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We develop the general theory of spinning particles with electric and magnetic dipole moments moving
in arbitrary electromagnetic, inertial, and gravitational fields. Both the quantum-mechanical and classical
dynamics is investigated. We start from the covariant Dirac equation extended to a spin-1

2
fermion with

anomalous magnetic and electric dipole moments and then perform the relativistic Foldy-Wouthuysen
transformation. This transformation allows us to obtain the quantum-mechanical equations of motion for the
physical operators in the Schrödinger form and to establish the classical limit of relativistic quantum
mechanics. The results obtained are then compared to the general classical description of the spinning particle
interacting with electromagnetic, inertial and gravitational fields. The complete agreement between the
quantum mechanics and the classical theory is proven in the general case. As an application of the results
obtained, we consider the dynamics of a spinning particle in a gravitational wave and analyze the prospects of
using the magnetic resonance setup to find possible manifestations of the gravitational wave on spin.
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I. INTRODUCTION

The motion of structureless particles [1,2] under the
action of inertial or gravitational forces and dynamics of
charged point particles in the electromagnetic field [3,4] is
well understood. The case of particles with microstructure
(internal degrees of freedom, for example, spin) is more
nontrivial. After Ulhenbeck and Goudsmit [5,6] introduced
the concept of spin to explain atomic spectra, Thomas [7,8]
and Frenkel [9,10] promptly came up with the first models
of particles with spin and magnetic moment (for a thorough
historic overview, see [11]), and within the next year, Dirac
[12–14] formulated the relativistic quantum theory of a
particle with spin 1

2
. Subsequently, considerable attention

was paid to the study of the dynamics of charged spinning
particles in the electromagnetic field, see [15–17], to
mention but a few notable references. One of the central
issues was a comparison of the dynamics of spin in
nonrelativistic classical mechanics, relativistic classical

mechanics, nonrelativistic quantum mechanics, and rela-
tivistic quantum theory. An informative review of the
results obtained can be found in the book of Corben [18].
Along with this, the motion of spinning particles in

the gravitational (and/or inertial) field was extensively inves-
tigated. The fundamental issues of the spin-gravity coupling
were studied and the corresponding methods were developed
[19–33], as well as the numerous physical problems of spin
dynamics were analysed [34–40] in the literature. The recent
review [41] summarizes the results obtained in this area
and contains an exhaustive list of the relevant references.
Much less attention was paid to the investigation of the

spin dynamics under the joint action of the gravitational,
inertial, and electromagnetic field. Such a situation is of
interest, on the one hand, as a fundamental problem of
mathematical physics and, on the other hand, it has various
important applications ranging form the astrophysical
conditions (physical processes near the massive astrophysi-
cal objects like neutron stars or black holes) to the high-
energy experimental setup on the Earth. In particular, our
recent study [42] of the influence of terrestrial gravity and
rotation in the precision experiments in storage rings has
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shown that the corresponding effects are not negligible,
and they are manifest in perturbations of particle motion
and in additional precession of spin. One should take them
into account in the actual and planned g-2 and EDM
experiments.
In the present paper we study the most general case of the

external gravitational and electromagnetic fields acting on a
particle with microstructure (spin and dipole moments). A
nontrivial feature of this system is in the absence of a direct
superposition. The motion of a spinning particle only in the
electromagnetic field or only in the gravitational field was
investigated in the previous literature. However, when both
external fields are present, their influence on spin and
trajectory is not just a sum of two separate effects. This is
explained by the well-known fact that, whereas electromag-
netism couples only to electric charges and currents, gravity is
universal and it couples to all types of matter, including the
electromagnetic field. As a result, spinning particles feel the
action of gravity both directly and via the electromagnetic
field which gets modified in the curved spacetime.
Our investigation is focused on the comparison of the

classical and quantum spin dynamics, thereby generalizing
Corben’s analysis [18] from the purely electrodynamical
setup to the case when a spinning particle moves under
the combined action of arbitrary gravitational and electro-
magnetic fields. We continue here the development of the
method of the Foldy-Wouthuysen (FW) for the quantum
and semiclassical Dirac fermions which was started earlier
for the spin dynamics in the special cases of weak and
stationary field [43–46] of a massive compact object, and
further extended to the strong stationary [47] and arbitrary
(strong and nonstatic) gravitational field [48] in the
Riemannian framework of Einstein’s general relativity.
Allowing for the nonminimal (Pauli-type dipole) coupling
and for the possible deviations of the spacetime structure
from the Riemannian geometry, we used our formalism to
find new bounds on the spacetime torsion [49,50].
In this paper, we for the first time establish the complete

consistency of the quantum, quasiclassical, and classical
spin dynamics for the Dirac fermion particles with dipole
moments moving in arbitrary external gravitational plus
electromagnetic field. This is our central result. Among
numerous applications, we choose to briefly consider the
motion of a spinning particle in the field of a gravitational
wave and the magnetic field.
The paper is organized as follows. In Sec. II we collect

an introductory material, in particular, we describe the most
general spacetime geometry and specify the corresponding
coframe. The Hermitian Dirac Hamiltonian for the electri-
cally charged fermion particle with dipole moments is
derived in an arbitrary curved spacetime. Coordinate-free
formulation Maxwell’s electrodynamics on Riemannian
manifolds is overviewed, and electric and magnetic fields
are written down with respect to different coordinate
(holonomic) and local Lorentz (anholonomic) frames,

together with the Maxwell-Lorentz spacetime relation.
After these preliminaries, in Sec. III we present the basics
of the FW transformation technique which is then applied
to derive the exact FW Hamiltonian of the particle. The
operator equations of motion are obtained, with the special
attention to the dynamics (precession) of spin under the
joint action of arbitrary gravitational and electromagnetic
fields. The classical theory of spinning particle in external
fields of any physical nature is overviewed in Sec. IV,
which is then subsequently specified in Sec. V to the case
when the external fields encompass gravity and electro-
magnetism. The quantum and semiclassical spin dynamics
is compared with the classical motion of a relativistic
particle with dipole moments and the complete agreement
of quantum and classical results is demonstrated. In order to
illustrate how the formalism works, in Sec. VI we consider
the dynamics of a spinning particle in a general noninertial
frame. Section VII discusses a particle in the spacetime of a
gravitational wave and magnetic field. Finally, the results
obtained are summarized in Sec. VIII.
We use the same main conventions and notations as in

Refs. [46–48,51]. For the sake of completeness, let us
remind that the world indices are labeled by Latin letters
i; j; k;… ¼ 0, 1, 2, 3 (for example, the local spacetime
coordinates xi and the holonomic coframe dxi), whereas
we reserve Greek letters from the beginning of the alphabet
for tetrad indices, α; β;… ¼ 0, 1, 2, 3 (e.g., the anholonomic
coframe ϑα). Furthermore, spatial indices are denoted by
Latin letters from the beginning of the alphabet, a; b; c;… ¼
1, 2, 3. Note that in order to distinguish separate tetrad indices
we put hats over them. We though omit hats for objects
defined only in coframes. We use the standard mathematical
symbols ∧ and � for the exterior product and the Hodge
duality operator, respectively. The metric of the Minkowski
spacetime reads gαβ ¼ diagðc2;−1;−1;−1Þ, and the totally
antisymmetric Levi-Civita tensor ηαβμν has the only nontrivial
component η0̂ 1̂ 2̂ 3̂ ¼ c, so that η0̂abc ¼ cϵabc with the three-
dimensional Levi-Civita tensor ϵabc. The spatial components
(a; b;… ¼ 1, 2, 3) of the tensor objects are raised and
lowered with the help of the Euclidean 3-dimensional metric
δab (in some cases we write this out explicitly to avoid any
misunderstanding). In the relativistic spinor theory, the four
Dirac matrices γα, α ¼ 0, 1, 2, 3, satisfy the standard
anticommutation condition γαγβ þ γβγα ¼ 2gαβ. As usual,
σαβ ¼ i

2
ðγαγβ − γβγαÞ are the generators of the local Lorentz

transformations of the spinor field. For the Dirac matrices as
well as for the gauge-theoretic notions and objects (including
electrodynamics) we use the conventions of Bogoliubov-
Shirkov [52].

