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We consider double-winding, triple-winding, and multiple-winding Wilson loops in the SUðNÞ Yang-
Mills gauge theory. We examine how the area-law falloff of the vacuum expectation value of a multiple-
winding Wilson loop depends on the number of color N. In sharp contrast to the difference-of-areas law
recently found for a double-winding SUð2Þ Wilson loop average, we show irrespective of the spacetime
dimensionality that a double-winding SUð3Þ Wilson loop follows a novel area law which is neither
difference-of-areas nor sum-of-areas law for the area-law falloff and that the difference-of-areas law is
excluded and the sum-of-areas law is allowed for SUðNÞ (N ≥ 4), provided that the string tension obeys the
Casimir scaling for the higher representations. Moreover, we extend these results to arbitrary multiple-
winding Wilson loops. Next, we argue that the area law follows a novel law, which is neither sum-of-areas
nor difference-of-areas law when N ≥ 3. In fact, such a behavior is exactly derived in the SUðNÞ Yang-
Mills theory in the two-dimensional spacetime. Finally, we introduce newWilson loops whose averages are
expected to follow the difference-of-areas law even in the SUðNÞ Yang-Mills theory for N ≥ 3.
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I. INTRODUCTION

In this paper we discuss double-winding, triple-winding
and more general multiple-winding Wilson loops [1] in the
SUðNÞ Yang-Mills gauge theory [2]. The “double-wind-
ing”Wilson loops consist of the contours which wind once
around a loop C1 and once around a loop C2 where the two
coplanar loops share one point in common and where C2

lies entirely in the minimal area of C1. Recently, the SUð2Þ
case for the double-winding Wilson loop [3] has been
investigated to study the mechanism for quark confinement.
See, e.g., [4,5] for reviews of quark confinement. It has
been found that the area-law falloff of the vacuum expect-
ation value (or average) of the double-winding Wilson loop
follows a difference-of-areas law [3]. In this paper we
examine how the area-law falloff of double-winding, triple-
winding, and arbitrary multiple-winding Wilson loop
averages depend on the number of color N in the
SUðNÞ Yang-Mills theory.
First, we discuss the case where the two loops C1 and C2

are identical for a double-winding Wilson loop and derive
the exact operator relation which relates the double-
winding Wilson loop operator in the fundamental repre-
sentation to a single Wilson loop in the higher-dimensional
representations depending on N. By taking the average
of the relation, we find the relation among the Wilson loop
averages. We find that the difference-of-areas law for the
area-law falloff of a double-winding Wilson loop average
recently claimed for N ¼ 2 is excluded for N ≥ 3, provided
that the string tension obeys the Casimir scaling [6] for the

higher representations. We show that a double-winding
SUð3ÞWilson loop average follows a novel area law which
is neither difference of areas nor sum of areas, while the
difference-of-areas is excluded and the sum-of-areas law is
allowed for SUðNÞ (N ≥ 4), although the double-winding
SUð2Þ Wilson loop average is consistent with the differ-
ence-of-areas law.
Next, we extend the analysis to a multiple-winding

Wilson loop in the SUðNÞ Yang-Mills gauge theory. We
give a physical motivation to consider the multiple-winding
Wilson loop and give the physical interpretation of the
obtained results. This enables us to explain how the SUð2Þ
case is so different from the other cases.
These results are derived from the group theoretical

consideration in the case where all loops are identical.
In this case, a m-times-winding Wilson loop operator in
the fundamental representation is rewritten as a linear
combination of Wilson loop operators in the higher
representations which are distinct from the fundamental
representation. The results do not depend on the dimen-
sionality of spacetime. This provides us with the useful
information to analyze the area-law falloff of the multiple-
winding Wilson loop average.
Next, we discuss the case where the two loops

are distinct for a double-winding Wilson loop. In this
case, we argue that the area law follows a novel law
ðN − 3ÞS2=ðN − 1Þ þ S1 with S1 and S2 (S2 < S1) being
the minimal areas spanned respectively by the loops C1 and
C2, which is neither sum-of-areas (S1 þ S2) nor difference-
of-areas (S1 − S2) law when N ≥ 3. Indeed, we show that
this behavior is exactly derived in the SUðNÞ Yang-Mills
theory in the two-dimensional spacetime. These results are
consistent with the result obtained recently based on the
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leading order calculations of the strong-coupling expansion
within the framework of the lattice gauge theory [7], which
does not depend on the dimensionality of spacetime.
Finally, we introduce new Wilson loops whose averages

are expected to follow the difference-of-areas law. In the
SUðNÞ Yang-Mills theory with N ≥ 3, such Wilson loops
can be used just as the double-winding Wilson loop was
used in the SUð2Þ Yang-Mills theory.
The results obtained in this paper will give useful

information to investigate the true mechanism for quark
confinement, which is to be tackled in the subsequent
works.
This paper is organized as follows. In Secs. II and III, we

give the main results of this paper with their physical
interpretation. In Sec. II, we discuss the area-law falloff for
a double-winding Wilson loop for the two identical loops.
In Sec. III, we extend our analysis to multiple-winding
Wilson loops for them identical loops. In Sec. IV, we treat a
double-winding Wilson loop with two distinct loops in the
SUðNÞ Yang-Mills theory in the two-dimensional space-
time and with Wilson loops whose expectation values are
expected to follow the difference-of-areas law even in the
SUðNÞYang-Mills theory. Some of the details of the proofs
of the main results are given in Appendices.

