At this
point, it is convenient to recall that, although both ∂t and ∂ϕ

are global Killing vector fields, a more prominent physical
role is played by the globally timelike Killing vector field χ
defined in (4). More precisely, in the construction of a
ground state, the notion of positive frequencies is played by
~ω ¼ ω − kΩH which is subordinated to χ. Hence, in order
to make the role of ~ω manifest, following the discussion of
Sec. II, we change from ðω; kÞ to ð ~ω; kÞ and from the
coordinates ðt; r;ϕÞ to ð~t; r; ~ϕÞ, where ~ϕ ¼ ϕ −ΩHt and
~t ¼ t. Moreover, since only the positive ~ω-frequencies
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contribute to the two-point function of the ground state, we
can write Ĝωkðz; z0Þ ≐ ~G ~ωkðz; z0ÞΘð ~ωÞ, with ~G ~ωkðz; z0Þ
defined for all ~ω ∈ R.
Taking into account these comments and recalling that

the antisymmetric part ought to satisfy (27a), a natural
requirement consists of looking for ~G ~ωkðz; z0Þ which is
symmetric for exchange of z and z0 and such that
~G− ~ω;−kðz; z0Þ ¼ − ~G ~ωkðz; z0Þ. In this way, the commutator
distribution reads

iGðx; x0Þ ¼ lim
ϵ→0þ

X
k∈Z

Z
R

d ~ω
ð2πÞ2 e

−i ~ωðt−t0−ij ~ωjϵÞþikð ~ϕ− ~ϕ0Þ

× ~G ~ωkðz; z0Þ; ð29Þ

where ~Gωkðz; z0Þ is a mode bidistribution chosen in such a
way that, cf. Eq. (27b),

Z
R

d ~ω
2π

~ω ~G ~ωkðz; z0Þ ¼
δðz − z0Þ
J ðzÞ : ð30Þ

This identity, together with the Fourier series for the delta
distribution along the angular coordinates, guarantees that
finding ~G ~ωkðz; z0Þ is tantamount to constructing a full-
fledged two-point function Gþ, provided that positivity as
in (26) is satisfied. In addition, Eq. (25) entails that the
mode bidistribution is such that

ðL ~ω ⊗ IÞ ~G ~ωkðz; z0Þ ¼ ðI ⊗ L ~ωÞ ~G ~ωkðz; z0Þ ¼ 0;

where L ~ω is defined in (10).
Our next goal will be to use this information to construct

explicitly ~G ~ωkðz; z0Þ in terms of solutions of (10). Our
strategy, as in Ref. [22], will be to obtain an integral
representation for the delta distribution on the rhs of (30),
from which we can read off ~G ~ωkðz; z0Þ. However, and
contrarily to the case of pure AdS analyzed in Ref. [22], we
face a technical hurdle. When dealing with the static case
J ¼ 0, the ODE (10) can be treated as an eigenvalue
problem with spectral parameter ~ω2, and it is possible to
express the delta distribution as an expansion in terms of
the eigenfunctions of L ~ω (resolution of the identity). But
this is not possible when dealing with the nonstatic case
J ≠ 0, in which case the ODE (10) has linear terms in ~ω.
Instead, we may treat L ~ω as a quadratic operator pencil,
i.e., a differential operator with quadratic dependence on
the spectral parameter ~ω. In Appendix A, it is described
how to obtain the expansion of the delta distribution in
terms of eigenfunctions of an operator of this type.
In the following, we present the results for the resolution

of the identity and for the mode expansion of the two-point
function for a fixed Robin boundary condition. We start
from the simplest scenario, μ2 ≥ 0, for which no boundary

condition needs to be imposed to the solutions of (10) at
z ¼ 1, and then consider the more interesting case
−1 < μ2 < 0. The full details of the calculation can be
consulted in Appendix B.

A. Case μ2 ≥ 0

For μ2 ≥ 0, both z ¼ 0 and z ¼ 1 in the Sturm-Liouville
problem associated to (10) are of the limit point type. Using
the results of Appendix B in the case ζ ¼ 0, it is possible to
obtain an integral representation of δðz − z0Þ in terms of
eigenfunctions of L ~ω,

δðz − z0Þ
J ðzÞ ¼

Z
R

d ~ω
2πi

~ω

�
A
B
−
Ā
B̄

�
CΨ1ðzÞΨ1ðz0Þ;

where the constants A, B, and C are defined as

A ¼ Γðc − 1ÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ ; ð31aÞ

B ¼ Γðc − 1ÞΓðaþ b − cÞ
ΓðaÞΓðbÞ ; ð31bÞ

C ¼ l4

4ðr2þ − r2−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p : ð31cÞ

Comparing with (30), we can read off ~G ~ωkðz; z0Þ and write
the two-point function as

Gþðx; x0Þ ¼ lim
ϵ→0þ

X
k∈Z

eikð ~ϕ− ~ϕ0Þ
Z

∞

0

d ~ω
ð2πÞ2 e

−i ~ωð~t−~t0−iϵÞ

×

�
A
B
−
Ā
B̄

�
CΨ1ðzÞΨ1ðz0Þ: ð32Þ

The mode decomposition of Gþ in (32) contains only
positive ~ω-frequencies, and, per construction, its antisym-
metric part satisfies (27). Hence, it is legitimate to call the
state associated withGþ the ground state for a real, massive
scalar field in the BTZ spacetime with μ2 ≥ 0.
An alternative procedure to construct such a state

consists of starting from its counterpart on the full AdS
spacetime, applying subsequently the method of images;
see, e.g., Refs. [31–34]. The net advantage of this
procedure is that the final expression of the two-point
function contains only a sum over a discrete Fourier mode.
While getting rid of the integral along the frequencies
hides the properties of being a ground state, the ensuing
result is more versatile and easily applicable to compute
related quantities, such as the bulk-to-boundary propagator,
which are of interest in the framework of the AdS=CFT
correspondence [35].
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An important related question consists of whether Gþ is
locally of the Hadamard form. Such a property is desirable
not only at a structural level but also for constructing Wick
polynomials, the building blocks for dealing with inter-
actions at a perturbative level. In Ref. [17], it is proven
under rather general hypotheses that a ground state, such as
the one defined by (32) in particular, is always of local
Hadamard form; namely, Gþ identifies a Hadamard state in
every globally hyperbolic subregion of BTZ (for the
definition of the Hadamard state, refer to Ref. [18]). A
more difficult task is to verify if this ground state satisfies a
global Hadamard condition such as the one proposed in
Refs. [22,23] for a quantum state in anti-de Sitter space-
time. Although we conjecture that to be the case, we leave a
rigorous verification for future work.

