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We study properties of asymptotically free vectorial gauge theories with gauge groups G ¼ SOðNcÞ and
G ¼ SpðNcÞ and Nf fermions in a representation R of G, at an infrared (IR) zero of the beta function, αIR,
in the non-Abelian Coulomb phase. The fundamental, adjoint, and rank-2 symmetric and antisymmetric
tensor fermion representations are considered. We present scheme-independent calculations of the
anomalous dimensions of (gauge-invariant) fermion bilinear operators γψ̄ψ ;IR to OðΔ4

fÞ and of the

derivative of the beta function at αIR, denoted β0IR, to OðΔ5
fÞ, where Δf is an Nf-dependent expansion

variable. It is shown that all coefficients in the expansion of γψ̄ψ ;IR that we calculate are positive for all

representations considered, so that to OðΔ4
fÞ, γψ̄ψ ;IR increases monotonically with decreasing Nf in the

non-Abelian Coulomb phase. Using this property, we give a new estimate of the lower end of this phase
for some specific realizations of these theories.
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I. INTRODUCTION

The evolution of an asymptotically free gauge theory
from the ultraviolet (UV) to the infrared is of fundamental
importance. The evolution of the running gauge coupling
g ¼ gðμÞ, as a function of the Euclidean momentum scale,
μ, is described by the renormalization-group (RG) beta
function, βg ¼ dg=dt, or equivalently, βα ¼ dα=dt, where
αðμÞ ¼ gðμÞ2=ð4πÞ and dt ¼ d ln μ (the argument μ will
often be suppressed in the notation). The asymptotic
freedom (AF) property means that the gauge coupling
approaches zero in the deep UV, which enables one to
perform reliable perturbative calculations in this regime.
Here we consider a vectorial, asymptotically free gauge
theory (in four spacetime dimensions) with two types of
gauge groups, namely the orthogonal group, G ¼ SOðNcÞ,
and the symplectic group (with even Nc), G ¼ SpðNcÞ,
and Nf copies (“flavors”) of Dirac fermions transforming
according to the respective (irreducible) representations R
of the gauge group, where R is the fundamental (F), adjoint
(A), or rank-2 symmetric (S2) or antisymmetric (A2) tensor.
It may be recalled that for SOðNcÞ, the adjoint and A2

representations are equivalent, while for SpðNcÞ, the
adjoint and S2 representations are equivalent. For technical
convenience, we take the fermions to be massless [1]. In
the case of SOðNcÞ, we do not consider Nc ¼ 2, since
SOð2Þ ≅ Uð1Þ, and a U(1) gauge theory is not asymptoti-
cally free (but instead is infrared-free).
If Nf is sufficiently large (but less than the upper limit

implied by asymptotic freedom), then the beta function has
an IR zero, at a coupling denoted αIR, that controls the UV
to IR evolution [2,3]. Given that this is the case, as the
Euclidean scale μ decreases from the UV to the IR, αðμÞ
increases toward the limiting value αIR, and the IR theory is

in a chirally symmetric (deconfined) non-Abelian Coulomb
phase (NACP) [4]. Here the value α ¼ αIR is an exact IR
fixed point of the renormalization group, and the corre-
sponding theory in this IR limit is scale-invariant and
generically also conformal invariant [5].
The physical properties of the conformal field theory at

αIR are of considerable interest. These properties clearly
cannot depend on the scheme used for the regularization
and renormalization of the theory. (For technical conven-
ience, we restrict our discussion here to mass-independent
schemes.) In usual perturbative calculations, one computes
a given quantity as a series expansion in powers of α to
some finite n-loop order. With this procedure, the result is
scheme-dependent beyond the leading term(s). For exam-
ple, the beta function is scheme-dependent at loop order
l ≥ 3 and the terms in an anomalous dimension are
scheme-dependent at loop order l ≥ 2 [6]. This applies,
in particular, to the evaluation at an IR fixed point. A key
fact is that as Nf (considered to be extended from positive
integers to positive real numbers) approaches the upper
limit allowed by the requirement of asymptotic freedom,
denoted Nu [given in Eq. (2.3) below], it follows that
αIR → 0. Consequently, one can express a physical quantity
evaluated at αIR in a manifestly scheme-independent way
as a series expansion in powers of the variable

Δf ¼ Nu − Nf: ð1:1Þ

For values of Nf in the non-Abelian Coulomb phase such
that Δf is not too large, one may expect this expansion
to yield reasonably accurate perturbative calculations of
physical quantities at αIR [7]. Some early work on this type
of expansion was reported in [7,8]. In [9–13] we have
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presented scheme-independent calculations of a number of
physical quantities at an IR fixed point in an asymptotically
free vectorial gauge theory with a general (simple) gauge
group G and Nf massless fermions in a representation
R of G, including the anomalous dimension of a (gauge-
invariant) bilinear fermion operator up to OðΔ4

fÞ and the

derivative of the beta function at αIR,
dβ
dα jα¼αIR

≡ β0IR, up to
OðΔ5

fÞ. These results for general G and R were evaluated
for G ¼ SUðNcÞ with several fermion representations.
Since the global chiral symmetry is realized exactly in
the non-Abelian Coulomb phase, the bilinear fermion
operators can be classified according to their representation
properties under this symmetry, including flavor-singlet
and flavor-nonsinglet. Let γψ̄ψ denote the anomalous
dimension of the (gauge-invariant) fermion bilinear, ψ̄ψ
and let γψ̄ψ ;IR denote its value at the IR fixed point. The
scheme-independent expansion of γψ̄ψ ;IR can be written as

γψ̄ψ ;IR ¼
X∞
j¼1

κjΔ
j
f: ð1:2Þ

We denote the truncation of the right-hand side of Eq. (1.2)
so the upper limit on the sum over j is the maximal power p
rather than∞ as γψ̄ψ ;IR;Δp

f
. The anomalous dimension γψ̄ψ ;IR

is the same for the flavor-singlet and flavor-nonsinglet
fermion bilinears [14], and hence we use the simple
notations γψ̄ψ ;IR and κj for both.
The coefficients κ1 and κ2 are manifestly positive for any

G and R [9], and we found that for G ¼ SUðNcÞ, κ3 and κ4
are also positive for all of the representations R that we
considered [10–13,15]. This finding implied two monot-
onicity results for G ¼ SUðNcÞ and these R and for the
range 1 ≤ p ≤ 4 where we had performed these calcula-
tions, namely: (i) γψ̄ψ ;IR;Δp

f
increases monotonically as Nf

decreases from Nu in the non-Abelian Coulomb phase;
(ii) for a fixed Nf in the NACP, γψ̄ψ ;IR;Δp

f
increases

monotonically with p. We noted that these results in
[9–13] motivated the conjecture that in a (vectorial,
asymptotically free) gauge theory with a general (simple)
gauge group G and Nf fermions in a representation R of G,
the κj are positive for all j, so that the monotonicity
properties (i) and (ii) would hold for any p in the Δf

expansion and hence also (iii) for fixed Nf in the NACP,
γψ̄ψ ;IR;Δp

f
is a monotonically increasing function of p for all

p; (iv) γψ̄ψ ;IR;Δp
f
increases monotonically as Nf decreases

from Nu; and (v) the anomalous dimension γψ̄ψ ;IR defined
by Eq. (1.2) increases monotonically with decreasing Nf in
the NACP. Clearly, one is motivated to test this conjecture
concerning the positivity of the κj for other groups G and
fermion representations R. Since κ1 and κ2 are manifestly
positive for any G and R, our conjecture on the positivity of
the κj only needs further testing for the range j ≥ 3.

In this paper we report our completion of this task for
the gauge groups SOðNcÞ and SpðNcÞ, with fermions
transforming according to the (irreducible) representations
R listed above, namely F, A, S2, and A2. In the Cartan
classification of Lie algebras, An ¼ SUðnþ 1Þ, Bn ¼
SOð2nþ 1Þ, Cn¼Spð2nÞ, and Dn¼SOð2nÞ. For SOðNcÞ
with even Nc, we restrict to Nc ≥ 6 since the algebra Dn is
simple if n ≥ 3, and for SpðNcÞ, we restrict to even Nc,
owing to theDn ¼ Spð2nÞ correspondence of Lie algebras.
Henceforth, these restrictions on Nc will be implicit.
We calculate the coefficients κj to OðΔ4

fÞ in the Δf series
expansion of the anomalous dimension γψ̄ψ ;IR of the
(gauge-invariant) fermion bilinear ψ̄ψ. Again, this is the
same for the flavor-singlet and flavor-nonsinglet bilinears
[14], so we use the same notation for both. Stating our
results at the outset, we find that (in addition to the
manifestly positive κ1 and κ2) κ3 and κ4 are positive for
both the SOðNcÞ and SpðNcÞ theories and for all of the
representations that we consider. Some earlier work on the
conformal window in SOðNcÞ and SpðNcÞ gauge theories,
including estimates of the lower end of this conformal
window from perturbative four-loop results and Schwinger-
Dyson methods, was reported in [16,17].
We will also use our calculation of γψ̄ψ ;IR to estimate the

value ofNf, denotedNf;cr, that defines the lower end of the
non-Abelian Coulomb phase. We do this by combining
the monotonic behavior that we find for γψ̄ψ ;IR;Δp