II. DOUBLE-WINDING WILSON LOOP
WITH IDENTICAL LOOPS

For a single closed loop C, the Wilson loop operator in
the fundamental representation is defined by

WðCÞ ≔ 1

N
tr½UFðCÞ�; ð1Þ

where UFðCÞ is the parallel transporter along the loop C,
i.e., the path-ordered product of the group element along
the loop C:

UFðCÞ ≔ P exp

�
ig
Z
C
dxμAμ

�
∈ G: ð2Þ

For two closed loops C1 and C2, a double-winding
Wilson loop operator in the fundamental representation
is defined by

WðC1 × C2Þ ≔
1

N
tr½UFðC1ÞUFðC2Þ�: ð3Þ

See Fig. 1.
In what follows, we consider what type of the area law

follows for the double-winding Wilson loop average,
irrespective of the lattice and continuum formulations.
For this purpose, we consider the case of two identical
loops, i.e., C1 ¼ C2 ¼ C. In the identical case, the double-
winding Wilson loop operator is written as

WðC × CÞ ≔ 1

N
tr½UFðCÞUFðCÞ�: ð4Þ

The two loops C1 and C2 have the same direction. The two
identical loops correspond to the world line of a pair of
quarks in the fundamental representation. The direct
product of two fundamental representations is decomposed
into the irreducible representations of the color group
SUðNÞ.
For SUð2Þ, the product of two fundamental representa-

tions 2 is decomposed into a singlet 1 and a triplet 3, i.e.,
adjoint representation:

2 ⊗ 2 ¼ 1 ⊕ 3 ¼ 2 ⊗ 2�: ð5Þ

Since the color singlet state must not be confined and could
be observed, the string tension must vanish and the area law
would disappear. In fact, the double-winding Wilson loop
operator in the fundamental representation is decomposed
into a trivial term and the Wilson loop operatorWðCÞAdj in
the adjoint representation for a single Wilson loop C (see
Appendix A for the derivation) as

WðC × CÞ ¼ −
1

2
1þ 3

2
WðCÞAdj: ð6Þ
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FIG. 1. The leftmost figure is a double-winding loop with two closed loops C1 and C2 winding in the same direction and the middle
one is its deformation. The rightmost figure is the case of two identical loops.
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This operator identity for the Wilson loops leads to the
relation for their averages:

hWðC × CÞi ¼ −
1

2
þ 3

2
hWðCÞAdji: ð7Þ

The adjoint Wilson loop average exhibits the area law in the
intermediate distance, since the adjoint quarks are screened
by gluons in the long distance. In the intermediate region,
we have

hWðC × CÞi ¼ −
1

2
þ b2e−σAdjS þ � � � : ð8Þ

This is consistent with the difference-of-areas behavior
and contradicts with the sum-of-areas one, as pointed out
by [3].
The quadratic Casimir operator of a representation with

an index J ¼ 1
2
; 1; 3

2
;… for SUð2Þ is given by

C2ðJÞ ¼ JðJ þ 1Þ; ð9Þ

which has the specific value for J ¼ 1
2
and J ¼ 1:

C2

�
1

2

�
¼ 3

4
; C2ð1Þ ¼ 2: ð10Þ

Suppose that the Casimir scaling for the string tension
holds. Then we find that the adjoint string tension σAdj is
obtained from the fundamental string tension σF using the
ratio of the quadratic Casimir operators:

σAdj ¼
C2ð1Þ
C2ð12Þ

σF ¼
8

3
σF: ð11Þ

The fundamental representation and its conjugate rep-
resentation are district in general. If they happen to
coincide, the representation is called a real representation.
Otherwise, they are called the complex representation.
The group SUðNÞ allows complex representations for
N ≥ 3. The SUð2Þ group is very special, since 2 and 2�
are equivalent:

2 ¼ 2�: ð12Þ

In SUð2Þ, therefore, 2 quarks qq can make a singlet:
2 ⊗ 2� ¼ 2 ⊗ 2 ¼ 3 ⊕ 1. Thus, the composite particle
qq ¼ qq̄ is regraded as a meson qq̄ and a baryon qq
simultaneously and there is no distinction between mesons
and baryons for the SUð2Þ group.
For SUð3Þ, the product of two fundamental representa-

tions 3 is decomposed into an antitriplet 3� and a sextet
representation 6:

3 ⊗ 3 ¼ 3� ⊕ 6: ð13Þ

This is represented as the Young diagram:

ð14Þ

For SUð3Þ, there is no color singlet for a pair of two quarks,
in sharp contrast with a pair of quark and antiquark where

3 ⊗ 3� ¼ 1 ⊕ 8 ¼ 3� ⊗ 3; ð15Þ

which is represented as the Young diagram:

ð16Þ

In fact, the double-winding Wilson loop operator in the
fundamental representation 3 is decomposed into the
Wilson loop W�ðCÞ ¼ WðCÞ½0;1� in the (anti)fundamental
representation 3� with the Dynkin indices [0, 1] and the
Wilson loop operator WðCÞ½2;0� in the sextet representation
6 with the Dynkin indices [2, 0] (see Appendix A for the
derivation)1:

WðC × CÞ ¼ −WðCÞ½0;1� þ 2WðCÞ½2;0�: ð20Þ

This identity leads to the relation for the average:

hWðC × CÞi ¼ −hWðCÞ½0;1�i þ 2hWðCÞ½2;0�i: ð21Þ

In the confinement phase, both Wilson loop averages
hWðCÞ½0;1�i and hWðCÞ½2;0�i exhibit the area law for the
loopC of any size larger than a critical size below which the
Coulomb like behavior is dominant, since they are not
screened by gluons which belong to the adjoint represen-
tation 8 with the Dynkin indices [1, 1]. Therefore, we have

1It is also possible to rewrite

2trðU½2;0�Þ ¼ trðU2
½1;0�Þ þ ðtr½U½1;0��Þ2; ð17Þ

which is equal to

4WðCÞ½2;0� ¼ WðC × CÞ þ 3WðCÞ2½1;0�: ð18Þ

This operator relation leads to the relation for the average:

4hWðCÞ½2;0�i ¼ hWðC × CÞi þ 3hWðCÞ2½1;0�i: ð19Þ

This relation was used to examine the Casimir scaling for the
representation [2, 0] on the lattice; see Eq. (5.15) of [6].
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hWðC×CÞi¼ a3e−σFSþb3e
−σ½2;0�Sþ��� ða3 < 0;b3 > 0Þ:

ð22Þ

In the intermediate region, we assume the Casimir
scaling to estimate the string tension σR in the higher-
dimensional representation R. The dimension of the rep-
resentation with the Dynkin indices ½m; n� for SUð3Þ is
given by

