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Three self-gravitating SOð10Þ domain walls in five dimensions are obtained and their properties are
analyzed. These non-Abelian domain walls interpolate between AdS5 spacetimes with different embedding
of SUð5Þ in SOð10Þ and they can be distinguished, among other features, by the unbroken group on each
wall, being either SOð10Þ, SOð6Þ ⊗ SUð2Þ ⊗ Uð1Þ=Z2 or SUð4Þ ⊗ SOð2Þ ⊗ Uð1Þ=Z4. We show that,
unlike Minkowskian versions, the curved scenarios are perturbatively stable due to the gravitational capture
of scalar fluctuations associated to the residual orthogonal subgroup in the core of the walls. These
stabilizer modes are additional to the four-dimensional Nambu-Goldstone states found in two of the three
gravitational scenarios.
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I. INTRODUCTION

Our universe could be a hypersurface embedded in a
higher dimensional spacetime and among the proposals that
have emerged to develop this idea, the five-dimensional
Randall-Sundrum model [1] has received much attention
because standard gravitation can be recovered on the four-
dimensional world sheet (or 3-brane) of the scenario. For a
discussion about localization of matter and interaction
fields, see [2,3].
In more realistic models the thickness of the world sheet

is taken into account, in this case the brane is generated by a
domain wall, a solution to Einstein gravity theory interact-
ing with a scalar field where the scalar field is a standard
kink interpolating between the minima of a potential with
spontaneously broken symmetry [4–12]. This scenarios are
topologically stables and, consequently, the analysis of
small fluctuations of both the metric tensor and the scalar
field [13], revels a tower of modes free of tachyonic
instabilities.
Domain walls generated from several scalar fields have

been also considered, see Ref. [14], and among other
properties, it is observed that the flat configuration admits
the translation zero mode in Kaluza-Klein (KK) spectrum
of the scalar perturbations which is removed when the extra
dimension is warped; however, the general setup, in the
presence of gravity, can support one or several extra zero
modes in the excitations tower.
It is also possible to consider domain walls with multiple

scalar fields in terms of a non-Abelian source with internal
gauge symmetry group G, which is advantageous on the
wall, where our universe is realized, because a symmetry
breaking pattern, G → H0, could be obtained. This opens
up the possibility of building braneworld with standard
model group on the wall. In this sense several attempts have
been made; in particular, a pair of perturbatively stable self-
gravitating SUð5Þ ⊗ Z2 domain walls, with different group

H0, were reported in [15]. Remarkably, one of them
corresponds to curved version of the flat solution found
in [16] and widely discussed in [17–19]. Other notable
attempt, with G ¼ E6 but in flat space, was reported
in [20].
The perturbative stability analysis of the SUð5Þ ⊗ Z2

walls was performed in [21] (as far as we know, there is no
a topological charge defined for non-Abelian walls) and, in
addition to verifying the local stability of scenarios, it was
shown that, for a four-dimensional observer localized on
the brane, the tensor and vector sectors of the gravity
fluctuations behave in a similar way to the Abelian domain
wall setup [13]; namely, while the zero mode of the tensor
excitations is localized, there is not a normalizable solution
for the vector perturbations. On the other hand, in the
spectrum of the scalar fluctuations, the absence of the
translation mode was verified and normalizable massless
scalar modes associated to the particular symmetry break-
ing pattern considered on the wall were found.
From the point of view of grand unified theories, the

symmetryOð10Þ is considered more fundamental thatUð5Þ
in the sense that SUð5Þ ⊂ SOð10Þ and the standard model
group is embedded in SOð10Þ as a single irreducible
representation of the underlying gauge group. In [22],
three flat SOð10Þ domain walls were found and, just
as in SUð5Þ ⊗ Z2 case, a symmetry breaking pattern,
SOð10Þ → H0, was determined for each wall. These
scenarios will be considered in this paper; concretely, we
will focus on both the extension to curved spacetime and
the stability under small perturbations. Among the results
that we will show highlight, the local instability of two of
the flat scenarios due to tachyonic Pöschl-Teller modes in
spectrum of scalar perturbations, which, fortunately,
can be removed when gravity is included; and, the four-
dimensional localization of massless scalar states along the
broken generators associated to SOð10Þ → H0, which
occurs only when gravity is present in the model.
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The paper is organized as follows, in Secs. II and III the
gravity SOð10Þ setup and the extensions to warped space-
time of the flat SOð10Þ kinks are obtained. In Sec. IV, the
perturbative stability analysis of the SOð10Þ walls is
performed and it is show that gravitation rescues the
stability through the capture of massless scalar perturba-
tions associated to the orthogonal subgroup of H0. Finally,
in Sec. V our results and conclusions are summarized and
presented.