B. Case − 1 < μ2 < 0

For −1 < μ2 < 0, a Robin boundary condition needs to
be imposed on solutions at z ¼ 1, and therefore the analysis
of the previous section is changed as we obtain a different
two-point function for each possible Robin boundary
condition. We have to consider separately two regimes, ζ ∈
½0; ζ�Þ and ζ ∈ ½ζ�; πÞ, with

ζ� ≐ arctan

�Γð2β − 1ÞjΓð1 − β þ il k
rþ
Þj2

Γð1 − 2βÞjΓðβ þ il k
rþ
Þj2

�
; ð33Þ

where β ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
was defined in (13). Since μ2 ∈

ð−1; 0Þ and thus β ∈ ð1
2
; 1Þ, it follows that ζ� ∈ ðπ

2
; πÞ.

1. Case ζ ∈ ½0;ζ�Þ
For Robin boundary conditions such that ζ ∈ ½0; ζ�Þ, it

turns out that the spectrum of the operator L ~ω in (10) is only
~ω ∈ R and does not include any isolated eigenvalue in
CnR, which would correspond to poles in the Green’s
distribution associated with L ~ω (see Appendixes B and D
for more details). Observe that, since ζ� ∈ ðπ

2
; πÞ, this

scenario includes both the Dirichlet and the Neumann
boundary conditions. This situation is structurally identical
to the one investigated in the previous section for μ2 ≥ 0.
Using the results of Appendix B, we obtain the following
resolution of the identity,

δðz − z0Þ
J ðzÞ ¼

Z
R

d ~ω
2πi

~ω
ðAB̄ − ĀBÞC

jcosðζÞB − sinðζÞAj2ΨζðzÞΨζðz0Þ;

ð34Þ

where the constants A, B, and C are the same as in (31). We
can use this result in combination with (28) and (30) to
obtain, for each ζ ∈ ½0; ζ�Þ,

Gþ
ζ ðx; x0Þ ¼ lim

ϵ→0þ

X
k∈Z

eikð ~ϕ− ~ϕ0Þ
Z

∞

0

d ~ω
ð2πÞ2 e

−i ~ωð~t−~t0−iϵÞ

×
ðAB̄ − ĀBÞC

jcosðζÞB − sinðζÞAj2ΨζðzÞΨζðz0Þ: ð35Þ

Note that this two-point function, valid for scalar fields with
−1 < μ2 < 0, coincides with the one for scalar fields with
μ2 ≥ 0 obtained in (32) if ζ ¼ 0, that is, for Dirichlet
boundary conditions.

2. Case ζ ∈ ½ζ�;πÞ
For Robin boundary conditions such that ζ ∈ ½ζ�; πÞ, it

turns out that the spectrum of the operator L ~ω in (10) not
only contains all ~ω ∈ R but includes also two isolated
eigenvalues in CnR, complex conjugate to each other,
which correspond to poles in the Green’s distribution
associated with L ~ω (see Appendixes B and D for more
details). Denote those eigenvalues by ~ωζ and ~ωζ such that
Im½ ~ωζ� > 0. They are dubbed “bound state frequencies,”
and their corresponding eigensolutions are called “bound
state mode solutions.” The existence of bound state mode
solutions was also verified in Ref. [22] for the case of a
massive scalar field in the Poincaré patch of AdS when
Robin boundary conditions parametrized with ζ ∈ ðπ

2
; πÞ

are imposed at conformal infinity.
Unfortunately, an analytic expression for ~ωζ cannot be

found since, for Im½ ~ωζ� > 0 and fixed ζ, one needs to invert
the equality

tanðζÞ ¼ B
A

				
~ω¼ ~ωζ

;

where the constants A and B are the same as in (31).
This operation can only be completed numerically
(except in very particular cases such as ζ ¼ 0 and
ζ ¼ π=2), and a representative example is shown in
Fig. 2. A more qualitative discussion of the behavior of
the solutions ~ωζ as a function of ζ can be found in
Appendix D.
As a consequence of these bound state frequencies, the

resolution of the identity acquires an extra term in com-
parison to (34), which, following Appendix B, can be
computed via Cauchy’s residue theorem, yielding

δðz − z0Þ
J ðzÞ ¼

Z
R

d ~ω
2πi

~ω
ðAB̄ − ĀBÞC

jcosðζÞB − sinðζÞAj2ΨζðzÞΨζðz0Þ

þℜ½ ~ωCDð ~ωÞΨζðzÞΨζðz0Þ�j ~ω¼ ~ωζ
; ð36Þ

where we used the identity ΨζðzÞj ~ω¼ ~ωζ
¼ ΨζðzÞj ~ω¼ ~ωζ

. The
remaining termDð ~ωζÞ cannot be expressed analytically, but
can be defined implicitly (see Appendix B).
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Finally, the bound state mode solutions will also contribute to the two-point function so that its antisymmetric part still
obeys (27), and, consequently, the CCRs of the quantum field theory are satisfied. Using all the above information in
combination with (28) and (30), the two-point function for the putative ground state may be written, for each ζ ∈ ½ζ�; πÞ,

Gþ
ζ ðx; x0Þ ¼ lim

ϵ→0þ

X
k∈Z

eikð ~ϕ− ~ϕ0Þ
Z

∞

0

d ~ω
ð2πÞ2 e

−i ~ωð~t−~t0−iϵÞ ðAB̄ − ĀBÞC
jcosðζÞB − sinðζÞAj2ΨζðzÞΨζðz0Þ

þ i
X
k∈Z

eikð ~ϕ− ~ϕ0Þðe−i ~ωζð~t−~t0Þ þ e−i ~̄ωζð~t−~t0ÞÞℜ½CDð ~ωÞΨζðzÞΨζðz0Þ�j ~ω¼ ~ωζ
: ð37Þ

Notice that for ζ ¼ ζ� the two bound state frequencies
both coincide with the real value ~ω ¼ 0. In this case, the
integral over positive ~ω-frequencies has to be interpreted as
a Cauchy principal value for ~ω ¼ 0, while the contribution
of the bound state mode solutions is calculated using the
Sokhotsky-Plemelj formula for distributions.
To conclude this section, we comment on the physical

significance of the two-point functions obtained in (35)
and (37). In the first case, we are dealing with a generali-
zation of (32) to Robin boundary conditions. Hence,
Eq. (35) is a genuine ground state built only out of positive
~ω-frequencies, and, using once more the results of
Ref. [17], it satisfies the local Hadamard condition. On
the contrary, in (37), there is an additional contribution due
to bound state frequencies ~ωζ, the existence of which spoils
the property of Gþ

ζ of being a ground state. For this reason,
it is not possible to conclude directly whether, in the
presence of bound sate frequencies, we have constructed a
Hadamard, and hence physically satisfactory, state. We
plan to investigate this issue in future work.

