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In this work, we shall incorporate a stiff era in the Universe’s evolution in the context of FðRÞ gravity.
After deriving the vacuum FðRÞ gravity, which may realize a stiff evolution, we combine the stiff FðRÞ
gravity with an R2 model, and we construct a qualitative model for the inflationary and stiff era, with the
latter commencing after the end of the inflationary era. We assume that the baryogenesis occurs during the
stiff era, and we calculate the baryon to entropy ratio, which effectively constraints the functional form of
the stiff FðRÞ gravity. Further constraints on the stiff FðRÞ gravity may come from the primordial
gravitational waves, and particularly their scalar mode, which is characteristic of the FðRÞ gravity theory.
The stiff era presence does not contradict the standard cosmology era, namely, inflation, and the radiation-
matter domination eras. Furthermore, we investigate which FðRÞ gravity may realize a dust and stiff matter
dominated Einstein-Hilbert evolution.
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I. INTRODUCTION

Unquestionably, the era that follows the end of inflation
up to the nucleosynthesis epoch, is a mysterious era, for
which no concrete description exists up to date. It is
believed that immediately after the end of the inflationary
era, the Universe enters the reheating era, which heats up
the cold and large Universe that results after the exponen-
tially fast expansion during the inflationary epoch. Hence,
it is highly likely that the epoch after inflation and before
the nucleosynthesis is radiation dominated.
However, there exist alternative hypotheses in the

literature for the postinflationary and prenucleosynthesis
epoch, which assume that the Universe does not enter the
radiation domination epoch directly, but a stiff matter era
precedes the radiation epoch [1–12]. This stiff matter era
hypothesis was introduced by Zel’dovich some time ago [1],
who assumed that the Universe matter content consisted of a
cold baryon gas with stiff equation of state. Many proposals
exist in the literature for the stiff matter era, in the context of
which, the energy density scales as ρ ∼ a−6, where a is the
scale factor.1 In effect, the Universe expands in a more rapid
way, in comparison to a radiation dominated way, in which
case ρ ∼ a−4. In many contexts, the stiff era epoch can be
generated by a canonical scalar field, which slow-rolls down
a potential, and at the end of the slow-roll era, the kination

era commences [4–6], which is characterized by a stiff
scaling a−6. The so-called kination [4–6] era may generate a
rapid expansion of the Universe, prior to nucleosynthesis,
without disrupting the physical processes of the latter. One
of the interesting features of the kination era is that the
electroweak baryogenesis picture is altered, in comparison
to radiation dominated models. Also, it is possible that
the reheating process is generated by high frequency
gravitons, which eventually thermalize the vast and cold
post-inflationary Universe [15]. In close connection to the
graviton reheating, a stiff eramay directly affect the tensorial
modes of the primordial gravitational waves [15].
In this work we aim to incorporate a stiff era in the

Universe’s evolution, in the context of FðRÞ gravity
cosmology [16–20]. Particularly, by using well-known
reconstruction techniques [21,22], we shall investigate
which FðRÞ gravity can generate the stiff cosmological
era. By using the resulting FðRÞ gravity, we shall study an
FðRÞ gravity model, which at early times is described by the
R2 inflationary model, and after the inflationary era, it is
described by the stiff FðRÞ gravity. The observational
constraints on the free parameters of the R2 inflationary
era, and the free parameters of the stiffFðRÞ gravity, may be
chosen in such away so that the stiff era commences after the
end of the inflationary era. This picture however can be
changed in general, since the free parameters can be chosen
in an alternative way. We shall study the first scenario, in
which case the stiff era commences at ∼10−13 sec, however
an interesting alternative scenario is to choose the stiff era to
occur at t ∼ 1 sec, that is, prior to nucleosynthesis. In the
modified R2 model, the stiff FðRÞ gravity dominates

*odintsov@ieec.uab.es
†v.k.oikonomou1979@gmail.com
1A scaling ρ ∼ a−6, has also been considered in nonsingular

dilaton cosmology [13] and also it has been related to inhomo-
geneities [14].
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the expansion at approximately ∼10−13 sec, and after that,
the Universe evolves in amore rapid way, in comparison to a
radiation dominated way. Also we shall address the baryo-
genesis issue, which wewill assume that it occurs during the
stiff era. The mechanism that will generate an nonzero
baryon to entropy ratio is the gravitational baryogenesis
mechanism [23–38], and we shall study the implications of
this mechanism on the stiff era. As wewill show, even in the
Einstein-Hilbert case, if the baryon asymmetry is generated
during the stiff era, a nonzero baryon to entropy ratio is
predicted, in contrast to the radiation case, which results to a
zero baryon to entropy ratio. By using the observational
bounds, we will study the restrictions imposed on the free
parameters of the stiff FðRÞ gravity. Accordingly, we will
also investigate how the observational data on primordial
gravitational waves can restrict the stiff FðRÞ gravity.
Finally, we shall investigate which vacuum FðRÞ gravity
can generate an Einstein-Hilbert stiff and dust matter
cosmological evolution. As an overall comment, with this
paper we demonstrate that the existence of a stiff era
following the inflationary era, may comply with current
observational bounds.
This paper is organized as follows: In Sec. II, we shall

investigate which vacuum FðRÞ gravity can generate a stiff
matter era. In Sec. III we shall present a phenomenological
model, which combines an early R2 inflation, followed by a
stiff era. We discuss the details of the model, and we
investigate how the choice of the free parameters affects the
phenomenology of the model. Also, we shall study the
implications of the gravitational baryogenesis mechanism
on the stiff FðRÞ gravity, and in Sec. IV we examine how
the observational constraints on the primordial gravitational
waves, may affect the functional form of the stiff FðRÞ
gravity. Finally, in Sec. V, we investigate which vacuum
FðRÞ gravity may generate an Einstein-Hilbert dust and
stiff matter evolution.