II. SELF-GRAVITATING SOð10Þ KINKS

Consider the Einstein-scalar field coupled system in five
dimensions

Rab −
1

2
gabR

¼ −
1

2
Trð∇aΦ∇bΦÞ þ gab

�
1

4
Trð∇cΦ∇cΦÞ − VðΦÞ

�
ð1Þ

and

∇c∇cΦ ¼ ∂VðΦÞ
∂Φ ; ð2Þ

where Φ is a scalar multiplet in the 45-adjoint representa-
tion of SOð10Þ, i.e.,

Φ → OΦOT; O ¼ e
1
2
αj1j2Lj1j2 ð3Þ

with α and L the parameters and generators of the group
respectively. In particular, for the generators in the funda-
mental representation we have

ðLj1j2Þj3j4 ¼ δj1j4δj2j3 − δj1j3δj2j4 : ð4Þ

The latin index j ¼ 1;…; 10, denotes an internal index of
SOð10Þ group.
Now, consider the spacetime (R5, g) where the tensor

metric g for a five-dimensional static spacetime with a
planar-parallel symmetry, in a particular coordinate basis, is
given by

ds2 ¼ e2AðyÞημνdxμdxν þ dy2; μ; ν ¼ 0;…; 4: ð5Þ

We are interested in the realization of brane worlds on this
geometry. In order to do this, we consider a potential of
sixth-order

VðΦÞ ¼ V0 þ
μ2

2
TrΦ2 þ h

4
ðTrΦ2Þ2 þ λ

4
TrΦ4

þ α

6
ðTrΦ2Þ3 þ γ

6
TrΦ4TrΦ2 þ β

6
TrΦ6; ð6Þ

where V0 is a constant to be fixed.

Two aspects of the theory should be highlighted. First,
the Oð10Þ group has two disconnected components, the
SOð10Þ special subgroup and the antispecial part. These
two subspaces are related by a discrete Z2 transformation of
Oð10Þ. Second, both TrðΦ3Þ and TrðΦ5Þ vanishes in (6)
because the scalar field is antisymmetric. Therefore, the
reflection symmetry

Z2∶ Φ → −Φ; ð7Þ
that connects the vacuum expectation values of scalar field

Φðy ¼ −∞Þ ¼ −OΦðy ¼ þ∞ÞOT; ð8Þ

is part of the model and is outside the SOð10Þ group [22].
Hence, a SOð10Þ kink interpolating between two minima of
VðΦÞ is a feasible solution for the coupled system. A kink
solution for a sixth-order polynomial potential and a single
self-gravitating scalar field have been found in [4].
We will assume that the scalar field takes values in the

Cartan-subalgebra space of SOð10Þ, that is

Φ ¼ ϕ1L12 þ ϕ2L34 þ ϕ3L56 þ ϕ4L78 þ ϕ5L90: ð9Þ

(Hereon we denote the subscript 10 as 0.) Following the
usual strategy, from (1) and (2) we find

3A00 ¼ −ϕ0
kϕ

0
k;

3

2
A00 þ 6A02 ¼ −VðΦÞ ð10Þ

and

ϕ00
i þ 4A0ϕ0

i ¼ −2ðμ2 − 2hϕkϕkÞϕi þ 2λϕ3
i þ 2βϕ5

i

þ 4γ

3
ð2ϕ2

iϕkϕk − ϕ2
kϕ

2
kÞϕi − 8αðϕkϕkÞ2ϕi;

ð11Þ

where prime indicates derivative with respect to extra
coordinate y and i; k ¼ 1;…; 5.
From the minimum of the potential we take the following

three boundary conditions [22,23]

ΦAðy¼�∞Þ¼� vffiffiffi
5

p ðL12þL34þL56þL78þL90Þ; ð12Þ

ΦBðy¼�∞Þ¼ vffiffiffi
3

p ð�L12�L34�L56−L78−L90Þ ð13Þ

and

ΦCðy¼�∞Þ¼vð�L12−L34−L56−L78−L90Þ: ð14Þ

Now, choosing

h ¼ 0; α ¼ 0; γ ¼ 0; ð15Þ
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in order to decouple (11), and solving the boundary value
problem for