V. CONCLUSIONS

In this paper, we have addressed two different, albeit
related, questions. The first concerns the structural

properties of a real, massive scalar field in BTZ spacetime,
with an arbitrary coupling to scalar curvature. More
precisely, since the underlying background is not globally
hyperbolic, the equation of motion ruling the dynamics
cannot be solved only assigning initial data on a partial
Cauchy surface (a codimension-1, acausal, spacelike sur-
face that is intersected by any complete timelike curve at
most once), but also a boundary condition at infinity has to
be imposed. In this work, we focused our attention on those
of the Robin type, proving under which constraints on the
parameters of the theory they can be imposed and sub-
sequently constructing explicitly the associated solutions of
the equation of motion.
In the second part of the paper, we used this result to

address whether it is possible to associate to a real, massive
scalar field in BTZ spacetime a two-point function, which
can be in turn read as the building block of a ground
state. We have given a positive and explicit answer to this
query for a large class of Robin boundary conditions.
Nonetheless, we have highlighted that there exists of a
range of boundary conditions that must be excluded, those
for which bound state mode solutions occur. When this is
not the case, the two-point function possesses some nice
physical properties, the most notable one being of local
Hadamard form. Hence, the states that we have constructed

FIG. 2. Real and imaginary part of the bound state frequency ~ωζ as a function of the parameter ζ defining the Robin boundary
condition for a BTZ black hole with l ¼ 1, rþ ¼ 5, and r− ¼ 3 and a scalar field with μ2 ¼ −0.65 and k ¼ 1. The bound state mode
solutions exist for values of ζ between ζ� ≈ 0.5625π and π.
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are suitable for defining an algebra of Wick polynomials
which are the key ingredient to discussing interactions at a
perturbative level.
Besides offering one of the first examples of a ground

state for a quantum field theory in the exterior region of a
rotating black hole, this work prompts several future
directions of investigation. On the one hand, one could
prove the existence of a thermal counterpart of our ground
states, hence obtaining in this framework the analog of the
Hartle-Hawking state in Schwarzschild spacetime. On the
other hand, one could investigate Hawking radiation in this
context and its interplay with the rotation of the black hole,
by using the method of Parikh and Wilczek [39], recently
extended to the framework of algebraic quantum field
theory in Ref. [40]. A more long-term and ambitious goal is
the explicit construction of a regularized stress-energy
tensor, to be used in the analysis of the semiclassical
Einstein equations, extending the work of Ref. [41]. We
hope to come back to these problems in the near future.
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APPENDIX A: DELTA FUNCTION AS AN
EXPANSION IN EIGENFUNCTIONS OF A
QUADRATIC EIGENVALUE PROBLEM

Our goal in this Appendix is to give a formula for the
expansion of the delta distribution in terms of eigenfunc-
tions of a differential operator with quadratic dependence
on the spectral parameter like in (10), as it is necessary in
the calculations of Sec. IV. More precisely, we want to
obtain the spectral resolution of the identity for quadratic
operator pencils, specifically concentrating on the case of
unbounded operators coming from Sturm-Liouville ODEs
as the one above. While the spectral theory of polynomial
operator pencils has been widely studied [42,43], it is not a
topic often covered in standard references on spectral
theory [44,45].

Consider a family of operators defined on a Hilbert space
H, referred to as a quadratic operator pencil,

S ~ω ¼ Pþ ~ωR1 þ ~ω2R2; ðA1Þ

with (S1)R1,R2, andR−1
2 all bounded and self-adjoint and

P unbounded, closed, and Hermitian on a dense domain
DðS ~ωÞ ⊂ H, as is the case with our main example S ~ω ¼
J −1L ~ω onH ¼ L2ðð0; 1Þ;J ðzÞdzÞ, where L ~ω is defined in
(10) and J ðzÞ is defined in (20).
Define the resolvent of S ~ω as T ~ω ¼ S−1~ω , when it exists.

The resolvent set ρðS ~ωÞ ⊂ C consists of all values of ~ω ∈ C
such that T ~ω exists and is a bounded operator. As usual, we
define the spectrum σðS ~ωÞ ¼ CnρðS ~ωÞ. We will show that,
when (S2) σðS ~ωÞ consists only of a subset of R together
with a finite number of isolated points in CnR symmetric
with respect to complex conjugation, the identity operator
can be represented by the integral

I ¼ lim
ς→∞

Z
ς

−ς

d ~ω
2πi

lim
ϵ→0þ

~ωðT ~ω−iϵ − T ~ωþiϵÞR2 þ
I
C
∘
d ~ω
2πi

~ωT ~ω;

ðA2Þ

where the contour C
∘
illustrated in Fig. 3 positively and

simply encircles the nonreal part of the spectrum, the inner
ϵ → 0þ limit is taken in the sense of distributions in ~ω
(boundary values of holomorphic functions define a special
kind of distribution, Ref. [46], Chap. IX), and the outer
ς → ∞ limit is taken in the sense of the strong operator
topology.
The key idea is to linearize the quadratic operator pencil

to a linear operator pencil S ~ω, while doubling the size of the
Hilbert space, in a way that keeps the spectral problems of
S ~ω and S ~ω equivalent. Since the spectral theory of linear
operator pencils (essentially, generalized eigenvalue prob-
lems) is well known, we can leverage this equivalence
to obtain the desired formulas for S ~ω. More precisely,
consider the following linear operator pencil defined on
H2 ¼ H ⊕ H:

FIG. 3. Contour for the integral representation of the identity
operator in (A2).
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S ~ω ¼ Pþ ~ωR ¼
�
P 0

0 −R2

�
þ ~ω

�
R1 R2

R2 0

�
: ðA3Þ

The linear pencil S ~ω is related to the quadratic one S ~ω by
the basic identities

S ~ω

�
I

~ω

�
Ψ ¼

�
I

0

�
S ~ωΨ; ðA4Þ

S ~ω

�
I 0

��Ψ
Φ

�
¼
�
I ~ω

�
S ~ω

�Ψ
Φ

�
: ðA5Þ

It is easy to see that, whenR1 andR2 are bounded and self-
adjoint, so is R, and when in addition P is closed and
Hermitian on DðS ~ωÞ, so is P on DðS ~ωÞ ¼ DðS ~ωÞ ⊕ H.
While there are many possible linearizations of a quadratic
operator pencil, we have chosen this one to preserve these
self-adjointness properties.
Define the resolvent T ~ω ¼ S−1