II. VACUUM FðRÞ GRAVITY DESCRIPTION
OF A STIFF ERA EVOLUTION

Our first goal is to investigatewhich vacuumFðRÞ gravity
can produce the stiff matter era evolution. In the context of a
scalar-tensor gravity, a stiff matter era is generated by the
presence of a perfect fluid with equation of state p ¼ ρ and
the energy density as a function of the scale factor behaves as
ρ ∼ 1=a6. Then by solving the resulting cosmological
equations, the scale factor and the corresponding Hubble
rate, that describe the stiff era evolution are,

aðtÞ ¼ ζt
1
3; HðtÞ ¼ 1

3t
: ð1Þ

Byusing averywell-known reconstruction technique, in this
section we shall find the FðRÞ gravity which generates the
stiff matter era evolution of Eq. (1).

Before we get into the core of the calculation, let us
present in brief some essential features of FðRÞ gravity, in
order to maintain the article self-contained. For details, see
the reviews [16–20]. We shall assume that the geometric
background is that of a Friedmann-Robertson-Walker, with
line element,

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2: ð2Þ

Also, the connection is assumed to be a metric compatible
affine connection, the Levi-Civita connection. The corre-
sponding Christoffel symbols are,

Γk
μν ¼

1

2
gkλð∂μgλν þ ∂νgλμ − ∂λgμνÞ ð3Þ

and in addition, the Ricci scalar is equal to,

R ¼ gμνð∂λΓλ
μν − ∂νΓ

ρ
μρ − Γσ

σνΓσ
μλ þ Γρ

μρgμνΓσ
μνÞ: ð4Þ

The vacuum Jordan frame FðRÞ gravity action is,

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
FðRÞ; ð5Þ

where κ2 ¼ 8πG ¼ 1
M2

p
and Mp is the Planck mass scale.

We shall work in the context of the metric formalism, so the
equations of motion are obtained by varying the action with
respect to the metric gμν, so the resulting equations of
motion are,

F0ðRÞRμνðgÞ −
1

2
FðRÞgμν −∇μ∇νF0ðRÞ þ gμν□F0ðRÞ ¼ 0;

ð6Þ
or equivalently,

Rμν −
1

2
Rgμν ¼

κ2

F0ðRÞ
�
Tμν þ

1

κ2

�
FðRÞ − RF0ðRÞ

2
gμν

þ∇μ∇νF0ðRÞ − gμν□F0ðRÞ
��

; ð7Þ

where the prime denotes differentiation with respect to the
Ricci scalar. For the metric (2), the cosmological equations
become,

0¼−
FðRÞ
2

þ3ðH2þ _HÞF0ðRÞ−18ð4H2 _HþHḦÞF00ðRÞ;
ð8Þ

0 ¼ FðRÞ
2

− ð _H þ 3H2ÞF0ðRÞ
þ 6ð8H2 _H þ 4 _H2 þ 6HḦ þ ⃛HÞF00ðRÞ
þ 36ð4H _H þ ḦÞ2F000ðRÞ; ð9Þ
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where H stands for the Hubble rate H ¼ _a=a and the Ricci
scalar is R ¼ 12H2 þ 6 _H. The FðRÞ theory modifies the
left-hand side of the Einstein equations, and the effects of
FðRÞ gravity can mimic the effects of a perfect fluid, as we
now show. Indeed, by introducing the effective energy
density ρeff and the effective pressure pmatter,

ρeff ¼
1

κ2

�
−
1

2
FðRÞ þ 3ðH2 þ _HÞF0ðRÞ

− 18ð4H2 _H þHḦÞF00ðRÞ
�
; ð10Þ

peff ¼
1

κ2

�
1

2
FðRÞ − ð3H2 þ _HÞF0ðRÞ þ 6ð8H2 _H þ 4 _H2

þ 6HḦ þ ⃛HÞF00ðRÞ þ 36ð4H _H þ ḦÞ2F000ðRÞ
�
;

ð11Þ

the cosmological equations (8) can be written in the
Einstein-like form,

ρeff ¼
3

κ2
H2; peff ¼ −

1

κ2
ð3H2 þ 2 _HÞ: ð12Þ

The first of the above equations will prove quite useful in
the gravitational baryogenesis section later on.
Now, using the above equations, we shall use the

reconstruction method of Ref. [22], and we shall investigate
which vacuum FðRÞ gravity can generate the evolution (1).
To this end, we rewrite the first Friedman-Robertson-
Walker (FRW) equation in (7) as follows,

− 18ð4HðtÞ2 _HðtÞ þHðtÞḦðtÞÞF00ðRÞ þ 3ðH2ðtÞ

þ _HðtÞÞF0ðRÞ − FðRÞ
2

¼ 0 ð13Þ

where F0ðRÞ ¼ dFðRÞ
dR . We shall introduce the e-foldings

number N defined as follows,

e−N ¼ a0
a
; ð14Þ

and the first FRWequation in Eq. (13), can be cast in terms
of the e-foldings number, in the following way,

−18ð4H3ðNÞH0ðNÞþH2ðNÞðH0Þ2þH3ðNÞH00ðNÞÞF00ðRÞ

þ3ðH2ðNÞþHðNÞH0ðNÞÞF0ðRÞ−FðRÞ
2

¼ 0: ð15Þ

Notice now that the Hubble rate is a function of the
e-foldings number, and the prime this time denotes differ-
entiation with respect to N, that is, H0 ¼ dH=dN and
H00 ¼ d2H=dN2. In order to simplify the mathematical
expressions, we introduce the function GðNÞ ¼ H2ðNÞ, in
terms of which, Eq. (15), can be written as follows,

− 9GðNðRÞÞð4G0ðNðRÞÞ þ G00ðNðRÞÞÞF00ðRÞ

þ
�
3GðNÞ þ 3

2
G0ðNðRÞÞ

�
F0ðRÞ − FðRÞ

2
¼ 0; ð16Þ

where G0ðNÞ ¼ dGðNÞ=dN and also G00ðNÞ ¼
d2GðNÞ=dN2. Also, the Ricci scalar can be written
as a function of GðNÞ as follows,