f
for all p

that we calculate with an upper bound on this anomalous
dimension from conformal invariance, namely that
γψ̄ψ ;IR ≤ 2 [18] (discussed further below). In addition to
the importance of γψ̄ψ ;IR and β0IR as fundamental properties
of a conformal field theory at a given IRFP, our work is
physically relevant because a knowledge of Nf;cr is
necessary for the construction of quasi-conformal gauge
theories as possible candidates for ultraviolet completions
of the Standard Model [19]. Finally, in addition to our
results on κj, we also calculate the corresponding coef-
ficients dj in the Δf series expansion of β0IR to OðΔ5

fÞ.
Before proceeding, we note that some perspective on

these topics can be obtained from analysis of a vectorial,
asymptotically free gauge theory with N ¼ 1 supersym-
metry (ss) with a gauge group G and Nf pairs of massless

chiral superfields Φ and ~Φ in the respective representations
R and R̄ of G. Here, the upper bound on Nf from the
requirement of asymptotic freedom is Nu;ss ¼ 3CA=ð2TfÞ,
where CA and Tf are group invariants (see Appendix A).
For this theory, one can take advantage of a number of
exact results [20,21]. These include a determination of the
range in Nf occupied by the non-Abelian Coulomb phase,
namely Nu;ss=2 < Nf < Nu;ss [22], and an exact (scheme-
independent) expression for the anomalous dimension
γM;IR of the gauge-invariant bilinear fermion operator
product occurring in the quadratic chiral superfield operator
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product ~ΦΦ at the IR zero of the beta function in the NACP
[21] (equivalent to γψ̄ψ ;IR in the nonsupersymmetric theory)
namely

γM;ss ¼
3CA

2TfNf
− 1 ¼ Nu;ss

Nf
− 1

¼ 1

1 − Δf

Nu;ss

− 1 ¼
X∞
j¼1

�
Δf

Nu;ss

�
j
: ð1:3Þ

As is evident from Eq. (1.3), the coefficient κj;ss in this
supersymmetric gauge theory is

κj;ss ¼
1

ðNu;ssÞj
; ð1:4Þ

which is positive-definite for all j. To the extent that one
might speculate that this property of the supersymmetric
theory could carry over to the nonsupersymmetric gauge
theories considered here, this result yields further motiva-
tion for our positivity conjecture on the κj and the resultant
monotonicity properties for the nonsupersymmetric
gauge theories that we have given in our earlier work.
More generally, in [23] we calculated exact (scheme-
independent) results for anomalous dimensions of a
number of chiral superfield operator products in a vectorial
N ¼ 1 supersymmetric gauge theory [24].
This paper is organized as follows. Some relevant

background and discussion of methodology is given in
Sec. II. In Secs. III and IV we present our results for the κj
and dj coefficients, respectively. Our conclusions are given
in Sec. V and some relevant group-theoretic inputs are
presented in Appendix A.

II. BACKGROUND AND METHODS

A. Beta function and interval I

In this section we briefly review some background and
methodology relevant for our calculations. We refer the
reader to our previous papers [9–13] for more details.
The series expansion of β in powers of α is

β ¼ −2α
X∞
l¼1

bl

�
α

4π

�
l
; ð2:1Þ

where bl is the l-loop coefficient. The truncation of the
infinite series (2.1) to loop order l ¼ n is denoted βnl, and
the physical IR zero of βnl, i.e., the real positive zero
closest to the origin (if it exists) is denoted αIR;nl. The
coefficients b1 [2] and b2 [3] are scheme-independent,
while the bl with l ≥ 3 are scheme-dependent [6]. The
higher-loop coefficients bl with 3 ≤ l ≤ 5 have been
calculated in [25–28] (in the MS scheme [29].) The

conventional expansion of γψ̄ψ as a power series in the
coupling is

γψ̄ψ ¼
X∞
l¼1

cl

�
α

4π

�
l
: ð2:2Þ

The coefficient c1 ¼ 6Cf is scheme-independent, while
the cl with l ≥ 3 are scheme-dependent [6]. The cl were
calculated up to l ¼ 4 in [30] and to l ¼ 5 in [31] (in the
MS scheme).
In general, our calculation of the coefficients κj in

the scheme-independent expansion Eq. (1.2) requires, as
inputs, the beta function coefficients bl with 1≤l≤jþ1
and the anomalous dimension coefficients cl with
1 ≤ l ≤ j. Because the κj are scheme-independent, it does
not matter which scheme one uses to calculate them. Our
calculations used the higher-loop coefficients b3, b4, and b5
from [25,26,28] and the anomalous dimension coefficients
up to c4 from [30].
With a minus sign extracted, as in Eq. (2.1), the

requirement of asymptotic freedom means that b1 is
positive. This condition holds if Nf is less than an upper
(u) bound, Nu, given by the value where b1 is zero

Nu ¼
11CA

4Tf
: ð2:3Þ

Hence, the asymptotic freedom condition yields the
upper bound Nf < Nu. With the overall minus sign
extracted in Eq. (2.1), the one-loop coefficient b1 is positive
if Nf < Nu.
In the asymptotically free regime, b2 is negative if Nf

lies in the interval I

I∶ Nl < Nf < Nu; ð2:4Þ

where the value of Nf at the lower end is [22]

Nl ¼ 17C2
A

2Tfð5CA þ 3CfÞ
: ð2:5Þ

For Nf ∈ I, the two-loop beta function has an IR zero,
which occurs at the value αIR;2l ¼ −4πb1=b2. As Nf

approaches Nu from below, the IR zero of the beta function
goes to zero. AsNf decreases belowNu, the value of this IR
zero increases, motivating its calculation to higher order.
This has been done up to four-loop order in [32–34] and up
to five-loop order in [35]. The scheme dependence has been
studied in [36–38]. For a given G and R, the value of Nf

below which the gauge interaction spontaneously breaks
chiral symmetry is denoted Nf;cr. (Note that Nf;cr does not,
in general, coincide with Nl).

INFRARED FIXED POINT PHYSICS IN SOðNcÞ … PHYSICAL REVIEW D 96, 105015 (2017)

105015-3



B. Interval I for specific R

We proceed to list explicit expressions for the upper and
lower ends of the interval I where the two-loop beta
function has an IR zero, and associated quantities for the
representations of SOðNcÞ and SpðNcÞ under consideration
here. It will be convenient to list these together, with the
understanding that the upper and lower signs refer to
SOðNcÞ and SpðNcÞ, respectively.

1. R =F

For the fundamental representation, R ¼ F, Eqs. (2.3)
and (2.5) yield

Nu;F ¼ 11ðNc ∓ 2Þ
4

ð2:6Þ

and

Nl;F ¼ 17ðNc ∓ 2Þ2
13Nc ∓ 23

: ð2:7Þ

Thus, the intervals I in which the two-loop beta function
has an IR zero for this case R ¼ F for these two respective
theories are

R ¼ F∶ I∶
17ðNc ∓ 2Þ2
13Nc ∓ 23

< Nf <
11ðNc ∓ 2Þ

4
: ð2:8Þ

The maximum values of Δf;F ¼ Nu;F − Nf for Nf ∈ I
for these theories are

Δf;max;F ¼ 3ðNc ∓ 2Þð25Nc ∓ 39Þ
4ð13Nc ∓ 23Þ : ð2:9Þ

2. LNN Limit

For this R ¼ F case, it is of interest to consider the limit

LNN∶ Nc → ∞; Nf → ∞

with r≡ Nf

Nc
fixed and finite

and ξðμÞ≡ αðμÞNc is a finite function of μ: ð2:10Þ

As in our earlier work, we use the symbol limLNN for this
limit (also called the ’t Hooft-Veneziano limit), where
“LNN” stands for “large Nc and Nf” with the constraints in
Eq. (2.10) imposed. One of the useful features of the LNN
limit is that, for a general gauge group G and a given
fermion representation R of G, one can make αIR arbitrarily
small by analytically continuing Nf from the non-negative
integers to the real numbers and letting Nf → Nu.

