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We show that the realizations of noncommutative coordinates that are linear in the Lorentz generators
form a closed Lie algebra under certain conditions. The star product and the coproduct for the momentum
generators are obtained for these Lie algebras and the corresponding twist satisfies the cocycle and
normalization conditions. We also obtain the twisted flip operator and theR-matrix that define the statistics
of particles or quantum fields propagating in these noncommutative spacetimes. The Lie algebra obtained
in this work contains a special case which has been used in the literature to put bounds on noncommutative
parameters from the experimental limits on Pauli forbidden transitions. The general covariant framework
presented here is suitable for analyzing the properties of particles or quantum fields at the Planck scale.
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I. INTRODUCTION

Noncommutative geometry is one of the candidates for
describing physics at the Planck scale. A combined analysis
of Einstein’s general relativity and Heisenberg’s uncer-
tainty principle leads to a very general class of noncommu-
tative spacetimes [1,2], examples of which include the
Groenewald-Moyal plane [3] and the κ-Minkowski algebra
[4–10]. Analysis of quantum mechanics and field theory on
such noncommutative space-times provides a glimpse of
the physics at the Planck scale, in which the spin-statistics
[11] theorem plays a particularly important role. The
statistics of particles or quantum fields is defined by
observing how a two particle state behaves under exchange,
which is implemented by the flip operator. In order that the
particle statistics is preserved under symmetry operations in
the noncommutative spaces [12,13], the usual flip operator
must be replaced with a twisted flip operator [14–16]. This
result has profound consequences for the spin-statistics
theorem and the Pauli exclusion principle in noncommu-
tative spaces, as it gives rise to certain Pauli forbidden
transitions. The experimental data on such forbidden
transitions in turn put bounds on the parameters of the
noncommutative space-times [14,17,18].
The twisted flip operator also plays a crucial role in the

development of quantum field theories in noncommutative
spaces. The usual bosonic or fermionic statistics of a
quantum field is encoded in the oscillator algebra of the

creation and annihilation operators. In a noncommutative
space-time, the usual oscillator algebra changes to a twisted
one, which leads to novel physical effects for field theories
and gravity [19–21], as well as for quantum fields around
noncommutative black holes [22].
It is known [3,23–25] that deformations of a symmetry

group can be realized through application of Drinfeld twists
on that symmetry group [26–29]. The main virtue of the
twist formulation is that the deformed, twisted symmetry
algebra is the same as the original undeformed one. There is
only a change in the coalgebra structure [3] which then
leads to the same single particle Hilbert space and free field
structure as in the corresponding commutative theory.
In this work, instead of starting with a given algebra, we

begin with the realizations of noncommutative coordinates
which are linear in Lorentz generators and demand that the
noncommutative coordinates close a Lie algebra. Next we
proceed to find the star products and the coproducts of the
momentum generators and obtain the corresponding twists
from those coproducts. These are Drinfeld twists satisfying
normalization and cocycle conditions. They generate a new
twisted Poincaré Hopf algebra. In a special case we obtain
κ-Poincaré Hopf algebra only for the lightlike deformation
[30–33]. Recently, a new type of noncommutative algebra
has been used to analyze Pauli forbidden transitions
[17,18]. In this paper we find a covariant generalization
of that algebra, construct the flip operator and analyze the
corresponding twisted statistics.
The paper is organized as follows. In Sec. II, we present

realizations of noncommutative coordinates which are
linear in Lorentz generators and demand that they close
a Lie algebra. In Sec. III, star products and coproducts of
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momentum generators are obtained. In Sec. IV, the corre-
sponding Drinfeld twists are given. They generate twisted
Poincaré Hopf algebra. Flip operator and twisted statistics
are presented in Sec. V. We conclude the paper in Sec. VI
with discussions and an outlook.

