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Double-winding Wilson loops in the SU(N) Yang-Mills theory

Ryutaro Matsudo"" and Kei-Ichi Kondo™"

lDeparz‘ment of Physics, Faculty of Science and Engineering, Chiba University, Chiba 263-8522, Japan
2Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522, Japan
(Received 1 July 2017; published 13 November 2017)

We consider double-winding, triple-winding, and multiple-winding Wilson loops in the SU(N) Yang-
Mills gauge theory. We examine how the area-law falloff of the vacuum expectation value of a multiple-
winding Wilson loop depends on the number of color N. In sharp contrast to the difference-of-areas law
recently found for a double-winding SU(2) Wilson loop average, we show irrespective of the spacetime
dimensionality that a double-winding SU(3) Wilson loop follows a novel area law which is neither
difference-of-areas nor sum-of-areas law for the area-law falloff and that the difference-of-areas law is
excluded and the sum-of-areas law is allowed for SU(N) (N > 4), provided that the string tension obeys the
Casimir scaling for the higher representations. Moreover, we extend these results to arbitrary multiple-
winding Wilson loops. Next, we argue that the area law follows a novel law, which is neither sum-of-areas
nor difference-of-areas law when N > 3. In fact, such a behavior is exactly derived in the SU(N) Yang-
Mills theory in the two-dimensional spacetime. Finally, we introduce new Wilson loops whose averages are

expected to follow the difference-of-areas law even in the SU(N) Yang-Mills theory for N > 3.
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I. INTRODUCTION

In this paper we discuss double-winding, triple-winding
and more general multiple-winding Wilson loops [1] in the
SU(N) Yang-Mills gauge theory [2]. The “double-wind-
ing” Wilson loops consist of the contours which wind once
around a loop C; and once around a loop C, where the two
coplanar loops share one point in common and where C,
lies entirely in the minimal area of C;. Recently, the SU(2)
case for the double-winding Wilson loop [3] has been
investigated to study the mechanism for quark confinement.
See, e.g., [4,5] for reviews of quark confinement. It has
been found that the area-law falloff of the vacuum expect-
ation value (or average) of the double-winding Wilson loop
follows a difference-of-areas law [3]. In this paper we
examine how the area-law falloff of double-winding, triple-
winding, and arbitrary multiple-winding Wilson loop
averages depend on the number of color N in the
SU(N) Yang-Mills theory.

First, we discuss the case where the two loops C; and C,
are identical for a double-winding Wilson loop and derive
the exact operator relation which relates the double-
winding Wilson loop operator in the fundamental repre-
sentation to a single Wilson loop in the higher-dimensional
representations depending on N. By taking the average
of the relation, we find the relation among the Wilson loop
averages. We find that the difference-of-areas law for the
area-law falloff of a double-winding Wilson loop average
recently claimed for N = 2 is excluded for N > 3, provided
that the string tension obeys the Casimir scaling [6] for the
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higher representations. We show that a double-winding
SU(3) Wilson loop average follows a novel area law which
is neither difference of areas nor sum of areas, while the
difference-of-areas is excluded and the sum-of-areas law is
allowed for SU(N) (N > 4), although the double-winding
SU(2) Wilson loop average is consistent with the differ-
ence-of-areas law.

Next, we extend the analysis to a multiple-winding
Wilson loop in the SU(N) Yang-Mills gauge theory. We
give a physical motivation to consider the multiple-winding
Wilson loop and give the physical interpretation of the
obtained results. This enables us to explain how the SU(2)
case is so different from the other cases.

These results are derived from the group theoretical
consideration in the case where all loops are identical.
In this case, a m-times-winding Wilson loop operator in
the fundamental representation is rewritten as a linear
combination of Wilson loop operators in the higher
representations which are distinct from the fundamental
representation. The results do not depend on the dimen-
sionality of spacetime. This provides us with the useful
information to analyze the area-law falloff of the multiple-
winding Wilson loop average.

Next, we discuss the case where the two loops
are distinct for a double-winding Wilson loop. In this
case, we argue that the area law follows a novel law
(N=3)S,/(N—1)+S; with §; and S, (S, < ) being
the minimal areas spanned respectively by the loops C; and
C,, which is neither sum-of-areas (S; + S,) nor difference-
of-areas (§; — S,) law when N > 3. Indeed, we show that
this behavior is exactly derived in the SU(N) Yang-Mills
theory in the two-dimensional spacetime. These results are
consistent with the result obtained recently based on the
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leading order calculations of the strong-coupling expansion
within the framework of the lattice gauge theory [7], which
does not depend on the dimensionality of spacetime.

Finally, we introduce new Wilson loops whose averages
are expected to follow the difference-of-areas law. In the
SU(N) Yang-Mills theory with N > 3, such Wilson loops
can be used just as the double-winding Wilson loop was
used in the SU(2) Yang-Mills theory.

The results obtained in this paper will give useful
information to investigate the true mechanism for quark
confinement, which is to be tackled in the subsequent
works.