We define

ru ¼ lim
LNN

Nu

Nc
; ð2:11Þ

and

rl ¼ lim
LNN

Nl

Nc
: ð2:12Þ

The critical value of r such that for r > rcr, the LNN theory
is in the non-Abelian Coulomb phase and hence is inferred
to be IR-conformal is denoted rcr and is defined as

rcr ¼ lim
LNN

Nf;cr

Nc
: ð2:13Þ

We define the scaled scheme-independent expansion
parameter in this LNN limit as

Δr ≡ Δf

Nc
¼ ru − r: ð2:14Þ

In the LNN limit, the coefficient κj;F has the asymptotic

behavior κj;F ∝ 1=Nj
c þOð1=Njþ1

c Þ. Consequently, the
quantities that are finite in this limit are the rescaled
coefficients

κ̂j;F ≡ lim
LNN

Nj
cκj;F: ð2:15Þ

The anomalous dimension γψ̄ψ ;IR is finite in this limit and
is given by

R ¼ F∶ lim
LNN

γψ̄ψ ;IR ¼
X∞
j¼1

κj;FΔ
j
f ¼

X∞
j¼1

κ̂j;FΔ
j
r: ð2:16Þ

In the LNN limit, for both the SOðNcÞ and SpðNcÞ
theories,

LNN∶ ru ¼
11

4
; rl ¼ 17

13
; ð2:17Þ

and the resultant interval Ir, rl < r < ru, is

LNN∶
17

13
< r <

11

4
; i:e:; 1.3077 < r < 2.750: ð2:18Þ

The maximum value, Δr;max ¼ ru − r for r ∈ Ir is

LNN∶ Δr;max ¼ ru − rl ¼ 75

52
¼ 1.4423: ð2:19Þ

3. R =A

For fermions in the adjoint representation, R ¼ A, of
both the SOðNcÞ and SpðNcÞ theories Eqs. (2.3) and (2.5)
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take the form

Nu;A ¼ 11

4
ð2:20Þ

and

Nl;A ¼ 17

16
; ð2:21Þ

so that the interval I for both of these theories is

R ¼ A ⇒ I∶
17

16
< Nf <

11

4
; ð2:22Þ

i.e., 1.0625 < Nf < 2.750. This interval includes only one
physical, integral value of Nf, namely Nf ¼ 2. With a
formal generalization of Nf from positive integral to real
values, the maximal value of Δf;A for Nf ∈ I is

Δf;max;A ¼ 27

16
¼ 1.6875: ð2:23Þ

As noted above, the A and A2 representations are equivalent
in SOðNcÞ, and the A and S2 representations are equivalent
in SpðNcÞ.
For this R ¼ A case, it is also be of interest to consider

the original ’t Hooft limit, denoted here as the LN
(“large Nc”) limit, namely

LN∶ Nc → ∞

with ξðμÞ≡ αðμÞNc a finite function of μ ð2:24Þ

and Nf fixed and finite.

4. R = S2 for SOðNcÞ and R=A2 for SpðNcÞ
For the symmetric rank-2 tensor representation of

SOðNcÞ, S2, Eqs. (2.3) and (2.5) reduce to

Nu;S2;SOðNcÞ ¼
11ðNc − 2Þ
4ðNc þ 2Þ ð2:25Þ

and

Nl;S2;SOðNcÞ ¼
17ðNc − 2Þ2

4ðNc þ 2Þð4Nc − 5Þ : ð2:26Þ

Since Nu;S2;SOðNcÞ < 1 if Nc < 30=7 ¼ 4.286, it follows
that if Nc ¼ 3 or Nc ¼ 4, then the asymptotic freedom
condition forbids an SOðNcÞ theory from having any
fermion in the S2 representation. As Nc increases through
the value 30=7, the upper bound on the number Nf from
asymptotic freedom, Nu;S2;SOðNcÞ, increases through unity,
and as Nc increases through the value 38=3 ¼ 12.667,
Nu;S2;SOðNcÞ increases through the value 2. As Nc → ∞,

Nu;S2;SOðNcÞ approaches the limit 11=4 ¼ 2.75 from below.
Hence, for physical integral values of Nc, in the range
5 ≤ Nc ≤ 12, an asymptotically free SOðNcÞ theory may
have at most Nf ¼ 1 fermion in the S2 representation, and
forNc ≥ 13, this theory may have at most Nf ¼ 2 fermions
in the S2 representation. The lower boundary of the interval
I, Nl;S2;SOðNcÞ, is a monotonically increasing function of Nc

which increases through unity as Nc increases through the
value Nc ¼ 2ð20þ ffiffiffiffiffiffiffiffi

373
p Þ ¼ 78.626 and approaches the

limit 17=16 ¼ 1.0625 as Nc → ∞. Hence, for integral
Nc ≥ 79, the interval I for SOðNcÞ only contains the single
value Nf ¼ 2.
The maximum value of Δf;S2 ¼Nu;S2 −Nl;S2 for SOðNcÞ

and Nf ∈ I is

Δf;max;S2;SOðNcÞ ¼
3ðNc − 2Þð9Nc − 7Þ
4ðNc þ 2Þð4Nc − 5Þ : ð2:27Þ

5. R =A2 for SpðNcÞ
We next consider the antisymmetric rank-2 representa-

tion of SpðNcÞ, A2. This is a singlet for Nc ¼ 2, so in the
present discussion we restrict to (even) Nc ≥ 4. We have

Nu;A2;SpðNcÞ ¼
11ðNc þ 2Þ
4ðNc − 2Þ ð2:28Þ

and

Nl;A2;SpðNcÞ ¼
17ðNc þ 2Þ2

4ðNc − 2Þð4Nc þ 5Þ : ð2:29Þ

Both Nu;A2;SpðNcÞ and Nl;A2;SpðNcÞ decrease monotonically
in the relevant range of (even) Nc ≥ 4 for this theory,
approaching the respective limits 11=4 and 17=16 as
Nc → ∞. The maximum value of Δf;A2

¼ Nu;A2
− Nl;A2

for SpðNcÞ and Nf ∈ I is

Δf;max;A2;SpðNcÞ ¼
3ðNc þ 2Þð9Nc þ 7Þ
4ðNc − 2Þð4Nc þ 5Þ : ð2:30Þ

These results for R ¼ A2 in SpðNcÞ are simply related by
sign reversals of various terms to the results for R ¼ S2
in SOðNcÞ.

C. Conformality upper bound
on anomalous dimension

We denote the full scaling dimension of a (gauge-
invariant) quantity O as DO and its free-field value as
DO;free. The anomalous dimension of this operator, denoted
γO, is defined via the equation [39]

DO ¼ DO;free − γO: ð2:31Þ

INFRARED FIXED POINT PHYSICS IN SOðNcÞ … PHYSICAL REVIEW D 96, 105015 (2017)

105015-5



Operators of particular interest include fermion bilinears of
the form ψ̄ψ ¼ ψ̄RψL þ ψ̄LψR, where it is understood that
gauge indices are contracted in such a way as to yield a
gauge singlet. As discussed above, the anomalous dimen-
sion at the IR fixed point, γψ̄ψ ;IR, is scheme-independent
and is the same for flavor-singlet and flavor-nonsinglet
operators [14], and hence we suppress the flavor indices in
the notation.
There is a lower bound on the full dimension of a

Lorentz-scalar operator O (other than the identity) in a
conformally invariant theory, which is DO ≥ 1 [18]. With
the definition (2.31), this is equivalent to the upper bound
on the anomalous dimension of O. For the nonsupersym-
metric theories considered in this paper, this is the upper
bound

γψ̄ψ ;IR ≤ 2: ð2:32Þ

For the gauge-invariant fermion bilinear occurring in the
quadratic superfield operator product in a supersymmetric
gauge theory, the analogous upper bound is 1 rather than 2,
since ψ occurs in conjunction with the Grassmann θ with
dimension−1=2 in the chiral superfield (see [11] for a more
detailed discussion).
As is evident from Eq. (1.3), the analogue of γψ̄ψ ;IR in the

supersymmetric theory, namely γM;IR, increases monoton-
ically with decreasing Nf in the non-Abelian Coulomb
phase. Furthermore, it saturates its unitarity upper bound
γM;IR ≤ 1 from conformal invariance at the lower end of the
NACP. At present, one does not know if γψ̄ψ ;IR in (vectorial,
asymptotically free) nonsupersymmetric gauge theories
saturates its upper bound of 2 as Nf decreases to Nf;cr

in the conformal, non-Abelian Coulomb phase. Assuming
that these monotonicity and saturation properties also hold
for γψ̄ψ ;IR in the NACP of a (vectorial, asymptotically free)
nonsupersymmetric gauge theory, if one had an exact
expression for γψ̄ψ ;IR, then, for a given G and R, one could
derive the value of Nf at the lower end of the NACP by
setting γψ̄ψ ;IR ¼ 2 and solving for Nf [40]. In practice, one
can only obtain an estimate of Nf;cr in this manner, since
one does not have an exact expression for γψ̄ψ ;IR. One way
that this can be done is via conventional n-loop calculations
of the zero of the beta function at αIR;nl and the value of
γψ̄ψ ;IR at this zero, denoted γψ̄ψ ;IR;nl, which was done up to
the four-loop level in [32,33] and up to the five-loop level in
[35]. An arguably better approach is to work with the
expansion, in powers of Δf [7], of γψ̄ψ ;IR, since this is
scheme-independent. We have done this in [9–11], and up
to order OðΔ4

fÞ in [12,13] (using the five-loop beta
function, as noted above). In order to apply this method
to estimate Nf;cr, it is necessary that all of the coefficients
κj are used for the estimate must be positive, so that the
resultant γψ̄ψ ;IR;Δp

f
monotonically increases with decreasing

Nf in the NACP, and this requirement was satisfied for

G ¼ SUðNcÞ and all of the fermion representations R that
we used. As discussed in detail in [10–13], our estimates of
Nf;cr from this work are in general agreement, to within
the uncertainties, with estimates from lattice simulations
[bearing in mind that, for the various SUðNcÞ groups and
fermion representations R, not all lattice groups agree on
the resultant estimate of Nf;cr].