A ¼ −
v2

9

�
2 ln coshðkyÞ þ 1

2
tanh2ðkyÞ

�
; ð16Þ

we obtain three non-Abelian kink solutions determined as
follows
Symmetric kink: for the boundary condition (12), we get

a kink solution with a single component,

ΦA ¼ v tanhðkyÞMA; ð17Þ
such that

MA ¼ 1ffiffiffi
5

p ðL12 þL34 þL56 þL78 þL90Þ ð18Þ

and

v¼
ffiffiffi
5

p

2

ffiffiffiffiffiffiffiffiffiffiffiffi
λ

β
−

9

10

s
; k¼ 3

2
ffiffiffiffiffi
10

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

�
λ

β
−

9

10

�s
; ð19Þ

μ ¼
ffiffiffi
3

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

�
λ

β
þ 3

10

��
λ

β
−

9

10

�s
; ð20Þ

V0 ¼
9

64
β

�
λ

β
−

9

10

�
2

; ð21Þ

with β > 0 and λ > 9β=10.
Asymmetric kink: in connection with (13), the kink

solution obtained in this case has two components,

ΦB ¼ v tanhðkyÞMB −
ffiffiffi
2

3

r
vPB; ð22Þ

where

MB ¼ 1ffiffiffi
3

p ðL12 þL34 þL56Þ;

PB ¼ 1ffiffiffi
2

p ðL78 þL90Þ ð23Þ

and

v ¼
ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffi
λ

β
−
3

2

s
; k ¼

ffiffiffi
3

p

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

�
λ

β
−
3

2

�s
; ð24Þ

μ ¼
ffiffiffi
3

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

�
λ

β
þ 1

2

��
λ

β
−
3

2

�s
; ð25Þ

V0 ¼
1

24
β

�
λ

β
þ 33

8

��
λ

β
−
3

2

�
2

; ð26Þ

with β > 0 and λ > 3β=2.

Superasymmetric kink: for the condition (14), as in the
previous case, we find a kink solution with components in
two directions,

ΦC ¼ v tanhðkyÞMC − 2vPC; ð27Þ

where

MC ¼ L12; PC ¼ 1

2
ðL34 þL56 þL78 þL90Þ ð28Þ

and

v ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
λ

β
−
9

2

s
; k ¼ 3

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

�
λ

β
−
9

2

�s
; ð29Þ

μ ¼
ffiffiffi
3

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

�
λ

β
þ 3

2

��
λ

β
−
9

2

�s
; ð30Þ

V0 ¼
1

12
β

�
λ

β
þ 63

16

��
λ

β
−
9

2

�
2

; ð31Þ

such that β > 0 and λ > 9β=2.
In all cases MA;B;C and PB;C are orthogonal generators

of SOð10Þ.
The warp factor (16) together with (17), (22), or (27)

represent a two-parameter family of SOð10Þ static domain
walls, asymptotically Anti de-Sitter (AdS5) with cosmo-
logical constant determined by

ΛA ¼ −
5

48
β

�
λ

β
−

9

10

�
3

ð32Þ

for the symmetric case;

ΛB ¼ −
1

16
β

�
λ

β
−
3

2

�
3

ð33Þ

for the asymmetric case; or

ΛC ¼ −
1

48
β

�
λ

β
−
9

2

�
3

ð34Þ

for the superasymmetric case. On the other hand, they can
also be considered as the extensions to curved spacetime of
the flat SOð10Þ kinks reported in [22] and supported on a
four-order potential (α ¼ γ ¼ β ¼ 0). In this case the
system is decoupled for h¼0 and is satisfied when k¼μ

and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
5μ2=λ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffi
3μ2=λ

p
, μ=

ffiffiffi
λ

p
respectively for the

symmetric, asymmetric and superasymmetric kink.

III. THE BREAKING SCHEME OF SOð10Þ BRANE
Any of the non-Abelian kinks induces the breaking of

SOð10Þ both in the core and at the edge of the scenarios.
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The unbroken symmetry at y → �∞, for each kink
solution, is given by

SOð10Þ → SUð5Þ ⊗ Uð1Þ
Z5

; ð35Þ

and in concordance with the boundary conditions (12), (13)
and (14), SUð5Þ is embedded in SOð10Þ in different
ways [23].
In the core of the wall, the remaining groups are com-

pletely different. For the symmetric kink (17) the scalar field
vanish in y ¼ 0; so, all generators of SOð10Þ are annihilated
for the field and the group is preserved on the wall. This is a
straightforward generalization of the Abelian case.
For the other scenarios the situation is more interesting.