~ω , when it exists. The
spectrum and resolvent set σðS ~ωÞ, ρðS ~ωÞ ⊂ C are defined
in the usual way, essentially exactly as above. Direct
calculation shows that, when both exist, the resolvents
of S ~ω and S ~ω are related to each other by

T ~ω ¼
�
I

~ω

�
T ~ω

�
I ~ω

�
þ
�
0 0

0 −R−1
2

�

¼
�

T ~ω ~ωT ~ω

~ωT ~ω ~ω2T ~ω −R−1
2

�
; ðA6Þ

T ~ω ¼
�
I 0

�
T ~ω

�
I

0

�
¼ 1

~ω

�
I 0

�
T ~ω

�
0

I

�
: ðA7Þ

From the above formulas, it is clear that when T ~ω exists and
is bounded, so is T ~ω, and vice versa. Thus, ρðS ~ωÞ ¼ ρðS ~ωÞ,
and, necessarily, σðS ~ωÞ ¼ σðS ~ωÞ, which makes precise the
sense in which the spectral problems of the two operator
pencils equivalent. Once we know what ρðS ~ωÞ is, using the
boundedness of R, a variant of Theorem VI.5 of Ref. [44]
shows that T ~ω is analytic on ρðS ~ωÞ ¼ ρðS ~ωÞ, which implies
by the explicit relationship between them that T ~ω is also
analytic on ρðS ~ωÞ.
Let ν ∈ ρðS ~ωÞ ¼ ρðS ~ωÞ, and let Cν ⊂ ρðS ~ωÞ ¼ ρðS ~ωÞ be

a contour that simply encircles ν, though in the negative
direction, meaning that, upon deformation, Cν has a chance
of simply and positively encircling σðS ~ωÞ. However, since
our σðS ~ωÞ is unbounded, the deformation of the contour
will have to go through a limiting procedure. There is no
need for Cν to be connected. In fact, it is advantageous to
have a connected component of Cν contained in each
connected component of ρðS ~ωÞ. Provided that the resolvent
G ~ω is analytic on ρðS ~ωÞ, the Cauchy residue formula gives

TνR ¼ −
I
Cν

d ~ω
2πi

1

~ω − ν
T ~ωR: ðA8Þ

Multiplying both sides by R−1Sν, we get

I ¼
I
Cν

d ~ω
2πi

�
T ~ωR −

I
~ω − ν

�
; ðA9Þ

where the contour Cν can be deformed at will, as long as it
remains within ρðS ~ωÞnfνg.
We can deform the contour Cν to the desired limiting

form in (A2) if we can take advantage of an abstract
spectral representation for the operator R−1P, that is (S3)
there exists a projection operator valued measure EðνÞ
on σðS ~ωÞ, satisfying the usual commutation and monoto-
nicity conditions, giving the spectral representation
R−1P ¼ RσðS ~ωÞ νdEðνÞ. As a consequence, we also get

the spectral representation T ~ωR ¼ RσðS ~ωÞ
1

νþ ~ω dEðνÞ. If we
let Eς ¼ Eðfν ∈ Cjjνj < ςgÞ, then Eς → I strongly as
ς → ∞ and ⋃ς>0 ran Eς is dense in H2.
Another consequence of the abstract spectral represen-

tation is that T ~ωREς is now analytic for j ~ωj > ς and has the
strong asymptotic expansion T ~ωREς ¼ 1

~ωEς þOð 1
~ω2Þ.

Multiplying both sides of (A9) by Eς, we get

Eς ¼
I
Cν

d ~ω
2πi

�
EςT ~ωR −

Eς

~ω − ν

�
−
I
Cν

d ~ω
2πi

I − Eς

~ω − ν
:

The second integral can be evaluated immediately and
combined with the left-hand side. In the first integral, we

can deform the contour Cν to the contour Cς ∪ Cϵ
ς ∪ C

∘
, as

illustrated in Fig. 3. Because of the asymptotics mentioned
above, the integral over the large circle Cς contributes at the

order Oð1ςÞ. On the other hand, the term
Eς

~ω−ν is analytic over

the contours C
∘
, Cϵ

ς and their interiors, so its contribution
vanishes, which leaves us with

I ¼
I
Cϵ
ς

d ~ω
2πi

T ~ωREς þ
I
C
∘
d ~ω
2πi

T ~ωREς þOðς−1Þ: ðA10Þ

Next, before taking the limits ϵ → 0þ and ς → ∞, we
multiply both sides of (A10) by an arbitrary vς0 ∈ H2 such
that vς0 ¼ Eςvς0 for any ς > ς0, so that

vς0 ¼
I
Cϵ
ς

d ~ω
2πi

T ~ωREςvς0 þ
I
C
∘
d ~ω
2πi

T ~ωREςvς0 þOðς−1Þ

¼
Z

ς

−ς

d ~ω
2πi

lim
ϵ→0þ

ðT ~ω−iϵ − T ~ωþiϵÞREςvς0

þ
I
C
∘
d ~ω
2πi

T ~ωREςvς0 þOðς−1Þ

¼ lim
ς→∞

Z
ς

−ς

d ~ω
2πi

lim
ϵ→0þ

ðT ~ω−iϵ − T ~ωþiϵÞRvς0

þ
I
C
∘
d ~ω
2πi

T ~ωRvς0 :
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Note that the ϵ → 0þ limit is taken in the distributional
sense with respect to ~ω. Finally, using a variant of the
Banach-Steinhaus theorem (Theorem 2.11.4 of Ref. [47]),
we obtain the following strong limit,

R−1 ¼ lim
ς→∞

Z
ς

−ς

d ~ω
2πi

lim
ϵ→0þ

ðT ~ω−iϵ − T ~ωþiϵÞ þ
I
C
∘
d ~ω
2πi

T ~ω;

where to apply the theorem we need to recall that finite
linear combinations of vectors like vς0 are dense in H2 and
note that, due to (A10), the norms of the integralsZ

ς

−ς

d ~ω
2πi

lim
ϵ→0þ

ðT ~ω−iϵ − T ~ωþiϵÞ þ
I
C
∘
d ~ω
2πi

T ~ω

are uniformly bounded for large σ.
Using the second equality in (A6) and the formula

R−1 ¼
�
R1 R2

R2 0

�−1
¼
�

0 R−1
2

R−1
2 −R−1

2 R1R−1
2

�
ðA11Þ

finally gives us the desired identity (A2).
The argument we have just presented, for the linear

operator pencil, mimics that of Ref. [25], Chap. 9. There,
the existence of the spectral measure EðνÞ followed from
the standard spectral theorem for self-adjoint operators on a
Hilbert space, with the operator R−1P being self-adjoint
with respect to the weighted inner product ½v;u� ¼ ðv;RuÞ,
which was assumed to be positive definite. In our case,
½v;u� is clearly indefinite and thus defines a Krein space
K ¼ ðH2; ½−;−�Þ rather than a Hilbert space. Fortunately,
in the Krein space setting, we can still appeal to a spectral
theorem, provided that the operator R−1P is definitizable.
This will indeed be the case for the specific operators
defined in Appendix B. However, since verifying the
necessary hypothesis is rather technical, we relegate them
to Appendix E. A more hands-on alternative to hypothesis
(S3) would be a direct estimate of the form T ~ω ¼ 1

~ωR
−1 þ

Oð 1
~ω2Þ that is uniform over a neigborhood of ~ω ¼ ∞ minus

a sector of a positive angle containing the real axis. Such an
estimate could be obtained by a WKB analysis of the
differential operators discussed in Appendix B, which may
be considered in future work.