II. REALIZATIONS OF NONCOMMUTATIVE
COORDINATES LINEAR IN LORENTZ

GENERATORS

Let us define the undeformed phase space, namely the
Heisenberg algebra H, generated by coordinates xμ and
momenta pμ, μ ¼ 0; 1;…; n − 1:

½xμ; xν� ¼ 0;

½pμ; pν� ¼ 0;

½pμ; xν� ¼ −iδμν : ð1Þ

The Poincaré algebra in Minkowski space M1;n−1 is
generated by the Lorentz generators Mμν and the momen-
tum generators pμ, satisfying the relations

½Mμν;Mρσ� ¼ iðημρMνσ − ηνρMμσ − ημσMνρ þ ηνσMμρÞ;
½Mμν; pλ� ¼ iðημλpν − ηνλpμÞ;
½pμ; pν� ¼ 0; ð2Þ

where ημν ¼ diagð−1; 1;…; 1Þ. The Lorentz generators
Mμν are represented by

Mμν ¼ xμpν − xνpμ;

Mμν ¼ −Mνμ;

M†
μν ¼ Mμν; ð3Þ

and satisfy the relation

½Mμν; xλ� ¼ iðημλxν − ηνλxμÞ: ð4Þ

The most general noncommutative coordinates x̂μ linear
in the Lorentz generators are

x̂μ ¼ xμ þ
l
2
Kμ

ρσMρσ; Kμ
ρσ ∈ R x̂†μ ¼ x̂μ; ð5Þ

where l is a dimensionful constant whose value is typically
of the order of the Planck length.
Commutation relations ½x̂μ; x̂ν� are then linear in x̂λ and

Mαβ. We would like to determine the conditions on Kμ
ρσ

under which the commutation relations ½x̂μ; x̂ν� would
generate Lie algebra closed in x̂λ. The conditions that
we have found leads to two types of solutions, which are
discussed below.

The solutions for the type (i) are given by

x̂μ ¼ xμ þ luαMαμ; ð6Þ

where uα ∈ M1;n−1 is a lightlike vector u2 ¼ 0 ¼ uαuα.
The corresponding noncommutative space is the κ-
Minkowski space [30–33] defined by

½x̂μ; x̂ν� ¼ ilðuμx̂ν − uνx̂μÞ: ð7Þ

The solutions for the type (ii) are given by

x̂μ ¼ xμ þ aμ
l
2
θαβMαβ; ð8Þ

where θμν ¼ −θμν, aμθμν ¼ 0 and aμ ∈ M1;n−1,
a2 ∈ f−1; 0; 1g. Then, the noncommutative coordinates
x̂μ close a Lie algebra

½x̂μ; x̂ν� ¼ ilðaμθνα − aνθμαÞx̂α ð9Þ

and the generators x̂μ, Mμν also close a Lie algebra

½Mμν; x̂ρ� ¼ iðx̂μηνρ − x̂νημρÞ þ iaρlðMμαθ
α
ν −Mναθ

α
μÞ:
ð10Þ

The momentum generators pμ and the noncommutative
coordinates x̂μ form a deformed Heisenberg algebra given
by Eq. (9) and

½pμ; x̂ν� ¼ −iðημν þ aνlθμαpαÞ: ð11Þ

We point out that the Casimir operator is C ¼ p2 ¼ pαpα

and the dispersion relation is thus undeformed.

A. Special cases of type (ii)

A special case of the type (ii) solutions obtained above is
given in [17,18], where the following algebra was consid-
ered in 3þ 1 dimensions

½x̂0; x̂i� ¼ iχϵijknkx̂j; ½x̂i; x̂j� ¼ 0: ð12Þ

It was shown in [17,18] that the algebra (12) leads to
Pauli violating transitions. The experimental limits on such
transitions were then used to put bounds on the non-
commutative parameters.
The algebra (12) can be written covariantly as

½x̂μ; x̂ν� ¼ ilðaμϵαβγν − aνϵαβγμÞaαbβx̂γ: ð13Þ

This Lie algebra reduces to case given in [17,18] for χ ¼ l,
aμ ¼ ð1; 0⃗Þ and bμ ¼ ð0; n⃗Þ, where aμ; bμ ∈ M1;3 and
θμν ¼ ϵμναβaαbβ. Linear realization for Lie algebra (13) is
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x̂μ ¼ xμ þ
l
2
aμϵαβγδaαbβMγδ: ð14Þ

Note that realization which follows from [17,18] is non-
linear in momentum generators.
Another special case of (13) is given in 3þ 1 dimensions

[34] with

aμ ¼ ζμ; θμν ¼
αμβν − ανβμ

2
;

α · β ¼ 0; jα2j ¼ jβ2j ¼ 1: ð15Þ

Realization which follows from [34] is nonlinear in
momentum generators.
A third special case is ρ-deformed Minkowski space in

2þ 1 dimensions, discussed in [35].