This paper is organized as follows. In Secs. II and III, we
give the main results of this paper with their physical
interpretation. In Sec. II, we discuss the area-law falloff for
a double-winding Wilson loop for the two identical loops.
In Sec. III, we extend our analysis to multiple-winding
Wilson loops for the m identical loops. In Sec. IV, we treat a
double-winding Wilson loop with two distinct loops in the
SU(N) Yang-Mills theory in the two-dimensional space-
time and with Wilson loops whose expectation values are
expected to follow the difference-of-areas law even in the
SU(N) Yang-Mills theory. Some of the details of the proofs
of the main results are given in Appendices.

II. DOUBLE-WINDING WILSON LOOP
WITH IDENTICAL LOOPS

For a single closed loop C, the Wilson loop operator in
the fundamental representation is defined by

W(C) = U (C)) (1

where Uy (C) is the parallel transporter along the loop C,
i.e., the path-ordered product of the group element along
the loop C:
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For two closed loops C; and C,, a double-winding

Wilson loop operator in the fundamental representation
is defined by

W(C) x Cy) = %tr[UF(Cl)UF(CZ)]' (3)

See Fig. 1.

In what follows, we consider what type of the area law
follows for the double-winding Wilson loop average,
irrespective of the lattice and continuum formulations.
For this purpose, we consider the case of two identical
loops, i.e., C; = C, = C. In the identical case, the double-
winding Wilson loop operator is written as

W(Cx €)= LulUA(OUC) ()

The two loops C; and C, have the same direction. The two
identical loops correspond to the world line of a pair of
quarks in the fundamental representation. The direct
product of two fundamental representations is decomposed
into the irreducible representations of the color group
SU(N).

For SU(2), the product of two fundamental representa-
tions 2 is decomposed into a singlet 1 and a triplet 3, i.e.,
adjoint representation:

2@2=1063=2Q2" (5)

Since the color singlet state must not be confined and could
be observed, the string tension must vanish and the area law
would disappear. In fact, the double-winding Wilson loop
operator in the fundamental representation is decomposed
into a trivial term and the Wilson loop operator W(C) y4; in
the adjoint representation for a single Wilson loop C (see
Appendix A for the derivation) as

Up(C) := Pexp {ig /C dx”Aﬂ} €G. (2) W(CxC) = —%1 +%W(C)Adj. (6)
B C ) A B ) A
S -S|
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FIG. 1.

> >

The leftmost figure is a double-winding loop with two closed loops C; and C, winding in the same direction and the middle

one is its deformation. The rightmost figure is the case of two identical loops.
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This operator identity for the Wilson loops leads to the
relation for their averages:

W(Cx ) =—3 45 WOy (1)

N W

The adjoint Wilson loop average exhibits the area law in the
intermediate distance, since the adjoint quarks are screened
by gluons in the long distance. In the intermediate region,
we have

(W(CxC)) = —%4— bye=oruS ... (8)

This is consistent with the difference-of-areas behavior
and contradicts with the sum-of-areas one, as pointed out
by [3].

The quadratic Casimir operator of a representation with
an index J = %, 1,%, ... for SU(2) is given by

C () =JJ+1), 9)

which has the specific value for J = % and J = 1:

C, G) = %, Cy(1) =2. (10)

Suppose that the Casimir scaling for the string tension
holds. Then we find that the adjoint string tension 64 is
obtained from the fundamental string tension o using the
ratio of the quadratic Casimir operators:

Gy (1) 8
GAdj :?@UFZEUF. (11)

The fundamental representation and its conjugate rep-
resentation are district in general. If they happen to
coincide, the representation is called a real representation.
Otherwise, they are called the complex representation.
The group SU(N) allows complex representations for
N > 3. The SU(2) group is very special, since 2 and 2*
are equivalent:

2=2" (12)

In SU(2), therefore, 2 quarks gg can make a singlet:
2®2"=2Q®2=3&1. Thus, the composite particle
qq = qq 1is regraded as a meson ¢g and a baryon gq
simultaneously and there is no distinction between mesons
and baryons for the SU(2) group.

For SU(3), the product of two fundamental representa-
tions 3 is decomposed into an antitriplet 3* and a sextet
representation 6:

33=3@6. (13)
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This is represented as the Young diagram:
Oed-Heo (14)

For SU(3), there is no color singlet for a pair of two quarks,
in sharp contrast with a pair of quark and antiquark where

33 =1068=3"Q®3, (15)

which is represented as the Young diagram:

D®H:E@_ } (16)

In fact, the double-winding Wilson loop operator in the
fundamental representation 3 is decomposed into the
Wilson loop W*(C) = W(C)jo; in the (anti)fundamental
representation 3* with the Dynkin indices [0, 1] and the
Wilson loop operator W(C)p, g in the sextet representation
6 with the Dynkin indices [2, 0] (see Appendix A for the
derivation) L.

