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We present measurements of the fractal dimension of a turbulent asymptotically anti–de Sitter black
brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity
duality. We argue that the boundary fluid energy spectrum scaling as EðkÞ ∼ k−2 is a more natural setting
for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of EðkÞ ∼ k−5=3, but we obtain fractal
dimensions D for spatial sections of the horizon H ∩ Σ in both cases: D ¼ 2.584ð1Þ and D ¼ 2.645ð4Þ,
respectively. These results are consistent with the upper bound ofD ¼ 3, thereby resolving the tension with
the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014)] thatD ¼ 3þ 1=3. We offer a critical
examination of the calculation which led to their result, and show that their proposed definition of the
fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known
fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of
spatial sections of the horizon H ∩ Σ in a covariant manner, and we speculate on assigning a
“bootstrapped” value of fractal dimension to the entire horizon H when it is in a statistically quasisteady
turbulent state.
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I. INTRODUCTION

In a certain regime, the existence of turbulence in the
gravitational field was recently demonstrated in numerical
simulations of a perturbed black brane in asymptotically
anti–de Sitter (AAdS) spacetime in [1]. Such behavior was
expected on the basis of the work of [2] and the fluid-
gravity duality, which gives an approximate dual descrip-
tion of the bulk geometry in terms of a conformal fluid
living on the conformal boundary of the spacetime (see e.g.
[3–5], or [6] for a review and further references). This
duality has opened the door to cross-pollination between
the fields of gravity and fluid dynamics (e.g. [1,2,7–15]),
and even results in insights relevant to gravitational wave
astrophysics [16].
Interestingly, in [1] it was argued that a (3þ 1)-

dimensional AAdS–black brane spacetime in a turbulent
quasisteady state has an event horizon with fractal dimen-
sionD ¼ 3þ 1=3. Although the intersection of the horizon
H with a spacelike slice Σ has dimension 2, in a turbulent
state one expects a bumpy horizon exhibiting approximate
self-similarity over some range of scales, and therefore a
fractal dimension D in the range 2 ≤ D ≤ 3. Since the
result D ¼ 3þ 1=3 of [1] lies above this range, it is in
tension with this basic expectation. Indeed, since Σ is
Riemannian and connected, it can be regarded as a metric
space where its distance function is defined as the infimum
of lengths of paths connecting any two points. Therefore,

since H ∩ Σ is embedded in it, its fractal dimension cannot
exceed the dimension of Σ [17].
In this work we begin in Sec. II with a review of the

relevant calculation in [1], and then in Sec. III we provide a
critical examination. We suggest that their calculation does
not use their proposed definition of fractal dimension, and so
the fact that their result exceeds the upper boundD ¼ 3 does
not necessarily invalidate their definition. Nonetheless, in
Sec. III A we argue using well-understood test cases of
statistically self-similar one-dimensional curves embedded
in the Euclidean plane that their proposed definition of
the fractal dimension is not reliable as a fractal dimension
estimator. Next, in Sec. IV we present an alternative
numerical calculation of the fractal dimension of a turbulent
black brane using simulated data of the dual turbulent fluid
and the fluid-gravity duality at lowest (perfect fluid) order.
We do so over the inverse-cascade range of a weakly
compressible conformal fluid with two sets of data corre-
sponding Kraichnan-Kolmogorov scaling of the energy
spectrum EðkÞ ∼ k−5=3 as well as the scaling EðkÞ ∼ k−2

which emerges as the direct cascade becomes well resolved
(and in the absence of large-scale friction) [15,18].We obtain
fractal dimensions of D ≈ 2.58 and D ≈ 2.65 for each case,
respectively. Last, in Sec. V we describe what would be
required to define and, in principle, compute the fractal
dimension covariantly.