R ¼ 3G0ðNÞ þ 12GðNÞ: ð17Þ

This is basically the reconstruction method we shall use,
and by having the scale factor and the Hubble rate at hand,
upon combining Eqs. (14) and (17), we can solve the
second order differential equation (16), with respect to the
function FðRÞ, thus finding the analytic form (if possible)
of the FðRÞ gravity which generates the evolution which is
given in terms of aðtÞ and HðtÞ.
So for the stiff matter era evolution of Eq. (1), let us

express the function G ¼ H2, in terms of the scale factor,
which is,

GðNÞ ¼ H2 ¼ γe−6N: ð18Þ

Notice that in the Einstein gravity description,H2 ∼ ρ ∼ a−6

for the stiff matter era. However, in the case at hand, there is
no matter, we still however, want to stress that Eq. (18)
implies, H2 ∼ a−6, since ln a ¼ N, which is similar with
Einstein-Hilbert gravity. Moreover from Eq. (12), it can be
seen that ρeff ∼H2, so in a generalized way, even in the
vacuumFðRÞ gravity case, the total effective energy density
satisfies ρeff ∼ a−6, without of course requiring the presence
of stiff matter, and ρeff depends solely on the FðRÞ gravity,
see Eq. (10).
Also β in Eq. (18) is a constant parameter which has a

dependence on a0 and A, but we keep a simplified notation
for all these constant, so we use γ. By combining Eqs. (17)
and (18) we can have the e-foldings numberN as a function
of the Ricci scalar R, in the following way,

N ¼ 1

6
ln

�
−
6γ

R

�
: ð19Þ

SubstitutingGðNÞ from Eq. (18) in the differential equation
Eq. (16) and also by using (19), the final differential
equation which can determine the resulting FðRÞ gravity is,

−3R2F00ðRÞ þ RF0ðRÞ − FðRÞ
2

¼ 0; ð20Þ

which can be solved analytically and the solution is,

FðRÞ ¼ βRμ þ δRν; ð21Þ

where μ and ν stand for,
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μ ¼ 1

6
ð4þ

ffiffiffiffiffi
10

p
Þ; ν ¼ 1

6
ð4 −

ffiffiffiffiffi
10

p
Þ: ð22Þ

The parameters β and δ are arbitrary parameters, and in the
following sections we will show that these can be con-
strained by the process of gravitational baryogenesis, by the
primordial gravitational waves observational constraints
and also by the inflationary era in the model we describe in
the next section. Clearly, the term Rμ may dominate at some
early phase (depending on the model one uses) of the
Universe, when t ∼ 1 sec or possibly earlier, depending on
the free parameters choices, but we shall discuss this issue
further later on.

III. A PHENOMENOLOGICALLY APPEALING
COMBINED PATCH-FðRÞ GRAVITY MODEL

In this section we shall introduce a qualitative description
of an FðRÞ gravity model that may describe the early-time
evolution of the Universe until the big bang nucleosynthesis
epoch. The new feature that this model introduces is the
existence of a stiff era generated by an appropriate FðRÞ
gravity term, which we found in the previous section. In the
context of this model, the stiff era comes after the infla-
tionary era. The functional form of theFðRÞ gravity is of the
following form,

FðRÞ ¼ Rþ R2

36Hi
þ βRμ þ δRν; ð23Þ

where the parameters μ and ν are given in Eq. (22), and H0

and Hi are parameters which will be fixed by the Planck
constraints on the inflationary era, see the review [16] for
details. The model of Eq. (23) may have interesting
phenomenology, since the model (23) may be appropriately
adjusted in terms of its parameters, so that theR2 term drives
the inflationary era, and it dominates until the term Rμ starts
to dominate. This effect could be appropriately adjusted to
occur for cosmic times of the order Oð10−13Þ sec and
beyond (which certain grand unified theories predict that at
t ∼ 10−13 sec the inflationary era ends) as we show shortly.
In effect we have a vacuum R2 gravity dominating and
determining the evolution at early times and for large
curvatures, and as the curvature drops, the evolution starts
to be dominated by the stiff matter era generatorRμ. In order
to be as concrete as possible, we shall present all the
qualitative details of the model at hand. At large curvatures,
only the first two terms of themodel dominate, inwhich case
the evolution is a quasi-de Sitter one, of the form [16],

HðtÞ≃H0 −Hiðt − tkÞ; ð24Þ

where tk is the time instance that the horizon crossing occurs.
It is important to have a concrete idea on when the infla-
tionary era ends, so this occurs when the first slow-roll
parameter becomes of the order ϵ1 ≃Oð1Þ. Suppose that the

Hubble rate at t ¼ tf is, HðtfÞ ¼ Hf, where tf is the time
instance that inflation ends. Then, the condition ϵ1ðtfÞ≃ 1,
yields, Hf ≃ ffiffiffiffiffiffi

Hi
p

, and in effect we have,

tf − tk ¼
H0

Hi
−

ffiffiffiffiffiffi
Hi

p
Hi

; ð25Þ

which at leading order is approximately,

tf − tk ≃H0

Hi
: ð26Þ

By using the results above, the spectral index of the
primordial curvature perturbations ns and the scalar-to-
tensor ratio r, can be calculated and these are found to be
equal to [16,39],

ns ≃ 1 −
4Hi

ðH0 −
2HiN
H0

Þ2 ; r ¼ 48H2
i

ðH0 −
2HiN
H0

Þ4 : ð27Þ

We can further proceed with the observational indices, by
expressing the e-foldings number N in terms of the
parametersHi andH0, by using, so at leading order we get,

N ¼ H2
0

2Hi
: ð28Þ

Now by taking the large-N limit of the indices (27), we have
the standard result,

ns ≃ 1 −
2

N
; r≃ 12

N2
: ð29Þ

From Eq. (28) and for N ¼ 60, we have that H2
0

2Hi
∼ 60 at

leading order. Also, from standard results [16,39], it is
known that H0∼1013sec−1, therefore Hi ∼ 8.33333×
1023 sec−2. These values will determine the constraints
on the parameters β and δ, in order for the R2 gravity to
dominate during the inflationary era.
Due to relation (26), in this model the inflationary era

ends around tf ∼ 1.25 × 10−11 sec. After that, if the third
term in Eq. (23) was absent, the reheating era would start
immediately after the inflationary era. However, in the case
at hand, the third term affects the evolution, and alters the
phenomenology as we demonstrate in later sections. The
exact time instance that the term Rμ will start to dominate
the evolution, cannot be found in an analytic way, since we
would need to solve the cosmological equations analyti-
cally, for the FðRÞ gravity of Eq. (23), but we can have a
rough estimate by using the fact that when the term Rμ