Dð½m; n�Þ ¼ 1

2
ðmþ 1Þðnþ 1Þðmþ nþ 2Þ: ð23Þ

The quadratic Casimir operator of the representation with
the Dynkin indices ½m; n� for SUð3Þ is given by [8]

C2ð½m; n�Þ ¼ 1

3
ðm2 þmnþ n2Þ þmþ n; ð24Þ

with the specific values:

C2ð½0; 0�Þ ¼ 0; C2ð½1; 0�Þ ¼ C2ð½0; 1�Þ ¼
4

3
;

C2ð½2; 0�Þ ¼
10

3
; C2ð½1; 1�Þ ¼ 3;…: ð25Þ

Assuming the Casimir scaling for the string tension,
therefore, the string tension σ½2;0� of the representation
[2, 0] is obtained as the ratio to the fundamental string
tension σF ¼ σ½1;0�:

σ½2;0� ¼
C2ð½2; 0�Þ
C2ð½1; 0�Þ

σF ¼ 5

2
σF: ð26Þ

Therefore, the area-law falloff of the double-winding
SUð3Þ Wilson loop average is given in the intermediate
region by

hWðC×CÞi ¼ a3e−σFS þ b3e−
5
2
σFS þ � � � ða3 < 0; b3 > 0Þ:

ð27Þ

In the asymptotic region, on the other hand, the string
tension σR for quarks in the representation R is determined
only through the N-ality k of the representation R (see,
e.g., Sec. X.5 of [5]). Notice that the two representations
3� ¼ ½0; 1� and 6 ¼ ½2; 0� have the same N-ality, k ¼ 2.
Therefore, the two string tensions σ½0;1� and σ½2;0� converge
to the same asymptotic value which is expected to be the
fundamental string tension:

σ½0;1�; σ½2;0� → σF ¼ σ½1;0�: ð28Þ

Thus, the area-law falloff of the double-winding SUð3Þ
Wilson loop average with two identical loops has the same
dominant behavior as that of a single-winding Wilson loop
average in the fundamental representation.

hWðC × CÞi≃ c3e−σFS: ð29Þ

This is not consistent with the difference-of-areas behavior
and contradicts also with the sum-of-areas law.
For SUðNÞ (N ≥ 4), we have the decomposition:

N ⊗ N ¼
�
N2 − N

2

�
A
⊕

�
N2 þ N

2

�
S
; ðN ≥ 4Þ: ð30Þ

The decomposition (30) shows that the N ¼ 3 case is a bit
special: 3 ⊗ 3 ¼ 3�A ⊕ 6S, where the antisymmetric part
belongs to 3� (not 3). In any case, the color singlet 1 does
not occur for N ≥ 3. This excludes the difference-of-areas
law for the double-winding Wilson loop average for N ≥ 3,
because the difference-of-areas law contradicts with this
fact in the identical case. The difference-of-areas law is
possible only when the color singlet 1 occurs in the
irreducible decomposition of two quarks.
In fact, the double-winding Wilson loop operator in the

fundamental representationN is decomposed into theWilson
loop WðCÞ½0;1;0;…;0� in the representation 1

2
NðN−1Þ with

the Dynkin indices ½0; 1; 0;…; 0� and the Wilson loop
operatorWðCÞ½2;0;…;0� in the representation

1
2
NðNþ 1Þwith

the Dynkin indices ½2; 0;…; 0� (see Appendix A for the
derivation):

WðC×CÞ ¼ −
N − 1

2
WðCÞ½0;1;0;…;0� þ

N þ 1

2
WðCÞ½2;0;…;0�:

ð31Þ

This operator relation leads to the relation for the average:

hWðC × CÞi ¼ −
N − 1

2
hWðCÞ½0;1;0;…;0�i

þ N þ 1

2
hWðCÞ½2;0;…;0�i: ð32Þ

The Wilson loop averages hWðCÞ½0;1;0;…;0�i and
hWðCÞ½2;0;…;0�i exhibit the area-law for any size larger than
a critical size below which the Coulomb-like behavior is
dominant, since they are not screened by gluons which
belong to the adjoint representationN2 − 1 with the Dynkin
indices ½1; 0;…; 0; 1�. Therefore, we have

hWðC × CÞi ¼ aNe
−σ½0;1;…;0�S þ bNe

−σ½2;0;…;0�S þ � � �
ðaN < 0; bN > 0Þ: ð33Þ

In the intermediate region, we assume the Casimir
scaling for the string tension σR in the higher-dimensional
representation R. It is shown that the dimension of the
representation with the Dynkin indices ½m1;…; mN−1� for
SUðNÞ is given by [8]
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Dð½m1;…;mN−1�Þ

¼ 1

2! � � � ðN−1Þ!ðm1þ1Þðm1þm2þ2Þ � � �

× ðm1þ�� �þmN−1þN−1Þ
× ðm2þ1Þðm2þm3þ2Þ � � � ðm2þ�� �þmN−1þN−2Þ
× � � �× ðmN−2þmN−1þ2ÞðmN−1þ1Þ; ð34Þ

and the quadratic Casimir operator of the representation
with the Dynkin indices ½m1;…; mN−1� for SUðNÞ is given
by [9]

C2ð½m1;…;mN−1�Þ ¼
1

2N

XN−1

k¼1

�
NðN − kÞkmk þ kðN − kÞm2

k

þ
Xk−1
l¼0

2lðN − kÞmlmk

�
; ð35Þ

with the specific values:

C2ð½0;…; 0�Þ ¼ 0; C2ð½1; 0;…; 0�Þ ¼ N2 − 1

2N
;

C2ð½0; 1; 0;…; 0�Þ ¼ ðN − 2ÞðN þ 1Þ
N

;