II. BACKGROUND

In this section we briefly review the argument presented
in [1], specializing to the case of a (3þ 1)-dimensional
bulk spacetime. Further details can be found in that work.*jwestern@uoguelph.ca
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In [1] it is proposed that the fractal dimensionof thehorizon
be defined via the scaling of the horizon area coarse grained
on a scale δx. Writing the coarse-grained area as a Riemann
sum of the intrinsic area elements A ≈ Σi

ffiffiffiffiffiffiffiffiffiffi
γðxiÞ

p
Δ2xi, with

Δ2xi ≈ ðδxÞ2 and γðxiÞ the intrinsic metric determinant
evaluated at the point xi, one extracts the purported fractal
dimensionD from the scalingA ∼ ðδxÞ2−D. One can immedi-
ately see that this definition has some of the expected
behavior: (i) if the intrinsic metric determinant is constant
over the surface, then the coarse-grained area does not depend
on δx so we must have D ¼ 2 (a smooth surface), and (ii) as
the surface becomes rough (D > 2), the area grows faster as
δx decreases (and indeed becomes infinite as δx → ∞).
The calculation of the fractal dimension begins by

considering the congruence of null geodesics n generating
the horizon. This is described by the Raychaudhuri
equation in vacuum, which governs the evolution of the
horizon area element

ffiffiffi
γ

p
,

κLn
ffiffiffi
γ

p þ 1

2

1ffiffiffi
γ

p ðLn
ffiffiffi
γ

p Þ2 − L2
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p
Σi
jΣ

j
i ; ð2:1Þ

where n is the null normal to the horizon, Ln is a Lie
derivative along n, κ is the nonaffinity of nmeasured by the
right-hand side of the geodesic equation na∇anb ¼ κnb,
and Σi

j is the shear. The regime of validity of the fluid-
gravity duality is that of slowly varying fields, so one
expects the higher-order derivative terms −L2

n
ffiffiffi
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p
and

1
2

1ffiffi
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p ðLn
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p Þ2 to be subleading with respect to both the

right-hand side
ffiffiffi
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p Σi
jΣ

j
i and the lower-order derivative term

κLn
ffiffiffi
γ

p
. Dropping those higher-order terms and integrating

over the spatial section of the horizon H ∩ Σ yields an
expression for the time rate of change of the horizon area A,

dA
dt

¼
Z

d2x
ffiffiffi
γ

p
κ

Σi
jΣ

j
i ¼

Z
∞

0

dkAðt; kÞ; ð2:2Þ

where A is the isotropic power spectrum of the “rescaled”
shear θij ≡

ffiffiffi
4

p
γ=κ2Σi

j, and the last equality follows from the
Plancherel theorem. In [1] it was observed in full numerical
simulations of a (3þ 1)-dimensional turbulent AAdS–black
brane spacetime thatA ∼ k2EðkÞ, at least in the regime of the
simulations, where EðkÞ is the isotropic velocity power
spectrum of the boundary fluid. By assuming Kraichnan-
Kolmogorov scaling EðkÞ ∼ k−5=3 over the inverse-cascade
range, one has A ∼ k1=3 there. By inserting a large wave
number cutoff kmax ∼ 1=δx in the wave number integral in
Eq. (2.2) one finds dA=dt ∼ k4=3max ∼ ðδxÞ−4=3 for kmax in a
sufficiently wide inverse-cascade range.Matching this to the
scaling ðδxÞ2−D finally yields D ¼ 3þ 1=3.

One may object that the scaling ðδxÞ2−D is to be applied
to A, not dA=dt. However, in the quasisteady state of a
turbulent fluid forced at scale kf with inertial range scaling
extending to a large scale kIR, the spectrum EðkÞ is well
approximated by piecewise power laws with the inertial
range portion over k ∈ ðkIR; kfÞ unchanging except that kIR
decreases with time (see e.g. [19]). That is, the inertial
range becomes larger with time, but the spectrum over that
range does not change. Plugging such a piecewise power
law into the right-hand side of Eq. (2.2) with UV cutoff
kmax ∈ ðkIR; kfÞ allows one to perform both the wave
number and time integration explicitly. Thus the piecewise
power-law model of EðkÞ relevant to turbulent flows in the
quasisteady state implies that A and dA=dt scale in the
same way with the UV cutoff kmax, for kmax sufficiently
large. In the following section, we identify other possible
sources of problems with the calculation.