B. Exterior derivatives and one-forms

For realizations linear in the Lorentz generators, it is easy
to define the corresponding Lorentz one-forms ξ̂μ ¼ ½d; x̂μ�,
where d is the exterior derivative [30,31]

d ¼ iξαpα ð16Þ

given in terms of the undeformed super Heisenberg algebra

fξμ; ξνg ¼ 0; fqμ; qνg ¼ 0; fξμ; qνg ¼ δμν : ð17Þ

In this case fξ̂μ; ξ̂νg ¼ 0, d2 ¼ 0 and x̂μ and ξ̂μ generate
a Lie superalgebra where ½ξ̂μ; x̂ν� ¼ iKμν

λξ̂
λ is closed in ξ̂λ.

In this case, the Lorentz generators are given by

Mμν ¼ xμpν − xνpμ − iðξμqν − ξνqμÞ: ð18Þ

III. STAR PRODUCT AND COPRODUCT
OF MOMENTUM GENERATORS

Action ⊳∶H ⊗ A → A is defined by

xμ⊳fðxÞ ¼ xμfðxÞ; pμ⊳fðxÞ ¼ −i
∂f
∂xμ : ð19Þ

Then, for realizations (6) and (8), we have

eik·x̂⊳eiq·x ¼ eiPðk;qÞ·x; ð20Þ

eik·x̂⊳1 ¼ eiKðkÞ·x; ð21Þ

eiK
−1ðkÞ·x̂⊳1 ¼ eik·x; ð22Þ

where k; q ∈ M1;n−1, Pμðk; 0Þ ¼ KμðkÞ, Pμð0; qÞ ¼ qμ
and K−1

μ ðkÞ is the inverse map of Kμ∶M1;n−1→M1;n−1,
in the sense that KμðK−1ðkÞÞ ¼ K−1

μ ðKðkÞÞ ¼ kμ.

The star product is defined by

eik·x⋆eiq·x ¼ eiK
−1ðkÞ·x̂⊳eiq·x

¼ eiPðK−1ðkÞ;qÞ·x ¼ eiDðk;qÞ·x: ð23Þ
For Lie-algebraic deformations of Minkowski space, the
corresponding star product is associative and is defined by
Dμðk; qÞ. Deformed addition of momenta is given by

ðk ⊕ qÞμ ¼ Dμðk; qÞ: ð24Þ
For the lightlike κ deformation of Minkowski space (6),
results for Pμðk; qÞ and Dμðk; qÞ are given in [33].
For Lie-algebraic deformations of Minkowski space of

type (ii) (9) with realizations linear in Lorentz generators
(8), the results are

KμðkÞ ¼
�
eða·kÞlθ − 1

ða · kÞlθ
�

α
μkα; ð25Þ

K−1
μ ðkÞ ¼

� ða · kÞlθ
eða·kÞlθ − 1

�
α
μkα; ð26Þ

Pμðk; qÞ ¼
�
eða·kÞlθ − 1

ða · kÞlθ
�

α
μkα þ ðeða·kÞlθÞαμqα; ð27Þ

Dμðk; qÞ ¼ kμ þ ðeða·kÞlθÞαμqα: ð28Þ

Note that we can introduce a new momentum generator

pW
μ ¼ K−1

μ ðpÞ; ð29Þ

which corresponds to Weyl-symmetric realization [36,37],
with the property

pW
μ eik·x̂⊳1 ¼ pW

μ ⊳eiKðkÞ·x ¼ kμeiKðkÞ·x: ð30Þ

For linear realizations of noncommutative coordinates
x̂μ ¼ xμ þ Kβμαxαpβ, the momenta pμ and pW