II. PRELIMINARIES

In this section we present some basic facts about the
geometry of the curved spacetime and the relativistic Dirac
and Maxwell theories on Riemannian manifolds.
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Let xi ¼ ðt; xaÞ be the local coordinates on the four-
dimensional curved manifold. The spacetime interval

ds2 ¼ gijdxidxj ¼ gαβϑαϑβ ð2:1Þ

can be equivalently written either in terms of the holonomic
coframe dxi or in terms of the anholonomic (tetrad) one
ϑα ¼ eαi dx

i. We describe the components of the latter in the

Schwinger gauge e0̂a ¼ 0 (also e0â ¼ 0Þ; a ¼ 1, 2, 3, as
follows:

e0̂i ¼ Vδ0i ; eâi ¼Wâ
bðδbi − cKbδ0i Þ; a¼ 1;2;3: ð2:2Þ

Here we assume that the functions V ¼ VðxiÞ and Ka ¼
KaðxiÞ, as well as the components of the 3 × 3 matrix
Wâ

b ¼ Wâ
bðxiÞ may depend arbitrarily on the local

coordinates t; xa.
The coframe (2.2) gives rise to a general form of the

spacetime line element (2.1)

ds2¼V2c2dt2−δâ b̂W
â
cWb̂

dðdxc−KccdtÞðdxd−KdcdtÞ:
ð2:3Þ

This is the well-known Arnowitt-Deser-Misner (ADM)
parametrization of the metric [53] which we previously
used in Ref. [47]. The components of the spacetime metric
gij and of its inverse gij read explicitly

g00¼c2ðV2−g
ab
KaKbÞ; g0a¼cg

ab
Kb; gab¼−g

ab
;

ð2:4Þ

g00 ¼ 1

c2V2
; g0a ¼ Ka

cV2
; gab ¼ −gab þ 1

V2
KaKb:

ð2:5Þ

Here the spatial 3-dimensional metric is given by g
ab

¼
δĉ d̂W

ĉ
aWd̂

b, and gab ¼ δĉ d̂Wa
ĉWb

d̂. The 3 × 3 matrix
Wb

â is inverse toWâ
b. The off-diagonal metric components

g0a and g0a are related to the effects of rotation.
For the ADM parametrization (2.3) of the general

spacetime metric with the tetrad (2.2), the components
of the local Lorentz connection read explicitly

Γiâ 0̂ ¼
c2

V
Wb

â∂bVei0̂ −
c
V
Qðâ b̂Þei

b̂; ð2:6Þ

Γiâ b̂ ¼
c
V
Q½â b̂�ei

0̂ þ ðCâ b̂ ĉ þ Câ ĉ b̂ þ Cĉ b̂ âÞeiĉ; ð2:7Þ

where we introduced (denoting the partial derivative with
respect to the coordinate time t by the dot · ¼ ∂t)

Qâ b̂ ¼ gâ ĉWd
b̂

�
1

c
_Wĉ

d þ Ke∂eWĉ
d þWĉ

e∂dKe

�
; ð2:8Þ

Câ b̂
ĉ ¼ Wd

âWe
b̂∂ ½dWĉ

e�; Câ b̂ ĉ ¼ gĉ d̂Câ b̂
d̂: ð2:9Þ

We can obviously identify Câ b̂
ĉ ¼ −Cb̂ âĉ with the reduced

anholonomity object for the spatial triad Wâ
b.

In order to give the most general description of electro-
magnetic interactions of a Dirac particle, we allow for
the nonminimal coupling with the possible anomalous
dipole moments of the particle. Accordingly, the covariant
Dirac equation for the spinor field Ψ with the mass m, the
anomalous magnetic moment (AMM) μ0 and the electric
dipole moment (EDM) δ0 reads [49]:

�
iℏγαDα −mcþ μ0

2c
σαβFαβ þ

δ0

2
σαβGαβ

�
Ψ ¼ 0: ð2:10Þ

The spinor covariant derivative

Dα ¼ eiαDi; Di ¼ ∂i −
ie
ℏ
Ai þ

i
4
σαβΓiαβ; ð2:11Þ

describes the minimal interaction of a fermion particle with
the external classical fields: the electromagnetic 4-potential
Ai (coupled to the electric charge e of a fermion), and the
gravitational field potentials ðeαi ;Γi

αβÞ. The tetrad indices
of the Dirac matrices reflect the definition of the three-
component physical spin (pseudo)vector in the local
Lorentz rest frame of a particle. In the limit of the flat
Minkowski spacetime, Eq. (2.10) reduces to the Dirac-
Pauli equation for a particle with the AMM and EDM (see
Refs. [11,54]).
The tensors Fαβ and Gαβ in (2.10) are defined as Fαβ ¼

eiαe
j
βFij and Gαβ ¼ eiαe

j
βGij, where Fij ¼ ∂iAj − ∂jAi is

the electromagnetic field strength tensor and its Hodge dual
is Gij ¼ 1

2
ηijklFkl.

We can recast the Dirac equation (2.10) into the
Schrödinger form, however, the corresponding “naive”
Hamiltonian is non-Hermitian [55–57]. This problem is
solved by rescaling of the spinor wave function
ψ ¼ ð ffiffiffiffiffiffi−gp

e0
0̂
Þ12Ψ, and the resulting Schrödinger equation

iℏ ∂ψ
∂t ¼ Hψ then contains the Hermitian (and self-adjoint)

Hamiltonian

H ¼ βmc2V þ eΦþ c
2
ðπbF b

aα
a þ αaF b

aπbÞ

þ c
2
ðK · π þ π · KÞ þ ℏc

4
ðΞ · Σ − Υγ5Þ

− βVðΣ ·Mþ iα ·PÞ: ð2:12Þ

Here, as usual, αa ¼ βγa (a; b; c;… ¼ 1, 2, 3) and
the spin matrices Σ1 ¼ iγ2̂γ3̂;Σ2 ¼ iγ3̂γ1̂;Σ3 ¼ iγ1̂γ2̂ and

GENERAL TREATMENT OF QUANTUM AND CLASSICAL … PHYSICAL REVIEW D 96, 105005 (2017)

105005-3



γ5 ¼ iα1̂α2̂α3̂. Boldface notation is used for 3-vectors
K ¼ fKag;α ¼ fαag;Σ ¼ fΣag; π ¼ fπag. The latter is
the kinetic momentum operator, π ¼ −iℏ∇ − eA. The
minimal coupling gives rise to the terms in (2.12) with
the objects

F b
a ¼ VWb

â; ð2:13Þ

Υ ¼ Vϵâ b̂ ĉΓâ b̂ ĉ ¼ −Vϵâ b̂ ĉCâ b̂ ĉ; ð2:14Þ

Ξa ¼ V
c
ϵâ b̂ ĉΓ0̂ b̂ ĉ ¼ ϵâ b̂ ĉQ

b̂ ĉ; ð2:15Þ

whereas the nonminimal coupling is encoded in

Ma¼μ0Baþδ0Ea; Pa¼cδ0Ba−μ0Ea=c: ð2:16Þ

Now, let us recall the basics of the classical electrody-
namics on curved manifolds. We should carefully distin-
guish the anholonomic components E, B of the Maxwell
tensor, Ea ¼ fF1̂ 0̂; F2̂ 0̂; F3̂ 0̂g and Ba ¼ fF2̂ 3̂; F3̂ 1̂; F1̂ 2̂g,
and the holonomic components E, B of Fij, which are
Ea ¼ fF10; F20; F30g and Ba ¼ fF23; F31; F12g. For the
general metric (2.3) with the tetrad (2.2), these fields are
related via (denoting w ≔ detWĉ

d)

Ea ¼
1

V
Wb

âðEþ cK × BÞb; ð2:17Þ

Ba ¼ 1

w
Wâ

bBb; ð2:18Þ

Hereafter the vector product is defined by fA × Bga ¼
ϵabcAbBc for any 3-vectors Ab and Bc. The dynamics of
the electromagnetic field is described in terms of the field
strength 2-form F ¼ 1

2
Fijdxi ∧ dxj and the electromag-

netic excitation 2-form H ¼ 1
2
Hijdxi ∧ dxj. These funda-

mental variables satisfy the Maxwell equations. The latter
are written in a generally covariant form which is valid for
all coordinates and reference frames [58]:

dF ¼ 0; ð2:19Þ

dH ¼ J: ð2:20Þ

The current 3-form J ¼ 1
6
Jijkdxi ∧ dxj ∧ dxk describes the

distribution of the electric charges and currents which are
the sources of the electromagnetic field. To make the theory
predictive, the system (2.19)–(2.20) should be supple-
mented by the constitutive relations between F and H.
In the Maxwell-Lorentz electrodynamics, the constitutive
relation reads

H ¼ λ0 ⋆ F; λ0 ¼
ffiffiffiffiffi
ε0
μ0

r
: ð2:21Þ

There ε0 and μ0 are the electric and magnetic constants of
the vacuum (not to confuse the latter with the magnetic
dipole moment), and the star ⋆ denotes the Hodge duality
operator determined by the spacetime metric.
Equations (2.19), (2.20), and (2.21) can be written

in the equivalent vector form, see in Ref. [59] for more
details. Introducing the components of the magnetic and
electric excitations, Ha ¼ fH01; H02; H03g and Da ¼
fH23; H31; H12g, and identifying the components of the
source 3-form J with the electric current density Ja ¼
f−J023;−J031;−J012g and the charge density ρ ¼ J123, we
recast the Maxwell equations (2.19)–(2.20) into [59]

∇ × Eþ _B ¼ 0; ∇ · B ¼ 0; ð2:22Þ

∇ ×H − _D ¼ J; ∇ · D ¼ ρ: ð2:23Þ

The influence of the inertia and gravity is encoded in
the Maxwell-Lorentz constitutive law (2.21). The latter can
be recast into the explicit constitutive relations between
the components of electric and magnetic fields E, B and the
electric and magnetic excitations D, H:

Da ¼ ε0w
V

gabEb − λ0
w
V
gadϵbcdKcBb; ð2:24Þ

Ha ¼
1

μ0wV
fðV2 − K2Þg

ab
þ KaKbgBb

− λ0
w
V
ϵadcKcgdbEb: ð2:25Þ

Here Ka ¼ g
ab
Kb, and K2 ¼ KaKa ¼ g

ab
KaKb (and recall

that w ¼ detWĉ
d).