III. CRITICAL EXAMINATION

We begin by noting what it means in position space to
insert the small-scale cutoff kmax in the wave number
integral in Eq. (2.2). In order to do this we must write
Aðk; tÞ explicitly [1],

Aðt; kÞ≡ ∂
∂k

Z
jk0j≤k

d2k0

ð2πÞ2 θ̄
�i
jðt; k0Þθ̄jiðt; k0Þ; ð3:1Þ

where θ̄ijðt; kÞ is the Fourier transform of the rescaled
horizon extrinsic curvature, θ̄ijðt; kÞ ¼

R
d2xe−ik·xθijðt; xÞ.

Equation (3.1) can be rewritten as
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dϕ
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�i
jðt; kÞθ̄jiðt; kÞ: ð3:2Þ

Therefore the wave number integral in Eq. (2.2) is just the
integral of θ̄�ijθ̄ji=ð2πÞ2 over all of Fourier space.
Furthermore, note that integrating over k ∈ ð0; kmaxÞ
is the same as multiplying by a step function kernel
Θðkmax − kÞ and then integrating over k ∈ ð0;∞Þ, and
writing it in this way allows us to see the meaning of
the cutoff in position space as follows:
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where J1 is the Bessel function of the first kind, and we
have defined h·iδx as a spatial coarse-graining operation
at scale δx ∼ 1=kmax [in this case with an isotropic
kernel kmaxJ1ðπkmaxjx − x0jÞ=jx − x0j].
We thus arrive at our first concern: the relationship

between Eq. (3.3) and the proposed coarse-graining A ≈
Σi

ffiffiffiffiffiffiffiffiffiffi
γðxiÞ

p ðδxÞ2 is unclear. The latter is a Riemann sum,
which if applied to the Raychaudhuri Eq. (2.2) would yield
Σiθ

j
lðxiÞθljðxiÞðδxÞ2. The summand could be viewed as a

coarse graining of both factors of the rescaled horizon
extrinsic curvature θ, whereas in Eq. (3.3) only one factor
of θ is coarse grained. Thus, even if the scaling A ≈
Σi

ffiffiffiffiffiffiffiffiffiffi
γðxiÞ

p ðδxÞ2 ∼ ðδxÞ2−D correctly captures the fractal
dimension D, it is unclear whether the calculation per-
formed in [1] uses it.

A. Comparing methods on one-dimensional test cases

Next, we argue that the Riemann sum approach A ≈
Σi

ffiffiffiffiffiffiffiffiffiffi
γðxiÞ

p ðδxÞ2 ∼ ðδxÞ2−D is a poor fractal dimension esti-
mator. We consider the one-dimensional version of this,
L ≈ Σi

ffiffiffiffiffiffiffiffiffiffi
γðxiÞ

p
δx ∼ ðδxÞ1−D, applied to three different noise

curves in the Euclidean plane whose fractal dimensions are
known.We refer to this proposed method of determining the
fractal dimension of a curve as the “intrinsic metric method.”
Despite a strong resemblance, the intrinsic metric method of
approximating the length of the curve is distinct from the
“compass” or “ruler” method appearing in the pioneering
study of coastline lengths [20], since the former involves
approximating the curve by its tangents at the points xi,
which are line segments of unequal length and whose end
points do not necessarily lie on the curve. Each curve is
defined by a function fðxÞ, and therefore has an intrinsic
metric induced by the Euclidean metric of its embedding
space whose determinant is 1þ ð∂xfÞ2. Thus we can
compute coarse-grained versions of the length of the curve
asL ≈ Lδx ≡ Σi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xfÞ2

p
jx¼xiδx and then comparewith

the expected scaling ðδxÞ1−D. For comparison, we estimate
the fractal dimension of the same curves using themadogram
method described in [21]. The madogram is defined as
γ1ðrÞ ¼ ð1=2ÞhjfðxÞ − fðxþ rÞji, where h·i denotes a spa-
tial average. The madogram is expected to scale as r2−D.