dominates the evolution, the scale factor will have approx-
imately the form aðtÞ ∼ t1=3.
By equating the R2 and the Rμ terms by using the

inflationary quasi-de Sitter evolution (24), we can find the
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constraints on β and δ, in order the R2 dominates until the
very last stages of inflation. By doing so, we obtain at
leading order,

ts ≃ 4H4
0 − βHi12

μðH2
0Þμ

16H3
0Hi

ð30Þ

where ts is the time instance that the R2 and the Rμ terms in
Eq. (23) become of the same order. The relation (30) leaves
enough space for model building and for providing
interesting phenomenology and also the parameters β
and δ can be constrained.
For example, by appropriately fixing the parameter β,

the time instance that the stiff era commences may vary.
The parameter Hi is constrained by the R2 inflation era,
and as was shown in [39], it must be approximately
Hi ∼ 8.333 × 1023 sec−2. Before going into that issue,
we need to stress that the parameter β will be further
constrained by the gravitational baryogenesis procedure
and also from the gravitational waves, as we show at a
later section.
There are two phenomenologically interesting scenarios

which we shall discuss. In the first scenario, which is more
plausible, the stiff era commences exactly after the infla-
tionary and prior to the radiation domination era, so for
approximately ts ≃ 10−13 sec. From Eq. (30), this would
imply that β≃ 0.000219659 sec2μ−2.
Now let us find the constraints on β, which must

be imposed by the condition that during inflation, the R2

term must dominate the evolution. By using RðtÞ ¼
12HðtÞ2 þ 6 _H, and for the evolution (24) we get at leading

order in the cosmic time that R ∼ 239H2
0

20
− H3

0
t

5
. This would

imply that for the value of Hi we mentioned earlier, namely
Hi ∼ 8.33333 × 1023 sec−2, we would have that the R2

term is approximately equal to,

R2

36Hi
≃ 57121H2

0

120
−
239H3

0t
15

; ð31Þ

and the Rμ term,

βRμ ≃ β

�
239

20

�
μ

H2μ
0 : ð32Þ

Hence, by requiring R2

36Hi
> βRμ for all cosmic times in the

range t ∼ ½10−35; 10−13� sec, we have,

β <
57121H2

0

120
− 239H3

0
t

15

ð12ðH0 −
H2

0
t

120
Þ2 − H2

0

20
Þμ
: ð33Þ

By choosing the range t ∼ ½10−35; 10−13� sec, we obtain that
the constraint of the inflationary era on β, is,

β < 0.000223325 sec2μ−2 : ð34Þ

Notice that the value of β we found earlier, namely β≃
0.000219659 sec2μ−2 [see above Eq. (31)], satisfies this
constraint.
By adopting the same procedure, the constraint of the

inflationary era on δ is,

δ < 7.64 × 1024 sec2ν−2: ð35Þ

Also by requiring βRμ > δRν up to t ∼ 1 sec, we further
obtain that,

β >
δ

1051
; ð36Þ

which further constraints δ, and actually it seems that δ
must take particularly small values.
Hence, according to the scenario at hand, if the con-

straints (34), (35) and (36) hold true, the Universe expands
after the inflationary era, in a faster rate, in comparison to
the radiation dominated era, and this is plausible for the
simple reason that this scenario leaves room for enough
reheating after the end of the stiff era. Hence, the stiff FðRÞ
gravity era occurs before the nucleosynthesis and in the
context of our model, there is the possibility that prior to
nucleosynthesis, we may have a stiff FðRÞ gravity era,
governed by an Rμ term. In effect, this would possibly have
implications on the baryogenesis process, since it is
believed that the later occurs at some time during the
electroweak era. In the literature the presence of a stiff
matter era, indeed may affect the baryogenesis mechanism,
but in the context of sphaleron field configurations [5]. In
most cases, the aforementioned problem is addressed in the
context of a canonical scalar field, which after slow-rolling
a potential, it experiences a phase of speeded up expansion,
which is called kination. In the present paper we shall
discuss the baryogenesis issue but in a totally different
context, by using solely a vacuum FðRÞ gravity. Our main
assumption will be that the baryogenesis actually occurs
due to the presence of effective operators, a mechanism
called gravitational baryogenesis [23–37]. In this way, the
Universe after the inflationary phase, undergoes an evolu-
tion with scale factor aðtÞ ∼ t1=3, for cosmic times prior to
nucleosynthesis and of the order t ∼Oð10−13Þ sec, which
is faster than radiation.
According to the other scenario, the stiff FðRÞ gravity

era may occur exactly before the nucleosynthesis era, so for
ts ∼Oð1Þ sec. However in this scenario, nucleosynthesis
will start with the Universe being in a nonradiation
dominated phase, which is less appealing in comparison
to the former scenario. In the rest of this paper we focus on
the first scenario.
Before we close this section, it is worth mentioning that

it is possible to reformulate the FðRÞ terms in such a way
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that the parameters β and δ are dimensionless. For instance,
the Rμ term can be written,

βRμ ¼ ~βRaðR=RaÞμ;

where Ra is some curvature scale, so that ~β is dimension-
less. Intuitively, one may choose the inflationary scale to be
Ra ∼H2

inf , but this is not the only choice of course. This
parametrization might give us some hint on the “natural-
ness” of the model considered in this section, for instance
if we find that ~β must be extremely small. Then the
constraints on these dimensionless parameters would have
a clearer interpretation than constraints on β and δ, and the
resulting picture can easily be worked out, but we omit this
task for brevity.