III. FOLDY-WOUTHUYSEN TRANSFORMATION
FOR A DIRAC PARTICLE

In order to reveal the physical contents of the
Schrödinger equation, we need to go to the Foldy-
Wouthuysen (FW) [60] representation. Earlier [46–48]
we considered the purely gravitational case by dropping
the terms depending on the electromagnetic field. Here we
turn to the general case and take into account both gravity
and electromagnetism. We can construct the FW trans-
formation [60] for the Dirac Hamiltonian (2.12) with the
help of the general method developed in Refs. [61–63]. It is
worthwhile to mention that there is a lot of different
approaches to the FW transformation (see Refs. [64–67]
and references therein). The use of the method [61–63]
allows us to derive the FW Hamiltonian which is exact in
all terms of the zero and the first orders in the Planck
constant ℏ and which also includes the second order terms
in the Planck constant which describe contact interactions.
All the resulting quantum-mechanical Hamiltonians

and the equations of motion are Hermitian. To avoid quite
cumbersome expressions, we will neglect noncommutativity
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of the coordinate andmomentum operators in some formulas,
since the apparent corrections for a non-Hermitian form of
the corresponding terms are always negligible. In our
calculations, we take into account only terms of the first
order in Ξ;Υ;P;M and neglect their higher powers and
bilinear combinations. Omitting the technical details (see

[46–50] for the description of computational methods) we
find for the FW Hamiltonian:

HFW ¼ Hð1Þ
FW þHð2Þ

FW þHð3Þ
FW þHð4Þ

FW: ð3:1Þ

The four terms in this sum read, respectively,

Hð1Þ
FW ¼ βϵ0 þ ℏc2

16

�
1

ϵ0
; ð2ϵcaeΠefπb;F d

c∂dF b
ag þ Πafπb;F b

aΥgÞ
�
þ ℏmc4

4
ϵcaeΠe

�
1

T
; fπd;F d

cF b
a∂bVg

�
; ð3:2Þ

Hð2Þ
FW ¼ c

2
ðKaπa þ πaKaÞ þ ℏc

4
ΣaΞa þ ℏc2

16

�
1

T
;
�
Σafπe;F e

bg;
�
πf;

�
ϵabc

�
1

c
_F f

c − F d
c∂dKf þ Kd∂dF f

c

�

−
1

2
F f

dðδdbΞa − δdaΞbÞ
����

; ð3:3Þ

Hð3Þ
FW ¼ eΦ −

eℏc2

4

�
1

ϵ0
; V2ΠaBa

�
þ eℏc2

8

�
1

T
;

�
Σaϵ

abcðfF d
b; πdgV2Ec − V2EbfF d

c; πdgÞ − 2ℏF b
a∂bðV2EaÞ

��
;

ð3:4Þ

Hð4Þ
FW ¼ −

c
8

�
1

ϵ0
;

�
Σaϵ

abcðfF d
b; πdgVPc − VPbfF d

c; πdgÞ − 2ℏF b
a∂bðVPaÞ

��
− VΠaMa

þ c2

4

�
1

T
;

�
ΠaffF c

aF d
bVMb; πcg; πdg þ βℏfF b

a½J a þ Kc∂cðVPaÞ�; πbg
��

: ð3:5Þ

Here we introduced the operators

ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4V2 þ c2

4
δacfπb;F b

agfπd;F d
cg

r
;

T ¼ 2ϵ02 þ fϵ0; mc2Vg;

J a ¼ ϵabcF d
b∂dðVMcÞ þ

∂Pa

c∂t : ð3:6Þ

We do not include the term which also results from our
derivations,

−β
eℏc
2

�
1

T
; V3P ·E

�
;

into the FW Hamiltonian because it does not describe any
contact interaction. The FW Hamiltonian (3.1) is Hermitian
and self-adjoint. The first two terms (3.2) and (3.3) deter-
mine the dynamics of the Dirac fermion on the Riemannian
spacetime manifold, whereas (3.4) and (3.5) give the
general description of the contribution of the electromagnetic
field to the FW Hamiltonian (accounting for the minimal
and nonminimal interaction, respectively). In the absence
of electromagnetic field, we recover the previous results
[43–48,68,69]. As compared to Ref. [48], Eqs. (3.2)
and (3.3) differ by the replacement of p ¼ −iℏ∇ with
π ¼ −iℏ∇ − eA. Equations (3.4) and (3.5) agree with the
corresponding equations in quantum electrodynamics [54].

Remarkably, the Hamiltonian (3.1)–(3.5) contains only
anholonomic fields E and B in the spin-dependent terms.
To analyze the dynamics of the spin, we need to evaluate

the commutator of the polarization operator Π ¼ βΣ with
the FW Hamiltonian (3.1). The derivation is straightfor-
ward and results in the dynamical equation that describes
the precession of the spin in the exterior gravitational and
electromagnetic fields (cf. Ref. [48]):

dΠ
dt

¼ i
ℏ
½HFW;Π� ¼ Ωð1Þ × ΣþΩð2Þ ×Π: ð3:7Þ

The components of the 3-vector operators of the angular
velocity Ωð1Þ and Ωð2Þ are as follows:

Ωa
ð1Þ ¼

mc4

2

�
1

T
;fπe;ϵabcF e

bF d
c∂dVg

�

þc2

8

�
1

ϵ0
;fπe;ð2ϵabcF d

b∂dF e
cþδabF e

bΥÞg
�

þec2

4
ϵabc

�
1

T
;ðfF d

b;πdgV2Ec−V2EbfF d
c;πdgÞ

�

−
c
4ℏ

ϵabc
�
1

ϵ0
;ðfF d

b;πdgVPc−VPbfF d
c;πdgÞ

�
;

ð3:8Þ
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and

Ωa
ð2Þ ¼

c2

8

�
1

T
;

�
fπe;F e

bg;
�
πf;

�
ϵabc

�
1

c
_F f

c−F d
c∂dKfþKd∂dF f

c

�

−
1

2
F f

dðδdbΞa−δdaΞbÞ
����

þc
2
Ξa−

ec2

2

�
1

ϵ0
;V2Ba

�
−
2V
ℏ
Maþ c2

2ℏ

�
1

T
;ffδabF d

bF e
cVMc;πdg;πeg

�
:

ð3:9Þ

The terms on the right-hand side of Eq. (3.7) contain the
two different matrices, Σ and Π, which is related to the
fact that Ωð1Þ is linear in components of the momentum
operator, whereasΩð2Þ depends on the even number of πa. As
one can notice, the momentum operator enters both vectors
Ωð1Þ and Ωð2Þ only in the combination F b

aπb. We demon-
strate below, see Eq. (3.20), that the velocity operator is equal
to v̂a ¼ βc2F b

aπb=ϵ0 and thus it is proportional to β. As a
result, we obtain an additional β factor in the operator Ωð1Þ,
and hence both terms on the right-hand side of (3.7) have the
same structure, when everything is rewritten in terms of the
velocity operator v̂. It is also worthwhile to notice that only
upper part of β (proportional the unit 2 × 2matrix) is relevant
in the FW representation. Therefore, the presence of β does
not lead to any physical effects (unless antiparticles are
considered, when a special analysis is needed).
We are now in a position to derive the corresponding

semiclassical expressions from the results above by evalu-
ating all anticommutators and neglecting the powers
of ℏ higher than 1 (for a general discussion of the classical
limit of relativistic quantum mechanics, see Ref. [70]).
Equations (3.7)–(3.9) then yield the following explicit
semiclassical equations describing the precession of the
average spin s vector (as before, vector product is defined
by fA × Bga ¼ ϵabcAbBc):

ds
dt

¼ Ω × s ¼ ðΩð1Þ þΩð2ÞÞ × s; ð3:10Þ

Ωa
ð1Þ ¼

c2

ϵ0
F d

cπd

�
1

2
Υδac − ϵabeVCbec

þ ϵ0

ϵ0 þmc2V
ϵabcWe

b̂∂eV

þ eV2

ϵ0 þmc2V
ϵacbEb −

2V
cℏ

ϵacbPb

�
; ð3:11Þ

Ωa
ð2Þ ¼

c
2
Ξa −

c3

ϵ0ðϵ0 þmc2VÞ ϵ
abcQðbdÞδdnF k

nπkF l
cπl

−
ec2V2

ϵ0
Ba þ 2V

ℏ

�
−Ma

þ c2

ϵ0ðϵ0 þmc2VÞ δ
anF c

nπcF d
bπdMb

�
: ð3:12Þ

Here, in the semiclassical limit, we have

ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4V2 þ c2δcdF a

cF b
dπaπb

q
: ð3:13Þ

Substituting the results obtained into the FW
Hamiltonian (3.1), we can recast the latter into a compact
and transparent form:

HFW ¼ βϵ0 þ eΦþ c
2
ðK · π þ π · KÞ þ ℏ

2
Π ·Ωð1Þ

þ ℏ
2
Σ ·Ωð2Þ: ð3:14Þ

Making use of (3.14), we get the velocity operator in the
semiclassical approximation:

dxa

dt
¼ i

ℏ
½HFW; xa�

¼ β
∂ϵ0
∂πa þ cKa

¼ β
c2

ϵ0
F a

bδ
bcF d

cπd þ cKa: ð3:15Þ

Let us compare this expression with the relation between
the holonomic and anholonomic components of particle’s
velocity. The anholonomic components of the 4-velocity
are conveniently parametrized by the spatial 3-velocity v̂a

(a ¼ 1, 2, 3) as

Uα ¼
�

γ

γv̂a

�
; ð3:16Þ

where γ ¼ ð1 − v̂2=c2Þ−1=2 is the Lorentz factor (v̂2 ¼
δabv̂av̂b). As a result, we have for the components of
the holonomic velocity

Ua ¼ dxa

dτ
¼ eaαUα ¼ γ

V
ðcKa þ VWa

b̂v̂
bÞ; ð3:17Þ

U0 ¼ dt
dτ

¼ e0αUα ¼ γ

V
; ð3:18Þ

and hence

OBUKHOV, SILENKO, and TERYAEV PHYSICAL REVIEW D 96, 105005 (2017)

105005-6



dxa

dt
¼ Ua

U0
¼ F a

bv̂b þ cKa: ð3:19Þ

Comparing this equation with (3.15), we can thus identify
the velocity operator in the Schwinger frame (2.2) with

β
c2

ϵ0
F b

aπb ¼ v̂a: ð3:20Þ

This obviously yields δcdF a
cF b

dπaπb ¼ ðϵ0Þ2v̂2=c2,
and by making use of this in (3.13), we find ðϵ0Þ2 ¼
m2c4V2 þ ðϵ0Þ2v̂2=c2, and consequently:

ϵ0 ¼ γmc2V: ð3:21Þ

The two equations (3.20) and (3.21) are decisive for
establishing the complete agreement of the quantum and
classical dynamics of spin. Namely, from (3.20) and (3.21)
we derive

ϵ0

ϵ0 þmc2V
¼ γ

1þ γ
;

c3

ϵ0ðϵ0 þmc2VÞF
b
aπbF d

cπd ¼
γ

1þ γ

v̂av̂c
c

; ð3:22Þ

which we will use later in the discussion of the quantum-
classical correspondence.

IV. DYNAMICS OF CLASSICAL SPIN

In this section we briefly revisit the classical theory of
spin in arbitrary external fields.
The motion of a spinning test particle is characterized

by its 4-velocity Uα and by the 4-vector of spin Sα which
satisfy the normalization, UαUα ¼ c2, and the orthogon-
ality, SαUα ¼ 0, conditions. By neglecting the second order
spin effects [38,39], which is sufficient in the present study,
the dynamical equations for these variables can be written,
quite generally, in the form

dUα

dτ
¼ F α; ð4:1Þ

dSα

dτ
¼ Φα

βSβ: ð4:2Þ

The external fields of various physical nature (electromag-
netic, gravitational, scalar, etc.) determine the forces F α

acting on a particle, as well as the spin transport matrixΦα
β

that affects the spin. Normalization and orthogonality of
the velocity and spin vectors impose the conditions on the
right-hand sides of (4.1), (4.2):

UαF α ¼ 0; UαΦα
βSβ ¼ −SαF α: ð4:3Þ

The spin transport matrix is supposed to be skew-
symmetric, Φαβ ¼ −Φβα, which automatically guarantees
SαSα ¼ const.
When the particle is at rest, its spatial 3-velocity vanishes

v̂a ¼ 0 and the 4-velocity (3.16) reduces to

uα ¼ δα0 ¼
�
1

0

�
: ð4:4Þ

The 4-velocity Uα in the laboratory frame (3.16) is related
to the rest-frame value (4.4) by means of the local Lorentz
transformation Uα ¼ Λα

βuβ where

Λα
β ¼

�
γ γv̂b=c2

γv̂a δab þ ðγ − 1Þv̂av̂b=v̂2
�
: ð4:5Þ

Substituting (3.16) into the orthogonality relation
SαUα ¼ 0, we find that the zeroth component of the spin
4-vector is expressed in terms of the 3 spatial components:

S0 ¼ 1

c2
v̂aSa: ð4:6Þ

The laboratory-frame components of the vector Sα do not
describe the physical spin of a particle: We have to recall
that spin, as the “internal angular momentum” of a particle,
is determined with respect to the rest reference frame. We
denote this physical spin by sα (in general, the lower case
letters will be used for any other objects in the rest frame).
Since the rest frame (Uα → uα) is obtained with the help of
the Lorentz transformation (4.5), we have Sα ¼ Λα

βsβ.
Inverting this, we find the relation between the physical
spin and the 4-vector in the laboratory frame:

sα ¼ ðΛ−1ÞαβSβ

¼
�

γ −γv̂b=c2

−γv̂a δab þ ðγ − 1Þv̂av̂b=v̂2
��

S0

Sb

�

¼
�

0

sa

�
: ð4:7Þ

Using (4.6) and the identity ðγ − 1Þc2=v̂2 ≡ γ2=ðγ þ 1Þ, we
find explicitly

sa ¼ Sa −
γ

γ þ 1

v̂av̂b
c2

Sb: ð4:8Þ

Substituting Sα ¼ Λα
βsβ into (4.2), we derive the dynami-

cal equation for the physical spin:

dsα

dτ
¼ Ωα

βsβ: ð4:9Þ

Here we introduced
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Ωα
β ¼ ϕα

β þ ωα
β; ð4:10Þ

where ϕα
β ¼ ðΛ−1ÞαγΦγ

δΛδ
β is the rest-frame value of the

spin transport matrix Φα
β, and

ωα
β ≔ −ðΛ−1Þαγ

d
dτ

Λγ
β: ð4:11Þ

After substituting (4.5) into (4.11), the simple matrix
algebra yields

ωα
β ¼

�
0 −fb=c2

−fa ωa
b

�
;

ωa
b ¼

γ2

γ þ 1

�
v̂a

c2
dv̂b
dτ

−
v̂b
c2

dv̂a

dτ

�
: ð4:12Þ

Here the rest-frame components fα ¼ ðΛ−1ÞαβF β of the
force 4-vector read

f0 ¼ 0; fa ¼ F a −
γ

γ þ 1

v̂av̂b
c2

F b; ð4:13Þ

and we used (4.1) to obtain the off-diagonal entries
in (4.12).
The formula (4.11) provides perhaps the most straight-

forward derivation of the Thomas precession, revealed
explicitly in (4.12). This subject has been recently dis-
cussed in great detail in Ref. [71].
Computation of the rest-frame components of the spin

transport matrix

ϕα
β ¼

�
0 ϕ0

b

ϕa
0 ϕa

b

�
ð4:14Þ

is straightforward: one just needs to evaluate the product of
the three matrices, ϕα

β ¼ ðΛ−1ÞαγΦγ
δΛδ

β. The result reads
ϕ0

b ¼ δabϕ
a
0=c2, and

ϕa
0 ¼ γ

�
Φa

0 −
γ

γ þ 1

v̂av̂b
c2

Φb
0 þΦa

bv̂b
�
; ð4:15Þ

ϕa
b ¼ Φa

b þ
1

c2
ðφav̂b − φbv̂aÞ; ð4:16Þ

φa ¼ γ

�
Φa

0 þ
γ

γ þ 1
Φa

bv̂b
�
: ð4:17Þ

The physical spin is characterized by the three nontrivial
spatial components, (4.7), and one can prove that the
0th component of (4.9) vanishes identically [this is equiv-
alent to the second compatibility condition (4.3)]. As a
result, the dynamical equation for the spin (4.9) reduces to
the 3-vector form

dsa

dτ
¼ Ωa

bsb; or
ds
dτ

¼ Ω × s: ð4:18Þ

Here the components of the 3-vectors are introduced by
s ¼ fsag and Ω ¼ f− 1

2
ϵabcΩbcg. Recalling (4.10), we find

the angular velocity of the spin precession

Ω ¼ ϕþ ω; ð4:19Þ

where ϕ ¼ f− 1
2
ϵabcϕbcg and ω ¼ f− 1

2
ϵabcωbcg

The new general equations (4.11)–(4.18) are valid for a
spinning particle interacting with any external fields. The
actual dynamics of the physical spin depends on the forces
which act on the particle and on the law of the spin
transport.