This means that some components ofΦB;C can be nonzero
in the core, and some generators of SOð10Þ remain broken
even in the core. Therefore, the spontaneous symmetry
breaking is nontrivially realized on the wall. To see this
explicitly we consider a combinations T of generators L
such that ∂2VðΦÞ=∂ϕj1∂ϕj2 is diagonal for each kink
solutionΦB;C. For the asymmetric kink we find that SOð3Þ
sector of SOð10Þ is isomorphically equivalent to SUð2Þ; on
the other hand, for the superasymmetric kink, we get that
SOð6Þ sector of SOð10Þ becomes isomorphic to SUð4Þ.
Therefore, in the core of the non-Abelian walls (22) and

(27) respectively we have

SOð10Þ → HB ¼ SOð6Þ ⊗ SUð2Þ ⊗ Uð1ÞPB

Z2

ð36Þ

and

SOð10Þ → HC ¼ SUð4Þ ⊗ SOð2Þ ⊗ Uð1ÞPC

Z4

: ð37Þ

We leave to the Appendix the technical details associated
to (36) and (37).

IV. STABILITY OF NON-ABELIAN KINK

These non-Abelian walls are not topologically protected
and, therefore, their stability is not guaranteed. Let us
examine the perturbative stability of these domain wall
spacetimes considering small deviations to the solutions of
the Einstein scalar field equations, gab and Φ, defined by
hab and φ, respectively.
Thus, in accordance with Ref. [9], from (1) and (2) the

equations for the excitations are obtained

−
1

2
gcd∇c∇dhab þ RcðabÞdhcd þ RcðahbÞc

−
1

2
∇a∇bðgcdhcdÞ þ∇ða∇chbÞc

¼ 2∇ðaϕj∇bÞφj þ
2

3
habVðΦÞ þ 2

3
gab

∂VðΦÞ
∂ϕj

φj ð38Þ

and

− hab∇a∇bϕj1 −
1

2
gabgcdð∇ahbd þ∇bhad −∇dhabÞ∇cϕj1

þ gab∇a∇bφj1 ¼
∂2VðΦÞ
∂ϕj2∂ϕj1

φj2 ð39Þ

where we have considered that Φ ¼ ϕjTj and φ ¼ φjTj.
Now, taking into account the generalization of the

Bardeen formalism [24] to the case of warped geometries
presented in [13], we consider the decomposition of hab in
terms of tensor, vector, and scalar modes, namely

hμν ¼ 2e2AðhTTμν þ ∂ðμfνÞ þ ημνψ þ ∂μ∂νEÞ; ð40Þ

hμy ¼ eAðDμ þ ∂μCÞ; hyy ¼ 2ω: ð41Þ

In order to preserve the degrees of freedom of hab, both hTTμν
and fμ and Dμ must satisfy the conditions of transverse
traceless and divergence-free

hTTμμ ¼ 0; ∂μhTTμν ¼ 0; ∂μfμ ¼ 0; ∂μDμ ¼ 0: ð42Þ

These modes can be rewritten in terms of following
variables: a vector field

Vμ ¼ Dμ − eAf0μ; ð43Þ

two scalar fields

Γ ¼ ψ − A0ðe2AE0 − eACÞ; ð44Þ

Θ ¼ ωþ ðe2AE0 − eACÞ0; ð45Þ

and the non-Abelian scalar

χ ¼ φ −Φ0ðe2AE0 − eACÞ; ð46Þ

which, similarly to hTTμν , do not change under the following
infinitesimal coordinate transformation

xa → x̄a ¼ xa þ ϵa; ð47Þ

with

ϵa ¼ ðe2Aϵμ; ϵyÞ; ð48Þ

ϵμ ¼ ∂μϵþ ζμ; ∂μζμ ¼ 0: ð49Þ

Choosing the longitudinal gauge, E ¼ 0, C ¼ 0 and
fμ ¼ 0, from (38) and (39) the equations for the gauge-
invariant variables are obtained which we write below in
conformal coordinates, dz ¼ expð−AðyÞÞdy.
Graviton and graviphoton: while the tensor modes

equation is determined by
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ð−∂2
z þ VQÞψμνðzÞ ¼ m2ψμνðzÞ; ð50Þ

where ψμν ≡ e3A=2hμν and

VQ ¼ 9

4
A02 þ 3

2
A00; ð51Þ

for gauge-invariant vector variable Vμ we have

ð∂z þ 3A0ÞVμ ¼ 0; ∂α∂αVμ ¼ 0: ð52Þ

Thus, similarly to Abelian domain wall, from (50) we find
that the spectrum of tensor perturbations consists of a zero
mode, or graviton, bound on the brane, ψ ∼ e3A=2, and a set
of continuous modes with m2 > 0 move freely along the
extra dimension. On the other hand, for the vector field a
normalizable solution for (52) is not feasible because
Vμðx; zÞ ¼ e−3AðzÞVμðxÞ.
Graviscalars: in order to decouple the scalar sector the