APPENDIX B: EXPLICIT CALCULATION OF
THE DELTA INTEGRAL REPRESENTATION

In this Appendix, we show in detail the procedure to
compute the delta integral representation (30) and, hence,
the mode expansion of the two-point function (28) for the

case in which the mass parameter is such that −1 < μ2 < 0
and Robin boundary conditions parametrized by ζ ∈ ½0; πÞ
are imposed at z ¼ 1. The results for μ2 ≥ 0 may be simply
obtained by setting ζ ¼ 0.
Now, let us apply the general discussion from

Appendix A to the differential operator L ~ω introduced in
(10), which we write for convenience as

L ~ωΨðzÞ ¼
d
dz

�
z
dΨðzÞ
dz

�
−
�
l2k2ð1 − zÞ − r2þμ2

4r2þð1 − zÞ

−
~ωl3kr−

2rþðr2þ − r2−Þð1 − zÞ −
~ω2l4J ðzÞ
4ðr2þ − r2−Þ

�
ΨðzÞ;

ðB1Þ
with J ðzÞ the same as in (20). We let the Hilbert space be
H ¼ L2ðð0; 1Þ;J ðzÞdzÞ, and we let the quadratic operator
pencil be

S ~ωΨðzÞ ¼
1

J ðzÞL ~ωΨðzÞ: ðB2Þ

This operator satisfies the hypotheses (S1), (S2), and
(S3) from Appendix A. The verification of the hypotheses
is of a much more technical nature and is relegated to
Appendixes C, D, and E, respectively.
We want to construct a Green’s distribution G ~ω;ζ asso-

ciated to L ~ω consisting of the product of square integrable
solutions of L ~ωΨ ¼ 0 at both z ¼ 0 and z ¼ 1. For that, we
introduce

u ~ωðzÞ ¼

Ψ3ðzÞ; Im½ ~ω� > 0;

Ψ4ðzÞ; Im½ ~ω� < 0;
ðB3Þ

with Ψ3 and Ψ4 defined in (21), which is uniquely chosen
by the property of being L2 at z ¼ 0, as seen in Sec. III C.
We also introduce

Ψ ~ω;ζðzÞ ¼ cosðζÞΨ1ðzÞ þ sinðζÞΨ2ðzÞ; ðB4Þ
with Ψ1 and Ψ2 defined either by (17) or (18), which is
uniquely chosen by the property of being L2 at z ¼ 1 when
−1 < μ2 < 0 and satisfying Robin boundary conditions
parametrized by ζ ∈ ½0; πÞ. Note that, given the identity
L ~ω ¼ L ~̄ω, one has u ~̄ω ¼ u ~ω and Ψ ~̄ω;ζ ¼ Ψ ~ω;ζ.
The Green’s distribution G ~ω;ζ may then be written as

G ~ω;ζðz; z0Þ ¼

N −1

~ω;ζu ~ωðzÞΨ ~ω;ζðz0Þ; z ≤ z0;

N −1
~ω;ζu ~ωðz0ÞΨ ~ω;ζðzÞ; z ≥ z0;

ðB5Þ

with

N ~ω;ζ ¼ −zWz½u ~ω;Ψζ� ¼
8<
:

cosðζÞ ΓðcÞΓðaþb−cþ1Þ
ΓðaÞΓðbÞ þ sinðζÞ ΓðcÞΓðc−a−bþ1Þ

Γðc−aÞΓðc−bÞ ; Im½ ~ω� > 0;

cosðζÞ Γð2−cÞΓðaþb−cþ1Þ
Γða−cþ1ÞΓðb−cþ1Þ þ sinðζÞ Γð2−cÞΓðc−a−bþ1Þ

Γð1−aÞΓð1−bÞ ; Im½ ~ω� < 0;
ðB6Þ
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where the parameters a, b, and c are as in (15). The
normalization constant N ~ω;ζ was evaluated using the
intermediate result

Wz½Ψ1;Ψ2� ¼
aþ b − c

z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
z

;

and the following connection formulas of hypergeometric
functions (see Eqs. (15.10.17–18) of Ref. [38]):

Ψ3ðzÞ ¼
ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞΨ1ðzÞ

þ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ Ψ2ðzÞ; ðB7aÞ

Ψ4ðzÞ ¼
Γð2 − cÞΓðc − a − bÞ
Γð1 − aÞΓð1 − bÞ Ψ1ðzÞ

þ Γð2 − cÞΓðaþ b − cÞ
Γða − cþ 1ÞΓðb − cþ 1ÞΨ2ðzÞ: ðB7bÞ

By inspection of (B5) and (B6), one has that N ~ω;ζ ¼
N ~̄ω;ζ and G ~ω;ζðz; z0Þ ¼ G ~̄ω;ζðz0; zÞ. Moreover, as noted in
Appendix D, N ~ω is analytic on Im½ ~ω� ≠ 0 and has at most
two isolated zeros, the bound state frequencies, that are
reflection symmetric about the real axis, forming a set

BSζ ⊂ C such that BSζ ¼ BSþζ ∪ BSþζ with Im½BSþζ � > 0.
We can now apply formula (A2) to write the following

integral representation of the delta distribution,

4ðr2þ − r2−Þ
l4J ðzÞ δðz − z0Þ ¼ −

Z
R

d ~ω
2πi

~ωΔG ~ω;ζðz; z0Þ

þ
I
C
∘
d ~ω
2πi

~ωG ~ω;ζðz; z0Þ; ðB8Þ

where the contour C
∘
illustrated in Fig. 3 positively and

simply encircles the bound state frequencies in BSζ, and

ΔG ~ω;ζðz; z0Þ ≐ lim
ϵ→0þ

½G ~ωþiϵ;ζðz; z0Þ − G ~ω−iϵ;ζðz; z0Þ� ðB9Þ

should be interpreted as a distribution in ~ω. An appli-
cation of Cauchy’s residue theorem gives the integral
representation