Figure 1 shows a comparison between the intrinsic
metric and madogram methods for estimating the fractal
dimension of three noise curves withD ¼ 1.25 (blue),D ¼
1.5 (green), D ¼ 1.75 (red). Such noise curves have power
spectra scaling as k−β for β ¼ 2.5, 2, 1.5, respectively. For
the range β ∈ ½1; 3� a topologically d-dimensional surface
has a fractal dimension D related to the spectral exponent
by the approximate relation D ¼ ð2dþ 3 − βÞ=2 [22]. For
β ≤ 3 the surface is sufficiently smooth that the fractal
dimension equals its topological dimension, D ¼ d,
whereas for β ≤ 1 it saturates to D ¼ dþ 1. In Fig. 2
we display representative curves with fractal dimensions
D ¼ 1.25 (blue, top), D ¼ 1.5 (green, middle), and D ¼
1.75 (red, bottom).
An ensemble of size N ¼ 100 is generated for each noise

curve, and the estimators Lδx and γ1ðrÞ are computed for
each member and then averaged over the ensemble. In
the intrinsic metric method, it is insufficient to attempt a
single set of sampling locations for a given δx. Instead,
we start with the zeroth set of sampling locations
fxig ¼ f0; δx; 2δx;…g, but also try 999 additional sets
related to the first by a translation ðm=1000Þδx for the mth
set, for a total of 1000 sets. This results in 1000 length
estimates Lδx for each δx, and we consider taking the
minimum, maximum, or median length estimates, shown in
Fig. 1 (left) in thick solid, thin solid, and dashed curves,
respectively. Such “shifts” are an essential part of many
fractal dimension estimating algorithms. Box counting, for
example, requires finding the minimum number of boxes
that cover the object, so many shifts of the box grid must be
tried in order to obtain an accurate estimate. A priori we do
not know whether to take the minimum, maximum, or
median estimate of the length Lδx. Different methods for
estimating the fractal dimension have different conven-
tions; for example the compass or ruler dimension [20]
takes the maximum length, “box counting” takes the
minimum number of boxes [23], and “line transect vario-
gram” methods applied to a surface take the median result
from the transects [21]. However, as Fig. 1 (left) shows,
none of the three possibilities yield the expected scaling
ðδxÞ1−D over any discernible range of δx. We note that
taking the average or the median yields nearly identical
curves (thin solid).
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IV. RESULTS

Using the numerical code described in [15], we evolve a
(2þ 1)-dimensional conformal perfect fluid with equation
of state P ¼ ρ=2 on a 2π-periodic domain with 20482

points. The energy momentum tensor of the fluid is
Tab ¼ ð3=2Þρuaub þ ð1=2Þρηab, with ua ¼ γð1; vÞ and γ

the Lorentz factor. The fluid is evolved from rest ρ ¼ 1,
v ¼ 0, and turbulence is induced and sustained by a random
external force with homogeneous, isotropic, Gaussian
white-noise-in-time statistics. The external force has sup-
port in a narrow band of wave numbers around kf. Further
details can be found in [15].

FIG. 2. Representative noise curves with fractal dimensionsD ¼ 1.25 (top),D ¼ 1.5 (middle),D ¼ 1.75 (bottom). TheD ¼ 1.5 case
corresponds to Brownian noise. These curves have power spectra scaling as k−β for β ¼ 2.5, β ¼ 2, and β ¼ 1.5, respectively.