V. CLASSICAL VS. QUANTUM
SPINNING PARTICLES

In the previous section, we have developed a general
formalism for the discussion of the dynamics of a
classical spinning particle in arbitrary external fields.
Now we specialize to the case of the motion of a particle
in electromagnetic and gravitational (inertial) fields.
The dynamics of a relativistic particle with mass m,

electric charge e and dipole moments μ0, δ0 in the gravita-
tional and electromagnetic fields is described by [42]

DUα

dτ
¼ dUα

dτ
þUiΓiβ

αUβ ¼ −
e
m
gαβFβγUγ; ð5:1Þ

DSα

dτ
¼ dSα

dτ
þUiΓiβ

αSβ ¼ −
e
m
gαβFβγSγ

−
2

ℏ

�
Mα

β þ
1

ca
ðMβγUαUγ −MαγUβUγÞ

�
Sβ:

ð5:2Þ

Here we introduced

Mαβ ¼ μ0Fαβ þ cδ0Gαβ; ð5:3Þ

with the components

M0̂ â ¼ cPa; Mâ b̂ ¼ ϵabcMc; ð5:4Þ

where the 3-vectors M and P were defined in (2.16).
Following [38,39], we describe the motion of classical

spinning particles by the system (5.1)–(5.2) in which the
second order spin effects are neglected. This is consistent
with the construction of the quantum FW picture up to
the first order in the Planck constant. The analysis of
higher-order spin effects in the general Mathisson-
Papapetrou model of the classical spinning particle is a
more difficult problem which is extensively studied in the
literature, see [72–81] and the references therein.
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In accordance with the general scheme of Sec. IV, we
write the explicit force and the spin transport matrix for the
system (5.1)–(5.2):

F α ¼ −UiΓiβ
αUβ −

e
m
Fα

βUβ; ð5:5Þ

Φα
β ¼ −UiΓiβ

α −
e
m
Fα

β

−
2

ℏ

�
Mα

β þ
1

c2
ðUαMβγUγ − UβMαγUγÞ

�
: ð5:6Þ

One can check that the compatibility conditions (4.3) are
satisfied.
Substituting (5.5), (5.6), and (3.16) into (4.15)–(4.17)

and (4.12), we derive

ϕ ¼ ϕ
ðeÞ

þ ϕ
ðgÞ
; ω ¼ ω

ðeÞ þ ω
ðgÞ
: ð5:7Þ

The electromagnetic field contributions read

ϕ
ðeÞ

¼ e
m
γ

�
−Bþ γ

γ þ 1

v̂ðv̂ ·BÞ
c2

þ v̂ ×E
c2

�

þ 2γ

ℏ

�
−Mþ γ

γ þ 1

v̂ðv̂ ·MÞ
c2

−
v̂ ×P

c

�
; ð5:8Þ

ω
ðeÞ ¼ e

m
ðγ − 1Þ

�
B −

v̂ðv̂ ·BÞ þ v̂ ×E
v̂2

�
; ð5:9Þ

and the gravitational field contributions are

ϕ
ðgÞ

a ¼ Uiϵabc

�
1

2
Γi

cb þ γ2

γ þ 1

v̂d
c2

Γid
bv̂c þ γ

c2
Γi0̂

bv̂c
�
;

ð5:10Þ

ω
ðgÞ

a ¼ −
γ2

γ þ 1
Uiϵabc

�
v̂d
c2

Γid
bv̂c þ 1

c2
Γi0̂

bv̂c
�
: ð5:11Þ

The precession of the physical spin is the sum (4.19).
The result reads

Ω ¼ Ω
ðeÞ

þ Ω
ðgÞ
; ð5:12Þ

where we find for the electromagnetic Ω
ðeÞ

¼ ϕ
ðeÞ

þ ω
ðeÞ

and the

gravitational Ω
ðgÞ

¼ ϕ
ðgÞ

þ ω
ðgÞ

parts, respectively:

Ω
ðeÞ

¼ e
m

�
−Bþ γ

γ þ 1

v̂ ×E
c2

�

þ 2γ

ℏ

�
−Mþ γ

γ þ 1

v̂ðv̂ ·MÞ
c2

−
v̂ ×P

c

�
; ð5:13Þ

Ω
ðgÞ

a ¼ ϵabcUi

�
1

2
Γi

cb þ γ

γ þ 1
Γi0̂

bv̂c=c2
�
: ð5:14Þ

The exact formula (5.14) can also be used in flat space-
times for noninertial reference frames and curvilinear
coordinates (see the relevant discussion in Ref. [82] and
in the references therein), since the connection Γiβ

α con-
tains information about both gravitational and inertial
effects. Substituting (2.6) and (2.7), we can recast (5.14)
into

Ω
ðgÞ

¼ −Bþ γ

γ þ 1

v̂ × E

c2
; ð5:15Þ

where the generalized gravitoelectric and gravitomagnetic
fields are defined by

Ea ¼ γ

V
δacðcQðĉ b̂Þv̂

b − c2Wb
ĉ∂bVÞ; ð5:16Þ

Ba ¼ γ

V

�
−
c
2
Ξa −

1

2
Υv̂a þ ϵabcVCbcdv̂d

�
: ð5:17Þ

For the first discussion of these fields see Pomeransky
and Khriplovich [83] (cf. also Refs. [46–48,71] for more
details). The remarkable similarity of (5.15) and of the first
term in (5.13) suggests introducing the effective magnetic
and electric fields

Beff ¼ Bþm
e
B; ð5:18Þ

Eeff ¼ Eþm
e
E: ð5:19Þ

Accordingly, the general precession velocity (5.12) is
rewritten as

Ω ¼ e
m

�
−Beff þ

γ

γ þ 1

v̂ ×Eeff

c2

�

þ 2γ

ℏ

�
−Mþ γ

γ þ 1

v̂ðv̂ ·MÞ
c2

−
v̂ ×P

c

�
: ð5:20Þ

This generalizes our findings in [42].
Making use of Eqs. (3.20)–(3.22) we thus finally prove

the complete agreement between the classical limit of
the quantum-mechanical dynamics (3.10)–(3.12) and the
corresponding equations of motion of classical spin
(4.18) and (5.20) in the most general case of arbitrary
gravitational (inertial) and electromagnetic field acting on
the particle. Note that one should use (3.18) to relate the
derivatives with respect to the proper and the coordinate
time, d

dτ ¼ γ
V

d
dt. The demonstration of consistency of the

quantum and classical spin dynamics is the main result of
our paper.

GENERAL TREATMENT OF QUANTUM AND CLASSICAL … PHYSICAL REVIEW D 96, 105005 (2017)

105005-9



VI. EXAMPLE: SPINNING PARTICLE IN
NONINERTIAL FRAME

The formalism developed and the results obtained are
completely general. As a first application, we consider the
motion of a spinning particle in a noninertial system which
is described by the metric of the flat spacetime of an
accelerating and rotating observer [84]

V¼1þa ·r
c2

; Wâ
b¼ δab; Ka¼−

1

c
ðω×rÞa: ð6:1Þ

Here a describes acceleration of the observer and ω is an
angular velocity of a noninertial reference system; both are
independent of the spatial coordinates. Acceleration and
rotation have a clear physical meaning as the gravitoelectric
(5.16) and gravitomagnetic (5.17) fields:

E ¼ −
γ

V
a; B ¼ γ

V
ω: ð6:2Þ

The primary goal of considering this example is to
show how the formalism actually works. At the same time,
this case is not of a pure academic interest, because of its
importance for the discussion of the validity of the
equivalence principle for quantum-mechanical systems.
In the flat spacetime of a general noninertial system (6.1),

the relations between the holonomic and anholonomic
electric and magnetic fields (2.17) and (2.18) reduce to