μ are related
by [33]

pμ ¼
�
1 − e−K

K

�
α
μpW

α ; ð31Þ

where Kμν ¼ −KναμðpWÞα.
For realization (8), Kμν is

Kμν ¼ −ða · pWÞlθμν: ð32Þ

Since aαθαμ ¼ 0, it follows that aαðKnÞαμ ¼ 0 and
therefore,

a · pW ¼ a · p ð33Þ

and Kμν is also given by
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Kμν ¼ −ða · pÞlθμν: ð34Þ

Coproduct of momentum generator pμ is given by

Δpμ ¼ Dμðp ⊗ 1; 1 ⊗ pÞ ¼ pμ ⊗ 1þ ðe−KÞαμ ⊗ pα:

ð35Þ

IV. TWIST FROM REALIZATION LINEAR
IN LORENTZ GENERATORS

Result for the twist F , constructed from realization of
noncommutative coordinates x̂μ linear in generators of
glðnÞ, is presented in [33] (see also [30,31,38,39] and is
given by

F ¼ expð−ipW
α ⊗ ðx̂α − xαÞÞ: ð36Þ

This result holds for x̂α given in (6) and (8).
For lightlike κ-deformed Minkowski space (7) and linear

realization (6) of type (i), twist is constructed and discussed
in [30–33], with

pW
μ ¼

�
pμ þ

aμl

2
p2

�
lnð1þ ða · pÞlÞ

ða · pÞl : ð37Þ

For Lie-algebraic deformation of Minkowski space (9)
and linear realizations (8) of type (ii), twist is given by

F ¼ exp

�
−i

a · p
2

l ⊗ θαβMαβ

�
: ð38Þ

It is an Abelian twist and it satisfies normalization
and cocycle condition, see [33]. From this twist (38), we
find that

x̂μ ¼ m½F−1ð⊳ ⊗ 1Þðxμ ⊗ 1Þ�

¼ xμ þ aμ
l
2
θαβMαβ; ð39Þ

eiK
−1ðkÞ·x̂ ¼ m½F−1ð⊳ ⊗ 1Þðeik·x ⊗ 1Þ�; ð40Þ

eiK
−1ðkÞ·x̂⊳1 ¼ eik·x; ð41Þ

eik·x⋆eiq·x ¼ m½F−1ð⊳ ⊗ ⊳Þðeik·x ⊗ eiq·xÞ�
¼ eiDðk;qÞ·x; ð42Þ

where m is the multiplication map m∶H ⊗ H → H.
These results represent consistency check of the construc-
tion [33,39].

A. Twisted Poincaré Hopf algebra

Using twist F (38), the twisted Poincaré Hopf algebra is
easily obtained. Coproducts of momentum pμ and Lorentz
generators Mμν are

Δpμ¼FΔ0pμF−1¼pμ⊗1þðeKÞμα⊗pα; ð43Þ

ΔMμν ¼ FΔ0MμνF−1

¼ Mμν ⊗ 1þ ðeKÞμαðeKÞνβ ⊗ Mαβ

þ 1

2
ðaμpν − aνpμÞ ⊗ θαβMαβ; ð44Þ

where Δ0pμ ¼ pμ ⊗ 1þ 1 ⊗ pμ and Δ0Mμν ¼
Mμν ⊗ 1þ 1 ⊗ Mμν.
The antipodes are

SðpμÞ ¼ −ðeKÞμαpα; ð45Þ

SðMμνÞ ¼ −ðe−KÞμαðe−KÞνβMαβ

−
1

2
ðaμSðpνÞ − aνSðpμÞÞθαβMαβ: ð46Þ

The counit is trivial

ϵðpμÞ ¼ 0; ϵðMμνÞ ¼ 0; ϵð1Þ ¼ 1: ð47Þ

B. R-matrix

The R-matrix is given by

R ¼ ~FF−1

¼ exp

�
il
2
θαβða · p ⊗ Mαβ −Mαβ ⊗ a · pÞ

�

¼ er ¼ 1 ⊗ 1þ rþOðl2Þ; ð48Þ

where ~F ¼ τ0F τ0 is transposed twist, τ0∶H ⊗ H → H ⊗
H is a linear map such that τ0ðA⊗BÞ¼B⊗A∀A;B∈
H and r is the classical r matrix.
Lie algebraic deformations of Minkowski space have

infinitely many realizations of x̂0μ in terms of undeformed
Heisenberg algebras, generated by x0μ and p0