A. Gravitational FðRÞ gravity baryogenesis
during the stiff era

In most contexts, baryogenesis is assumed to occur
during the electroweak phase of the Universe’s evolution,
but also in some alternative approaches, baryogenesis may
occur at the grand unified theory (GUT) mass scale. In the
context of electroweak baryogenesis, the baryon asymme-
try occurs during the radiation domination era, which
initiates after the end of inflation and during the reheating
process.
A baryon asymmetry generating mechanism, alternative

to usual electroweak theory approaches, has appeared
some time ago, and it is known as gravitational baryo-
genesis [23–37], which may provide insights and hints on
the excess of matter over antimatter. The aforementioned
excess is supported by observational data coming from the
cosmic microwave background, so it is considered as a
realistic phenomenological problems of contemporary
physics, and in fact one of the most demanding problems
to solve. Constructed in such a way that one of the
Sakharov criteria [40] is satisfied, gravitational baryo-
genesis might explain the baryon-antibaryon asymmetry,
by the presence of an CP-violating effective operator,
which has the following form,

1

M2�

Z
d4x

ffiffiffiffiffiffi
−g

p ð∂μRÞJμ: ð37Þ

The effective operator (37), may occur from higher order
interactions originating from the higher scale effective
theory which controls the GUT scale physics. The param-
eter M� is characteristic of this underlying effective theory
and it stands for the cutoff scale of this theory. In addition,
the current Jμ is the baryonic matter fermion current, while
g and R are the trace of the metric tensor of the geometric
background, which will be assumed to be the FRW one of
Eq. (2), and the Ricci scalar respectively. This means that,
for a flat FRWUniverse, the resulting the baryon to entropy

ratio, which we denote ηB=s, is effectively ηB=s ∼ _R. In the
ordinary approach of Ref. [23], the baryon to entropy ratio
ηB=s for an Einstein-Hilbert Universe is zero, if it is
calculated for a radiation dominated Universe, since the
resulting Einstein equations are,

R ¼ −8πGð1 − 3wÞρ: ð38Þ

where ρ is the energy density of thematter fluid present, with
equation of state p ¼ wρ. In effect, the quantity _R reads,

_R ¼
ffiffiffi
3

p
ð1 − 3wÞð1þ wÞ ρ

3=2

M2
p
: ð39Þ

Due to the fact that ηB=s ∼ _R, the predicted baryon-to-
entropy ratio is zero for a radiation dominated Universe.
In the present paper we shall make the crucial

assumption that the gravitational baryogenesis takes place
during the stiff FðRÞ gravity era, in which case the scale
factor behaves as aðtÞ ∼ t1=3 and the evolution is generated
by the FðRÞ gravity term of the form FðRÞ ∼ βRμ. By
taking into account the results of the previous section, in
our description, the gravitational baryogenesis mechanism
takes place after t ∼ 10−13 sec, and for the all time that the
stiff era lasts. The observational constraint on the baryon to
entropy ratio is ηB

s ≼ 9.2 × 10−11, so we shall calculate the
baryon to entropy ratio for the FðRÞ gravity at hand, and we
will investigate how this observational constraint may
restrict the free parameters of the theory, namely β.
Before discussing the FðRÞ gravity case, let us first study

in brief what would happen in the Einstein-Hilbert case, for
a stiff matter era. In most cases studied in the literature, the
stiff matter era equation of state is p ¼ ρ, so w ¼ 1, and by
substituting in Eq. (39), we obtain,

_R ¼ −4
ffiffiffi
3

p ρ3=2

M2
p
; ð40Þ

which is nonzero. Hence, even when the stiff era occurs in
the context of Einstein-Hilbert gravity, the gravitational
baryogenesis mechanism yields a nonzero baryon-to-
entropy ratio, in contrast to a radiation dominated era,
which yields ηB

s ¼ 0.
Let us now proceed to the FðRÞ gravity case, and as the

Universe expands, the temperature of the Universe as a
whole drops.
However, the concept of temperature in the context of

vacuum FðRÞ gravity may be vague, since we assumed that
no matter fluids are present. The correct assumption is that
matter does not affect the evolution, hence particles
generated and contributing to the grand unified theory that
governs the particle spectrum, can be present. These
however do not drive the evolution, or at least these have
subleading effects on the Universe’s evolution during the
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inflation era, and near the end of the inflationary era. Hence,
the temperature can be defined due to the fact that particles
are present. In the ordinary Starobinsky model, when the
term Ḧ is not negligible anymore, the slow-roll era ends and
the reheating process commences, in which the matter fields
that are present will be eventually excited, and the cold and
vast Universe will be reheated. In the simplest case, if the
matter fields are quantified in terms of a scalar fieldϕ, which
satisfies gμνϕ;μν ¼ 0, the curvature contributes to the energy
density of this scalar field, in terms of the averaged square of
the curvature as follows [16],

dρ
dt

¼ −4ρH þ ωR̄2

1152π
: ð41Þ

The situation for the stiff era baryogenesis is similar, since
the matter fluids do not contribute to the baryogenesis
mechanism, or the reheating mechanism, until the effective
operator of Eq. (37) starts to become active and affects the
baryogenesis, which occurs at the mass scale M�. At that
point, the matter fluids Jμ in Eq. (37), contribute to the
baryogenesis, and the gravitational baryogenesis mecha-
nism takes place. It is conceivable that although before that
occurs, the particles did not affect the evolution, the temper-
ature of the Universe could be defined, since the particles
were present.
Having clarified this important issue, we proceed and we

shall assume that thegravitational baryogenesis takes place at
a critical temperature TD, which corresponds to the stiff era
which occurs at the time instance t ∼ 10−13 sec. At that point
the Universe’s temperature is approximately T∼1018K,
which corresponds to T ∼ 105 GeV. Therefore we shall
assume that the critical temperature is TD ¼ 105 GeV. As
the Universe evolves in a stiff FðRÞ gravity way, the
temperature drops below TD, and a net baryon asymmetry
remains in the Universe, which is equal to,

nB
s
≃ −

15gb
4π2g�

_R
M2�T

����
TD

; ð42Þ

with gb being the total number of the baryonic degrees of
freedom, g� stands for the total number of the degrees
of freedom corresponding to the massless particles.
Following the method of Ref. [24], by using Eqs. (1), (42)
and also that FðRÞ ∼ βRμ, the resulting baryon to entropy
ratio is found to be,

nB
s
≃

T
6
μ−1
D ðgb51−

3
2μπ

3
μ−2ð− g�2−μ−13μ−1

βðμð3μ−4Þ−1ÞM2
p
Þ 3
2μÞ

M2�
: ð43Þ

By using the constraint ηBs ≼ 9.2 × 10−11, we can restrict the
values of the parameter β. In principle, the presence of M�,
gb, g� and TD, offers room for interesting phenomenological
scenarios. Let us investigate how β is constrained for a

specific choice of the parameters, so assume that M� ¼
1012 GeV,gb ≃Oð1Þ, and g� ≃ 106, and inFig. 1we plotted
the behavior of the baryon to entropy ratio as a function
of β, by also taking into account that TD ¼ 105 GeV. For the
choices of the free parameters that we made, the following
constraint on β is obtained,

β > 6.83039 × 10−34 sec2μ−2; ð44Þ

which obvious is satisfied for the choice of β we made in the
previous section.
Hence in this section, we investigated the gravitational

baryogenesis scenario in the context of a stiff era generated
by an FðRÞ gravity. In principle, there are many different
scenarios that can be adopted, but we presented one of these
for illustrative reasons. Along with gravitational baryo-
genesis, the observational constraints on primordial gravi-
tational waves can further restrict the parameter β. This is
the subject of the next section.