δðz − z0Þ
J ðzÞ ¼ −

l4

4ðr2þ − r2−Þ
�Z

R

d ~ω
2πi

~ωΔG ~ω;ζðz; z0Þ

þ
X
~ω0∈BSζ

Res ~ω¼ ~ω0 ½ ~ωG ~ω;ζðz; z0Þ�
�
: ðB10Þ

Both integrands in (B10) can be computed rather
explicitly, except for analytic expressions for the bound
state frequencies (see Appendix D). Introducing

A ¼ Γðc − 1ÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ ; B ¼ Γðc − 1ÞΓðaþ b − cÞ

ΓðaÞΓðbÞ ;

and using the connection formulas (B7a) and (B7b), one
may write

u ~ωðzÞ ¼

 ðc − 1Þ½AΨ1ðzÞ þ BΨ2ðzÞ�; Im½ ~ω� > 0;

ð1 − cÞ½ĀΨ1ðzÞ þ B̄Ψ2ðzÞ�; Im½ ~ω� < 0;

and

N ~ω;ζ ¼

ð1−cÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þμ2

p
½cosðζÞB− sinðζÞA�; Im½ ~ω�> 0;

ðc−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þμ2

p
½cosðζÞB̄− sinðζÞĀ�; Im½ ~ω�< 0:

Hence, for z < z0,

ΔG ~ωðz; z0Þ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μ2
p �

AΨ1ðzÞ þ BΨ2ðzÞ
cosðζÞB − sinðζÞA

−
ĀΨ1ðzÞ þ B̄Ψ2ðzÞ
cosðζÞB̄ − sinðζÞĀ

�
Ψζðz0Þ

¼ ĀB − AB̄
jcosðζÞB − sinðζÞAj2

ΨζðzÞΨζðz0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p ; ðB11Þ

and the result is also valid for z > z0.
Now, let us consider the residues at a bound state

frequency ~ωζ ∈ BSþζ . When it exists, it is an isolated root
of N ~ω;ζ ¼ 0 and

Res ~ω¼ ~ωζ
½ ~ωG ~ω;ζðz; z0Þ� ¼

~ωζ

2
Dð ~ωζÞΨ ~ωζ ;ζðzÞΨ ~ωζ ;ζðz0Þ;

ðB12Þ

where Dð ~ωζÞ ¼ D2ð ~ωζÞ=D1ð ~ωζÞ. From the Laurent series
of N ~ω;ζ, we get

D1ð ~ωζÞ ≐ l2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
iðr2þ − r2−Þ

fsinðζÞA½ðrþ þ r−Þψðc − aÞ

þ ðrþ − r−Þψðc − bÞ − 2rþψðcÞ�ð1 − cÞ
− cosðζÞB½ðrþ þ r−ÞψðbÞ þ ðrþ − r−ÞψðaÞ
− 2rþψðcÞ�ð1 − cÞgj ~ω¼ ~ωζ

;

where ψ is the digamma function. Since N ~ωζ ;ζ ¼ 0, the
solutions u ~ωζ

and Ψ ~ωζ ;ζ are no longer linearly independent,
and their ratio (recall that Im½ ~ωζ� > 0) is

D2ð ~ωζÞ ≐
u ~ωζ

ðzÞ
Ψ ~ωζ ;ζðzÞ

¼

 secðζÞðc − 1ÞAj ~ω¼ ~ωζ

; cosðζÞ ≠ 0;

cscðζÞðc − 1ÞBj ~ω¼ ~ωζ
; sinðζÞ ≠ 0:
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Finally, the spectral resolution of the delta distribution
takes the form

δðz − z0Þ
J ðzÞ ¼ l4

4ðr2þ − r2−Þ

×

�Z
R

d ~ω
2πi

~ω
AB̄ − ĀB

jcosðζÞB − sinðζÞAj2
ΨζðzÞΨζðz0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μ2
p

þ
X

~ωζ∈BSþζ

ℜ½ ~ωζDð ~ωζÞΨ ~ωζ ;ζðzÞΨ ~ωζ ;ζðz0Þ�
�
:

ðB13Þ
We have taken advantage of the fact that bound state frequen-
cies come in complex conjugate pairs, BSζ¼BSþζ ∪BSþζ , and
of the identities Dð ~ωζÞ ¼ Dð ~ωζÞ, Ψ ~ωζ ;ζðzÞ ¼ Ψ

~ωζ ;ζ
ðzÞ.

APPENDIX C: CHECK OF HYPOTHESIS (S1)

In this Appendix, we show that hypothesis (S1) of
Appendix A is verified for the quadratic operator pencil S ~ω.
First, we discuss the relation of the domain of S ~ω,

DðS ~ωÞ ⊂ H ¼ L2ðð0; 1Þ;J ðzÞdzÞ, to the choice of boun-
dary conditions for L ~ω in (B2). By standard arguments
(Ref. [25], Chap. 3), each choice of boundary conditions
will give a closed operator realization of S ~ω on a dense
domainDðS ~ωÞ. Then, if there exists at least one ~ω ∈ C such
that ~ω; ~̄ω ∈ ρðS ~ωÞ and the corresponding bounded resol-
vents satisfy T�

~ω ¼ T ~̄ω, the closed operator S ~ω will be self-
adjoint, in the sense that S�~ω ¼ S ~̄ω and DðS�~ωÞ ¼ DðS ~ωÞ.
Hence, we need to check that (a) the Green’s distribution
associated to L ~ω, G ~ω exists for at least one ~ω ∈ C, that

(b) T ~ω ¼ G ~ωJ is bounded for at least one ~ω ∈ C, and that
(c) we can satisfy G ~ωðz;z0Þ ¼G ~̄ωðz0;zÞ and hence T�

~ω ¼ T ~̄ω.
The properties (a) and (c) are explicitly checked in
Appendix B for each choice of Robin boundary conditions
parametrized by ζ.
In order to check property (b), we need to prove the

boundedness of the resolvent T ~ω ¼ G ~ωJ . Using the same
notation of Appendix B, for a given ~ω with Im½ ~ω� ≠ 0,
provided that u ~ω and Ψ ~ω;ζ introduced in (B3) and (B4) are
linearly independent, that is, N ~ω;ζ in (B6) does not vanish,
we can get boundedness starting from the more precise
asymptotic estimates:

ju ~ωðzÞj≲ zλð1 − zÞ1−β−ϵ; ðC1aÞ

jΨ ~ω;ζðzÞj≲


z−λð1 − zÞβ; ζ ¼ 0;

z−λð1 − zÞ1−β−ϵ; ζ ≠ 0:
ðC1bÞ

Here, λ ≐ l2rþjIm ~ωj=2ðr2þ − r2−Þ, and the symbol ≲
denotes an inequality up to a multiplicative constant,
uniform over z ∈ ð0; 1Þ where applicable. The constant ϵ >
0 helps to cover the cases with logarithmic singularities,
and it could be chosen to depend on other parameters.
Using the same notation, we also have

jJ ðzÞj ≲ z−1ð1 − zÞ−1: ðC2Þ

The strategy to show boundedness of T ~ω ¼ G ~ωJ is to apply
the so-called weighted Schur test (Theorem 5.2 of
Ref. [48]). The inequalities, where, after a factorization,
we apply the Cauchy-Schwarz inequality,