C2ð½2; 0;…; 0�Þ ¼ ðN þ 2ÞðN − 1Þ
N

;…: ð36Þ

Under the Casimir scaling, the area-law falloff of the
double-winding SUðNÞ Wilson loop average is described
in the intermediate region by

hWðC × CÞi ¼ aN exp

�
−2

N − 2

N − 1
σFS

�

þ bN exp

�
−2

N þ 2

N þ 1
σFS

�
þ � � �

ðaN < 0; bN > 0Þ: ð37Þ

Notice that the first term becomes dominant on the right-
hand side for large S.
In the asymptotic region, on the other hand, the string

tension σR for quarks in the representation R is determined
only through the N-ality k of the representation R. Notice
that the two representations 1

2
NðN − 1Þ ¼ ½0; 1; 0;…; 0�

and 1
2
NðNþ 1Þ ¼ ½2; 0;…; 0� have the same N-ality

k ¼ 2, since the Young diagram of (30) is the same as
the SUð3Þ case (14). [The N-ality of a representation of
SUðNÞ is equal to the number of boxes in the correspond-
ing Young tableaux (mod N).] Therefore, the two string
tensions σ½0;1;0;…;0� and σ½2;0;…;0� converge to the same
asymptotic value, i.e., σk with k ¼ 2:

σ½0;1;0;…;0�; σ½2;0;…;0� → σkðk ¼ 2Þ: ð38Þ

If we assume the Casimir scaling also for the asymptotic
string tension,

σk ¼
kðN − kÞ
N − 1

σF; ð39Þ

then the area-law falloff of the double-winding SUðNÞ
Wilson loop average with two identical loops has the
dominant behavior in the intermediate and asymptotic
regions given by

hWðC × CÞi≃ cN exp

�
−2

N − 2

N − 1
σFS

�
: ð40Þ

If we adopt another scaling known as the sine-law scaling
suggested byM theory fivebrane version of QCD and softly
broken N ¼ 2 [10],

σk ¼
sin πk

N

sin π
N

σF; ð41Þ

then the asymptotic behavior is given by

hWðC × CÞi≃ cNe−2 cos
π
NσFS: ð42Þ

In any case, the result is not consistent with the difference-
of-areas behavior and contradicts also with the sum-of-
areas law. For N ≥ 3, the area-law falloff obeys neither
difference-of-areas nor sum-of-areas law.
In the large N limit, however, the result is consistent with

the sum-of-areas law in the intermediate and asymptotic
regions:

hWðC × CÞi≃ e−kσFSðk ¼ 2Þ: ð43Þ

However, this result is interpreted as just coming from the
N-ality, rather than reflecting the dynamics of the Yang-
Mills theory.

III. MULTIPLE-WINDING WILSON LOOP
WITH IDENTICAL LOOPS

We can extend the above considerations for a double-
winding Wilson loop to a triple-winding and more general
multiple-winding Wilson loops.
For SUð3Þ, we introduce a triple-winding Wilson loop.

In the identical case, the triple-winding Wilson loop
average for SUð3Þ is related to the baryon potential.
Baryons are color singlet composite particles to be
observed in experiments. Therefore, the baryon potential
should be nonconfining and the string tension must be zero.
Indeed, we have
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3 ⊗ 3 ⊗ 3 ¼ ð3 ⊗ 3Þ ⊗ 3

¼ ð3�A ⊕ 6SÞ ⊗ 3

¼ 3�A ⊗ 3 ⊕ 6S ⊗ 3

¼ 1A ⊕ 8MA ⊕ 8MS ⊕ 10S: ð44Þ

Thus, we can identify the baryon with the color
singlet 1A:

B ¼ εabcqaqbqc: ð45Þ

Thus, for the gauge group G ¼ SUð3Þ, a baryon is
constructed from three quarks as the color singlet object.
Therefore, both baryons and mesons are colorless combi-
nations to be observed, whereas the respective color and the
colorful particle as a constituent cannot be observed
according to the hypothesis of color confinement. Thus,
theWilson loop average with a trivial representation is most
dominant and does not exhibit the area law, that is to say,
string tension is zero.
For SUðNÞ (N ≥ 4), a baryon cannot be constructed

from three quarks, since the three product does not contain
the singlet for N ≥ 4:

N⊗N⊗N¼ 1

3
NðNþ 1ÞðN− 1Þ⊕ 1

3
NðNþ 1ÞðN− 1Þ

⊕
1

6
NðNþ 1ÞðNþ 2Þ⊕ 1

6
NðN− 1ÞðN− 2Þ:

ð46Þ

For SUð4Þ, incidentally, we can check the following
results:

4 ⊗ 4� ¼ 15 ⊕ 1;

4 ⊗ 4 ¼ 10S ⊕ 6A;

4 ⊗ 4 ⊗ 4 ¼ ð10S ⊕ 6AÞ ⊗ 4

¼ 20MS ⊕ 20S ⊕ 20MA ⊕ 4A: ð47Þ

For SUð4Þ, a quark-antiquark pair qq̄ can form a color
singlet, while the three quarks qqq is unable to form a color
singlet. This is because there are 4·3·2

3·2·1 ¼ 4ways of forming a
completely antisymmetric wave function using 3 colors
from 4 colors. For SUðNÞ, therefore, we need N quarks to
make a color singlet:

B ¼ εa1���aNq
a
1 � � � qaN; ðN ≥ 3Þ: ð48Þ

This is examined by considering the N-times-winding
Wilson loop operator.
In view of these, we consider the general multiple-

winding Wilson loop operator of m-times-winding loops,
WðC1 × C2 × ::: × CmÞ. We show that the m-times-wind-
ing Wilson loop operatorWðC × C × ::: × CÞ ¼ WðCmÞ in
the fundamental representation is written as the linear
combination of a single Wilson loop operator WRl

ðCÞ in
higher representations Rl when all loops are identical:

WðCmÞ ¼
Xminðm;NÞ

l¼1

ð−1Þlþ1
DðRlÞ
N

WRl
ðCÞ; ð49Þ

where the representation Rl is specified by the Dynkin
indices:

Rl ≔

8>>><
>>>:

½m; 0;…; 0� for l ¼ 1;

½m − l; 0;…; 0; 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
l

; 0;…; 0� for l ¼ 2;…;minðm;N − 1Þ;

½m − N; 0;…; 0� for l ¼ N;m ≥ N;