D. β0IR
Another scheme-independent quantity of interest is the

derivative of the beta function at the IR fixed point, β0IR.
This is equivalent to the anomalous dimension of
TrðFμνFμνÞ at the IR fixed point, where Fa

μν is the gluonic
field strength tensor [41]. The derivative β0IR has the
scheme-independent expansion

β0IR ¼
X∞
j¼2

djΔ
j
f: ð2:33Þ

As indicated, β0IR has no term linear in Δf. In general,
the calculation of the scheme-independent coefficient dj
requires, as inputs, the bl for 1 ≤ l ≤ j. Our calculations of
dj for 2 ≤ j ≤ 4 in [11] used the higher-order coefficients
b3 from [25] and b4 from [26], and our calculations of d5 in
[12,13] used b5 from [27,28]. A detailed analysis of the
region of convergence of the series expansions (1.2) and
(2.33) in powers of Δf was given in [11–13], and we refer
the reader to these references for a discussion of this
analysis.

III. CALCULATION OF COEFFICIENTS κj;R
FOR SOðNcÞ and SpðNcÞ

We calculated general expressions for the κj for a
group G and fermions in a representation R for 1≤j≤3
in [9,11] and for j ¼ 4 in [12,13]. The coefficients κ1
and κ2 are manifestly positive, as is evident from their
expressions,

κ1 ¼
8CfTf

CAð7CA þ 11CfÞ
; ð3:1Þ

κ2 ¼
4CfT2

fð5CA þ 88CfÞð7CA þ 4CfÞ
3C2

Að7CA þ 11CfÞ3
; ð3:2Þ

and we found that κ3 and κ4 were also positive for
G ¼ SUðNcÞ and all of the fermion representations R that
we considered, which included the fundamental, adjoint,
and rank-2 symmetric and antisymmetric tensor represen-
tations. As noted above, one of the main goals of the
present work is to determine if this positivity also holds for
SOðNcÞ and SpðNcÞ theories as well as our established
result for SUðNcÞ theories.
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A. R=F

Because the various group invariants for SOðNcÞ and
SpðNcÞ are simply related to each other, it is convenient
to present our results for these two theories together. For
fermions in the fundamental representation, our general
formulas reduce to the following explicit expressions,
where the upper and lower signs refer to G ¼ SOðNcÞ
and G ¼ SpðNcÞ, respectively:

κ1;F ¼ 23ðNc ∓ 1Þ
ðNc ∓ 2Þð25Nc ∓ 39Þ ; ð3:3Þ

κ2;F ¼ 24ðNc ∓ 1Þð9Nc ∓ 16Þð49Nc ∓ 54Þ
3ðNc ∓ 2Þ2ð25Nc ∓ 39Þ3 ; ð3:4Þ

κ3;F ¼ 26ðNc ∓ 1Þ
33ðNc ∓ 2Þ3ð25Nc ∓ 39Þ5 ½ð274243N

4
c ∓ 1638318N3

c þ 3586884N2
c ∓ 3298968Nc þ 1018710Þ

� 27 · 33ðNc ∓ 3Þð3Nc � 2Þð25Nc ∓ 39Þζ3�; ð3:5Þ

and

κ4;F ¼ 26ðNc ∓ 1Þ
34ðNc ∓ 2Þ4ð25Nc ∓ 39Þ7 ½ð263345440N

6
c ∓ 2325643530N5

c þ 8506782306N4
c

∓ 16264883388N3
c þ 16883765721N2

c ∓ 8888128812Nc þ 1834476660Þ
þ 26ð25Nc ∓ 39Þð26400N5

c � 235846N4
c − 1427001N3

c � 1629821N2
c − 404418Nc � 720594Þζ3

þ 28 · 275ðNc ∓ 2ÞðNc ∓ 3Þð25Nc ∓ 39Þ2ð3N2
c ∓ 23Nc − 16Þζ5�; ð3:6Þ

where ζs ¼
P∞

n¼1 n
−s is the Riemann zeta function, with

ζ3 ¼ 1.202057 and ζ5 ¼ 1.036928 (given to the indicated
floating-point accuracy). In addition to κ1 and κ2, which are
manifestly positive for any (simple) gauge group G and
fermion representation R, we find, by numerical evaluation,
that κ3;F and κ4;F are positive for the relevant ranges of Nc

in both of these theories.
As an explicit example of our scheme-independent

calculations of γψ̄ψ ;IR to OðΔp
f Þ with 1 ≤ p ≤ 4 for an

SOðNcÞ group, let us consider an SO(5) gauge group
with fermions in the fundamental representation. For this
theory, the general formulas Eqs. (2.3) and (2.5) give
Nu;F ¼ 33=4 ¼ 8.25 and Nl ¼ 51=14 ¼ 3.643 [22], so
that, with Nf generalized to real numbers, the interval I
is 3.643 < Nf < 8.125 of which the physical, integral
values of Nf are given by the interval 4 ≤ Nf ≤ 8. In
Fig. 1 we present a plot of our OðΔp

f Þ scheme-independent
calculations of γψ̄ψ ;IR, viz., γψ̄ψ ;IR;Δp

f
, with 1 ≤ p ≤ 4. (The

representation R ¼ F is indicated explicitly in the notation
for the figure, as γψ̄ψ ;IR;F;Δp

f
). Combining these results with

our positivity conjecture for higher p and our saturation
assumption and the conformality upper bound (2.32) yields
an estimate ofNf;cr for this SO(5) theory, namelyNf;cr ∼ 4.
This procedure entails an estimate of an extrapolation of
our results for γψ̄ψ ;IR;F;Δp

f
, with 1 ≤ p ≤ 4 to p ¼ ∞,

yielding the exact γψ̄ψ ;F;IR defined by the infinite series
(1.2). We remark that this estimated value, Nf;cr ∼ 4, is
close to (and is the integer nearest to) the lower end of the
interval I at Nf ¼ 3.643. To our knowledge, there has not

yet been a reported lattice measurement of γψ̄ψ ;F;IR in the
non-Abelian Coulomb phase for this theory, with which our
estimate of γψ̄ψ ;IR could be compared.
Similarly, as an explicit example of our calculations of

γψ̄ψ ;IR to OðΔp
f Þ with 1 ≤ p ≤ 4 for an SpðNcÞ group, we

will consider an Sp(6) gauge group, again with fermions in
the fundamental representation. We choose this example
rather than Sp(4) because of the isomorphism SOð5Þ ≅
Spð4Þ (see Appendix A). From Eqs. (2.3) and (2.5) we

FIG. 1. Plot of γψ̄ψ ;IR;F;Δp
f
(labeled as γψ̄ψ ;IR on the vertical axis)

for an SO(5) gauge theory with fermions in the fundamental
representation R ¼ F, with 1 ≤ p ≤ 4, as a function of Nf ∈ I.
From bottom to top, the curves (with colors online) refer to
γψ̄ψ ;IR;F;Δf

(red), γψ̄ψ ;IR;F;Δ2
f

(green), γψ̄ψ ;IR;F;Δ3
f

(blue), and

γψ̄ψ ;IR;F;Δ4
f
(black).
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obtain the values Nu;F ¼ 22 and Nl ¼ 1088=101 ¼
10.772 [22], so that, with Nf generalized to real numbers,
the interval I is 10.772 < Nf < 22 of which the physical,
integral values of Nf are given by the interval
11 ≤ Nf ≤ 21. In Fig. 2 we present a plot of our
OðΔp

f Þ scheme-independent calculations of γψ̄ψ ;F;IR, viz.,
γψ̄ψ ;IR;F;Δp

f
, with 1 ≤ p ≤ 4. Applying our monotonicity

conjecture and estimation methods in the same way as with
the SO(5) example above, we are led to the inference that
Nf;cr is somewhat below the lower end of the interval I. As
was the case with SO(5), we are not aware of any lattice
study of this theory with which we could compare these
inferences.
It is straightforward to use our calculations for κj in

Eqs. (3.3)–(3.6) to compute γψ̄ψ ;IR;F;Δp
f
with 1 ≤ p ≤ 4 for

SOðNcÞ and SpðNcÞ theories with R ¼ F and other values
of Nc, and to make estimates of the lower end of the NACP
for these other Nc, but the examples given above should
suffice to illustrate the method.
We next mention some checks on our general calculation

of the κj coefficients for SOðNcÞ and SpðNcÞ with R ¼ F.
One has the isomorphism SOð3Þ ≅ SUð2Þ, and, as part of
this, the fundamental representation of SO(3) is equivalent
to the adjoint representation of SU(2). Hence,

κj;F;SOð3Þ ¼ κj;A;SUð2Þ ∀ j; ð3:7Þ

where we have indicated the gauge group G and the
fermion representation R as subscripts. Using our previous
calculations of κj for the SUðNcÞ gauge theory with
fermions in the adjoint representation, we have verified
that our present calculation of κj satisfies this check.