following constraints are required

2Γþ Θ ¼ 0; 3A0Θ − 3Γ0 − ϕ0
MχM ¼ 0: ð53Þ

Thus, considering (53) and the definition

eip:xΩðzÞ≡ e3A=2Γ=ϕ0
M; ð54Þ

we obtain

QþQΩðzÞ ¼ m2ΩðzÞ; ð55Þ

with Q≡ ∂z þ Z0=Z and Qþ ≡ −∂z þ Z0=Z, where

Z ¼ e3A=2
ϕ0
M

A0 : ð56Þ

Since the differential operator in (55) is factorizable, m2

is real and positive and, hence, there are not unstable scalar
excitations in the spectrum of Ω. On the order hand, as
shown below, the massless graviscalar mode is not bounded
around the brane [13].
Scalar perturbations: similarly to the previous case, we

define

eip:xΞjðzÞ≡ e3A=2
�
χj −

Γ
A0 ϕ

0
j

�
; ð57Þ

where, as noted above, the index j indicates the component
along the generator Tj. In particular for j ¼ 1, associated
with the direction along M, the evolution equation for the
gauge-invariant scalar fluctuations can be written as

QQþΞMðzÞ ¼ m2ΞMðzÞ: ð58Þ

Notice that (55) and (58) can be viewed as a supersymmetry
(SUSY) quantum mechanics problem [25]. It follows that

the eigenvalues of ΩðzÞ and ΞMðzÞ always come in pairs,
except for the massless modes. Indeed,

ΩðzÞ ¼ 1

m
QþΞMðzÞ ð59Þ

which exists strictly only for m > 0. Moreover, the mass-
less state

ΞMðzÞ ∼ e3A=2
ϕ0
M

A0 ð60Þ

is a non-normalizable mode and when gravity is switched
off, this massless mode correspond to the bound translation
mode of the flat space SOð10Þ kink [22]. Then, in flat space
there will exist the translation zero mode, which is removed
from the four-dimensional KK spectrum when the extra
dimension is warped [14]. For a single scalar field this
conclusion was made in [26].
Now, it is not always the case that all zero modes of spin-

0 fields are removed by the inclusion of warped gravity. For
j > 1 we get

ð−δj1j2∂2
z þ Vj1j2ÞΞj2ðzÞ ¼ m2

j1j2
Ξj2ðzÞ ð61Þ

with

Vj1j2 ¼ VQδj1j2 þ e2A
∂2VðΦÞ
∂ϕj1∂ϕj2

����
Φk

ð62Þ

where

∂2V
∂ϕj1∂ϕj2

¼ −2μ2δj1j2 þ 3λTr½Tðj1Tj3Tj4ÞTj2 �ϕj3ϕj4

þ 5βTr½Tðj1Tj3Tj4Tj5Tj6ÞTj2 �ϕj3ϕj4ϕj5ϕj6 ;

ð63Þ

which is diagonal for each of the basis indicated in previous
section, and Φk is any non-Abelian kink, ΦA, ΦB or ΦC,
around which the perturbation is realized.
Next, let us will study the spectrum of eigenfunctions of

(61) for j > 1, in correspondence with both the subgroupH
and the broken generators in the core of the wall.

A. Symmetric kink

For this scenario some components are subjected to the
potential with

∂2V
∂ϕ2

j1

¼−2k2
�
1þ2

3
v2−

�
3þ2

3
v2
�
4−

5

3
F2

��
F2

�
ð64Þ

and others ones to the potential with
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∂2V
∂ϕ2

j2

¼ −2k2
�
1þ 2

3
v2
�
1 −

1

3
F2

��
ð1 − F2Þ; ð65Þ

where F≡ tanhðkyÞ.
The plots depicted in Fig. 1 show that in both cases Vj is

a volcano potential. Notice that massive states havem2
j ≥ 0,

where the zero modes for each component are bound states.
Hence, there is no unstable tachyonic excitation in the
system ΦA.
On the other hand, the behavior of perturbations of the

SOð10Þ self-gravitating domain walls differs from the
behavior of the excitations of the SOð10Þ flat kinks where
the Vj are Pöschl-Teller potentials [27],

Vj1 ¼ 2μ2ð3F2 − 1Þ; Vj2 ¼ 2μ2ðF2 − 1Þ: ð66Þ

For each spectrum of scalar states subjected to Vj1 we find
two localized modes

m2
0 ¼ 0; Ξ0 ∼ cosh−2ðkyÞ; ð67Þ

m2
1 ¼ 3μ2; Ξ1 ∼ cosh−2ðkyÞ sinhðkyÞ: ð68Þ

While for those ones under Vj2 only a single state with
negative eigenvalue is confined

m2
0 ¼ −μ2; Ξ0 ∼ sechðkyÞ: ð69Þ

This reveals the local instability of the symmetric kink
when is embedded in a Minkowski spacetime.
When comparing with the SOð10Þ warped scenario, we

noticed that the gravitation repels the tachyonic mode and
favors the four-dimensional localization of scalar states
ΞjðzÞ, thus inducing the local stability of the scenario ΦA.