E ¼ 1

V
ðEþ cK × BÞ; B ¼ B: ð6:3Þ

At the same time, for the anholonomic velocity (3.19) we
recover the familiar classic formula

v̂ ¼ _r − cK ¼ vþω × r: ð6:4Þ

For simplicity, we confine our attention to the minimally
coupled particles for which the AMM and EDM are absent:
μ0 ¼ 0 and δ0 ¼ 0. The corresponding semiclassical FW
Hamiltonian then reads

HFW ¼ β

2

��
1þ a · r

c2

�
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ c2π2

p �
− ω · ðr × πÞ

þ ℏ
2
Π ·Ωð1Þ þ ℏ

2
Σ ·Ωð2Þ; ð6:5Þ

where the angular velocity operators are given by

Ωð1Þ ¼
ða − eV

mγEÞ × π

mc2ðγ þ 1Þ ; Ωð2Þ ¼ −ω −
eV
mγ

B; ð6:6Þ

with γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4þc2π2

p
mc2 . In the semiclassical limit we have a

remarkable relation:

π ¼ mv̂γ ¼ mv̂ffiffiffiffiffiffiffiffiffiffiffi
1 − v̂2

c2

q : ð6:7Þ

This relativistic formula shows that the canonical momen-
tum is directed along the anholonomic velocity (6.4), and
not along the coordinate velocity v ¼ _r.
In high-energy experimental physics, it is more conven-

ient to describe particle’s motion with respect to detectors.
In this case, one should subtract the angular velocity of the
particle revolution from the precession angular velocity
Ω ¼ Ωð1Þ þΩð2Þ and use the cylindrical or Frenet-Serret
coordinate systems. The spin dynamics in these coordinate
systems looks differently, for the relevant discussion see
Ref. [82] and references therein. When the Frenet-Serret
coordinates are used, one needs to find the angular velocity
of rotation of the unit vector N̂ ¼ π

π ¼ v̂
v̂. This unit vector

determines the direction of the motion. Making use of
particle’s equations of motion, obtained from the FW
Hamiltonian (6.5), we derive

dN̂
dt

¼ Ô × N̂; ð6:8Þ

where we find that the rotation of the direction is
described by

Ô ¼ −ω −
e
mγ

B −
v̂
v̂2

×

�
a −

e
mγ

E
�
: ð6:9Þ

As a result, the precession of spin in the Frenet-Serret
coordinates is governed by

ΩFS ¼ Ω − Ô ¼ 1

γ2 − 1

v̂
c2

×

�
a −

e
mγ

E
�
: ð6:10Þ

Quite remarkably, the explicit contribution of the rotation
ω and the magnetic field B disappeared from ΩFS.
Nevertheless, the inertial effects of rotation and magnetic
effects are still present implicitly in the anholonomic
variables (6.3) and (6.4).
This example clarifies the physical meaning of the

gravitoelectric and gravitomagnetic fields and shows their
natural similarity with the electric and magnetic fields in
the way they affect the dynamics of spin.

VII. SPIN IN THE FIELD OF
A GRAVITATIONAL WAVE

Let us apply the general results obtained above to
the study of the spin dynamics of a fermion particle in
the gravitational wave in the presence of the electromag-
netic field. Previously, this was analyzed in [85–87].
Gravitational waves are the phenomena of fundamental
importance in physics, and quite remarkably the theoretical
research [88–90] of this subject has been recently supported
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by the first experimental evidence [91–93]. An informative
historic overview can be found in [94–96].

A. Gravitational wave

It will be convenient to use the general framework which
allows to deal both with the exact gravitational wave
solutions of Einstein’s theory and with the weak approxi-
mate wave configurations.
We choose the spacetime local coordinates as t; x1 ¼

x; x2 ¼ y; x3 ¼ z, and consider a general plane-fronted
gravitational wave with the spacetime interval

ds2 ¼ c2dt2 − g
AB
dxAdxB − dz2 þUðcdt − dzÞ2: ð7:1Þ

The metric coefficients g
AB

¼ g
AB
ðσÞ and U ¼ Uðσ; xAÞ

are the functions of the coordinates xA ¼ fx; yg (with
A;B ¼ 1, 2), parametrizing the wave front, and the param-
eter σ ¼ ct − z along the ray. From the physical point
of view, it would be more correct to treat g

AB
¼ g

AB
ðφÞ

and U ¼ Uðφ; xAÞ as the functions of wave’s phase
φ ¼ ωðt − z=cÞ ¼ ω

c σ, but we will use the geometric
variable σ instead, which of course yields completely
equivalent results. This configuration describes the
plane-fronted gravitational wave with the frequency ω
propagating along the x3 ¼ z axis.
By introducing a new function V via

U ¼ 1 −
1

V2
; ð7:2Þ

we write the corresponding Schwinger coframe (2.2) as

ϑ0̂¼Vcdt; ϑÂ¼hÂBdxB; ϑ3̂¼ 1

V
ðdzþðV2−1ÞcdtÞ;

ð7:3Þ

where the zweibein hÂB ¼ hÂBðσÞ, Â; B̂ ¼ 1, 2, satisfy
hĈAhD̂BδĈ D̂ ¼ g

AB
. The zweibein is not necessarily diago-

nal, but one can always choose it so that the 2 × 2 matrix

ΦÂ
B̂ ¼ hCB̂∂σhÂC ð7:4Þ

(with the inverse zweibein hCB̂) is symmetric

ΦÂ B̂ ¼ δÂ ĈΦĈ
B̂ ¼ δB̂ ĈΦĈ

Â ¼ ΦB̂ Â: ð7:5Þ

Recalling the general coframe (2.2), we now have explicitly

Wâ
b ¼

�
hÂB 0

0 V−1

�
; ð7:6Þ

Ka ¼ f0; 0; 1 − V2g: ð7:7Þ

For the gravitational wave (7.1), we now have

g
AB

¼
�
g
AB

0

0 U

�
; gab ¼

�
gAB 0

0 U−1

�
: ð7:8Þ

The general plane-fronted gravitational wave (7.1) encom-
passes the two special cases: (i) Rosen-Bondi wave
[97–100] with U ¼ 0, and hence V ¼ 1 and Ka ¼ 0,
and arbitrary hÂB; (ii) Brinkmann-Peres wave [101–106]
with hÂB ¼ δAB and arbitrary U.
The phase function φ ¼ ωðt − z=cÞ gives rise to the

physical wave covector dφ. However, technically it is more
convenient to introduce the geometrical wave covector via

k ¼ dσ ¼ kαϑα: ð7:9Þ

The corresponding (anholonomic) components of the wave
covector read

kα ¼ ðcV; 0; 0;−VÞ: ð7:10Þ

The wave covector is obviously constant, null, and geodetic

dkα ¼ 0; kαkα ¼ 0; k ∧� Dkα ¼ 0: ð7:11Þ

One can straightforwardly find the local Lorentz con-
nection 1-form Γβ

α ¼ Γiβ
αdxi for the gravitational wave

(7.1). The nontrivial components are as follows:

Γα
Â ¼ kαðΦÂ þ kDÂU=2Þ; Γ0̂

3̂ ¼ −
c
V
dV: ð7:12Þ

Here we denoted DÂU ≔ δÂ B̂eB̂⌋dU, and introduced the
1-form, recall (7.4),

ΦÂ ¼ ΦÂ
B̂ϑ

B̂: ð7:13Þ

Computation of the curvature 2-form is straightforward,
and the result reads

Rα
β ¼ k ∧ ðkαΩβ − kβΩαÞ; ð7:14Þ

where the vector-valued 1-form Ωα ¼ Ωα
βϑ

β has the

components Ω0̂ ¼ Ω3̂ ¼ 0, and

ΩÂ ¼
�
∂σΦÂ

B̂ þΦÂ
ĈΦĈ

B̂ þ 1

2
DB̂D

ÂU

�
ϑB̂: ð7:15Þ

Accordingly, the tensor Ωα
β has the algebraic properties:

kαΩα
β ¼ 0; Ωαβ ¼ Ωβα: ð7:16Þ

Consequently, the Ricci 1-form is then
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eβ⌋Rα
β ¼ −kkαΩβ

β: ð7:17Þ

As a result the vacuum Einstein equation eβ⌋Rα
β ¼ 0

reduces to the scalar equation

∂σΦÂ
Â þΦÂ

B̂ΦB̂
Â þ 1

2
ΔU ¼ 0; ð7:18Þ

where Δ ¼ δAB∂2
AB is the Laplace operator on the

2-dimensional wave front surface. Recalling (7.4), we
thus have the second order ordinary differential equation
for the zweibein components hÂB ¼ hÂBðσÞ and the
function UðσÞ.
A weak gravitational wave is described by hÂB ¼

δÂB þ wÂ
B and U ¼ 0, where the components of the

2 × 2 matrix

wÂ
B ¼

�
w⨁ w⨂

w⨂ −w⨁

�
ð7:19Þ

are two arbitrary w⨁ðφÞ; w⨂ðφÞ small functions
(w⨁ ≪ 1; w⨂ ≪ 1) of the phase φ ¼ ωðt − z=cÞ. They
correspond to the two possible polarizations of the wave.
It is convenient to introduce the 3 × 3 matrix

wa
b ¼

�
wÂ

B 0

0 1

�
: ð7:20Þ

We will not make a difference between upper and lower
indices of this basic matrix.
Many exact gravitational wave solutions are also known

[88–90,97–106].