W(CxC)= —W(C)[O.l] + ZW(C)[ZO]. (20)
This identity leads to the relation for the average:
(W(CxC)) = =(W(C)yp1)) +2(W(C)p- (21)

In the confinement phase, both Wilson loop averages
(W(C)pp,1) and (W(C)pyq)) exhibit the area law for the
loop C of any size larger than a critical size below which the
Coulomb like behavior is dominant, since they are not
screened by gluons which belong to the adjoint represen-
tation 8 with the Dynkin indices [1, 1]. Therefore, we have

Tt is also possible to rewrite
2tr(Up ) = (U7, ) + ([Up o)) (17)
which is equal to
AW(C)pg) = W(C x C) +3W(C)7, - (18)
This operator relation leads to the relation for the average:
AW(C)pg) = (W(CxC) +3(W(C) ). (19)

This relation was used to examine the Casimir scaling for the
representation [2, 0] on the lattice; see Eq. (5.15) of [6].
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<W(C X C)> = 6136_ng + b3e_6[2'o]s + ce (613 < 0,b3 > 0)
(22)

In the intermediate region, we assume the Casimir
scaling to estimate the string tension oy in the higher-
dimensional representation R. The dimension of the rep-
resentation with the Dynkin indices [m,n| for SU(3) is
given by

D([m,n]) ==(m+1)(n+1)(m+n+2). (23)

| =

The quadratic Casimir operator of the representation with
the Dynkin indices [m, n] for SU(3) is given by [8]

Cy([m,n]) =< (m* +mn+n?) +m+n, (24)

1
3
with the specific values:

C3([0,0]) =0,

Ca([2.0) = 3

G([1.0)) = G ([0.1]) = 5.

C([1,1]) =3, .... (25)

Assuming the Casimir scaling for the string tension,
therefore, the string tension o of the representation
[2, 0] is obtained as the ratio to the fundamental string
tension o = oy g:

G,([2.0)) 5
Opo = mGF =5 0% (26)

Therefore, the area-law falloff of the double-winding
SU(3) Wilson loop average is given in the intermediate
region by

(W(C X C)) = a3e™S + bye 5 ... (a3 <0,by > 0).
(27)

In the asymptotic region, on the other hand, the string
tension oy for quarks in the representation R is determined
only through the N-ality k of the representation R (see,
e.g., Sec. X.5 of [5]). Notice that the two representations
3*=10,1] and 6 = [2,0] have the same N-ality, k = 2.
Therefore, the two string tensions o7y ;) and o, o) converge
to the same asymptotic value which is expected to be the
fundamental string tension:

)0,1]» O2.0] > OF = O[10]- (28)

Thus, the area-law falloff of the double-winding SU(3)
Wilson loop average with two identical loops has the same
dominant behavior as that of a single-winding Wilson loop
average in the fundamental representation.

PHYSICAL REVIEW D 96, 105011 (2017)
(W(C x C)) = c3e775. (29)

This is not consistent with the difference-of-areas behavior
and contradicts also with the sum-of-areas law.
For SU(N) (N > 4), we have the decomposition:

N®N= (NZ_N)A ® <N2+N)S, (N>4). (30)

2 2

The decomposition (30) shows that the N = 3 case is a bit
special: 3 ® 3 = 3}, @ 65, where the antisymmetric part
belongs to 3* (not 3). In any case, the color singlet 1 does
not occur for N > 3. This excludes the difference-of-areas
law for the double-winding Wilson loop average for N > 3,
because the difference-of-areas law contradicts with this
fact in the identical case. The difference-of-areas law is
possible only when the color singlet 1 occurs in the
irreducible decomposition of two quarks.

In fact, the double-winding Wilson loop operator in the
fundamental representation N is decomposed into the Wilson
loop W(C)(g10. o in the representation JN(N—1) with
the Dynkin indices [0, 1,0,...,0] and the Wilson loop
operator W(C)p oo in the representation 3 N(N + 1) with
the Dynkin indices [2,0,...,0] (see Appendix A for the
derivation):

W(CxC)= —NT_lw(C)[o,l.o,.‘.,o] +NT+1W(C)[2,0 ..... 0"

(31)

This operator relation leads to the relation for the average:
W(Cx C)) = =2 W(Choro...0)

P WO ()

The Wilson loop averages (W(C)yg . o) @and

(W(C)pay....0) exhibit the area-law for any size larger than
a critical size below which the Coulomb-like behavior is
dominant, since they are not screened by gluons which
belong to the adjoint representation N> — 1 with the Dynkin
indices [1,0, ..., 0, 1]. Therefore, we have

<W(C X C)> = aye o0 oS 4+ bye ko oS 4 ...
(aN < 0, bN > 0) (33)

In the intermediate region, we assume the Casimir
scaling for the string tension o in the higher-dimensional
representation R. It is shown that the dimension of the
representation with the Dynkin indices [m;, ..., my_;] for
SU(N) is given by [8]
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D([my,....my_])

s e

X (my+-+my_+N—1)
x (my+1)(my+my+2)---(my+---+my_y +N=2)
XX (my_p+my_y +2)(my_ +1), (34)

and the quadratic Casimir operator of the representation
with the Dynkin indices [m, ..., my_;| for SU(N) is given

by [9]
1 N-1
Cz([ml, . mN_l]) = Z_Z l:N(N — k)kmk + k(N - k)m%
k=
k—1
+> 26(N - k)mfmk] , (35)
=0

with the specific values:

2 _
Ca([0r 00 = 0.Co([1.0.... 0)) = 2
Cz([o,l,o,...,o]):(N_zi\(,NH),
(12,0, ..,on:%,w (36)

Under the Casimir scaling, the area-law falloff of the
double-winding SU(N) Wilson loop average is described
in the intermediate region by

(W(C x C)) = ayexp <-2x

N
+ by exp (—2—
(ClN < 0, bN > 0) (37)

Notice that the first term becomes dominant on the right-
hand side for large S.