B. Asymmetric kink

In Sec. III we showed that on the domain wall ΦB the
symmetry is broken from SOð10Þ to the subgroups SOð6Þ,

SUð2Þ and Uð1Þ. In particular, along the SOð6Þ generators
we find that the spectrum of scalar perturbations is
restricted by Vj which depends on (64) or (65). In any
case, a tower of states with positive eigenvalues is expected
and hence ΦB is perturbatively stable in these directions.
On the other hand, for the components of ΞjðzÞ along the

generators of SUð2Þ and Uð1ÞPB
we have

∂2V
∂ϕ2

j3

¼ 4k2
�
1þ 4

9
v2
�
; ð70Þ

so, Vj3 is a positive barrier potential, see Fig. 2, which does
not support eigenfunctions with m2

j3
< 0. Therefore, ΦB

also is stable along the SUð2Þ ⊗ Uð1Þ generators.
Now, when the gravity is switched off we find that the

scalar perturbation hosted in SUð2Þ ⊗ Uð1Þ are dominated
by the potential Vj3 ¼ 4μ2 > 0 where the eigenvalues are
defined for m2 > 0. On the other hand, the wave functions
associated to SOð6Þ interact with the potentials (66) and
once again within the spectrum of fluctuations there are
tachyonic modes (69) induced along the orthogonal sub-
group. This puts in evidence the local instability of ΦB in
five-dimensional Minkowski space.
With regard to the broken generators, for two compo-

nents of scalar perturbation we find

∂2V
∂ϕ2

j4

¼ 0 ð71Þ

which leads to a symmetric volcano potential for Vj4 with
mj4 ≥ 0 for the eigenfunctions associated. For the others
twenty fourth fields we get

∂2V
∂ϕ2

j�

¼ 2k2
�
1þ 2

3
v2
�
1 −

1

3
F2

��
ðF � 1ÞF ð72Þ

and in this case, an asymmetric volcano potentials, Vj� , is
obtained. In Fig. 3 (top panel) the potential Vj− is shown

FIG. 1. Plots of potential Vj (dashed line) and the zero mode
associated (solid line). Black line for (64) and gray line for (65).

FIG. 2. Plots of potential Vj3 (dashed line) for the scalar
perturbations (solid line) ofΦB along theSUð2Þ⊗Uð1Þ generators.
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(the profile of the potential Vjþ is a specular image of the
potential Vj− ; thus, both potentials have the same proper-
ties). The eigenfunctions are determined by a zero mode
localized around the brane and a continuous tower of
massive modes propagating freely for the five-dimensional
bulk with m− > 0. Additionally, due to the absence of Z2

symmetry in the potential, resonance modes in the spec-
trum of fluctuations are expected to coexist [28–30].
Hence, the perturbative stability of AdS5 vacua along
the broken generators is guaranteed and ΦB is a stable
braneworld.
Let us comment a little further on the symmetry of the

potential. For a single scalar field several asymmetric
potentials arising from a spacetime without Z2 symmetry
have been found in [8,31]. However, in our case the
spacetime has Z2 symmetry but not Vj� . On the other
hand, Φ is a SOð10Þ scalar field self-interacting via VðΦÞ,
i.e., the components ϕj of the field interact with each other
according to the SOð10Þ symmetry. Therefore, the SOð10Þ
group constrains break the Z2 symmetry of the scalar
fluctuations along the broken generators associated to HB.
Finally, in the flat scenario, where

Vj4 ¼ 0 ð73Þ

and

Vj� ¼ 2μ2ðF � 1ÞF; ð74Þ

the last one plotted in Fig. 3 (botton panel), we notice that
the potentials do not support a normalizable zero mode. So,
while the gravitation of the scenario delocalized the trans-
lation mode, it favors capture of others massless modes,
those ones along the broken generators associated to HB.

C. Superasymmetric kink

The scalar perturbation along SOð2Þ is the translation
mode and, according to what was shown at the beginning
of this section, it is not located. In the directions of
SUð4Þ ⊗ Uð1ÞPC

we have the quantum mechanics poten-
tial (70) for the scalar perturbations. Hence, there are not
normalizable massless states along these generators. This
also happens in flat case where Vj ¼ 4μ2 is obtained.
For the broken generators associated to HC, (71) is

obtained for twelve scalars and we get (72) for the last
sixteen perturbations. Thus, along the broken basis mass-
less bound states are found. Remarkably, in absence of
gravity the analogous modes are not normalizable since
(73) and (74) are recovered [22].
In any case we do not find modes withm2 < 0 and hence

ΦC is stable under the wall’s perturbations.