ð50Þ

and DðRlÞ is the dimension of Rl, i.e.,

DðRlÞ ¼
ðN þm − lÞ!

mðl − 1Þ!ðm − lÞ!ðN − lÞ! : ð51Þ

The proof is given in Appendix B. For a given SUðNÞ,
especially, the case m ¼ N is an important physical case
corresponding to the baryon potential.
Then we have the relation for the average

hWðCmÞi ¼
Xminðm;NÞ

l¼1

ð−1Þlþ1
ðN þm − lÞ!

mNðl − 1Þ!ðm − lÞ!ðN − lÞ!
× hWRl

ðCÞi: ð52Þ

Assuming the area-law falloff with the string tension
obeying the Casimir scaling, therefore, the most dominant
term is given by

hWðCmÞi≃

8>><
>>:
ð−1Þm−1cNmexp

	
−mðN−mÞ

N−1 σFS



form<N;

ð−1ÞN−1cNm form¼N;

ð−1ÞN−1cNmexp
	
−mðm−NÞ

Nþ1
σFS



form>N;

ð53Þ

where S is the minimal area of the loop and cNm are positive
constants.
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In particular, a triple-winding Wilson loop for the SUð3Þ
Yang-Mills theory is written as

hWðC3Þi ¼ 10

3
hWðCÞ½3;0�i −

8

3
hWðCÞ½1;1�i þ

1

3
hWðCÞ½0;0�i

¼ 10

3
hWðCÞ½3;0�i −

8

3
hWðCÞ½1;1�i þ

1

3
; ð54Þ

where we have used WðCÞ½0;0� ¼ 1. This is consistent with
(44). The triple-winding Wilson loop operator is related to
the baryonic Wilson loop operator; see, e.g., [11].
For the loop of the asymptotic size, the expectation value

is expected to be

hWðCmÞi≃ ð−1Þk−1cNm exp

�
−
kðN − kÞ
N − 1

σFS

�

for m ¼ k mod N: ð55Þ

Therefore, the difference between the loop of intermediate
size and that of asymptotic size appears if the winding
number is greater than N.

IV. MULTIPLE-WINDING WILSON LOOPS
WITH NONIDENTICAL LOOPS

In this section, first, we consider the general double-
winding Wilson loop where the two loops are distinct and
see that the double-winding Wilson loop follows the novel
law when the gauge group is SUðNÞ (N ≥ 3). Next, we
introduce new Wilson loops whose expectation values are
expected to follow the difference-of-areas law even in the
N ≥ 3 case.
In the two-dimensional spacetime we can exactly cal-

culate the double-winding Wilson loop average. This fact is
first demonstrated by Bralic in [12] for the UðNÞ gauge
theory. The exact result for the double-windingWilson loop
average for UðNÞ is

hWðC1 × C2Þi ¼
N þ 1

2
exp

�
−
~g2N
2

�
S1 þ

N þ 2

N
S2

��

−
N − 1

2
exp

�
−
~g2N
2

�
S1 þ

N − 2

N
S2

��
;

ð56Þ

where ~g is the coupling constant in the SUðNÞ gauge
theory. Incidentally, the Uð1Þ case reads

hWðC1 × C2Þi ¼ exp

�
−
g2

2
ðS1 þ 3S2Þ

�
; ð57Þ

which reduces for the identical loops S1 ¼ S2 to

hWðC × CÞi ¼ exp

�
−
g2

2
ð4SÞ

�
: ð58Þ

Notice that the area-law falloff for the double-winding
Uð1Þ Wilson loop average in two-dimensional spacetime
does not follow the sum-of-areas law.
Fortunately, we can apply this method to the SUðNÞ

gauge theory. Indeed, by replacing the relations among the
generators of UðNÞ by the ones valid for generators TA of
SUðNÞ (A ¼ 1;…; N2 − 1):

δABTATB ¼ N2 − 1

2N
1;

δABðTAÞα1β1ðTBÞα2β2 ¼
1

2
δα1β2δ

α2
β1
−

1

2N
δα1β1δ

α2
β2
; ð59Þ

we can obtain the exact result for the double-winding
Wilson loop average for SUðNÞ:

hWðC1×C2Þi¼
Nþ1

2
exp

�
−
g2

2

N2−1

2N

�
S1þ

Nþ3

Nþ1
S2

��

−
N−1

2
exp

�
−
g2

2

N2−1

2N

�
S1þ

N−3

N−1
S2

��
:

ð60Þ
In the large N limit, both UðNÞ and SUðNÞ cases agree2

hWðC1×C2Þi¼ð1− ~g2NS2Þexp
�
−
~g2N
2

ðS1þS2Þ
�
: ð61Þ

See, e.g., [13] for the large N result of SUðNÞ based on the
Makeenko-Migdal loop equation.
In view of these facts, we give a conjecture for the area-

law falloff of the double-winding SUðNÞ Wilson loop
average with two loops C1, C2:

hWðC1×C2Þi≃−cN exp
�
−σF

�
S1þ

N−3

N−1
S2

��
ðcN >0Þ:

ð62Þ

This follows assuming the factorization of the expec-
tation value hWðC1 × C2Þi ¼ hWðC1 × C−1

2 × C2
2Þi≃

hWðC1 × C−1
2 ÞihWðC2

2Þi from the product of the two
area-law falloffs for an ordinary single-winding loop with
the area S1 − S2 and a double-winding loop with the
identical area S2 obeying (40):

hWðC1 ×C2Þi≃ exp ½−σFðS1 − S2Þ�

× ð−cNÞ exp
�
−2

N − 2

N − 1
σFS2

�
ðcN > 0Þ:

ð63Þ
This is suggested from the middle diagram of Fig. 1. This
conjecture is consistent with the above considerations for