In the asymptotic region, on the other hand, the string
tension oy for quarks in the representation R is determined
only through the N-ality k of the representation R. Notice
that the two representations %N(N -1)=1[0,1,0,...,0]
and %N(N—I— 1) =1[2,0,...,0] have the same N-ality
k =2, since the Young diagram of (30) is the same as
the SU(3) case (14). [The N-ality of a representation of
SU(N) is equal to the number of boxes in the correspond-
ing Young tableaux (mod N).] Therefore, the two string
tensions oo 10,0 and opg.. o converge to the same
asymptotic value, i.e., o, with k = 2:

0[0,1,0....,0)> 0[2,0,....00 —> or(k=2). (38)
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If we assume the Casimir scaling also for the asymptotic
string tension,

k(N — k)

N—1 OF, (39)

O =

then the area-law falloff of the double-winding SU(N)
Wilson loop average with two identical loops has the
dominant behavior in the intermediate and asymptotic
regions given by

(W(C x C)) = cy exp (-2% fan) (40)

If we adopt another scaling known as the sine-law scaling
suggested by M theory fivebrane version of QCD and softly
broken A" = 2 [10],

sk
sin Z¥

or = —Nop, (41)

k 7 OF

SlnN

then the asymptotic behavior is given by
(W(C x C)) = cye2cosnerS, (42)

In any case, the result is not consistent with the difference-
of-areas behavior and contradicts also with the sum-of-
areas law. For N > 3, the area-law falloff obeys neither
difference-of-areas nor sum-of-areas law.

In the large N limit, however, the result is consistent with
the sum-of-areas law in the intermediate and asymptotic
regions:

(W(C x C)) = e~*orS(k = 2). (43)

However, this result is interpreted as just coming from the
N-ality, rather than reflecting the dynamics of the Yang-
Mills theory.

III. MULTIPLE-WINDING WILSON LOOP
WITH IDENTICAL LOOPS

We can extend the above considerations for a double-
winding Wilson loop to a triple-winding and more general
multiple-winding Wilson loops.

For SU(3), we introduce a triple-winding Wilson loop.
In the identical case, the triple-winding Wilson loop
average for SU(3) is related to the baryon potential.
Baryons are color singlet composite particles to be
observed in experiments. Therefore, the baryon potential
should be nonconfining and the string tension must be zero.
Indeed, we have

105011-5



RYUTARO MATSUDO and KEI-ICHI KONDO
33®3=03®3)®3
= (3, ®65)®3
=3 Q3®6,®3
=1, @ 8yr ®8us B 105, (44)

Thus, we can identify the baryon with the color
singlet 14:

B = ¢,.9°q"q". (45)

Thus, for the gauge group G = SU(3), a baryon is
constructed from three quarks as the color singlet object.
Therefore, both baryons and mesons are colorless combi-
nations to be observed, whereas the respective color and the
colorful particle as a constituent cannot be observed
according to the hypothesis of color confinement. Thus,
the Wilson loop average with a trivial representation is most
dominant and does not exhibit the area law, that is to say,
string tension is zero.

For SU(N) (N > 4), a baryon cannot be constructed
from three quarks, since the three product does not contain
the singlet for N > 4:

N®N®N:§N(N+1)(N—1)@%N(N+1><N—1>

S LN(N+1)(N+2) @éN(N— 1)(N-2).

@)}

(46)

For SU(4), incidentally, we can check the following
results:
|

[m,0,...,0]
R, = m-—2¢,0,...,0,1,0, ...
¢
[m—=N,O0,...,0]

and D(R,) is the dimension of Ry, i.e.,

(N+m-=2)!

D(R;) = m(t —1)!(m—£)\(N=2£)!

(51)

The proof is given in Appendix B. For a given SU(N),
especially, the case m = N is an important physical case
corresponding to the baryon potential.

Then we have the relation for the average

min(m,N)
. . (N+m=2)!
(wem) = ; O NG~ i — PNV = )
X (Wg,(C)). (52)
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434 =151,
44=105 @ 6,,
444=(10d6,) @4
=20y @ 205 ® 200 D44, (47)

For SU(4), a quark-antiquark pair gg can form a color
singlet, while the three quarks ggq is unable to form a color
singlet. This is because there are % = 4 ways of forming a
completely antisymmetric wave function using 3 colors
from 4 colors. For SU(N), therefore, we need N quarks to
make a color singlet:

B=¢q.adqi-qy. (N23). (48)
This is examined by considering the N-times-winding
Wilson loop operator.

In view of these, we consider the general multiple-
winding Wilson loop operator of m-times-winding loops,
W(C; x Cy X ... x C,,). We show that the m-times-wind-
ing Wilson loop operator W(C x C x ... x C) = W(C™) in
the fundamental representation is written as the linear
combination of a single Wilson loop operator W, (C) in
higher representations R, when all loops are identical:

min(m,N) D(Rf)

Do (DTS W (C), (49)

w(cm) =
= N

where the representation R, is specified by the Dynkin
indices:

for 2 =1,

fOI‘fZZ,...,min(m,N—l), (50)

for/{ =N,m>N,

I
Assuming the area-law falloff with the string tension
obeying the Casimir scaling, therefore, the most dominant
term is given by

(=1)"epmexp (—m(N_m)aFS> form <N,

N-T
(w(Cm) =14 (=1)"ecy, form=N,
(=) ey, exp (—’”;’,”;N)aps) form>N,

(53)

where S is the minimal area of the loop and cy,, are positive
constants.
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In particular, a triple-winding Wilson loop for the SU(3)
Yang-Mills theory is written as

(W(C?)) = 13—0 (W(C)pap) — 2 (W(C)y ) + % (W(C) o)
:§<W(C)[3’0}> _§<W(C)[1,1]> +%’ (54)

where we have used W(C)(y ) = 1. This is consistent with
(44). The triple-winding Wilson loop operator is related to
the baryonic Wilson loop operator; see, e.g., [11].