B. Fermion in a gravitational wave

The general Dirac Hamiltonian has the form (2.12). Now
we specialize to the case of the gravitational wave and
using (7.12) we calculate the components of the objects
(2.8) and (2.9). We will not give Qâ b̂ and Cb̂ ĉ

â since they
enter the Hamiltonian only in combinations (2.14) and
(2.15). The direct computation yields for the latter:

Υ ¼ 0; ΞA ¼ 2ηABWC
B̂∂CV; Ξ3̂ ¼ 0; ð7:21Þ

where ηAB ¼ −ηBA (and ηAB ¼ −ηBA) is the totally anti-
symmetric Levi-Civita tensor in 2 dimensions on the
wave front surface, normalized by η12 ¼ η12 ¼ 1. As for
V and K, they are both nontrivial for nonvanishing U,
see the explicit formulas (7.2) and (7.7). Accordingly, the
Dirac Hamiltonian (2.12) reduces to

H ¼ βmc2V þ eΦþ c
2
ðπbF b

aα
a þ αaF b

aπbÞ

− βðΣ ·Mþ iα ·PÞ þ cπz −
V2cπz þ cπzV2

2

þ ℏc
2
ηABΣÂW

C
B̂∂CV: ð7:22Þ

Here (2.13) now reads F b
a ¼ VWb

â, or explicitly
FB

A ¼ VhBÂ;F
3
3 ¼ V2. The anholonomic electric (2.17)

and magnetic (2.18) fields are

EA ¼ 1

V
WB

Â½EB − cð1 − V2ÞηBCBC�; E3 ¼ E3;

ð7:23Þ

BA ¼ V
h
WÂ

BBB; B3 ¼ 1

h
B3: ð7:24Þ

Here h ¼ det hÂB. The constitutive relations (2.24)–(2.25)
reduce to

DA ¼ ε0ð1 −UÞhgABEB − λ0UηABg
BC
BC; D3 ¼ ε0hE3;

ð7:25Þ

HA ¼ 1þU
μ0h

g
AB
BB − λ0Ug

AB
ηBCEC; H3 ¼

1

μ0h
B3:

ð7:26Þ

It is worthwhile to notice that in the gravitational wave with
nontrivial U one observes a natural magnetoelectricity.

C. Foldy-Wouthuysen Hamiltonian
and equations of motion

From now on, we specialize (without actually loosing
generality because the two types of gravitational waves
are related by a coordinate transformation) to the Rosen-
Bondi waves and put U ¼ 0. Hence V ¼ 1, and we then
also find F b

a ¼ Wb
â (or explicitly FB

A ¼ hBÂ;F
3
3 ¼ 1)

and Ξ ¼ 0 from (7.21). As a result, the three last terms in
the Dirac Hamiltonian (7.22) vanish.
In the case under consideration, the constituents

(3.2)–(3.6) of the general FW Hamiltonian reduce to

Hð1Þ
FW ¼ βϵ0 þ ℏc2

8

�
1

ϵ0
; ϵcaeΠefπb;F d

c∂dF b
ag
�
; ð7:27Þ

Hð2Þ
FW ¼ ℏc

16

�
1

T
; fΣafπe;F e

bg; fπf; ϵabc _F f
cgg

�
; ð7:28Þ
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Hð3Þ
FW ¼ eΦ −

eℏc2

4

�
1

ϵ0
;ΠaBa

�

þ eℏc2

8

�
1

T
; ½Σaϵ

abcðfF d
b; πdgEc

− EbfF d
c; πdgÞ − 2ℏF b

a∂bðEaÞ�
�
; ð7:29Þ

Hð4Þ
FW ¼ −

c
8

�
1

ϵ0
;

�
Σaϵ

abcðfF d
b; πdgPc − PbfF d

c; πdgÞ

− 2ℏF b
a∂bðPaÞ

��
− ΠaMa

þ c2

4

�
1

T
; ðΠaffF c

aF d
bMb; πcg; πdg

þ βℏfF b
aJ a; πbgÞ

�
; ð7:30Þ

ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ c2

4
δacfπb;F b

agfπd;F d
cg

r
;

T ¼ 2ϵ0ðϵ0 þmc2Þ;

J a ¼ eabcF d
b∂dðMcÞ þ

∂Pa

c∂t : ð7:31Þ

The quantum spin dynamics is described by Eq. (3.7)
where

Ωa
ð1Þ ¼

c2

4

�
1

ϵ0
; fπe; ϵabcF d

b∂dF e
cg
�

þ ec2

4
ϵabc

�
1

T
; ðfF d

b; πdgEc − EbfF d
c; πdgÞ

�

−
c
4ℏ

ϵabc
�
1

ϵ0
; ðfF d

b; πdgPc − PbfF d
c; πdgÞ

�
;

ð7:32Þ

and

Ωa
ð2Þ ¼

c
8

�
1

T
; ffπe;F e

bg; fπf; ϵabc _F f
cgg

�

−
ec2

2

�
1

ϵ0
;Ba

�
−
2

ℏ
Ma

þ c2

2ℏ

�
1

T
; ffδanF c

nF d
bMb; πcg; πdg

�
: ð7:33Þ

Comparing to the previous investigations of the spin
interaction of the Dirac fermion with the gravitational
wave, it is worthwhile to stress that we have derived the
relativistic formulas without using the weak-field approxi-
mation. Since the FW Hamiltonian (3.1) is exact in all
terms of the zero and the first orders in the Planck constant,

Eqs. (7.27)–(7.33) allow to determine an exact classical
limit of quantum-mechanical equations of motion.
The new exact result (7.27)–(7.33) significantly gen-

eralizes the earlier findings of Refs. [85–87]. The rela-
tivistic Hamiltonian derived in Ref. [85] by means of the
Eriksen-Kolsrud transformation [107] (also called the
exact FW transformation) does not provide for a simple
transition to the classical limit except for the nonrelativ-
istic approximation. This is caused by the difference
between the FW and the Eriksen-Kolsrud representations
[43,64]. It should be also noted that the exact FW
Hamiltonian found in Ref. [85] contains an error later
reported in Ref. [86]. In Ref. [87], a nonrelativistic Dirac
particle interacting with a magnetic field in the presence
of a gravitational wave has been considered and a
possibility of the spin gravitational resonance has been
mentioned. We analyze the results obtained in this work
in Sec. VII D.
The general equations (7.27)–(7.33) clearly show that

the gravitational wave causes the spin rotation even in
the absence of the electromagnetic interactions and it can
change the motion of the spin affected by these interactions.
These properties are manifest in the Hamiltonian constitu-

ents Hð1Þ
FW;H

ð2Þ
FW and Hð3Þ

FW;H
ð4Þ
FW , respectively. Our result

confirms the conclusion made in Ref. [85] that the
influence of the gravitational wave on the momentum
and spin may be amplified by a sufficiently strong magnetic
field. One can check that the significant improvement
can take place when ∂cðF b

aÞ=F e
d ≪ Ω0, where Ω0 is

the frequency of the spin rotation caused by electromag-
netic interactions. In some cases, this condition is equiv-
alent to ω ≪ Ω0, where ω is the frequency of the
gravitational wave.
While exact gravitational wave solutions are known

[88–90,97–106], for most practical purposes it is sufficient
to consider the weak-field approximation. In this approxi-
mation, the spatial metric g

AB
¼ hĈAhD̂BδĈ D̂ components

are given by

g
11
¼ 1þ 2w⨁; g

22
¼ 1− 2w⨁; g

12
¼ g

21
¼ 2w⨂:

ð7:34Þ

Note an inaccuracy in the metric presented in Eq. (2) of
Ref. [87]. The dynamics of the weak gravitational wave
is described by the zweibein anholonomity object (7.4)
which in this approximation reads

Φ1
1 ¼ −Φ2

2 ¼ ∂σw⨁; Φ1
2 ¼ Φ2

1 ¼ ∂σw⨂: ð7:35Þ

For the electric and magnetic fields, we find h ¼ 1, and
(7.23)–(7.24) reduce to

Ea ¼ ðδba − wb
aÞEb; Ba ¼ ðδab þ wa

bÞBb: ð7:36Þ
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It is important to determine the gravitoelectromagnetic
fields (5.16) and (5.17). For the Rosen-Bondi gravitational
waves, they turn out to be transversal: E3 ¼ B3 ¼ 0 and