μ, which are
related by similarity transformations, see for example
[40–42]. Large class of realizations x̂0μ and p0

μ (nonlinear
in generators) of the deformed Minkowski space (9) leads
to Abelian twists F 0, which give the same form ofRmatrix
(48). Note that Δ0 ¼ F−1ΔF ¼ ~F−1 ~Δ ~F and RΔ ¼ ~ΔR.

V. FLIP OPERATOR AND TWISTED STATISTICS

As mentioned before, in noncommutative spacetimes,
the flip operator that defines the particles statistics has to be
replaced with the twisted flip operator. The twisted flip
operator τ is defined by

τ ¼ F τ0F−1 ¼ τ0R ð49Þ

and it satisfies the conditions
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½Δh; τ� ¼ 0; ∀ h ∈ UðPÞ; ð50Þ

τ2 ¼ 1 ⊗ 1 ð51Þ

The projectors for the twisted symmetric and anti-
symmetric sectors of the Hilbert space are given by
1
2
ð1 ⊗ 1� τÞ. We define deformed bosonic state as

f ⊗ g ¼ τðf ⊗ gÞ; ð52Þ

or equivalently

F−1ð⊳ ⊗ ⊳Þðf ⊗ gÞ ¼ ~F−1ð⊳ ⊗ ⊳Þðg ⊗ fÞ: ð53Þ

Now, defining the twisted tensor product

f ⊗F g ¼ F−1ð⊳ ⊗ ⊳Þðf ⊗ gÞ; ð54Þ

we get

f ⊗F g ¼ τ0ðf ⊗F gÞ ð55Þ

For the product of two bosonic fields ϕðxÞ and ϕðyÞ under
interchange, additional factor appears compared to com-
mutative case. This can be calculated using (52) and one
gets

Rð⊳ ⊗ ⊳ÞðϕðxÞ ⊗ ϕðyÞÞ ¼ ϕðyÞ ⊗ ϕðxÞ ð56Þ

Expressing ϕ in the above equation using Fourier trans-
forms and using twisted flip operator or equivalently the
R-matrix in momentum space, we are led to deformed
commutation relations between annihilation operators.
These twisted creation and annihilation operators should
be used to perform any calculations in the corresponding
quantum field theories [19–21].

VI. OUTLOOK AND DISCUSSION

In this paper we have started with the realizations of
noncommutative coordinates which are linear in Lorentz
generators and have obtained the conditions under which
they form a closed Lie algebra. We have obtained the star
products and the coproducts of the momentum generators
and have written down the corresponding twist operator.
This has been shown to be a Drinfeld twist which satisfies
the normalization and the cocycle conditions.
As a special case of our results, we have obtained the

covariant generalization of an algebra which was used in
[17,18] to put bounds on the noncommutative parameters
from the experimental data on Pauli forbidden transitions.
Thus the results presented here open up the possibility of a
more general analysis of the Pauli forbidden transitions
within the context of the noncommutative framework.
Using the Drinfeld twists, we have obtained the twisted

flip operators which are the basic building blocks of
constructing symmetric and antisymmetric sectors of the
Hilbert space in the quantum theory. The new twisted flip
operators presented here can be used to construct and
analyze physical processes within the framework quantum
field theories. Since noncommutativity is expected to be a
feature at the Planck scale, the predictions from such
twisted quantum field theories would provide a glimpse
of the physics at the Planck scale. In particular, quantum
field theories in the near-horizon region of black holes are
expected to carry signatures of the quantum gravity scale.
The analysis presented here can be used to model such field
theories which can provide a hint about the space-time
structure at the Planck scale.
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