For the loop of the asymptotic size, the expectation value
is expected to be

(W(Em) = (1) exexp (=1 s )

for m =k mod N. (55)

Therefore, the difference between the loop of intermediate
size and that of asymptotic size appears if the winding
number is greater than N.

IV. MULTIPLE-WINDING WILSON LOOPS
WITH NONIDENTICAL LOOPS

In this section, first, we consider the general double-
winding Wilson loop where the two loops are distinct and
see that the double-winding Wilson loop follows the novel
law when the gauge group is SU(N) (N > 3). Next, we
introduce new Wilson loops whose expectation values are
expected to follow the difference-of-areas law even in the
N > 3 case.

In the two-dimensional spacetime we can exactly cal-
culate the double-winding Wilson loop average. This fact is
first demonstrated by Bralic in [12] for the U(N) gauge
theory. The exact result for the double-winding Wilson loop

average for U(N) is
N+2
)|

_N—i—le _ PN P

== Lty
~2
gN N-2
(55|

2 2
(56)

(W(C, x Cy))

N-1
2

exp {—

where g is the coupling constant in the SU(N) gauge
theory. Incidentally, the U(1) case reads

2
we ) —exp |2 (5435 (57

which reduces for the identical loops S; = S, to

(W(C x C)) = exp [—% (45)} . (58)

PHYSICAL REVIEW D 96, 105011 (2017)

Notice that the area-law falloff for the double-winding
U(1) Wilson loop average in two-dimensional spacetime
does not follow the sum-of-areas law.

Fortunately, we can apply this method to the SU(N)
gauge theory. Indeed, by replacing the relations among the
generators of U(N) by the ones valid for generators 74 of

SUNN) (A=1,...N>— 1)
N? -1
SBT\Ty =~ 1,
AL B N
1 1
AB o ay ot a0
(T (To)s, = 504,95 = 55905 (59)

we can obtain the exact result for the double-winding
Wilson loop average for SU(N):

_N+1 ¢ N* -1 N+3
<W(C1XC2)>—TCXP |:—E N (S N+152):|
N-1 gN -1 N-3
——2 exXp l: 2 2N <Sl +N Sz>:|
(60)

In the large N limit, both U(N) and SU(N) cases agree’

~2
OW(exCa)) = (1-PNsexp |V 5452 o1

See, e.g., [13] for the large N result of SU(N) based on the
Makeenko-Migdal loop equation.

In view of these facts, we give a conjecture for the area-
law falloff of the double-winding SU(N) Wilson loop
average with two loops C;, C5:

(W(Cy xC,))=—cyexp {—O-F (Sl +xjsz>} (cy>0).

(62)

This follows assuming the factorization of the expec-
tation value (W(C, x G,)) = (W(C, x C5' x C3)) =
(W(C, x C3"))(W(C5)) from the product of the two
area-law falloffs for an ordinary single-winding loop with
the area S; — S, and a double-winding loop with the
identical area S, obeying (40):

(W(C, x Cy)) =exp[—0£(S| = $,)]

X (—cy)exp [—Z%GFSQ} (cy >0).
(63)

This is suggested from the middle diagram of Fig. 1. This
conjecture is consistent with the above considerations for

The agreement occurs if 7 = ¢%/2.
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Cr

Ch

N—1
C(2

N -1

FIG. 2. The left figure is the loop winding once around C; and
N —1 times around C,. The right figure is the loop winding k
times around C; and N — k times around C,. The Wilson loop
averages for these loops are expected to decrease exponentially
with the difference of areas S; — S,.

the identical loops S; = S, and reduces to the ordinary area
law for §, = 0. We expect that this result holds also in four
dimensions. Indeed, this leading behavior could hold
irrespective of the spacetime dimension, which is also
suggested from the strong-coupling expansion of the lattice
gauge theory [7].

If the gauge group is SU(N) (N > 3), the double-
winding Wilson loop does not show the difference-of-areas
law, and cannot be used just as in the SU(2) case.
Fortunately, however, we can construct the other types
of Wilson loops whose averages show the difference-of-
areas law. One of these loops is shown in the left panel of
Fig. 2, which shows the loop winding once around C; and
N —1 times around C,. For the loop of intermediate size,
by assuming the Casimir scaling and the factorization and
using Eq. (53), the Wilson loop average for this loop
behaves as

(W(C, x 7)) o (=1)¥Texp [~op(S) = $1)].  (64)

For the loop of asymptotic size, the same behavior is
expected to hold.