Explicitly, with the different gauge groups indicated
explicitly, we have

κ1;F;SOð3Þ ¼ κ1;A;SUð2Þ ¼
22

32
¼ 0.444444; ð3:8Þ

κ2;F;SOð3Þ ¼ κ2;A;SUð2Þ ¼
341

2 · 36
¼ 0.233882; ð3:9Þ

κ3;F;SOð3Þ ¼ κ3;A;SUð2Þ ¼
51217

23 · 310
¼ 0.108421; ð3:10Þ

and

κ4;F;SOð3Þ ¼ κ4;A;SUð2Þ ¼
47764753

27 · 314
þ 9592

311
ζ3

¼ 0.143107: ð3:11Þ

From the explicit expressions above, we calculate the
following values of the κ̂j;F, which are the same in the LNN
limits of the SOðNcÞ and SpðNcÞ theories (with the
numerical values given to the indicated precision):

κ̂1;F ¼ 23

52
¼ 0.320000; ð3:12Þ

κ̂2;F ¼ 24 · 147
56

¼ 0.150528; ð3:13Þ

κ̂3;F ¼ 26 · 274243
33 · 510

¼ 0.0665659; ð3:14Þ

and

κ̂4;F ¼ 211 · 1645909
34 · 513

þ 217 · 11
33 · 510

ζ3 þ
214 · 11
33 · 58

ζ5

¼ 0.0583830: ð3:15Þ

Here we have indicated the simple factorizations of the
denominators. In general, the numerators do not have
simple factorizations, although they often contain various
powers of 2, as indicated. We shall generally use this
factorization format throughout the paper.

B. R=A

For R ¼ A, we find the following coefficients, where
again the upper and lower signs refer to SOðNcÞ and
SpðNcÞ. The floating-point values are quoted to the
indicated numerical precision:

κ1;A ¼
�
2

3

�
2

¼ 0.444444; ð3:16Þ

κ2;A ¼ 341

2 · 36
¼ 0.233882; ð3:17Þ

FIG. 2. Plot of γψ̄ψ ;IR;F;Δp
f
(labeled as γψ̄ψ ;IR on the vertical axis)

for an Sp(6) gauge theory with fermions in the fundamental
representation, R ¼ F, with 1 ≤ p ≤ 4, as a function of Nf ∈ I.
From bottom to top, the curves (with colors online) refer
to γψ̄ψ ;IR;F;Δf

(red), γψ̄ψ ;IR;F;Δ2
f
(green), γψ̄ψ ;IR;F;Δ3

f
(blue), and

γψ̄ψ ;IR;F;Δ4
f
(black).
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κ3;A ¼ 61873N3
c ∓ 360582N2

c þ 593292Nc ∓ 153992

23 · 310ðNc ∓ 2Þ3 ; ð3:18Þ

and

κ4;A ¼ 1

27 · 314ðNc ∓ 2Þ3 ½ð53389393N
3
c ∓ 314711718N2

c þ 561927756Nc ∓ 247126664Þ

þ ð3815424N3
c ∓ 52227072N2

c þ 456468480Nc ∓ 969228288Þζ3�: ð3:19Þ

For our two specific illustrative theories, SO(5) and
Sp(6), the interval I is the same and is given by Eq. (2.22).
In Figs. 3 and 4 we show plots of γψ̄ψ ;IR;Δp

f
with 1 ≤ p ≤ 4

for this adjoint case R ¼ A, as a function of Nf formally
generalized to a real variable. The curves are rather similar,
as a consequence of the fact that κ1;A and κ2;A are the
same and are independent of Nc, and, furthermore, the
differences between κj;A;SOð5Þ and κj;A;Spð6Þ are small for
j ¼ 3, 4. As we found in our SUðNcÞ studies [9,11–13], the
convergence of the Δf expansion is slightly slower for
R ¼ A than R ¼ F, and this also tends to be true for the
other rank-2 tensor representations. We find that, for both
SO(5) and Sp(6), as Nf, formally generalized to a real
number, decreases in the interval I, γψ̄ψ ;IR calculated to its
highest order, OðΔ4

fÞ, exceeds the conformality upper
bound of 2 as Nf reaches about Nf ≃ 1.3, before it
decreases all the say to the lower end of this interval, at
Nf ¼ 1.0625. This reduction in the non-Abelian Coulomb
phase (conformal window), relative to the full interval I that

we find here is similar to what was observed for SUðNÞ
theories with higher representations in [42].
In addition to the manifestly positive κ1;A and κ2;A, we

find, by numerical evaluation, that κ3;A and κ4;A are positive
for all relevant Nc for both types of gauge groups.
Since the Lie algebras of SU(4) and SO(6) are isomor-

phic, it follows that

κj;A;SOð6Þ ¼ κj;A;SUð4Þ: ð3:20Þ

This requirement serves as another check on our calcu-
lations. The check is obviously satisfied for κ1;A and κ2;A.
Further, we obtain

κ3;A;SOð6Þ ¼ κ3;A;SUð4Þ ¼
59209

23 · 310
¼ 0.125339 ð3:21Þ

and

FIG. 3. Plot of γψ̄ψ ;IR;A;Δp
f
(labeled as γψ̄ψ ;IR on the vertical axis)

for an SO(5) gauge theory with fermions in the adjoint repre-
sentation R ¼ A, with 1 ≤ p ≤ 4, as a function of Nf ∈ I. From
bottom to top, the curves (with colors online) refer to γψ̄ψ ;IR;A;Δf

(red), γψ̄ψ ;IR;A;Δ2
f
(green), γψ̄ψ ;IR;A;Δ3

f
(blue), and γψ̄ψ ;IR;A;Δ4

f
(black).

FIG. 4. Plot of γψ̄ψ ;IR;A;Δp
f
(labeled as γψ̄ψ ;IR on the vertical axis)

for an Sp(6) gauge theory with fermions in the adjoint repre-
sentation R ¼ A, with 1 ≤ p ≤ 4, as a function of Nf ∈ I. From
bottom to top, the curves (with colors online) refer to γψ̄ψ ;IR;A;Δf

(red), γψ̄ψ ;IR;A;Δ2
f
(green), γψ̄ψ ;IR;A;Δ3

f
(blue), and γψ̄ψ ;IR;A;Δ4

f
(black).
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κ4;A;SOð6Þ ¼ κ4;A;SUð4Þ

¼ 51983233

27 · 314
þ 3226

311
ζ3 ¼ 0.106800: ð3:22Þ

In the LN limit, limLNκj;A is the same for SOðNcÞ
and SpðNcÞ. The coefficients κ1;A and κ2;A are evidently
independent of Nc. The values of κ3;A and κ4;A in the LN
limit are (with numerical values given to the indicated
precision)

lim
Nc→∞

κ3;A ¼ 61873

23 · 310
¼ 0.1309871 ð3:23Þ

and

lim
Nc→∞

κ4;A ¼ 53389393

27 · 314
þ 368

310
ζ3 ¼ 0.0946976: ð3:24Þ

C. R= S2 in SOðNcÞ and R=A2 in SpðNcÞ
It is convenient to give results for R ¼ S2 in SOðNcÞ and

R ¼ A2 in SpðNcÞ together, since they are simply related
by sign reversals in certain terms. Recall that for SOðNcÞ,
Nc must be ≥ 5 if R ¼ S2 in order for the theory to be
asymptotically free. In the following expressions, the upper
sign refers to R ¼ S2 in SOðNcÞ and the lower sign to
R ¼ A2 in SpðNcÞ. We will use a compact notation in
which T2 refers to these two respective cases. From our
general formulas we calculate

κ1;T2
¼ 4NcðNc � 2Þ

ðNc ∓ 2Þð9Nc ∓ 7Þ ; ð3:25Þ

κ2;T2
¼ NcðNc � 2Þ2ð11Nc ∓ 14Þð93Nc ∓ 10Þ

6ðNc ∓ 2Þ2ð9Nc ∓ 7Þ3 ; ð3:26Þ

κ3;T2
¼ NcðNc � 2Þ2

23 · 33ðNc ∓ 2Þ3ð9Nc ∓ 7Þ5 ½ð1670571N
5
c ∓ 1075194N4

c − 7188904N3
c � 14840368N2

c

þ 2671344Nc ∓ 6795040Þ � 210 · 33ð9Nc ∓ 7Þð3N3
c � 23N2

c − 38Nc ∓ 56Þζ3�; ð3:27Þ

and

κ4;T2
¼ NcðNc � 2Þ3
27 · 34ðNc ∓ 2Þ4ð9Nc ∓ 7Þ7 ½ð4324540833N

7
c ∓ 6239517858N6

c − 9953927772N5
c � 61550306040N4

c

− 90479597392N3
c ∓ 24158962016N2

c þ 61198146240Nc ∓ 11095638400Þ
þ 210ð9Nc ∓ 7Þð33534N6

c � 743769N5
c þ 4721805N4

c ∓ 16060070N3
c − 5795540N2

c � 16964328Nc þ 3786048Þζ3
∓ 214 · 275ðNc ∓ 2Þð9Nc ∓ 7Þ2ð15N3

c � 139N2
c þ 234Nc � 120Þζ5�: ð3:28Þ

We next apply these results for our two specific
illustrative theories, SO(5) and Sp(6). In the SO(5) theory
with R¼S2, Nu;SOð5Þ;S2 ¼33=28¼1.1786 and Nl;SOð5Þ;S2 ¼
51=140 ¼ 0.3643, while in the Sp(6) theory with R ¼ A2,
Nu;Spð6Þ;S2 ¼ 5.5 and Nl;Spð6Þ;S2 ¼ 68=29 ¼ 2.345. In
Figs. 5 and 6 we show plots of γψ̄ψ ;IR;R;Δp

f
with 1≤p≤4

for SO(5) with R ¼ S2 and for Sp(6) with R ¼ A2,
respectively, withNf formally generalized to a real number.
We see that in the SO(5) theory, as Nf decreases in the
interval I, γψ̄ψ ;S2;IR calculated to its highest order, OðΔ4

fÞ,
exceeds the conformality upper bound Nf ≤ 2 reaches
about Nf ≃ 0.7, well above the lower end of I at 0.3643. In
the Sp(6) theory, as Nf decreases in the interval I, γψ̄ψ ;A2;IR

calculated to its highest order, OðΔ4
fÞ, exceeds the con-

formality upper bound Nf ≤ 2 reaches about Nf ≃ 2.4,
close to the lower end of I at 2.345.
In addition to the manifestly positive κ1;T2

and κ2;T2
,

we find, by numerical evaluation, that κ3;T2
and κ4;T2

are

FIG. 5. Plot of γψ̄ψ ;IR;S2;Δp
f
(labeled as γψ̄ψ ;IR on the vertical axis)

for an SO(5) gauge theory with fermions in the S2 representation,
with 1 ≤ p ≤ 4, as a function of Nf ∈ I. From bottom to top, the
curves (with colors online) refer to γψ̄ψ ;IR;S2;Δf