FIG. 1. A comparison between the intrinsic metric and madogram methods for estimating the fractal dimension of one-dimensional
noise with different fractal dimensionsD ¼ 1.25 (blue curves),D ¼ 1.5 (green curves),D ¼ 1.75 (red curves). Left: The coarse-grained
length of each noise curve as a function of the coarse-graining scale δx, using the intrinsic metric method. Each plot is compensated by
the expected scaling ðδxÞ1−D. The thick solid line corresponds to taking the minimum length over 103 shifts of the sampling positions,
while the thin solid line corresponds to taking the maximum, and the dashed line corresponds to taking the median. There is no
discernible range of δx over which the expected scaling is observed, so we conclude that this method is not an accurate fractal dimension
estimator. Right: By contrast, the madogram γ1ðrÞ plotted as a function of r, compensated by the expected scaling r2−D, for the same
three noise curves. The expected scaling is clearly evident over a wide range of r.
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An inverse-cascade range develops, and since we do not
implement any large-scale energy sinks, the resulting flow
is referred to as being in a quasisteady state [18]. For two
separate cases with kf ¼ 85 and kf ¼ 170, we generate an
ensemble of 20 flows and perform analysis on snapshots
prior to the energy piling up at the scale of the box. As
displayed in Fig. 3 (right), the kf ¼ 85 case yields an
isotropic Newtonian specific kinetic energy spectrum
EðkÞ ∼ k−2, as found in [18] in the incompressible case
and confirmed in [15] for a conformal fluid in the weakly
compressible regime.1 The k−2 scaling is associated with
both a well-resolved direct cascade and an absence of large-
scale friction. Since the regime of validity of the fluid-
gravity duality is that of an arbitrarily high Reynolds
number and no large-scale friction, we argue that this
spectrum corresponds to the natural setting for the dual
spacetime. However, for comparison we also consider the
kf ¼ 170 case, where the force is active deeper into the
dissipation range, and which yields the traditional
Kraichnan-Kolmogorov scaling EðkÞ ∼ k−5=3, as displayed
in Fig. 4.

We applied the madogram method to x and y transects of
the event horizon. The fractal dimensionD of the horizon is
then obtained by extracting Dtransect ∈ ½1; 2� from the
median madogram of each topologically one-dimensional
transect, and then writing D ¼ Dtransect þ 1. Such a pre-
scription is valid for surfaces exhibiting statistical self-
similarity, and its performance was evaluated extensively in
[21]. In Figs. 3 and 4 (left) we display the median
madogram over all transects of the horizon (herein referred
to as the “event horizon madogram”), as applied to the
radial coordinate position of the event horizon,
rþðxcÞ ¼ 4πTðxcÞ=3, for the perturbed boosted AAds–
black brane metric at perfect fluid order,

ds2 ¼ −2uaðxcÞdxadr

−
r2

R2

�
1 −

r3þðxcÞ
r3

�
uaðxcÞubðxcÞdxadxb

þ r2

R2
ðηab þ uaðxcÞubðxcÞÞdxadxb; ð4:1Þ

where the indices ða; bÞ run over the “boundary” directions
ðt; x; yÞ only, R is the AdS length scale (which we set to 1),
ua is the boost 4-velocity, and ηab is the (2þ 1)-
dimensional Minkowski metric. For the (2þ 1)-
dimensional boundary conformal fluid, T ¼ ρ1=3. The
perturbations are imagined to be slowly varying with
respect to the boundary directions, which will solve
Einstein’s equations with arbitrary accuracy in the perfect

FIG. 3. Event horizon madogram (left) and corresponding boundary fluid isotropic Newtonian kinetic energy spectrum (right) for the
case with kf ¼ 85. The thickness of each plot corresponds to the

ffiffiffiffi
N

p
statistical uncertainty. Left: The madogram yields a fractal

dimension of 2 at small scales, thus agreeing with the topological dimension. This is expected since the horizon is not a true fractal; i.e.,
it does not exhibit rough structure down to arbitrarily small scales. Above the forcing scale 2π=kf, a scaling range is observed with 2.584
(1), where we have indicated the statistical uncertainty in brackets (). The range of x over which we fit a power law is indicated as the
shaded grey region, and the corresponding range of wave numbers is also indicated (right). At the largest scales, the madogram saturates
to D ¼ 3, which corresponds to the flow resembling white noise there [i.e. EðkÞ∼ const]. Right: The isotropic Newtonian specific
kinetic energy spectrum EðkÞ ¼ πhjv̂j2iðkÞ. A power law of k−2 is shown for reference, and the forcing scale kf is indicated with
an arrow.