∥T ~ωΨ∥2 ¼
Z

1

0

dzJ ðzÞ
				
Z

1

0

dz0G ~ωðz; z0ÞJ ðz0ÞΨðz0Þ
				2

≤
Z

1

0

dzJ ðzÞ
�Z

1

0

dz0jG ~ωðz; z0ÞjJ ðz0ÞJ 1ðz0Þ
��Z

1

0

dz0jG ~ωðz; z0Þj
J ðz0Þ
J 1ðz0Þ

jΨðzÞj2
�

≤
Z

1

0

dz0
�Z

1

0

dzJ ðzÞJ 2ðzÞjG ~ωðz; z0Þj
�

J ðz0Þ
J 1ðz0Þ

jΨðz0Þj2

≤
Z

1

0

dz0
J 3ðz0Þ
J 1ðz0Þ

J ðz0ÞjΨðz0Þj2;

show that ∥T ~ωΨ∥2 ≲ ∥Ψ∥2, provided we can find functions
J 1ðzÞ, J 2ðzÞ, J 3ðzÞ satisfying the estimatesZ

1

0

dz0jG ~ωðz; z0ÞjJ ðz0ÞJ 1ðz0Þ≲ J 2ðzÞ;Z
1

0

dzJ ðzÞJ 2ðzÞjG ~ωðz; z0Þj≲ J 3ðz0Þ;
J 3ðz0Þ
J 1ðz0Þ

≲ 1:

The only free choice is actually in J 1, since J 2 and J 3 (or
rather their lower bounds) are then determined by the
properties of G ~ωðz; z0Þ. Given the estimates (C1) and
formula (B5), it is straightforward to show that the
following choices work as desired,

ζ ¼ 0∶

8>><
>>:

J 1ðzÞ ¼ 1;

J 2ðzÞ ¼ ð1 − zÞminðβ;1−2ϵÞ;

J 3ðzÞ ¼ ð1 − zÞminðβ;2−4ϵÞ;

ðC3Þ
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ζ ≠ 0∶

8>><
>>:

J 1ðzÞ ¼ 1;

J 2ðzÞ ¼ ð1 − zÞ1−β−ϵ;
J 3ðzÞ ¼ ð1 − zÞ1−β−ϵ;

ðC4Þ

where, for ζ ≠ 0, we restrict to β ∈ ð1
2
; 1Þ and we choose

ϵ < 1 − β.

APPENDIX D: CHECK OF HYPOTHESIS (S2)

In this Appendix, we show that the hypothesis (S2) of
Appendix A is verified, namely that the spectrum of S ~ω

consists only of R together with at most two isolated points
in CnR, symmetric with respect to complex conjugation.
The Green’s distribution G ~ω;ζ computed in Appendix B

has a branch cut at Im½ ~ω� ¼ 0, and for certain values of ζ, it
can have poles with Im½ ~ω� ≠ 0, which from the explicit
calculations of Appendix B coincide with the zeros of the
normalization coefficient N ~ω;ζ in (B6).
By direct inspection, we know that N ~ω;ζ has at most

isolated zeros, that are reflection symmetric about the real
axis. These bound state frequencies form a set BSζ ⊂ C,

with BSζ ¼ BSþζ ∪ BSþζ with Im½BSþζ � > 0. We conclude
that σðS ~ωÞ ¼ R ∪ BSζ. By general arguments from
Appendix A, the resolvent T ~ω ¼ S−1~ω is analytic on its
resolvent set ρðS ~ωÞ ¼ CnσðS ~ωÞ.
We will now argue that either BSþζ ¼ ∅ or BSþζ ¼ f ~ωζg

consists of a single point. Using the notation from
Appendix B, the zeros of N ~ω;ζ are precisely the solutions
of the transcendental equation

tanðζÞ ¼ B
A
≐ Θð ~ωÞ ðD1Þ

in the upper half complex plane, Im½ ~ω� > 0 and ζ ∈ ½0; πÞ,
together with their complex conjugates. A and B are as in
IVA. When ζ ¼ π=2, we interpret any ~ω at whichΘð ~ωÞ has
a pole as a solution of (D1). When written out explicitly, the
rhs of (D1) is a ratio of products of gamma functions with
~ω-dependent parameters. Its main characteristics are that,
for generic values of the parameters, it has only the simple
zeros at ~ω�ðnÞ and the simple poles at ~ω�ðnÞ for
n ¼ 0; 1; 2;…, where

~ω�ðnÞ ¼ � k
l
− kΩH − 2iðnþ βÞ ðrþ ∓ r−Þ

l2
; ðD2Þ

~ω�ðnÞ ¼ � k
l
− kΩH − 2iðnþ 1 − βÞ ðrþ ∓ r−Þ

l2
; ðD3Þ

as well as the asymptotic behavior

Θð ~ωÞ ¼ Γð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 1

p
Þ

Γð−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 1

p
Þ

�
l4ð−i ~ωÞ2
4ðr2þ − r2−Þ

�−
ffiffiffiffiffiffiffiffi
μ2þ1

p

× ½1þOðj ~ωj−1Þ� ðD4Þ

for j ~ωj → ∞, which follows from the Stirling asymptotic
formula. The branch of the power function must agree with
the principal branch when −i ~ω > 0. Some of the poles or
zeros may merge for special values of the parameters.
The zeros and poles of Θð ~ωÞ give us the explicit

solutions of (D1), respectively, for ζ ¼ 0 (Dirichlet) and
ζ ¼ π=2 (Neumann) boundary conditions. For a general
value of ζ, the transcendental nature of Eq. (D1) prevents us
from giving explicit solutions. Although this equation
could certainly be solved numerically for any value of
the parameters μ2, l, rþ, r−, and k describing the BTZ
black hole and the scalar field, we can make the following
qualitative conclusions.
Since ζ is always real, ~ω ∈ C for which Θð ~ωÞ ∉ R is