V. SUMMARY AND CONCLUSIONS

We have derived three SOð10Þ self-gravitating kinks
interpolating asymptotically between AdS5 vacuums, such
that, whereas the symmetry breaking pattern SOð10Þ →
SUð5Þ × Z2 is induced at the edges of the scenarios, in the
core of each wall, a different unbroken symmetry is
obtained: SOð10Þ, SOð6Þ ⊗ SUð2Þ ⊗ Uð1Þ=Z2 and
SUð4Þ ⊗ SOð2Þ ⊗ Uð1Þ=Z4 respectively for the symmet-
ric, asymmetric and superasymmetric kink.
These solutions are the gravitational analogue of the

SOð10Þ walls in Minkowskian bulk found in [22]. The
perturbative stability of scenarios were studied and as a
result we find that gravitation favors the stability of the
SOð10Þ walls and its absence, on the contrary, weakens the
integrity of the scenarios. In flat case, in addition to four-
dimensional translation mode, massive states and tachyonic
Pöschl-Teller states along SOð10Þ and SOð6Þ for the
symmetric and asymmetric kink respectively are obtained
in the spectrum of the scalar fluctuations. Fortunately, when
gravity is included, the unstable tachyonic excitations are
not already present and the scalar perturbation spectrum is
defined only for m2 ≥ 0.
The scalar fluctuations of the non-Abelian warped

scenarios satisfy the following general characteristics: free
massive modes (m2 > 0), non-normalizable translation
mode and localized massless states along broken generators
associated to H0 (Nambu-Goldstone bosons). These

FIG. 3. Plot of the potentials Vj− (dashed line) and massive
modes (solid line) for scalar perturbations ofΦB along the broken
generator associated to HB, for the warped geometry (top panel)
and flat geometry (bottom panel).
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gravitational effects on the scalar fluctuations are fulfilled
by the superasymmetric kink.
Now, for the symmetric and asymmetric kink, in addition

to Nambu-Goldstone bosons, massless scalar excitations
along the orthogonal subgroup are confined. The results are
summered as follow: For the symmetric scenario, we find
SOð10Þ scalar zero modes trapped by the wall. This effect
also is shared by the asymmetric scenario where scalar
massless fluctuations along the generators of SOð6Þ are
localized. In both cases tachyonic modes are not found.
Hence, the unstable modes along the orthogonal groups
found in flat case are shifted for bounded zero modes when
gravity is included.
Finally, we observe that the interactions conditioned

by the orthogonal symmetry, unlike those ones defined
by unitary group, could be favoring the confinement of
spinless bosons along the unbroken generators of H0. This
issue is beyond the scope of this paper and will be treated in
a future work.
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APPENDIX UNBROKEN GROUPS

In N dimensions one can define NðN − 1Þ=2 linearly
independent and antisymmetric matrices L to form a basis
such that any real antisymmetric N × N matrix can be
expanded in terms of this basis. The Lie algebra for the
basis L is given through

½Lj1j2 ;Lj3j4 � ¼ δj1j4Lj2j3 − δj1j3Lj2j4

þ δj2j3Lj1j4 − δj2j4Lj1j3 ; ðA1Þ

where j ¼ 1;…; N. The mutually commuting generators
can be found and they are L12, L34;…;LN−1;N . These
generators form an abelian subgroup i.e., the Cartan
subalgebra of SOðNÞ. The rank of the algebra is equal
to the number of mutually commuting generators.
A suitable generating expression for the basis L can be

stated as

ðLj1j2Þj3j4 ¼ δj1j4δj2j3 − δj1j3δj2j4 : ðA2Þ

In particular, for N ¼ 10 we deal with three kink
solutions for the scalars field Φ and to find explicitly
the remain symmetry in the core of each kink we introduce
three differently basis, A,B,C, obtained from a certain
combination of L’s.