2The agreement occurs if ~g2 ¼ g2=2.
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the identical loops S1 ¼ S2 and reduces to the ordinary area
law for S2 ¼ 0. We expect that this result holds also in four
dimensions. Indeed, this leading behavior could hold
irrespective of the spacetime dimension, which is also
suggested from the strong-coupling expansion of the lattice
gauge theory [7].
If the gauge group is SUðNÞ (N ≥ 3), the double-

winding Wilson loop does not show the difference-of-areas
law, and cannot be used just as in the SUð2Þ case.
Fortunately, however, we can construct the other types
of Wilson loops whose averages show the difference-of-
areas law. One of these loops is shown in the left panel of
Fig. 2, which shows the loop winding once around C1 and
N − 1 times around C2. For the loop of intermediate size,
by assuming the Casimir scaling and the factorization and
using Eq. (53), the Wilson loop average for this loop
behaves as

hWðC1 × CN−1
2 Þi ∝ ð−1ÞN−1 exp ½−σFðS1 − S2Þ�: ð64Þ

For the loop of asymptotic size, the same behavior is
expected to hold.
Next we consider the loop shown in the right panel of

Fig. 2, which winds k times around C1 and N − k times
around C2. In this case, we also expect the difference-of-
areas behavior. For the loop of intermediate size, the
Wilson loop average is expected to behave as

hWðCk
1×CN−k

2 Þi∝ ð−1ÞNþk−2exp

�
−
kðN−kÞ
N−1

σFðS1−S2Þ
�
:

ð65Þ

For the loop of asymptotic size, the Wilson loop average is
expected to behave as

hWðCk
1 × CN−k

2 Þi ∝ ð−1ÞNþk−2 exp ½−σkðS1 − S2Þ�; ð66Þ

where σk is the asymptotic string tension for a representa-
tion whose N-ality is k.
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APPENDIX A: DOUBLE-WINDING CASE:
THE DERIVATION OF EQS. (6) AND (31)

First, we consider the case N ¼ 2. Let U be an
element of SUð2Þ. There exists a group element V such
that VUV−1 is diagonal. Let this diagonal matrix be
diagðexpðiθ=2Þ; expð−iθ=2ÞÞ. Thus, we can write

trU2 ¼ trðVUV−1Þ2 ¼ eiθ þ e−iθ ¼ trUA − 1 ðA1Þ

where UA denotes the adjoint representation of U. Here we
have used the adjoint representation of VUV−1, which is
diagðexpðiθÞ; 1; expð−iθÞÞ. Therefore, in the case of the
gauge group SUð2Þ, the double-winding Wilson loop
operatorWðC × CÞ can be written using the single-winding
Wilson loop operator WA in the adjoint representation as

WðC × CÞ ¼ 3

2
WA −

1

2
1: ðA2Þ

When the gauge group is SUðNÞ (N ≥ 3), we show that
the double-winding Wilson loop operatorWðC × CÞ can be
written using the higher-dimensional representation as

WðC × CÞ ¼ N þ 1

2
W½2;0;…;0� −

N − 1

2
W½0;1;0;…;0� ðA3Þ

by showing

trU2 ¼ trU½2;0;…;0� − trU½0;1;0;…;0�; ðA4Þ

where U is an arbitrary element of SUðNÞ.
Before proceeding to the general N case, we consider the

N ¼ 3 case. As in the SUð2Þ case, a group element U can
be diagonalized. Let this diagonal matrix be expðiv ·HÞ,
v ·H ≔ v1H1 þ v2H2 where H1 and H2 are the Cartan
generators and v1, v2 ∈ R. Therefore, the trace of U2 is

trU2 ¼
X
i

hνije2iv·Hjνii ¼ e2iv·ν
1 þ e2iv·ν

2 þ e2iv·ν
3

; ðA5Þ

where ν1, ν2, and ν3 are the weights of the fundamental
representation and jνii is the normalized state corres-
ponding to νi. To write this as the sum of the traces in

FIG. 2. The left figure is the loop winding once around C1 and
N − 1 times around C2. The right figure is the loop winding k
times around C1 and N − k times around C2. The Wilson loop
averages for these loops are expected to decrease exponentially
with the difference of areas S1 − S2.
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higher-dimensional representations, we must find the
representation which has the weights 2ν1, 2ν2, and 2ν3.
To do this, let us consider the representation corresponding
to the Young diagram

ðA6Þ

A state in this representation can be obtained by sym-
metrizing the tensor product of two states in the funda-
mental representation, that is to say,

jνii ⊗ jνji þ jνji ⊗ jνii ðA7Þ

belongs to this representation. Therefore, the weights of
this representation are 2ν1, 2ν2, 2ν3, ν1 þ ν2, ν1 þ ν3,
ν2 þ ν3, and the degeneracy of each state is one. Since
the highest weight of this representation is 2ν1 ¼ 2μ1, this
representation is [2, 0], where μi denotes a fundamental
weight.3 Generally the trace in the representation R can be
written as

trUR ¼
X
μ

dμeiv·μ; ðA8Þ

where the sum is over the weights μ of the representation R
and dμ is degeneracy of the weight μ. Then the trace ofU in
this representation is

trU½2;0� ¼ eiv·2ν
1 þ eiv·2ν

2 þ eiv·2ν
3 þ eiv·ðν1þν2Þ

þ eiv·ðν1þν3Þ þ eiv·ðν2þν3Þ: ðA9Þ

Because ν1 þ ν2 þ ν3 ¼ 0, the sum of the last three terms is
the trace in the complex conjugate of the fundamental
representation. Therefore we obtain

trU2 ¼ trU½2;0� − trU½0;1�: ðA10Þ

Now we consider the general N case. In this case,
we can write VUV−1 ¼ expðiv ·HÞ, where v ·H ≔
vaHa;H1;…; HN−1 are the Cartan generators and va∈R.
Therefore,

trU2 ¼
X
i

hνije2iv·Hjνii ¼
X
i

e2iv·ν
i
; ðA11Þ

where ν1;…; νN−1 are the weights of the fundamental
representation and jνii is the normalized state correspond-
ing to νi. From this expression, it turns out that we must
find the representation with the doubled weights
2ν1;…; 2νN−1. As in the N ¼ 3 case we consider the
representation corresponding to the Young diagram