1It was found in [18] that the spectrum steepens to ∼k−2 when
kmax=kf ≳ 16, where kmax ≡ N=3 and N is the number of points
on the grid. In our simulations this would correspond to kf ≈ 41,
but in their case regular second-order viscosity was used, whereas
we use fourth-order dissipation. Thus, we are able to achieve the
k−2 spectrum with a much larger kf because our dissipation
operates at larger wave numbers.
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fluid limit if ua and T evolve according to conformal
hydrodynamics on the boundary. Error estimates have been
obtained for solutions constructed from particular boundary
fluid data in [1] via direct comparison with full general
relativity (GR) simulations, showing agreement at the 1%
level (see also [12] for error estimates which do not use full
GR simulations).
Figure 3 shows the case with EðkÞ ∼ k−2, and Fig. 4

shows the case with EðkÞ ∼ k−5=3. The thickness of each
plot indicates the

ffiffiffiffi
N

p
statistical uncertainty associated with

the ensembles. At small scales x ≪ 2π=kf, the horizons
have fractal dimension 2, which agrees with their topo-
logical dimension. This is expected since rough structure
does not persist down to arbitrarily small scales. For a range
of scales greater than the forcing scale 2π=kf, power-law
behavior is observed in both cases. A least-squares power-
law fit over the grey shaded intervals yields fractal dimen-
sions of D ¼ 2.584ð1Þ and D ¼ 2.645ð4Þ for the cases
EðkÞ ∼ k−2 and EðkÞ ∼ k−5=3, respectively, with

ffiffiffiffi
N

p
uncer-

tainties indicated. The corresponding fitting interval in
Fourier space is indicated on the plots of the energy spectra
(right). The madograms saturate at D ¼ 3 at large scales,
beyond the inertial range scale, which is due to the flow
resembling white noise at those scales [i.e.EðkÞ ∼ constant].

V. COVARIANT CONSTRUCTION
OF FRACTAL DIMENSION

Many methods exist for calculating the fractal dimension
of a set F embedded in an ambient metric space ðM; dÞ,
where d is a distance function d∶M ×M → R which is
symmetric dðx; yÞ ¼ dðy; xÞ and satisfies dðx; yÞ ¼ 0⇔x ¼
y and the triangle inequality dðx; yÞ þ dðy; zÞ ≥ dðx; zÞ. See
e.g. [21] for a comparison of many fractal dimension
estimator algorithms when the metric space is Euclidean,

or [23,24] for strictly mathematically equivalent definitions.
For illustrative purposes, we will focus on the box-counting
method in this section, where one defines NðϵÞ to be the
minimum number of boxes of size ϵ in the embedding space
required to completely cover the setF, and then computes the
fractal dimension as limϵ→0 log ðNðϵÞÞ= log ð1=ϵÞ. The box-
counting method is known to be diffeomorphism invariant
but not homeomorphism invariant [25] in the strict ϵ → 0
limit. The covering need not use boxes; indeed, any setsUi of
diameter ϵ≡ jUij ¼ supfdðx; yÞ∶x; y ∈ Uig yield the same
result [17].
In practical applications one does not take the ϵ → 0