Next we consider the loop shown in the right panel of
Fig. 2, which winds k times around C; and N — k times
around C,. In this case, we also expect the difference-of-
areas behavior. For the loop of intermediate size, the
Wilson loop average is expected to behave as

k(N—F)

(W(Chx CY ) o (=142 exp | -2 2

oﬂ&—&ﬁ.
(65)

For the loop of asymptotic size, the Wilson loop average is
expected to behave as

(W(C} x CY9)) o (=1)V 2 exp [-04(S) = S5)].  (66)
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where o, is the asymptotic string tension for a representa-
tion whose N-ality is k.
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APPENDIX A: DOUBLE-WINDING CASE:
THE DERIVATION OF EQS. (6) AND (31)

First, we consider the case N =2. Let U be an
element of SU(2). There exists a group element V such
that VUV~! is diagonal. Let this diagonal matrix be
diag(exp(i6/2), exp(—if/2)). Thus, we can write

wU? = (VUV )2 =€ + 7@ =aUy -1 (Al)
where U, denotes the adjoint representation of U. Here we
have used the adjoint representation of VUV ™!, which is
diag(exp(i0), 1, exp(—if)). Therefore, in the case of the
gauge group SU(2), the double-winding Wilson loop
operator W(C x C) can be written using the single-winding
Wilson loop operator W, in the adjoint representation as

3 1
W(CXC) :—WA—EI.

. (42)

When the gauge group is SU(N) (N > 3), we show that
the double-winding Wilson loop operator W(C x C) can be
written using the higher-dimensional representation as

N+1
W(CxC) = —— Wpo...0— TW[O.I,O.....O]

- (43)

by showing

rU? = wtUpy,. o —ttUpp 10,0

(A4)

where U is an arbitrary element of SU(N).

Before proceeding to the general N case, we consider the
N = 3 case. As in the SU(2) case, a group element U can
be diagonalized. Let this diagonal matrix be exp(iv - H),
v-H:=vH| +vyH, where H, and H, are the Cartan
generators and v, v, € R. Therefore, the trace of U? is

trU? = Z<yi‘62iv»H|yi> _ eZiv»u' 4 eZiv»uz 4 eZiv»ﬁ’ (AS)
i

where o', 12, and 1° are the weights of the fundamental
representation and |¢/) is the normalized state corres-
ponding to ¢*. To write this as the sum of the traces in
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higher-dimensional representations, we must find the
representation which has the weights 20!, 22, and 20°.
To do this, let us consider the representation corresponding
to the Young diagram

[T (A6)
A state in this representation can be obtained by sym-
metrizing the tensor product of two states in the funda-
mental representation, that is to say,

V) @ W) + ) @ |v) (A7)
belongs to this representation. Therefore, the weights of
this representation are 2u', 212, 203, o' +12, v + 17,
1?4+ 12, and the degeneracy of each state is one. Since
the highest weight of this representation is 2! = 2u!, this
representation is [2, 0], where x' denotes a fundamental

weight.3 Generally the trace in the representation R can be
written as

wUp = _d,e™™. (A8)
"

where the sum is over the weights y of the representation R
and d, is degeneracy of the weight u. Then the trace of U in
this representation is

tI‘U[z 0= e 2! + e + 2w’ + eV (' 1)

+ e (W) + eV () (A9)

Because v! + 12 + 12 = 0, the sum of the last three terms is

the trace in the complex conjugate of the fundamental
representation. Therefore we obtain

trU2 = tI'U[Z.o] - tI'U[O’l]. (AIO)

Now we consider the general N case. In this case,

we can write VUV~ =exp(iv-H), where v-H :=

v,H, Hy,...,Hy_; are the Cartan generators and v, €R.

Therefore,

3The fundamental weights y are defined as N — 1 dimensional
vectors that satisfy

2u - o

(lk . (lk

=0

ij

where @/ are roots of SU(N). The highest weight of the
representation [my, ms, ..., my_;] is

N-1

E i
m;p.

i=1
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tr2 = Z<yi|62iv‘H‘yi> _ Zeziw"’ (All)

1

where v',...,/N"! are the weights of the fundamental

representation and |v') is the normalized state correspond-
ing to /. From this expression, it turns out that we must
find the representation with the doubled weights
20', ..., 2081 As in the N =3 case we consider the
representation corresponding to the Young diagram

[T (A12)
A state in this representation can be obtained by sym-
metrizing the tensor product of two states in the funda-
mental representation, that is to say,

V) @ ) + 1) ® |v) (A13)
belongs to this representation. Therefore, the weights of
this representation are

v+ (i,j=1,...N, i<}) (A14)
and the degeneracy of each state is one. Because the highest
weight is 2v! = 24!, this representation is [2,0,...,0].
Then the trace in this representation is

trUpy,..0 = ") = a2+ ") (AlS)

i<j i<j

Next let us consider the representation corresponding the

Young diagram
H. (Al6)

A state in this representation can be obtained by anti-
symmetrizing the tensor product of two states in the
fundamental representation, that is to say,
V) @ ) - [v/) @ V) (A17)
belongs to this representation. Therefore, the weights of
this representation are
v+ (i,j=1,...,N, i#}j), (A18)
and the degeneracy of each state is one. Because the highest
weight is o' 4+ 12 = p?, this representation is [0, 1,0, ..., 0].
Then the trace in this representation is

iv-(Li J
trU[O,l,()’.“’O] = Zezv (V4 >

i<j

(A19)
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Therefore, by subtracting Eq. (A19) from Eq. (A15) we
obtain Eq. (A4).