ðA12Þ

A state in this representation can be obtained by sym-
metrizing the tensor product of two states in the funda-
mental representation, that is to say,

jνii ⊗ jνji þ jνji ⊗ jνii ðA13Þ

belongs to this representation. Therefore, the weights of
this representation are

νi þ νj ði; j ¼ 1;…; N; i < jÞ ðA14Þ

and the degeneracy of each state is one. Because the highest
weight is 2ν1 ¼ 2μ1, this representation is ½2; 0;…; 0�.
Then the trace in this representation is

trU½2;0;…;0� ¼
X
i≤j

eiv·ðνiþνjÞ ¼ trU2 þ
X
i<j

eiv·ðνiþνjÞ: ðA15Þ

Next let us consider the representation corresponding the
Young diagram

ðA16Þ

A state in this representation can be obtained by anti-
symmetrizing the tensor product of two states in the
fundamental representation, that is to say,

jνii ⊗ jνji − jνji ⊗ jνii ðA17Þ

belongs to this representation. Therefore, the weights of
this representation are

νi þ νj ði; j ¼ 1;…; N; i ≠ jÞ; ðA18Þ

and the degeneracy of each state is one. Because the highest
weight is ν1 þ ν2 ¼ μ2, this representation is ½0; 1; 0;…; 0�.
Then the trace in this representation is

trU½0;1;0;…;0� ¼
X
i<j

eiv·ðνiþνjÞ: ðA19Þ

3The fundamental weights μi are defined as N − 1 dimensional
vectors that satisfy

2μi · αj

αk · αk
¼ δij;

where αj are roots of SUðNÞ. The highest weight of the
representation ½m1; m2;…; mN−1� is

XN−1

i¼1

miμ
i:
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Therefore, by subtracting Eq. (A19) from Eq. (A15) we
obtain Eq. (A4).
Since the dimensions of ½2; 0;…; 0� and ½0; 1; 0;…; 0�

are NðN þ 1Þ=2 and NðN − 1Þ=2, respectively, the double-
winding Wilson loop can be written as

WðC × CÞ ¼ N þ 1

2
W½2;0;…;0� −

N − 1

2
W½0;1;0;…;0�: ðA20Þ

APPENDIX B: MULTIPLE-WINDING CASE:
DERIVATION OF EQ. (49)

The trace of the mth power of U can be written as

trUm ¼
Xminðm;NÞ

l¼1

ð−1Þl−1trURl
ðB1Þ

where

Rl ≔

8>>><
>>>:

½m; 0;…; 0� for l ¼ 1;

½m − l; 0;…; 0; 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
l

; 0;…; 0� for l ¼ 2;…;minðm;N − 1Þ;

½m − N; 0;…; 0� for l ¼ N;m ≥ N:

ðB2Þ

By denoting the representations using Young diagram, we can also write it as for m > N

ðB3Þ

where there are m boxes in all diagrams and there are l raws in the diagram in the lth term, and for m ≤ N

ðB4Þ

where there are only N terms.
This is proven as follows. The trace of the mth power of

an element of SUðNÞ can be written as

trUm ¼
X
i

eimv·νi : ðB5Þ

Here mν1;…; mνN−1 belong to the set of weights of the
representation ½m; 0;…; 0� because the highest weight is
mμ1 ¼ mν1 and mν1;…; mνN−1 are related by Weyl
reflections. Therefore, as in the second power case the
trace of mth power of U can be obtained by subtracting the
part which contains the weights other than mν1;…; mνN−1

from the trace of U½m;0;…;0�. The next step is finding the
representation which contains the states corresponding to
the weights of ½m; 0;…; 0� other than mν1;…; mνN−1.
To do this, we consider tensor representations. Let jii be

a vector in the fundamental representation space whose
weight is νi. A vector belonging to mth tensor power of the
fundamental representation space can be written as

ji1i ⊗ ji2i ⊗ � � � jimi; ðB6Þ

and we denote this by

ji1i2…imi: ðB7Þ

It is known that an irreducible representation subspace of
the tensor product space corresponds to a Young diagram.
We can obtain a state belonging to an irreducible repre-
sentation subspace as follows. First, put factors of a tensor
product in each of the boxes of the Young diagram. Second,
symmetrize in the factors in the same raws of the Young
diagram. Lastly antisymmetrize in the factors in the same
columns. The obtaining state belongs to an irreducible
representation subspace. For example, let us consider the
Young diagram

ðB8Þ

and a state jj1j2j3i. First put j1, j2, and j3 into the boxes of
the diagram as

ðB9Þ

By symmetrizing in j1 and j2, we obtain
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jj1j2j3i þ jj2j1j3i: ðB10Þ

By antisymmetrizing in j1 and j3, we obtain

jj1j2j3i þ jj2j1j3i − jj3j2j1i − jj2j3j1i: ðB11Þ

This belongs to an irreducible representation subspace. It is
also known that a basis of an irreducible representation
subspace corresponds to a set of semistandard Young
tableaux (see, e.g., [14]). A semistandard Young tableau
is obtained by filling in the boxes of a Young diagram with
numbers which weakly increase along each row and strictly

increase down each column. In fact, if N ¼ 3, the basis of
the representation in the example,

f2j112i − j211i − j121i; 2j113i − j311i − j131i;
j122i þ j212i − 2j221i; 2j223i − j322i − j232i;
j133i þ j313i − 2j331i; j233i þ j323i − 2j332i;
j123i þ j213i − j321i − j231i;
j132i þ j312i − j231i − j321ig; ðB12Þ

corresponds to the set of the semistandard Young tableaux,

ðB13Þ

The weights of this representation are

2ν1 þ ν2; 2ν1 þ ν3; 2ν2 þ ν1; 2ν2 þ ν3;

2ν3 þ ν1; 2ν3 þ ν2; ν1 þ ν2 þ ν3: ðB14Þ
The weight space with ν1 þ ν2 þ ν3 is the two-dimensional
space whose basis is the set of the last two elements of
Eq. (B12).
Before proceeding with the general m and N case, we

consider the case m ¼ 3 and N ¼ 3. Let us consider the
representation [3, 0], which corresponds to the Young
diagram