EA ¼ −cΦABUB; BA ¼ −
1

c
ηABEB: ð7:37Þ

In the weak-field approximation, the hats may be omitted,
and ΦAB is given by (7.36). One should note that these
fields are effective, they are defined not only by the
gravitational field but also by the 4-velocity Uα of the

particle. The quantum-mechanical counterparts of these
equations are

EA¼−
c
2m

fΦB
A;πBg; BA¼−

1

c
ηABEB; E3¼B3¼0:

ð7:38Þ

The FW Hamiltonian of a charged fermion particle
moving in the electromagnetic field and the weak gravi-
tational wave can be presented in the general form

HFW ¼ βϵ0 þ eΦþ ℏmc2

8

�
1

ϵ0ðϵ0 þmc2Þ ;Σ · ðπ × E − E × πÞ
�

þ 1

4

��
μ0mc2

ϵ0 þmc2
þ μ0

�
1

ϵ0
; ½Σ · ðπ ×E −E × πÞ − ℏ∇ ·E�

�
−
ℏmc2

4

�
1

ϵ0
;Π · B

�
−
1

2

��
μ0mc2

ϵ0
þ μ0

�
;Π ·B

�

þ β
μ0

4

�
c2

ϵ0ðϵ0 þmc2Þ ;
�
ðB · πÞðΣ · πÞ þ ðΣ · πÞðπ ·BÞ þ ℏ

2
ðπ ·J þJ · πÞ

��
: ð7:39Þ

Here μ0 ¼ eℏ
2m is the Dirac magnetic moment and the

gravitoelectric E and the gravitomagnetic B fields are
given by Eqs. (7.38). We can disregard the EDM while
the AMM should be taken into account.
Equation (7.39) underlies the investigation of the physi-

cal effects for the Dirac fermion in the weak gravita-
tional wave.

D. Analysis of physical effects in magnetic field

Let us compare our result with the Hamiltonians
obtained previously in [85–87]. In Ref. [85], the
Eriksen-Kolsrud transformation (also called the exact
FW transformation) has been used. While this transforma-
tion is often exact, it is not convenient for deriving an
unambiguous classical limit of the quantum-mechanical
equations. Nevertheless, the Eriksen-Kolsrud and the FW
transformations for the Dirac particle interacting with the
magnetic field and moving in the gravitational wave lead to
the same nonrelativistic Hamiltonians [86,87]. To compare
them with the exact Hamiltonian (7.39), we may take into
account only the expansion up to the first and second orders
in v=c in terms proportional to the first and zeroth powers
of ℏ, respectively. After omitting other terms, Eq. (7.39)
reduces to

HFW ¼ βmc2 þ ðδab − 2wabÞ πaπb
2m

−
ℏ
2
Π ·B − ðμ0 þ μ0ÞΠ ·B: ð7:40Þ

For understanding of the possible physical effects it is
important to notice that the spin is affected by the
anholonomic field B which bears an “imprint” (7.36) of

the gravitational wave on the applied magnetic field B. As
one knows, when a particle with a magnetic moment moves
in the flat spacetime (no gravity) in a constant homo-
geneous magnetic field, its spin eigenstates defines the
polarization along (or against) the applied field. However,
when a rotating (or, in general, alternating) field is added
in the plane perpendicular to the original constant field, the
spin can flip and the highly interesting magnetic resonance
phenomenon [108–112] occurs, which has numerous
important applications.
Supposing that the weak gravitational wave is an

harmonic oscillatory process, one can qualitatively model
this situation. To make the discussion more clear, let us
assume that only one gravitational wave polarization is
present, namely w⨁ ¼ 0, whereas

w⨂ ¼ g0 cosφ ¼ g0 cos ðωt − ωz=cÞ; ð7:41Þ

describing a wave with the frequency ω and amplitude g0
propagating along the z-axis.
Now, let us arrange the constant homogeneous magnetic

field in the plane of the wave front: without loss of generality
we can choose B ¼ ðB0; 0; 0Þ, where B0 ¼ const. Then
(7.36) yieldsB ¼ ðB0; B0w⨂; 0Þ, and we thus discover that
the spin couples, see the last term in (7.40), to the field
configuration that reproduces the magnetic resonance con-
ditions. Namely, the spin is affected by the constant
homogeneous magnetic field along x and an additional
alternating field in the perpendicular plane ðy; zÞ. The case
when the alternating field is not rotating but performs a
simple linear oscillation was first considered by Bloch and
Siegert [111], and using their results, we obtain the prob-
ability of the spin-flip

OBUKHOV, SILENKO, and TERYAEV PHYSICAL REVIEW D 96, 105005 (2017)

105005-14



P−1
2
¼ sin2fω0g0ðt − t0ÞΛ=4g

Λ2
: ð7:42Þ

This is the probability to find, at time t, the spin oriented
oppositely to the initial state at t0. Here

ω0 ¼
2ðμ0 þ μ0ÞB0

ℏ
ð7:43Þ

is the Larmor frequency, and

Λ2 ¼ 1þ 4ð1 − ξÞ2
g20

; ð7:44Þ

ξ ¼ ω

ω0

�
1 −

g20
16ξ2

�
: ð7:45Þ

This confirms the earlier conclusion [87] about the
possibility to find manifestations of the gravitational
wave with the help of the magnetic resonance type
experiments.
One can notice that the effect described by

Eqs. (7.42)–(7.45) is quadratic in the small quantity
g0, which is usual in the theory of magnetic resonance.
At the same time, it would be of interest to search for the
possible polarization effects which are linear in this
quantity, and to analyze the spin components orthogonal
to an initial spin polarization, along the lines of
Ref. [113,114].
It is worthwhile to mention that in his computation

Quach [87] rather paradoxically considered the case when
the direction of the external magnetic field differs from the
direction of the wave propagation by the small angle θ → 0,
and this small parameter necessarily enters the final result.
However, when θ ¼ 0 (the magnetic field along the wave
propagation), we haveB ¼ B, and the gravitational effects
disappear. In contrast, in our new derivation we consider
a different setup when the magnetic field is applied in the
wave front plane orthogonal to the wave propagation.
Accordingly, no additional small parameters enter the
results obtained, (7.42)–(7.45).

VIII. DISCUSSION

In this paper we continue the study of the dynamics of
the quantum and classical Dirac fermions with spin 1=2
and dipole moments under the action of the gravitational
and electromagnetic fields. The results obtained extend
our earlier findings in [43–48] which were obtained for
the case when the electromagnetic field was excluded
whereas gravity was confined to the weak fields and the
special static and stationary field configurations. We now
considered the case of an arbitrary spacetime metric plus
an arbitrary electromagnetic field. This is a nontrivial
problem, because one cannot merely sum up the results
describing the influence of the electromagnetic field on

spin with the results for the gravity-spin effects. There is
no direct superposition, since unlike the electromagnetism
that couples only to electric charges and currents, gravity
is universal and it couples to all kinds of matter,
including the electromagnetic field. As a result, the
action of gravity on spin is twofold: via the coframe
and connection (2.13)–(2.15) and via the electromagnetic
field which gets modified Eqs. (2.17)–(2.18) in the
curved spacetime.
In Sec. II, we derived the Hermitian Dirac Hamiltonian

(2.12), and then in Sec. III we applied the Foldy-
Wouthuysen transformation [61] and constructed the
Hamiltonian (3.1)–(3.5) in the FW representation for a
particle with spin 1=2 and dipole moments in an arbitrary
spacetime geometry and an arbitrary electromagnetic
field. Making use of the FW Hamiltonian, we then
derived the operator equations of motion, with a special
focus on the quantum-mechanical equation of the spin
motion (3.7) and its semiclassical limit (3.10). These
general results are important for the comparison of the
dynamics of a quantum and classical spinning particle in
external fields, when addressing the issue of the validity
of the equivalence principle. In Sec. IV, we considered
the general theory of the classical particle with spin in
external fields and applied it to the analysis of spin
dynamics under the joint action of gravity and electro-
magnetism in Sec. V, where we derived the expressions
(5.12) and (5.20) for the angular velocity of spin
precession in the general inertial, gravitational and
electromagnetic fields. Our main result is the demon-
stration that the classical spin dynamics is completely
consistent with the semiclassical quantum dynamics of
the Dirac fermion in an arbitrary curved spacetime and
any electromagnetic field.
Finally, in Sec. VII we used our general formalism to

derive the theoretical framework for the investigation of the
dynamics of quantum spinning particle in the field of a
gravitational wave. In particular, we are able to confirm and
improve the earlier findings [87] on the theoretical pos-
sibility of using the magnetic resonance type setup to reveal
gravitational wave effects on a spin.
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