Since the dimensions of [2,0,...,0] and [0, 1,0,...,0]
are N(N + 1)/2 and N(N — 1)/2, respectively, the double-

PHYSICAL REVIEW D 96, 105011 (2017)

APPENDIX B: MULTIPLE-WINDING CASE:
DERIVATION OF EQ. (49)

The trace of the mth power of U can be written as

winding Wilson loop can be written as min(m.N)
wUm = > (1) Uy, (B1)
N+1 N -1 =1
W(ICxC)=—7——"W -——W . (A20
(Cx Q) 2 [2,0.....0] 3 [0,1,0.....0] ( ) where
|
[m,0,...,0] for £ =1,
R, = m-—17¢,0,...,0,1,0, ... for £ =2,...,min(m, N — 1), (B2)
¢
[m—N.,O0,...,0] for/ =N,m>N.
By denoting the representations using Young diagram, we can also write it as for m > N
ttU"=Uy. o-Um . o+ -+ )"0, g+ + (D)™ g,
- Hj H (B3)
i O
where there are m boxes in all diagrams and there are £ raws in the diagram in the Zth term, and for m < N
trtU"=U. . . o-Um - o+ -+ D50, g+ + (DY W0 o
- - - (B4)
0 O
where there are only N terms. li1in. . ip)- (B7)

This is proven as follows. The trace of the mth power of
an element of SU(N) can be written as

U™ = E eimv-ui.
i

Here mv', ...,muN~! belong to the set of weights of the
representation [m, 0, ..., 0] because the highest weight is
mu' = my! ! N=1"are related by Weyl

(BS)

and mv',...,mv
reflections. Therefore, as in the second power case the
trace of mth power of U can be obtained by subtracting the
part which contains the weights other than mv', ..., meN=!
from the trace of Uy, . - The next step is finding the
representation which contains the states corresponding to
the weights of [m,0, ..., 0] other than mu!, ..., m/N=1.

To do this, we consider tensor representations. Let |i) be
a vector in the fundamental representation space whose
weight is /. A vector belonging to mth tensor power of the
fundamental representation space can be written as

i) @ |i2) @ -+ i), (B6)

and we denote this by

It is known that an irreducible representation subspace of
the tensor product space corresponds to a Young diagram.
We can obtain a state belonging to an irreducible repre-
sentation subspace as follows. First, put factors of a tensor
product in each of the boxes of the Young diagram. Second,
symmetrize in the factors in the same raws of the Young
diagram. Lastly antisymmetrize in the factors in the same
columns. The obtaining state belongs to an irreducible
representation subspace. For example, let us consider the
Young diagram

| (BS)

and a state |j; j,j3). First put jj, j,, and j; into the boxes of
the diagram as

J1 j2|.

(B9)

By symmetrizing in j; and j,, we obtain
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| Jij2 j3> + | Joji j3>, (BlO) increase down each column. In fact, if N = 3, the basis of
the representation in the example,
By antisymmetrizing in j; and j;, we obtain
{2]112) — |211) — |121), 2|1113) —|311) — |131),

lrj2d3) + liadiis) = ljsizin) = liajsin)- (B11) 1122) + [212) — 2[221) 2[223) —|322) — [232)
This belongs to an irreducible representation subspace. Itis ~ |133) + |313) — 2|331), 1233) + |323) —2|332),
also known that a basis of an irreducible representation
subspace corresponds to a set of semistandard Young [123) +[213) - 321) — |231),
tableaux (see, e.g., [14]). A semistandard Young tableau  |132) + |312) —|231) — |321)}, (B12)

is obtained by filling in the boxes of a Young diagram with
numbers which weakly increase along each row and strictly ~ corresponds to the set of the semistandard Young tableaux,
|

1] [ [2] 2R 03B 2B [OI2 O3
{2 bl 3 bl 2 bl 3 bl 3 b 3 b 3 b 2}' (B13>

The weights of this representation are LT 1] (B15)
1,2 14,3 20 2.3
LR Wi+, Wit Wt Since states in this representation are symmetric in the
203 + 0t 203 + 12, v A (B14)  factors of tensor products, the weights are
The weight space with ! + 1% + 1? is the two-dimensional 3,1, 312, 313, 2wl 412, 2wl 413,
space whose basis is the set of the last two elements of ) | 5 3 N |
Eq. (B12). W+, 22+ 17, 203 + 1,
Before proceeding with the general m and N case, we 203 + 12, v+, (B16)

consider the case m = 3 and N = 3. Let us consider the

representation [3, 0], which corresponds to the Young  and the degeneracy of each state is one. Therefore, by using
diagram Eq. (A8) we obtain the trace in this representation as

|

ol a2 a3 ol 2 o113 0,241 (0,213 0,31 ,1
trUD:EI:ezv 3v + e 3v + e 3v + 4e (2v +l/)_|_e’L’U (2v'+v7) + e (2vi4v )_|_ezv (2v +l/)_|_e’L’U (2v°+v)

B17
+ eiv-(2u3+y2) + eiv-(y1+y2+y3)' ( )