limit, but instead fits a power law to NðϵÞ ∼ ϵ−D over some
finite range Δϵ ¼ ðϵUV; ϵIRÞ. If the covering sets are not
constructed covariantly, then any such fitting over Δϵ
would be subject to coordinate ambiguity, since the set
in question could be made to appear smooth over the scale
Δϵ via a judicious choice of coordinates. In the example of
a Brownian noise curve withD ¼ 1.5, described by fðxÞ in
Cartesian coordinates in Euclidean space, one could make
the coordinate transformation [~y ¼ hfðxÞiΔϵ, ~x ¼ x],
where hfðxÞiΔϵ is fðxÞ with all modes outside the range
of scales Δϵ filtered out. Counting coordinate boxes over
the scales Δϵ would then give the incorrect result D ≈ 1.
Thus, it is important to construct the covering sets in a
diffeomorphism-invariant way when performing a fit over
the range of scales Δϵ.
When defining the fractal dimension over a Riemannian

manifold, one natural covariant choice of covering sets is
geodesic balls Bðx; ϵ=2Þ, constructed by taking the union of
all geodesics of length ϵ=2 emanating from the point x. The
event horizon H ∩ Σ on the slice Σ is embedded isomet-
rically in both ðΣ; hÞ and ðM; gÞ, where g is the full
spacetime metric and h is the induced metric on Σ. Since
geodesic paths in Σ need not be geodesic inM, one is faced

FIG. 4. The corresponding plots as in Fig. 3, but for the boundary fluid exhibiting Kraichnan-Kolmogorov scaling of the energy
spectrum, EðkÞ ∼ k−5=3. In this case, the measured fractal dimension is D ¼ 2.645ð4Þ over the inverse-cascade range. This value is
slightly higher than the case with EðkÞ ∼ k−2, which is expected since the flatter spectrum indicates rougher structure.
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with the choice of whether to cover H ∩ Σ with geodesic
balls in Σ or in M2 But note that the slice Σ itself could be
deformed at points off of H ∩ Σ to yield different geodesic
paths while sharing the point setH ∩ Σ. Thus, constructing
the geodesic balls in Σ would yield a fractal dimension
which is not solely a property of H ∩ Σ, but rather
dependent on the arbitrary choice of slicing away from
H ∩ Σ. For this reason, we advocate using geodesic balls
constructed in the full spacetime M (with a suitable
redefinition2).
Computed in this way, a geodesic ball-counting pro-

cedure over a range of scales Δϵ would yield a fully
covariant estimate of the fractal dimension of any given
spatial section of the event horizon. Furthermore, recall that
our ensembles of event horizons considered in Sec. IV yield
roughly the same fractal dimension. It is often observed that
cross sections ofD-dimensional fractals or statistically self-
similar objects themselves have a fractal dimension of
D − 1 (see e.g. [26] for geological examples). Given our
measurement ofDH∩Σ ≈ 2.58 in Sec. IV for the EðkÞ ∼ k−2

case, this suggests that in a quasisteady turbulent state the
entire horizon H can be assigned a fractal dimension of
DH ≈ 3.58 [or DH ≈ 3.65 for the Kraichnan-Kolmogorov
case EðkÞ ∼ k−5=3]. However, the mathemetical meaning of
this is not clear since H is a null hypersurface embedded in
a Lorentzian manifold M, so there is difficulty in defining
the diameter of covering sets in a covariant way.
Numerically implementing the procedure described in

this section would be expensive, since one would have to
integrate a large number of geodesics from a given point to
construct a geodesic ball, do so for many geodesic balls
to find a covering, and do this for many possible coverings
to find the minimal one. In the current work we have not
followed a covariant procedure like this. Many others have
not either (e.g. [27–31]), some opting instead to point out
the diffeomorphism invariance of box counting in the
ϵ → 0 limit while only fitting over a finite range Δϵ. It
would be interesting to see how much these results change
when done covariantly.
Alternatively, it is plausible that the fractal dimension

will not depend sensitively on the embedding space if, in a
region around the surface, one has well-separated scales
over which the surface and the embedding space vary. If
this is true, once could obtain an approximate covariant
result by embedding the surface isometrically in Euclidean
space, and then by applying a standard fractal dimension
estimator. We attempted to embed the turbulent horizon
isometrically in E3, without success. Indeed, the existence
of such a (global) embedding is guaranteed only if the