IV. GRAVITATIONAL WAVES CONSTRAINTS
ON THE FðRÞ GRAVITY STIFF ERA

Gravitational waves and especially the primordial ones,
could be potentially the direct validation of a theoretical
description on the large scale structure, or at least the
gravitational waves can constrain the existing theories. The
primordial gravitational waves generate a stochastic back-
ground in the Universe, the backreaction of which can be
detected in the near future. However, not only primordial
gravitational waves contribute to the stochastic back-
ground, since there are also astrophysical sources of
gravitational waves, which of course occur in more recent
epochs. It is then possible that astrophysical gravitational
waves may dominate over the primordial ones, however for
the particular cases of modified gravities, there are extra
degrees of freedom that may act as source of specific modes
of the primordial gravitational waves. In this way, the

2. 10 58 4. 10 58 6. 10 58 8. 10 58 1. 10 57
0
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4. 10 11

6. 10 11
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1.4 10 10

n B
s

FIG. 1. The β-dependence of the baryon-to-entropy ratio
nB=s of Eq. (43), for M�¼1012GeV, gb≃Oð1Þ, TD¼105GeV
and g� ≃ 106. The blue line denotes the limiting case
ηB
s ≃ 9.2 × 10−11.
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primordial gravitational waves may be distinguished, and
also the modified gravities may be directly tested. For a
recent account on these issues, focusing on the effect of
extended gravities on gravitational waves, see [41] and also
[42–49] for FðRÞ gravity studies on gravitational waves. In
the case that the modified gravity is an FðRÞ gravity, apart
from the tensorial degrees of freedom of a gravitational
wave, there exist an extra scalar-tensor degree of freedom,
the detection of which can validate that an FðRÞ gravity is
the correct description of the primordial Universe. The
stochastic background of scalar gravitational waves can be
quantified in terms of a scalar field and it is characterized
by a dimensionless spectrum. The full analysis on this topic
was performed in Ref. [42], so at this point we shall use the
main results in order to constrain the stiff era FðRÞ gravity.
Our main assumption is that the primordial gravitational

waves are generated during the stiff era evolution. In the
literature, there exist works that also studied this issue, but
in the context of Einstein-Hilbert [15]. As it was shown in
[15], if the gravitational waves were generated during the
stiff epoch, this would lead to an overall increase of the
graviton frequency, an effect which would act as a thermal-
ization mechanism, alternative to reheating. However in
this work we shall be interested on the scalar mode of the
gravitational waves, and the full study of gravitational
waves during the stiff epoch will be presented in a
future work.
The motivation to assume that the gravitational waves

may be generated during the stiff era comes mainly from
the fact that prior to nucleosynthesis, the equation of state
of the Universe, and the general thermodynamical state, is
still unknown. Therefore, the purpose of this section is to
study the implications of the primordial gravitational waves
constraints, on the stiff era FðRÞ gravity, which is
FðRÞ ∼ βRμ. As we will show in this section, the con-
straints coming from the LIGO collaboration, constrain the
allowed values of the parameter β.
Let us describe in brief the scalar mode of the gravita-

tional waves in the context of FðRÞ gravity, following
Ref. [42]. By using the conformal time, the metric of the
geometric background is,

ds2 ¼ a2ðτÞ½−dτ2 þ dx⃗2 þ hμνðτ; x⃗Þdxμdxν�; ð45Þ

with the term hμν describing the gravitational wave. The
tensor hμν can be decomposed into tensor and scalar modes
in the zþ direction as follows,

hμνðt− zÞ¼Aþðt− zÞeþμνþAxðt− zÞexμνþΦðt− zÞesμν;
ð46Þ

and the pure scalar mode is the last one, namely,

h̄μν ¼ Φesμν: ð47Þ

The LIGO constraint on the scalar mode for a frequency of
100 Hz, is Φð100 HzÞ < 2 × 10−26, so let us now inves-
tigate how this can constrain the stiff FðRÞ gravity. We can
relate the scalar mode of the gravitational wave to the FðRÞ
gravity in the Einstein frame as follows,

Φ ∼ δφ; ð48Þ
where φ and the corresponding variation are defined as
follows,

φ ¼ lnF0ðRÞ; δφ ¼ F00ðRÞ
F0ðRÞ δR; ð49Þ

where R is the Ricci scalar. By inserting FðRÞ ∼ βRμ, and
by using the LIGO constraint Φ < 2 × 10−26, we obtain,

−
βðμ − 1ÞμRμ−2

c

βμRμ−1
c þ 1

<
2

1026
; ð50Þ

where Rc is the curvature during the stiff era. The constraint
(50) leads to the following constraint on β,

β >
1

1026

2
μðμ − 1ÞRμ−2

c þ βμRμ−1
c

; ð51Þ

and this the main result of this section. Now, assuming
that the stiff era occurs during the time interval
t¼ ½10−13;1� sec, since aðtÞ∼ t1=3 during the stiff era,
by using RðtÞ ¼ 12H2 þ 6 _H, we can find approximate
expressions for the values of Rc, corresponding to t¼ 1 sec
and t¼10−13 sec. For t ¼ 1 sec, Rc ≃ 0.66 sec−2, and for
t ¼ 10−13 sec, we obtain Rc ≃ 6.66 × 1025sec−2. For the
value Rc ≃ 6.66 × 1025sec−2, the constraint (51) results to
β > 7.27 × 10−6 sec2μ−2, while the value Rc ≃ 0.66 sec−2

results to β > 6.18 × 10−26 sec2μ−2, so by combining the
two constraints, we obtain the final constraint on β, from
the gravitational waves,