Next we consider the representation corresponding to the Young diagram, Eq. (B8). By using Eq. (A8) and the fact that the
weights of this representation are Eq. (B14), the degeneracy of v' + 2 + 1? is two, and the degeneracies of other weights
are one, we obtain the trace in this representation as

trUEP:e

Therefore,

iv-(2vt +v?) +eiv-(2ul+z/3) +eiv-(2u2+l/1) +eiv-(2y2+u3) +eiv-(2yg+yl) +eiv~(2ug+y2) +2€i'u~(1/1+1/2+1/3)' (Blg)

tr Ur —tr UBj — eiv{’)ul + eiv{’)uz + eiv~3u3 o eiv~(u1+u2+u3)

(B19)
=trU% —1,

where we have used Eq. (B5) and ' + 1 + 1* = 0. By adding the trace of the trivial representation, i.e., one, we obtain

tr U3 = tr U — tr UHj +tr UH, (B20)
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m —/
m m—1 T_/E
——— 7...79 |0
(IT---T1 B:[ e

(a) (b) (©
FIG. 3. The Young diagrams associated with m-times-winding

Wilson loop operator for SU(N) group. (a) [m,0,...,0]. (b)
[m—2.1,0.....0]. (¢) R,.

where we have used the fact that the Young diagram

@ (B21)

corresponds to the trivial representation. Because of
the degeneracy, when m >3 we need more than two
representations.

Now we consider the general m and N case. The
representation [m, 0, ...,0] corresponds to the Young dia-
gram shown in Fig. 3(a) because the highest weight of the
representation corresponding to the Young diagram is muv!,
which is the highest weight of [m,0, ...,0]. Therefore, a
weight of [m, 0, ...,0] can be written as

Zyif (1<iy<---<i, <N), (B22)
=1

and the degeneracy of each weight is one. This is because
the states in this representation can be represented as the
symmetric tensor products of m states in the fundamental
representation, and there is only one symmetric tensor
product which contains |i\), ..., |i,) as the factors.

Next let us consider the representation
[m—2,1,0,...,0], which corresponds to the Young dia-
gram shown in Fig. 3(b). This representation contains the
states which have the weights, Eq. (B22), other than
mu!, ..., muN because at least two different states of the
fundamental representation must appear as the factors of
the tensor products in each state in this representation. The
degeneracy of the weights which have k different weights
of the fundamental representation in the sum, i.e.,

k k
Zfiujf(f,-el\l, d ti=m 1<} <.--<jng)
i=1 i=1

(B23)

is k—1 [notice that 2 < k < min(m,N)]. This fact is
proven as follows. The degeneracy of the weights,
Eq. (B23), is the number of the semistandard Young
tableaux where the integer j; appears ¢; times for
i =1,..., k. In the semistandard Young tableaux, j;, which
is the smallest integer in jy, ..., ji, must appear in the first
box of the first raw, and since the same number must not
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appear in the same column, the second box in the first
column must be filled by any one of j,, ..., j;. The entries
in the remaining boxes are automatically determined. This
means that the semistandard Young tableau is determined
by what is the entry of the second box in the first column.
Thus, the number of the corresponding semistandard
Young tableau is k— 1. Therefore, if we subtract
trUp,-1,10....0 from twlUp,o o, we subtract too much.
We need to consider another representation.

Consider the representation corresponding to the Young
diagram shown in Fig. 3(c). Notice that 7 < m and £ < N
because there are m boxes in the diagrams and there are no
representations corresponding to the Young diagrams
which has more than N rows when the group is SU(N).
Since at least # different states of the fundamental repre-
sentation must appear as the factors of the tensor product in
each state in this representation, the weights of this
representation are Eq. (B23) for k=¢,...,min(m, N).
The degeneracy of the weights Eq. (B23) is ,_,C,_,.
This is because, by putting j; into the first box and [ —
1 of j,, ..., j; into the boxes in the first column other than
first box in ascending order, the numbers which should be
put in the remaining boxes are determined and then the
corresponding semistandard Young tableau is obtained.
This means that the semistandard Young tableau is deter-
mined by what is the entry of all boxes except the first one
in the first column. Thus, the number of the corresponding
semistandard Young tableauis ,_,C,_,. This representation
is R, since the highest weight of this representation is
(m—C+ 1D 2+ =(m=EO)u' +u’ for I <N,
and (m—N+1)v!'+2+--+N=(m-N)' for £ =N,
where we have used v' +---+15 =y’ for £ <N
and V' + -+ N = 0.

Because

ik—lcf—l<_l)f_l =(1-D"=0, (B24)
=1

the contribution from the weights, Eq. (B23), for k =
2, ...,min(m, N) cancels in Eq. (B1). Since Eq. (B23) for
k=2,...,min(m, N) is all weights of [m,0, ...,0] except
mv',...,mN, Eq. (B1) is proven.

By using Eq. (Bl) we can write the m-times-
winding Wilson loop operator by using the single-winding
Wilson loop operator for the higher-dimensional represen-
tations: the m-times-winding Wilson loop operator can be
written as

min(m,N) D(Rf)

w(emy = > (=1 — Ve (B25)
/=1
where D(R,) is the dimension of R, i.e.,
N —-7)!
D(R,) Wt m — 7) (B26)

T m(=D(m =N =)
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