Gaussian curvature is positive over the entire surface, and it
may or may not exist otherwise. It has been observed [32]
that even a sufficiently rapidly rotating Kerr black hole
horizon does not have a global embedding in E3, since the
Gaussian curvature becomes negative at the poles. We have
computed the Gaussian curvature using our fluid data from
Sec. IV and observed that it changes sign over the domain
as rapidly as the external force. Thus, we believe it is highly
unlikely that there exists a global embedding into E3 for
arbitrary turbulent horizons in the regime of the fluid-
gravity duality, although Euclidean embeddings are guar-
anteed to exist in sufficiently high dimensions.

VI. CONCLUSIONS

In this work we provided a critical examination of the
calculation in [1] which led to the claim that topologically
d-dimensional turbulent AAdS–black brane horizons
H ∩ Σ embedded in a (dþ 1)-dimensional Riemannian
space Σ have a fractal dimension D ¼ dþ 4=3, exceeding
the upper bound of dþ 1. We offered an alternative
numerical computation of D when d ¼ 2, and discussed
issues surrounding the covariance of that quantity.
In particular, we argued using well-understood test

cases of one-dimensional noise curves that the pro-
posed definition of fractal dimension in [1], Aδx ¼P

i

ffiffiffiffiffiffiffiffiffiffi
γðxiÞ

p ðδxÞ2 ∼ ðδxÞ2−D, when specialized to topologi-
cally one-dimensional objects, performs poorly as a fractal
dimension estimator. We emphasize that this is not a proof
that the definition fails in the strict δx → 0 limit for genuine
fractals, but since the proposed application is on sta-
tistically self-similar surfaces which do not exhibit rough
structure down to arbitrarily small scales, the performance
of this proposal as a fractal dimension estimator is relevant.
Furthermore, we argued that the calculation in [1] may
not be using their proposed definition at all (so their
result ofD ¼ dþ 4=3 alone does not necessarily invalidate
their proposed definition, hence our separate evaluation of
the definition on noise curves of known fractal dimension).
Using simulated turbulent conformal fluid flows in the

quasisteady state regime, we constructed snapshots of the
turbulent event horizon using the fluid-gravity duality at
perfect fluid order. By applying a line transect madogram
method [21] to the event horizon surface rþðx; yÞ ¼
4πTðx; yÞ=3 in boosted ingoing Finkelstein coordinates,
we obtained a fractal dimension for spatial sections of
the horizon H ∩ Σ of D ¼ 2.584ð1Þ and D ¼ 2.645ð4Þ
for the cases with the boundary spectrum EðkÞ ∼ k−2 and
EðkÞ ∼ k−5=3, respectively. We argued that the former scal-
ing,EðkÞ ∼ k−2, is amore natural setting for the fluid-gravity
duality since it corresponds to the regime of infinite Reynolds
number without large-scale dissipation of energy [15,18].
We also speculated that in the quasisteady state regime,

since the fractal dimension will statistically not depend on
the particular time at which a spatial section of the horizon

2SinceM has a Lorentzian metric signature, a geodesic ball as
defined above would contain the entire light cone of the central
point x since the length along null paths is zero. Thus, in this case
we can instead define the geodesic ball BSLðx; ϵ=2Þ as the union
of only those spacelike geodesic paths of length ϵ=2 emanating
from x which intersect H ∩ Σ at a point y ≠ x.
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is considered, the entire horizon H could be assigned a
“bootstrapped” fractal dimension of DH ¼ DH∩Σ þ 1,
although the strict mathematical meaning of this is not
clear. Furthermore, we have not shown that DH∩Σ is
invariant with respect to deformations of the spatial section
of the horizon, since we have only considered constant time
slices in the ingoing Finkelstein coordinate.
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