(red), γψ̄ψ ;IR;S2;Δ2
f

(green), γψ̄ψ ;IR;S2;Δ3
f
(blue), and γψ̄ψ ;IR;S2;Δ4

f
(black).
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positive for all relevant Nc in these SOðNcÞ and SpðNcÞ
theories.
These coefficients have the same LN limits as the κj;A

lim
Nc→∞

κj;T2
¼ lim

Nc→∞
κj;A: ð3:29Þ

IV. CALCULATION OF β0IR TO OðΔ5
f Þ ORDER

A. R=F

For the coefficients dj, we recall first that d1 ¼ 0 for all
G and R. As was true of the κj;R coefficients, the dj;R

coefficients for SOðNcÞ and SpðNcÞ are simply related
to each other with sign reversals in various terms, and
hence it is natural to present them together. Concerning the
signs of these coefficients, our general expressions in [11]
for d2 and d3 show that they are positive for arbitrary G
and R:

d2 ¼
25T2

f

32CAð7CA þ 11CfÞ
; ð4:1Þ

and

d3 ¼
27T3

fð5CA þ 3CfÞ
33C2

Að7CA þ 11CfÞ2
: ð4:2Þ

Since our general expressions for d4 in [11] and for
d5 in [12,13] contain negative terms, it is necessary to
investigate the signs of these terms as a function of G, R,
and Nc.
For the fundamental representation, we obtain the

following results, where, as before, the upper and lower
signs refer to SOðNcÞ and SpðNcÞ, respectively:

d2;F ¼ 26

32ðNc ∓ 2Þð25Nc ∓ 39Þ ; ð4:3Þ

d3;F ¼ 28ð13Nc ∓ 23Þ
33ðNc ∓ 2Þ2ð25Nc ∓ 39Þ2 ; ð4:4Þ

d4;F ¼ 28

35ðNc ∓ 2Þ3ð25Nc ∓ 39Þ5 ½ð366782N
4
c ∓ 2269256N3

c þ 5506308N2
c ∓ 6383412Nc þ 2994975Þ

− 25 · 33ðNc ∓ 3Þð25Nc ∓ 39Þð25N2
c ∓ 65Nc þ 94Þζ3�; ð4:5Þ

and

d5;F ¼ 210

36ðNc ∓ 2Þ4ð25Nc ∓ 39Þ7 ½ð−298194551N
6
c � 3084573642N5

c − 13173836397N4
c

� 29649471936N3
c − 37042033788N2

c � 24377774904Nc − 6624643320Þ
− 25ð25Nc ∓ 39Þð529125N5

c ∓ 4349794N4
c þ 14556219N3

c ∓ 23420126N2
c þ 15005784Nc ∓ 467496Þζ3

þ 27 · 55ðNc ∓ 2ÞðNc ∓ 3Þð25Nc ∓ 39Þ2ð120N2
c ∓ 229Nc þ 511Þζ5�: ð4:6Þ

In addition to the manifestly positive d2 and d3, for
SOðNcÞ, we find that d4;F is positive if Nc ¼ 3, but
decreases through zero and is negative for large Nc, while
d5;F is negative for the relevant range Nc. For SpðNcÞ, we
find that both d4;F and d5;F are negative in the relevant
range of (even) Nc.

As Nc → ∞, the dj;F ∝ 1=Nj
c þOð1=Njþ1

c Þ, and hence
the finite coefficients for the scheme-independent expan-
sion of β0IR in this limit are

d̂j;F ¼ lim
Nc→∞

Nj
cdj;F: ð4:7Þ

FIG. 6. Plot of γψ̄ψ ;IR;A2;Δ
p
f
(labeled as γψ̄ψ ;IR on the vertical axis)

for an Sp(6) gauge theory with fermions in the A2 representation,
with 1 ≤ p ≤ 4, as a function of Nf ∈ I. From bottom to top, the
curves (with colors online) refer to γψ̄ψ ;IR;A2;Δf

(red), γψ̄ψ ;IR;A2;Δ2
f

(green), γψ̄ψ ;IR;A2;Δ3
f
(blue), and γψ̄ψ ;IR;A2;Δ4

f
(black).
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These limiting values are the same for SOðNcÞ and SpðNcÞ.
From our results above, we calculate

d̂2;F ¼ 26

32 · 52
¼ 0.284444; ð4:8Þ

d̂3;F ¼ 28 · 13
33 · 54

¼ 0.197215; ð4:9Þ

d̂4;F ¼ 29 · 183391
35 · 510

−
213 · 11
34 · 56

ζ3

¼ −0.0460182; ð4:10Þ

and

d̂5;F ¼ −
210 · 298194551

36 · 514
−
215 · 1411
35 · 59

ζ3 þ
220 · 11
35 · 58

ζ5

¼ −0.0597277: ð4:11Þ

B. R=A

As discussed above, for the SOðNcÞ and SpðNcÞ theories
with R ¼ A, the adjoint representation, only one value of
Nf is allowed by asymptotic freedom and lies in the interval
I, namely Nf ¼ 2. We calculate the following results for
the dj;A, with Nc kept in as a formal variable (and with
numerical values given to the indicated precision)

d2;A ¼
�
2

3

�
4

¼ 0.197531; ð4:12Þ

d3;A ¼ 28

37
¼ 0.117055; ð4:13Þ

d4;A ¼ 1

22 · 312ðNc ∓ 2Þ3 ð46871N
3
c ∓ 302538N2

c þ 860820Nc ∓ 1056952Þ; ð4:14Þ

and

d5;A ¼ 1

23 · 316ðNc ∓ 2Þ3 ½ð−7141205N
3
c � 43403934N2

c − 93488316Nc � 74944168Þ

þ ð3566592N3
c � 3718656N2

c − 308855808Nc � 775249920Þζ3�: ð4:15Þ

The Nc → ∞ limits of dj;A are the same for SOðNcÞ and
SpðNcÞ. We have

lim
Nc→∞

d4;A ¼ 46871

22 · 312
¼ 2.204901 × 10−2 ð4:16Þ

and

lim
Nc→∞

d5;A ¼ −
7141205

23 · 316
þ 27 · 43

312
ζ3

¼ −ð0.8287386 × 10−2Þ: ð4:17Þ

In addition to the manifestly positive d2;A and d3;A, we find
that for SOðNcÞ, in the relevant range ofNc, d4;A is positive,
while d5;A is negative. For SpðNcÞ, d4;A is manifestly
positive, and we find that d5;A is negative.

C. R= S2 in SOðNcÞ and R=A2 in SpðNcÞ
As before, we present our results for R ¼ S2 in SOðNcÞ

and R ¼ A2 in SpðNcÞ together, since they are simply
related by sign reversals in certain terms. Recall that for
SOðNcÞ,Nc must be≥ 5 if R ¼ S2 in order for the theory to
be asymptotically free. In the following expressions, the
upper sign refers to R ¼ S2 in SOðNcÞ and the lower sign to
R ¼ A2 in SpðNcÞ. We again use the compact notation in
which T2 refers to these two respective cases. From our
general formulas we calculate