β > 7.27 × 10−6 sec2μ−2: ð52Þ

Obviously, the constraint (52) is compatible with the
gravitational baryogenesis constraint (44) of the previous
section, and with the constraint (34) of Sec. III. Actually, by
combining the constraints (34) and (52), we finally find that
β must be chosen in the following interval,

7.27 × 10−6 sec2μ−2 < β < 0.000223325 sec2μ−2 : ð53Þ

V. VACUUM FðRÞ GRAVITY DESCRIPTION OF A
STIFF AND DUST MATTER ERA

In this section we shall discuss an alternative topic in
comparison to the previous sections, and specifically we
shall investigate which vacuum FðRÞ gravity can describe a
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Universe filled with dust matter (w ¼ 0) and stiff matter
w ¼ 1. Thus the content of this section is different in spirit
in comparison to the previous sections. What we aim to
reproduce in the context of vacuum FðRÞ gravity is the
Einstein-Hilbert cosmology determined by the presence of
noninteracting dust matter and also by stiff matter, which
may be some sort of baryonic matter with a stiff equations
of state, in the form of Zel’dovich proposal. This cosmology
could describe a form of matter, which at early times has a
stiff equation of state, and at later times it is described by
nonrelativistic baryonic matter. Of course this scenario
could be realistic if baryonic cold nonrelativistic matter is
taken into account, and in some sense, this theoretical
proposal is a combination of Zel’dovich’s early Universe
with the cold dark matter Universe. So the focus in this
section is to realize this by a vacuum FðRÞ gravity. The
Einstein-Hilbert case was studied in Ref. [9], and the
resulting scale factor of the Universe filled with the afore-
mentioned perfect fluids, was found to be equal to,

aðtÞ ¼ ðβt2 þ γtÞ2; ð54Þ
where β and γ are equal to,

β ¼ 9

4
a30Ωm0H2

0; γ ¼ 3
ffiffiffiffiffiffiffi
Ωs0

p
H0: ð55Þ

The corresponding Hubble rate can be written as follows,

HðtÞ ¼ hðtÞ
t

; ð56Þ

where hðtÞ is equal to,

hðtÞ ¼ 2βt2 þ γt
3ðβt2 þ γtÞ : ð57Þ

As it can be seen by the scale factor (54), at early times it is
aðtÞ ∼ t1=3 and at later times it scales as aðtÞ ∼ t2=3, so at
early times the stiff equation of state dominates while at later
times the dark matter equation of state dominates. In this
section, the focus is to find the vacuum FðRÞ gravity, which
realizes the scale factor (54), and not simply the scale factor
aðtÞ ∼ t1=3, which we studied in the previous section. The
difference is that the in the reconstruction of scale factor
aðtÞ ∼ t1=3 we did in the previous sections, the late-time
behavior did not interest us at all. However, the scale factor
(54) also affects the late-time behavior, for which the scale
factor is approximately aðtÞ ∼ t2=3. Hence, in the following
we shall investigate how the scenario (54)maybe realized by
vacuum FðRÞ gravity.
To proceed with the calculation, the reason why we

wrote the Hubble rate in the form (56), is simply because
the function hðtÞ is a slowly varying function of the cosmic
time, and this feature will simplify the calculations to a
great extent, as we will see later on. It is simple to check
that hðtÞ is a slowly varying function, since it satisfies,

lim
t→∞

hðztÞ
hðtÞ ¼ 1; ð58Þ

for all z.
In order to find the FðRÞ gravity description of the stiff

and dust dominated Universe (56), we will use a different
reconstruction technique [22], in comparison to the one we
used in a previous section. The reason is simply that in this
way, we will be able to obtain analytic results. So we
introduce an auxiliary scalar, so that the FðRÞ gravitational
action (5) is written as follows,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðPðϕÞRþQðϕÞÞ: ð59Þ

The two functions PðϕÞ and QðϕÞ, will essentially deter-
mine the final form of the FðRÞ gravity, and note that the
auxiliary scalar is identified with the cosmic time, as it was
shown in Ref. [22]. By varying the action (59) with respect
to the auxiliary scalar, we get,

P0ðϕÞRþQ0ðϕÞ ¼ 0; ð60Þ

which when solved with respect to ϕ, given the functions
PðϕÞ and QðϕÞ, will yield the function ϕðRÞ. Then the
FðRÞ gravity can easily be obtained by substituting ϕðRÞ in
the FðRÞ action of Eq. (59), that is,

FðϕðRÞÞ ¼ PðϕðRÞÞRþQðϕðRÞÞ: ð61Þ

It is then obvious that the main aim of this reconstruction
technique is to determine the functionsPðϕÞ andQðϕÞ. The
differential equation that the aforementioned functions
satisfy, can easily be found by varying Eq. (59) with respect
to the metric, and for a FRW Universe, this becomes,

− 6H2PðϕðtÞÞ −QðϕðtÞÞ − 6H
dPðϕðtÞÞ

dt
¼ 0

ð4 _H þ 6H2ÞPðϕðtÞÞ þQðϕðtÞÞ þ 2
d2PðϕðtÞÞ

dt2

þ dPðϕðtÞÞ
dt

¼ 0; ð62Þ

and by eliminating QðϕðtÞÞ we obtain,

2
d2PðϕðtÞÞ

dt2
− 2HðtÞPðϕðtÞÞ þ 4 _H

dPðϕðtÞÞ
dt

¼ 0: ð63Þ

The above differential equation can yield the analytic form
of the function PðϕÞ, given the Hubble rate of the cosmic
evolution. Then, the function QðϕÞ can be found by using
the following formula,

QðϕÞ ¼ −6HðϕÞP0ðϕÞ − 6HðϕÞ2PðϕÞ: ð64Þ

EARLY-TIME COSMOLOGY WITH STIFF ERA FROM … PHYSICAL REVIEW D 96, 104059 (2017)

104059-9



Let us now proceed to the direct calculation of PðϕÞ and
QðϕÞ for the case at hand, so by substituting Eq. (56) in
Eq. (63), we obtain the following differential equation,