Basis A: for the symmetric scenario

TA
1 ¼ MA; ðA3Þ

TA
2 ¼ 1ffiffiffiffiffi

20
p ðL34 þL56 þL78 þL90 − 4L12Þ; ðA4Þ

TA
3 ¼ 1ffiffiffiffiffi

12
p ðL56 þL78 þL90 − 3L34Þ; ðA5Þ

TA
4 ¼ 1ffiffiffi

6
p ðL78 þL90 − 2L56Þ; ðA6Þ

TA
5 ¼ 1ffiffiffi

2
p ðL90 − 2L78Þ: ðA7Þ

Basis B: for the asymmetric kink

TB
1 ¼ MB; TB

2 ¼ 1ffiffiffi
6

p ð−2L12 þL34 þL56Þ; ðA8Þ

TB
3 ¼ 1ffiffiffi

2
p ðL34 −L56Þ; TB

4 ¼ PB ðA9Þ

TB
5 ¼ 1ffiffiffi

2
p ðL78 −L90Þ: ðA10Þ

Basis C: for superasymmetric case

TC
1 ¼ MC; TC

2 ¼ PC; ðA11Þ

TC
3 ¼ 1ffiffiffiffiffi

12
p ð−3L34 þL56 þL78 þL90Þ; ðA12Þ

TC
4 ¼ 1ffiffiffi

6
p ðL78 þL90 − 2L56Þ; ðA13Þ

TC
5 ¼ 1ffiffiffi

2
p ðL78 −L90Þ: ðA14Þ

These basis share forty generators which are
determined by

Tj0 ¼ 1ffiffiffi
2

p Cj0
ijLij; j0 ¼ 6;…; 45; ðA15Þ

where 1=
ffiffiffi
2

p
is a normalization factor and Cj0

ij a linear
combination coefficient which is selected according to

j0 ¼ 10þ j; j even

Cj0
1j ¼ 1; j0 ¼ 12þ j; j odd

j0 ¼ 3þ j; for all j;
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j0 ¼ 22þ j; j even

Cj0
3j ¼ 1; j0 ¼ 24þ j; j odd

j0 ¼ 17þ j; for all j;

j0 ¼ 30þ j; j even

Cj0
5j ¼ 1; j0 ¼ 32þ j; j odd

j0 ¼ 27þ j; for all j;

for 10 ≥ j > iþ 1;

Cj0
2j ¼

8<
:

1; j0 ¼ 2þ j; j even

j0 ¼ 4þ j; j odd

−1; j0 ¼ 11þ j; for all j;

Cj0
4j ¼

8<
:

1; j0 ¼ 16þ j; j even

j0 ¼ 18þ j; j odd

−1; j0 ¼ 23þ j; for all j;

Cj0
6j ¼

8<
:

1; j0 ¼ 26þ j; j even

j0 ¼ 28þ j; j odd

−1; j0 ¼ 31þ j; for all j

for 10 ≥ j > i and

C42
70 ¼ C45

79 ¼ −1

C43
74 ¼ C44

70 ¼ C42
89 ¼ C43

80 ¼ C44
89 ¼ C45

80 ¼ 1:

To indicate the unbroken symmetry group on the wall,
we will focus on getting the basis that annihilate the field in
the core, ½T;Φðy ¼ 0Þ� ¼ 0. For ΦA the result is straight-
forward because all generators annihilate to ΦAðy ¼ 0Þ
and, therefore, the SOð10Þ symmetry is restored on the
kink.
For the asymmetric scenario ΦB, there are nineteen

generators annihilating the field in the origin of which
fifteen of them form a basis for SOð6Þ (j ¼ 1, 2, 3, 6, 7, 8,
9, 14, 15, 16, 17, 22, 23, 28, 29), three of them (j ¼ 5, 42,
43) are generators of SOð3Þ ∼ SUð2Þ and the last one,
j ¼ 4, in correspondence with SOð2Þ ∼ Uð1Þ. Hence,
on the asymmetric kink SOð10Þ → SOð6Þ ⊗ SUð2Þ ⊗
Uð1Þ=Z2 is obtained.
Finally, with respect to the superasymmetric kink ΦC

we have seventeen generators annihilating the field in
y ¼ 0. In this case, fifteen of them (j ¼ 3, 4, 5, 22, 24,
26, 28, 30, 32, 34, 36, 38, 40, 42, 43) are associated to
SOð6Þ ∼ SUð4Þ and the two remaining ones (j ¼ 1, 2) are
in correspondence with SOð2Þ and with SOð2Þ ∼ Uð1Þ.
Therefore, SOð10Þ→SUð4Þ⊗SOð2Þ⊗Uð1Þ=Z4 is recov-
ered in the core of the scenario.
Notice that, the unbroken symmetries SOð6Þ ⊗

SUð2Þ ⊗ Uð1Þ and SUð4Þ ⊗ SOð2Þ ⊗ Uð1Þ are closely
related with the Pati-Salam like group, SUð4Þ ⊗ SUð2Þ ⊗
Uð1Þ, and the chiral bilepton gauge model, SUð4Þ ⊗
Uð1Þ ⊗ Uð1Þ, respectively.
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