d2;T2
¼ 24ðNc � 2Þ2

32ðNc ∓ 2Þð9Nc ∓ 7Þ ; ð4:18Þ

d3;T2
¼ 26ðNc � 2Þ3ð4Nc ∓ 5Þ

33ðNc ∓ 2Þ2ð9Nc ∓ 7Þ2 ; ð4:19Þ

d4;T2
¼ ðNc� 2Þ3
22 · 35ðNc ∓ 2Þ3ð9Nc ∓ 7Þ5 ½ð1265517N

5
c ∓ 618894N4

cþ 3021512N3
c ∓ 10811760N2

c − 16432368Nc� 16806048Þ

� 212 · 33ð9Nc ∓ 7Þð3N3
c ∓ 15N2

c þNc� 42Þζ3�; ð4:20Þ
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and

d5;T2
¼ ðNc � 2Þ4
23 · 36ðNc ∓ 2Þ4ð9Nc ∓ 7Þ7 ½ð−578437605N

7
c � 3437217450N6

c − 6404128380N5
c ∓ 13828926056N4

c

þ 52499838288N3
c ∓ 21845334432N2

c − 14381806656Nc � 6247244416Þ
þ 29ð9Nc ∓ 7Þð62694N6

c � 61965N5
c − 6430023N4

c � 11443586N3
c þ 10920884N2

c ∓ 16105176Nc − 1862112Þζ3
∓ 213 · 55ðNc ∓ 2ÞðNc ∓ 9Þð9Nc ∓ 7Þ2ð87N2

c � 178Nc þ 48Þζ5�: ð4:21Þ

Concerning signs, in addition to the manifestly positive
d2;T2

and d3;T2
, we find that for SOðNcÞ with Nc ≥ 5,

d4;S2 > 0 and d5;S2 < 0, while for SpðNcÞ, d4;A2
< 0 if

Nc ¼ 4, d4;A2
> 0 if Nc ≥ 6, and d5;A2

< 0 for all Nc ≥ 4.
We further note that

lim
Nc→∞

dj;T2
¼ lim

Nc→∞
dj;A: ð4:22Þ

V. CONCLUSIONS

In this paper we have used our general calculations in
[9–11,13] to obtain scheme-independent results for the
anomalous dimension, γψ̄ψ ;IR, and the derivative of the beta
function, β0IR, at an infrared fixed point of the renormaliza-
tion group in the non-Abelian Coulomb phase of vectorial,
asymptotically free SOðNcÞ and (with even Nc) SpðNcÞ
gauge theories with fermions in several different irreducible
representations, namely fundamental, adjoint, and rank-2
symmetric and antisymmetric tensor. We calculate γψ̄ψ ;IR
to OðΔ4

fÞ and β0IR to OðΔ5
fÞ, where Δf is the expansion

parameter defined in Eq. (1.1). These are the highest orders
to which these quantities have been calculated for these
theories. Our present results extend our earlier ones for the
case of SUðNcÞ gauge theories in [9–13] to these other two
types of gauge groups.
An important question that we address and answer is

whether the coefficients κj in the expansion (1.2) are
positive for SOðNcÞ and SpðNcÞ with all of the represen-
tations that we consider, just as we found earlier
for SUðNcÞ. We find that the answer is affirmative. Our
finding yields two monotonicity results for these SOðNcÞ
and SpðNcÞ groups and representations, namely that
(i) γψ̄ψ ;IR;Δp

f
increases monotonically as Nf decreases from

Nu in the non-Abelian Coulomb phase; (ii) for a fixed Nf

in the NACP, γψ̄ψ ;IR;Δp
f
increases monotonically with p.

Our results in this paper provide further support for our
conjecture that, in addition to the manifestly positive κ1 and
κ2, the κj for j ≥ 3 are positive for a vectorial asymptoti-
cally free gauge theory with a general (simple) gauge group
G and fermion representations R that we have considered.
In turn, this conjecture implies several monotonicity
properties, namely the generalizations of (i) and (ii) to
arbitrary p and thus the property that the quantity γψ̄ψ ;IR

defined by the infinite series (1.2), increases monotonically
with decreasing Nf in the non-Abelian Coulomb phase.
Using this property in conjunction with the upper bound on
γψ̄ψ ;IR in a conformally invariant theory, and the assumption
that this bound is saturated at the lower end of the NACP
(as it is in the exact results for an N ¼ 1 supersymmetric
gauge theory), we have given estimates of the lower end of
this non-Abelian Coulomb phase for illustrative theories of
these types.
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APPENDIX: SOME GROUP-THEORETIC
QUANTITIES

In this appendix we discuss some group-theoretic quan-
tities that enter in our calculations. As in the text, we denote
the gauge group as G. The generators of the Lie algebra
of this group, in the representation R, are denoted Ta

R, with
1 ≤ a ≤ dA. The generators satisfy the Lie algebra

½Ta
R; T

b
R� ¼ ifabcTc

R; ðA1Þ

where the fabc are the associated structure constants of
this Lie algebra. Here and elsewhere a sum over repeated
indices is understood. We denote the dimension of a given
representation R as dR ¼ dimðRÞ. In particular, as in the
text, we denote the adjoint representation by A, with
the dimension dA equal to the number of generators of
the group, i.e., the order of the group. (The dimension dA
should not be confused with the tensors dabcdA .) The
normalization of the generators is given by the trace in
the representation R,

TrRðTa
RT

b
RÞ ¼ TðRÞδab: ðA2Þ

The quadratic Casimir invariant C2ðRÞ is given by

Ta
RT

a
R ¼ C2ðRÞI; ðA3Þ
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where I is the dR × dR identity matrix. For a fermion f
transforming according to a representation R, we often use
the equivalent compact notation Tf≡TðRÞ andCf≡C2ðRÞ.
We also use the notation CA ≡ C2ðAÞ≡ C2ðGÞ. The
invariants TðRÞ and C2ðRÞ are related according to

C2ðRÞdR ¼ TðRÞdA: ðA4Þ

A remark on the normalization of the generators is in
order. As was noted in [26,43], although the normalization
TðFÞ ¼ 1=2, where F is the fundamental representation,
is standard for the trace in Eq. (A2) for SUðNÞ, two
normalizations are widely used for this normalization for
SOðNÞ and SpðNÞ groups. As indicated, our normalization
is TðFÞ ¼ 1 for SOðNÞ and TðFÞ ¼ 1=2 for SpðNÞ. If one
multiplies TðRÞ by a factor ρ, this is equivalent to
multiplying the generators and structure constants by

ffiffiffi
ρ

p
and the quadratic Casimir invariant C2ðRÞ by ρ. In the
covariant derivative Dμ ¼ ∂μ · 1 − gT⃗ · A⃗μ, where Aa

μ is the
gauge field, a rescaling of the generators by

ffiffiffi
ρ

p
means that

g is rescaling by 1=
ffiffiffi
ρ

p
, with the gauge field continuing to

have canonical normalization. Physical quantities such as
Nu, Nl, γψ̄ψ ;IR, and β0IR are independent of this normali-
zation convention with ρ. This can be seen from Eqs. (2.3),
(2.5), and the explicit expressions that we have given in our
earlier works [9–13] for the coefficients κj and dj. For
example, in the expressions κ2¼8CfTf=½CAð7CAþ11CfÞ�
and d2 ¼ 32T2

f=½9CAð7CA þ 11CfÞ�, both the numerator
and denominator scale like ρ2, so this normalization factor
cancels, and similarly for other κj and dj.
In this appendix we will, for generality, consider the

three types of gauge groups SUðNÞ, SOðNÞ, and SpðNÞ. As
noted before, the correspondence between the mathemati-
cal notation for the Cartan series of Lie algebras and our
notation used here is An ¼ SUðnþ 1Þ, Bn ¼ SOð2nþ 1Þ,
Cn ¼ Spð2nÞ, and Dn ¼ SOð2nÞ. One may recall some
basic properties of these Lie groups and their associated Lie
algebras (see, e.g., [44–50]). Concerning representations,
SU(2) has only real representations, while SUðNÞ with
N ≥ 3 has complex representations. SpðNÞ (N even) and
SOðNÞ with odd N have only real representations, while
SOðNÞ with even N also have both real and complex
representations. Concerning the values of Nf, we note that
for a real representation, one could consider half-integral
Nf, corresponding to a Majorana fermion. However, this
would entail a global Witten anomaly associated with the
homotopy group π4ðGÞ in the case G ¼ SOðNÞ with
N ¼ 3, 4, 5, and for all SpðNÞ [while π4ðSOðNÞÞ ¼ ∅
forN ≥ 6 [48].] Hence, we restrict our discussion to integer
Nf, i.e., Dirac fermions.
In Table I we list the dimensions and quadratic group

invariants for SUðNÞ, SOðNÞ, and SpðNÞ groups with the
various representations considered in the text [47]. The
results for SUðNÞ are well known, but some remarks are in

order for SOðNÞ and SpðNÞ. An element O of SOðNÞ
satisfies OOT ¼ 1. Starting with a 2-index tensor ψ ¼ ψ ij

of SOðNÞ, we can form symmetric and antisymmetric
quantities in the obvious way by taking sums and
differences of ψ and ψT . However, to form the irreducible
symmetric representation of SOðNÞ, S2, it is necessary to
remove the trace, so we write

ψ ¼ 1

2
ðψ þ ψTÞ − TrðψÞ · 1

þ 1

2
ðψ − ψTÞ

þ TrðψÞ · 1; ðA5Þ

where here 1 is the N × N identity matrix. The quantities in
the first and second lines of Eq. (A5) form the (traceless) S2
and A2 representations of SOðNÞ (the latter being auto-
matically traceless), while the quantity in the third line is a
singlet. The dimensions of the S2 and A2 representations are
therefore

dS2;SOðNÞ ¼
NðN þ 1Þ

2
− 1 ¼ ðN − 1ÞðN þ 2Þ

2
ðA6Þ

TABLE I. Values of various group invariants for the groups
SUðNÞ, SOðNÞ, and (with even N) SpðNÞ and (irreducible)
fermion representations R equal to fundamental (F), adjoint (A),
and rank-2 symmetric (S2) and antisymmetric (A2) tensor. We
take N ≥ 2 for SUðNÞ, N ≥ 3 for SOðNÞ, and even N ≥ 2 for
SpðNÞ. Here, dR denotes the dimension of the representation R.
For a fermion f in the representation R, the equivalent compact
notation Tf ≡ TðRÞ and Cf ≡ C2ðRÞ is used in the text.