2
d2PðϕðtÞÞ

dt2
−
hðϕÞ
ϕ

dPðϕðtÞÞ
dt

−
2hðϕÞ
ϕ2

PðϕðtÞÞ ¼ 0; ð65Þ

where we used the fact that the function hðtÞ is a slowly
varying function of the cosmic time, so we omitted the

higher derivatives h0ðtÞ; h00ðtÞ. The differential equation (65)
has the following general solution,

PðϕÞ ¼ c1ϕ
hðϕÞ−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2þ6hðϕÞþ1

p
2 þ c2ϕ

hðϕÞ−1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2þ6hðϕÞþ1

p
2 ; ð66Þ

where ci, i ¼ 1, 2 are integration constants. Accordingly, by
substituting the resulting PðϕÞ in Eq. (64), and by also
omitting the higher derivatives of hðtÞ, we obtain the exact
form of QðϕÞ,

QðϕÞ ¼ −6hðϕÞc1
�
hðϕÞ þ hðϕÞ − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2 þ 6hðϕÞ þ 1

p
2

�
ϕ

hðϕÞ−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2þ6hðϕÞþ1

p
2

−2

− 6hðϕÞc2
�
hðϕÞ þ hðϕÞ − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2 þ 6hðϕÞ þ 1

p
2

�
ϕ

hðϕÞ−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2þ6hðϕÞþ1

p
2

−2: ð67Þ

The fully analytic form of the FðRÞ gravity can be found in
the two limiting cases, namely, for large ϕ (large cosmic
times) and small ϕ (small cosmic times). Notice that at large
cosmic times, the scale factor (54) behaves as aðtÞ ∼ t2=3,
which corresponds to the radiation domination era, and for
small cosmic times, Eq. (54) becomes aðtÞ ∼ t1=3, which
describes a stiff matter era. We expect that, the FðRÞ gravity
we found in a previous section, namely FðRÞ ∼ Rμ, will
describe the stiff era case. Let us first investigate the large ϕ
case, for which hðϕÞ ¼ hf ¼ ∼ 2

3
, as it can be seen from

Eq. (57). In this case, the function PðϕÞ reads,

PðϕÞ ∼ R
hf−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
h2
f
þ6hfþ1

p
4 ; ð68Þ

so the resulting FðRÞ gravity reads,

FðRÞ ∼ R−
hf
2 : ð69Þ

Accordingly, in the small ϕ limit, the function hðtÞ becomes
hðtÞ ¼ hi ¼ 1

3
, hence the function PðϕÞ reads,

PðϕÞ ∼ ϕδ; ð70Þ

where,

δ ¼ −
ffiffiffi
2

3

r � ffiffiffi
5

3

r
−

ffiffiffi
2

3

r �
: ð71Þ

Accordingly, the FðRÞ gravity is,

FðRÞ ∼ R1−δ
2: ð72Þ

The expression in Eq. (72) is identical to Rμ, as it can be
checked, with μ being defined in Eq. (22).
In principle, it is possible to provide a unified description

of inflation, the stiff era (or stiff era with dust) and

radiation-matter domination era, in such a way that there
is no contradiction with the observable predictions of the
early Universe, as we gave hints in the previous sections,
and also since the era after inflation is still mysterious.
However, the corresponding calculation is quite compli-
cated, so we refrain from going into details.

VI. CONCLUSIONS

In this paper we investigated how a stiff matter era can be
generated by a vacuum FðRÞ gravity, and we discussed
several scenarios which a stiff era can have implications.
First, we demonstrated that the existence of a stiff era
following the inflationary era, may comply with current
observational bounds. Particularly, we considered the phe-
nomenological implications of a stiff era following an R2

inflationary era. As we showed, by suitably adjusting the
free parameters, it is possible for the stiff era to occur right
after the inflationary era.After discussing the implications of
this requirement on the free parameters of the stiff FðRÞ
gravity, we investigated how the gravitational baryogenesis
mechanism restricts the stiff FðRÞ gravity. According to our
approach, a nonzero baryon to entropy ratio can be gen-
erated during the stiff era, both in the FðRÞ gravity case, but
also in the context of an Einstein-Hilbert gravity. We also
discussed how the scalar mode of the primordial gravita-
tional waves, which is characteristic to FðRÞ gravity, may
restrict the stiff FðRÞ gravity, if it is assumed that the
gravitational waves are generated during the stiff era.
Finally, we investigated how a combined era dominated
from dust and stiff matter may be realized in the context of
FðRÞ gravity.
An important issue we did not address, is the reheating

issue. Specifically, if the stiff era commences after the ending
of the inflationary era, then when and how the reheating era
starts? In the context ofFðRÞ gravity, the reheatingmay start
due to the existence of intense curvature oscillations, and the
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FðRÞ gravity crucially affects the reheating temperature [50].
Hence, it may be possible that in the present context, the
curvature oscillations during the slow-roll era may reheat the
cold and large Universe, that results after the extreme
accelerating expansion era. It is also possible that the
tensorial components of the primordial gravitational waves,
if these are amplified during the stiff era, may reheat the
Universe to a great extent. This scenario actually may occur
even in the context of Einstein-Hilbert gravity, as was shown
in Ref. [15]. It is then possible that this is the case in theFðRÞ
gravity approach too, that is, high frequency gravitons may
reheat the Universe. However, we need to mention that the
additional reheating that may come from the stiff era will
possibly have a subdominant contribution to the whole
reheating process. We intend to address some of these issues
in a future work.
Before closing, let us briefly mention that there exist

alternative scenarios to the one we studied in this paper, in

which the stiff era may occur at a later time and not just
after the end of the inflationary era. It is possible that the
stiff era may occur at a time instance before the nucleo-
synthesis epoch, so possibly before t < 1 sec. We did not
discuss this scenario, since it is a trivial extension of the
approach we adopted and the resulting phenomenology
would be qualitatively the same, with the scales of the
parameters and temperature being different though.
Finally, it is noteworthy that in principle, our proposal

may be easily extended to other modified gravities, like
string-inspired theories, FðGÞ gravity, nonlocal gravity and
so on [16–18].
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