never a solution of (D1). On the other hand, when Θð ~ωÞ is
real, Eq. (D1) is certainly satisfied for ζ ¼ arctanðΘð ~ωÞÞ.
Thus, for fixed ζ, the solutions of (D1) exist and lie on the
lines of real phase arg½Θð ~ωÞ� ¼ 0 or π. Roughly speaking,
lines of the real phase stretch between the poles and zeros
of Θð ~ωÞ, also with one such line stretching to ∞ through
the upper half plane from the pole with the largest Im½ ~ω�, as
can be deduced by (D4).
In the case μ2 ≥ 0, only the ζ ¼ 0 (Dirichlet) boundary

condition is allowed (see Sec. III C), which corresponds to
zeros of Θð ~ωÞ. As can be seen from (D2), all of the zeros
are confined to the lower half complex plane, and so there
are no solutions of (D1) with Im½ ~ω� > 0. Therefore, in this
case, there are no bound state frequencies, BSþζ ¼ ∅.
When −1 < μ2 < 0, all the poles and zeros lie in the

lower half complex plane, and closest to the real axis is the
pole at

~ωþð0Þ ¼ k
l
− kΩH − ið1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 1

q
Þ ðrþ − r−Þ

l2
:

The solutions with Im½ ~ω� > 0 must lie on the single line of
the real phase stretching from this pole and are para-
metrized by ζ ∈ ½ζ�; πÞ. This phase line crosses the
Im½ ~ω� ¼ 0 line at ~ω ¼ 0, where

Θð0Þ ¼
Γð2β − 1ÞjΓð1 − β þ il k

rþ
Þj2

Γð1 − 2βÞjΓðβ þ il k
rþ
Þj2 ¼ tanðζ�Þ:

Since β ∈ ð1
2
; 1Þ, then ζ� ∈ ðπ

2
; πÞ. Qualitatively, we also

see that the solution ~ω ¼ ~ωζ is simple1 and of course
isolated. Hence, in this case, BSζ ¼ f ~ωζ; ~̄ωζg. The real and

1This could be rigorously established by a careful application
of the argument principle, which we omit for brevity, to the
function fð ~ωÞ ¼ tanðζÞ − Θð ~ωÞ, which confirms the existence of
a single simple zero ~ωζ ∈ Im½ ~ω� provided the integrals

H f0ð ~ωÞ
fð ~ωÞ

d ~ω
2πi

stabilize to the value 1 over a sequence of simple closed and
positive contours of which the interior exhausts the upper half
complex plane.
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imaginary parts of ~ωζ are plotted as a function of ζ in Fig. 2
for a particular value of other parameters.

APPENDIX E: CHECK OF HYPOTHESIS (S3)

In this Appendix, we show that the hypothesis (S3) of
Appendix A is verified, namely that there exists a spectral
measure for the linearized pencil S ~ω in (A3).
Following the notation of Appendix A, the inner product

space K ¼ ðH2; ½−;−�Þ, with bounded bilinear form
½v;u� ¼ ðv;RuÞ, defines a Krein space [49,50], that is,
a Banach (in this case Hilbert) space with a bounded
Hermitian scalar product that need not be positive
definite. The spectral problem of the linear operator
pencil S ~ω ¼ Pþ ~ωR is equivalent to the standard spectral
problem −R−1P ¼ ~ωI, where the operator A ≐ −R−1P is
now self-adjoint with respect to the Krein space scalar
product ½−;−�.
Unfortunately, unlike the Hilbert space case, there is no

spectral theorem available for an arbitrary self-adjoint
operator on a Krein space. However, there are some special
cases where the spectral theorem, and hence the existence
of a spectral measure EðνÞ as requested by hypothesis (S3)
in Appendix A, is available. One such case is when A is
definitizable, that is, when there exists a degree k poly-
nomial pð ~ωÞ with real coefficients such that ½u; pðAÞu� ≥
0 for each u ∈ DðAkÞ. The corresponding spectral theorem
can be found in Refs. [49,51]. Below, we give a brief
argument verifying that the operator A discussed in
Appendixes A and B is definitizable, hence fulfilling
hypothesis (S3).
The argument is as follows. First, suppose that there

exists a definitizable closed restriction A0 of A to a smaller
domain DðA0Þ ⊂ DðAÞ, since ½u; ð−A0Þu� ≥ 0 for all
u ∈ DðA0Þ. While A0 itself may no longer be self-adjoint,
the Krein space analog of the Friedrichs extension [52] then
gives us a self-adjoint extension A1, that still satisfies
½u; ð−A1Þu� ≥ 0 on its domain. Second, since A is essen-
tially defined by an ordinary differential operator, the
difference of the resolvents

ðA1 − ~ωIÞ−1 − ðA − ~ωIÞ ðE1Þ

is an operator of finite rank, which is described by the so-
called Krein resolvent formula ([53], Sec. 106). The
finiteness of the rank comes from the fact that an ordinary
differential operator has a finite-dimensional space of
solutions. Finally, it is also known that when at least
one of the Krein self-adjoint operators A1 or A is
definitizable and the difference of their resolvents (E1)
has finite rank for at least one ~ω common to both resolvent
sets, then both operators are definitizable [54].
Recall that we are working with H ¼ L2ðð0; 1Þ;

J ðzÞdzÞ, and consider u ¼ ½Ψ Φ �T ∈ DðA0Þ consisting
of smooth functions with compact support. Unwinding all
the definitions from Appendixes A and B, and writing out
½u; ð−AÞu� explicitly and using integration by parts, we get

ðΨ; ð−J −1L ~ω¼0ÞΨÞ þ ðΦ;R2ΦÞ

¼
Z

1

0

dz

�
z

				 dΨðzÞdz

				2

þ
�
l2k2

4r2þ
þ μ2

4ð1 − zÞ
�
jΨðzÞj2 þ l4J ðzÞjΦðzÞj2

4ðr2þ − r2−Þ
�
:

When μ2 ≥ 0, all the terms appearing under the integral are
manifestly non-negative, meaning that so is the whole
integral. When −1 < μ2 < 0, the integrand is still non-
negative. This can be proven by observing that the term
proportional to k2 in the integrand is strictly greater than 0
and by showing positivity for −J −1L ~ω¼0 when k ¼ 0. Yet,
in this case, in view of (B1) and of the results of
Appendix A, −J −1L ~ω¼0 is a self-adjoint operator with a
strictly positive spectrum, which is tantamount to saying
that it is a positive operator. Thus, the restriction of A to
DðA0Þ does satisfy ½u; ð−A0Þu� ≥ 0 for all u ∈ DðA0Þ. By
the preceding reasoning, this finally implies that A is
definitizable.
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