SUðNÞ, N ≥ 2

R dR TðRÞ C2ðRÞ
F N 1

2
N2−1
2N

A N2 − 1 N N
S2 NðNþ1Þ

2

Nþ2
2

ðN−1ÞðNþ2Þ
N

A2
NðN−1Þ

2

N−2
2

ðNþ1ÞðN−2Þ
N

SOðNÞ, N ≥ 3

R dR TðRÞ C2ðRÞ
F N 1 N−1

2

A NðN−1Þ
2

N − 2 N − 2

S2 ðN−1ÞðNþ2Þ
2

N þ 2 N

SpðNÞ, N ≥ 2

R dR TðRÞ C2ðRÞ
F N 1

2
Nþ1
4

A NðNþ1Þ
2

Nþ2
2

Nþ2
2

A2
ðNþ1ÞðN−2Þ

2

N−2
2

N
2
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and dA2;SOðNÞ ¼ NðN − 1Þ=2 ¼ dA;SOðNÞ, as listed in the
table.
An element S of SpðNÞ satisfies SEST ¼ E, with E the

antisymmetric N × N matrix

E ¼
�

0 1

−1 0

�
; ðA7Þ

where here the symbols 0 and 1 denote N=2 × N=2
submatrices. We can thus write

ψ ¼ 1

2
ðψ þ ψTÞ

þ 1

2
ðψ − ψTÞ − TrðψÞE

þ TrðψÞE: ðA8Þ
The quantities in the first and second lines of Eq. (A8) form
the S2 and A2 representations of SpðNÞ, while the third line
is a singlet. The dimensions of the S2 and A2 representa-
tions are therefore dS2;SpðNÞ ¼ NðN þ 1Þ=2 ¼ dA;SpðNÞ, and

dA2;SpðNÞ ¼
NðN − 1Þ

2
− 1 ¼ ðN þ 1ÞðN − 2Þ

2
; ðA9Þ

as listed in the table. We remark that the expressions for
TðRÞ and C2ðRÞ for SpðNÞ are simply related to those
for SOðNÞ by a factor of 1=2 and sign reversals of
certain terms.
At the four-loop and five-loop level, new types of group-

theoretic invariants appear in the coefficients for the beta
function and anomalous dimension γψ̄ψ ;IR, namely the four-
index quantities dabcdR . For a given representation R of G,

dabcdR ¼ 1

3!
TrR½TaðTbTcTd þ TbTdTc þ TcTbTd

þ TcTdTb þ TdTbTc þ TdTcTbÞ�: ðA10Þ
From Eq. (A10), it is evident that dabcdR is a totally
symmetric function of the group indices a, b, c, d. One
can express this as

dabcdR ¼ I4;Rdabcd þ
�

TðRÞ
dA þ 2

��
C2ðRÞ −

1

6
CA

�

× ðδabδcd þ δacδbd þ δadδbcÞ; ðA11Þ

where dabcd is traceless (i.e., δabdabcd ¼ 0, etc.), I4;R is a
quartic group invariant (index) [46,47], and dA is the
dimension of the adjoint representation, i.e., the number
of generators of the Lie algebra of G. The traceless tensor
dabcd depends only on the group G, but not on the
representation R. The quartic indices I4;R are listed for
the relevant representations in Table II. The quantities that
appear in the coefficients that we calculate involve products
of these dabcdR of the form dabcdR dabcdR0 , summed over the
group indices a, b, c, d. These can be written as

dabcdR dabcdR0 ¼ I4;RI4;R0dabcddabcd

þ
�

3dA
dA þ 2

�
TðRÞTðR0Þ

�
CR −

1

6
CA

�

×

�
CR0 −

1

6
CA

�
: ðA12Þ

One has, for the quartic Casimir invariants that depend
only on G, the results [26,43]

SUðNÞ∶ dabcddabcd ¼ dAðdA − 3ÞðdA − 8Þ
96ðdA þ 2Þ ; ðA13Þ

SOðNÞ∶ dabcddabcd ¼ dAðdA − 1ÞðdA − 3Þ
12ðdA þ 2Þ ; ðA14Þ

and

SpðNÞ∶ dabcddabcd ¼ dAðdA − 1ÞðdA − 3Þ
192ðdA þ 2Þ ; ðA15Þ

so that dabcddabcd for SpðNÞ is formally 1=16 times the
corresponding quantity for SOðNÞ (with different dA
understood). Note that dabcddabcd ¼ 0 for SU(2), SO(3),
and Sp(2), since the dimension of the adjoint representation
in all three cases is dA ¼ 3. This is in agreement with the
isomorphisms SUð2Þ ≅ Spð2Þ and SUð2Þ ≅ SOð3Þ. (These
may be considered to refer to the Lie algebras; for our
purposes, we do not have to distinguish between local and
global isomorphisms.) Note also that dabcddabcd ¼ 0 for
SU(3), since dA ¼ 8 for SU(3).
We list the resultant values of dabcdR dabcdR0 in Table III.

As is evident from these tables, the expressions for the
dabcdR dabcdR0 for SpðNÞ are simply related to those for SOðNÞ
by an overall factor of 1=16 and sign reversals of certain
coefficients. Our results for SUðNÞ agree with the corre-
sponding entries in Table II in [33]; however, our results
for dabcdR dabcdR and dabcdR dabcdA differ from those given in
Table II of [33] for SOðNÞ and SpðNÞ [51]. We have
performed several checks on the correctness of our results:
(1) Since SUð4Þ ≅ SOð6Þ, the coefficients κj, j ¼

1;…; 4 and dj, j ¼ 1…; 5 calculated for SU(4)
must agree with their counterparts for SO(6) when
the matter representations are equivalent. We have

TABLE II. Values of I4;f indices for the groups SUðNÞ, SOðNÞ,
and (with even N), SpðNÞ and and fermion representations R
equal to fundamental (F), adjoint (A), and rank-2 symmetric (S2)
and antisymmetric (A2) tensor. S2 (symmetric rank-2 tensor).

I4;f SUðNÞ SOðNÞ SpðNÞ
F 1 1 1
A 2N N − 8 N þ 8
S2 N þ 8 N þ 8 N þ 8
A2 N − 8 N − 8 N − 8

INFRARED FIXED POINT PHYSICS IN SOðNcÞ … PHYSICAL REVIEW D 96, 105015 (2017)

105015-15



checked that this is satisfied in a number of cases.
Specifically, this must hold for (i) the 20-dimensional
S2 representation of SO(6) and the real 20-
dimensional representation of SUð6Þ with Dynkin
label (0,2,0); (ii) the fundamental 6-dimensional
representation of SO(6) and the 6-dimensional A2

representation of SU(4); and (iii) the adjoint repre-
sentation of both SU(4) and SO(6). The group
invariants for the real 20-dimensional representation
of SU(4) with Dynkin label (0,2,0) we have used are
Tf ¼ 8 and Cf ¼ 6 [45].

(2) Since the adjoint representation of SU(2) is equiv-
alent to the adjoint as well as the fundamental
representation of SO(3), it follows that the corre-
sponding coefficients κj, j ¼ 1;…; 4 and dj, j ¼
1…; 5 should be equal, and we have verified that this
is the case.

(3) Since SUð2Þ ≅ Spð2Þ, it follows that the expressions
for κj and dj should be the same for our representa-
tions R for these two groups, and they are.

(4) The isomorphism SOð5Þ ≅ Spð4Þ [50] yields a
further check on our results. The invariants for the
adjoint representations of these groups must be equal
and they are. Further, the fundamental representation
of SO(5) has the same dimension as the A2 repre-
sentation of Sp(4), and these yield the same κj and dj
values, which provides a check on our expressions
for the A2 representation of SpðNÞ.
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24

N2ðN2þ36Þ
24
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NðNþ2ÞðN2þ6Nþ24Þ
48

A2
ðN−2ÞðN5−14N4þ72N3þ48N2−288N−576Þ

96N2

NðN−2ÞðN2−6Nþ24Þ
48

SOðNÞ, N ≥ 3

R dabcdR dabcdR =dA dabcdR dabcdA =dA

F N2−Nþ4
24

ðN−2ÞðN2−7Nþ22Þ
24

A ðN−2ÞðN3−15N2þ138N−296Þ
24

ðN−2ÞðN3−15N2þ138N−296Þ
24

S2 ðNþ2ÞðN3þ13N2þ110Nþ104Þ
24

ðN−2ÞðNþ2ÞðN2−Nþ28Þ
24

SpðNÞ, N ≥ 2

R dabcdR dabcdR =dA dabcdR dabcdA =dA

F N2þNþ4
384

ðNþ2ÞðN2þ7Nþ22Þ
384
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ðNþ2ÞðN3þ15N2þ138Nþ296Þ
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A2
ðN−2ÞðN3−13N2þ110N−104Þ

384

ðNþ2ÞðN−2ÞðN2þNþ28Þ
384
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