ðB15Þ

Since states in this representation are symmetric in the
factors of tensor products, the weights are

3ν1; 3ν2; 3ν3; 2ν1 þ ν2; 2ν1 þ ν3;

2ν2 þ ν1; 2ν2 þ ν3; 2ν3 þ ν1;

2ν3 þ ν2; ν1 þ ν2 þ ν3; ðB16Þ
and the degeneracy of each state is one. Therefore, by using
Eq. (A8) we obtain the trace in this representation as

ðB17Þ

Next we consider the representation corresponding to the Young diagram, Eq. (B8). By using Eq. (A8) and the fact that the
weights of this representation are Eq. (B14), the degeneracy of ν1 þ ν2 þ ν3 is two, and the degeneracies of other weights
are one, we obtain the trace in this representation as

ðB18Þ

Therefore,

ðB19Þ

where we have used Eq. (B5) and ν1 þ ν2 þ ν3 ¼ 0. By adding the trace of the trivial representation, i.e., one, we obtain

ðB20Þ

DOUBLE-WINDING WILSON LOOPS IN THE SUðNÞ … PHYSICAL REVIEW D 96, 105011 (2017)

105011-11



where we have used the fact that the Young diagram

ðB21Þ

corresponds to the trivial representation. Because of
the degeneracy, when m ≥ 3 we need more than two
representations.
Now we consider the general m and N case. The

representation ½m; 0;…; 0� corresponds to the Young dia-
gram shown in Fig. 3(a) because the highest weight of the
representation corresponding to the Young diagram is mν1,
which is the highest weight of ½m; 0;…; 0�. Therefore, a
weight of ½m; 0;…; 0� can be written as

Xm
l¼1

νil ð1 ≤ i1 ≤ � � � ≤ im ≤ NÞ; ðB22Þ

and the degeneracy of each weight is one. This is because
the states in this representation can be represented as the
symmetric tensor products of m states in the fundamental
representation, and there is only one symmetric tensor
product which contains ji1i;…; jimi as the factors.
Next let us consider the representation

½m − 2; 1; 0;…; 0�, which corresponds to the Young dia-
gram shown in Fig. 3(b). This representation contains the
states which have the weights, Eq. (B22), other than
mν1;…; mνN because at least two different states of the
fundamental representation must appear as the factors of
the tensor products in each state in this representation. The
degeneracy of the weights which have k different weights
of the fundamental representation in the sum, i.e.,

Xk
i¼1

liν
ji

�
li ∈ N;

Xk
i¼1

li ¼ m; 1 ≤ j1 < � � � < jk ≤ N

�

ðB23Þ
is k − 1 [notice that 2 ≤ k ≤ minðm;NÞ]. This fact is
proven as follows. The degeneracy of the weights,
Eq. (B23), is the number of the semistandard Young
tableaux where the integer ji appears li times for
i ¼ 1;…; k. In the semistandard Young tableaux, j1, which
is the smallest integer in j1;…; jk, must appear in the first
box of the first raw, and since the same number must not

appear in the same column, the second box in the first
column must be filled by any one of j2;…; jk. The entries
in the remaining boxes are automatically determined. This
means that the semistandard Young tableau is determined
by what is the entry of the second box in the first column.
Thus, the number of the corresponding semistandard
Young tableau is k − 1. Therefore, if we subtract
trU½m−1;1;0;…;0� from trU½m;0;…;0�, we subtract too much.
We need to consider another representation.
Consider the representation corresponding to the Young

diagram shown in Fig. 3(c). Notice that l ≤ m and l ≤ N
because there are m boxes in the diagrams and there are no
representations corresponding to the Young diagrams
which has more than N rows when the group is SUðNÞ.
Since at least l different states of the fundamental repre-
sentation must appear as the factors of the tensor product in
each state in this representation, the weights of this
representation are Eq. (B23) for k ¼ l;…;minðm;NÞ.
The degeneracy of the weights Eq. (B23) is k−1Cl−1.
This is because, by putting j1 into the first box and l −
1 of j2;…; jk into the boxes in the first column other than
first box in ascending order, the numbers which should be
put in the remaining boxes are determined and then the
corresponding semistandard Young tableau is obtained.
This means that the semistandard Young tableau is deter-
mined by what is the entry of all boxes except the first one
in the first column. Thus, the number of the corresponding
semistandard Young tableau is k−1Cl−1. This representation
is Rl since the highest weight of this representation is
ðm−lþ1Þν1þν2þ���þνl¼ðm−lÞμ1þμl for l < N,
and ðm−Nþ1Þν1þν2þ���þνN¼ðm−NÞν1 for l ¼ N,
where we have used ν1 þ � � � þ νl ¼ μl for l < N
and ν1 þ � � � þ νN ¼ 0.
Because

Xk
l¼1

k−1Cl−1ð−1Þl−1 ¼ ð1 − 1Þk−1 ¼ 0; ðB24Þ

the contribution from the weights, Eq. (B23), for k ¼
2;…;minðm;NÞ cancels in Eq. (B1). Since Eq. (B23) for
k ¼ 2;…;minðm;NÞ is all weights of ½m; 0;…; 0� except
mν1;…; mνN , Eq. (B1) is proven.
By using Eq. (B1) we can write the m-times-

winding Wilson loop operator by using the single-winding
Wilson loop operator for the higher-dimensional represen-
tations: the m-times-winding Wilson loop operator can be
written as

WðCmÞ ¼
Xminðm;NÞ

l¼1

ð−1Þl−1 DðRlÞ
N

WRl
; ðB25Þ

where DðRlÞ is the dimension of Rl, i.e.,

DðRlÞ ¼
ðN þm − lÞ!

mðl − 1Þ!ðm − lÞ!ðN − lÞ! : ðB26Þ

(a) (b) (c)

FIG. 3. The Young diagrams associated with m-times-winding
Wilson loop operator for SUðNÞ group. (a) ½m; 0;…; 0�. (b)
½m − 2; 1; 0;…; 0�. (c) Rl.
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