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The pseudospectral code BAMPS is used to evolve axisymmetric gravitational waves. We consider a one-
parameter family of Brill wave initial data, taking the seed function and strength parameter of Holz et al.
A careful comparison is made to earlier work. Our results are mostly in agreement with the literature, but
we do find that some amplitudes reported elsewhere as subcritical evolve to form apparent horizons.
Related to this point we find that by altering the slicing condition, the position of the peak of the
Kretschmann scalar in these supercritical data can be controlled so that it appears away from the symmetry
axis before the method fails, demonstrating that such behavior is at least partially a coordinate effect. We
are able to tune the strength parameter to an interval of range 1 − A⋆=A≃ 10−6 around the onset of
apparent horizon formation. In this regimewe find that large spikes appear in the Kretschmann scalar on the
symmetry axis but away from the origin. From the supercritical side disjoint apparent horizons form around
these spikes. On the subcritical side, down to this range, evidence of power-law scaling of the Kretschmann
scalar is not conclusive, but the data can be fitted as a power-law with periodic wiggle.
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I. INTRODUCTION

Motivated partially by the findings of [1], in particular by
our difficulties in evolving gravitational wave data close to
the critical threshold of black hole formation with the
moving puncture gauge, we turned to an alternative
formulation and a more accurate numerical method. We
implemented the generalized harmonic formulation in a
pseudospectral code, BAMPS, which was recently described
in detail in [2–4]. Presently we use this tool to evolve Brill
wave initial data [5] in the form most often treated
numerically. Primarily we choose such data for ease of
comparison with the literature, but additionally since it is
axisymmetric it allows us to run the code most efficiently.
Ultimately we hope to obtain a proper understanding of,
and a robust numerical method for gravitational waves
close to the threshold of black hole formation. This study,
like [4], is another step in that direction.
The key results in the literature on critical collapse of

gravitational waves are those of Abrahams and Evans [6,7],
who considered one-parameter families of Teukolsky wave
initial data in axisymmetry, and found that the resulting
black hole mass scales as a power law in a neighborhood of
the critical threshold. They also found more tentative
evidence for “echoing,” or periodicity in spacetime scale,
of the solution. Primarily because of its simplicity, most
subsequent studies have focused on Brill wave initial data.
In evolutions of Brill waves Sorkin [8] found evidence for
another critical solution in which the peak of the curvature
appears on concentric rings around the symmetry axis. This
study employed the generalized harmonic formulation in
axisymmetry, and so is the natural starting point for us. For
a detailed discussion of critical phenomena in gravitational
collapse see [9].

The paper is structured as follows. In Sec. II, we
summarize the main features of the BAMPS code and the
continuum equations. In Sec. III we present our evolutions.
Afterwards we conclude in Sec. IV.

II. SETUP

The BAMPS code uses a pseudospectral method to evolve
a first order formulation [10] of the generalized harmonic
gauge formulation, with

∂tα ¼ −α2K þ ηLα
2 log

�
γp=2

α

�
þ βi∂iα;

∂tβ
i ¼ α2ð3ÞΓi − α∂iα − ηSβ

i þ βj∂jβ
i; ð1Þ

in the standard 3þ 1 notation. We parametrize the free
scalars by ηL ¼ η̄Lα

q and ηS ¼ η̄Sα
r, with η̄L; η̄S; p; q and

r ¼ 0 constant. We employ radiation controlling constraint
preserving boundary conditions like those described in
[11,12], imposed via the Bjørhus method [13], but modified
to minimize reflections caused by the use of constraint
damping, which can otherwise cause the code to crash with
our gauge conditions. The numerical method is similar to
that of SpEC [14], employing many subpatches across
which data is communicated using a penalty approach. For
our grids we presently take either cubed-sphere or cubed
shells [15,16]. We discretize in space using Chebyschev
polynomials, filtering the highest order coefficients [17].
Although BAMPS is fully 3d, to evolve efficiently in
axisymmetry we have implemented the analytic-cartoon
method [18,19], in which all angular spatial derivatives are
evaluated using the Killing vector. The resulting regularity
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conditions are imposed on axis and at the origin. The code
is parallelized with MPI at the subpatch level, with one or
more subpatches per core, resulting in excellent strong-
scaling for up to several thousand cores. Presently we
evolve Brill wave initial data [5,20], in which the spatial
metric takes the form,

dl2 ¼ γijdxidxj ¼ Ψ4½e2qðdρ2 þ dz2Þ þ ρ2dϕ2�; ð2Þ
and the extrinsic curvature vanishes. We choose always the
seed function q of [21],

qðρ; zÞ ¼ Aρ2e−½ðρ−ρ0Þ2=σ2ρþðz−z0Þ2=σ2z �; ð3Þ
with A > 0, σρ ¼ σz ¼ 1 and ρ0 ¼ z0 ¼ 0. We call this
data a centered geometrically prolate Brill wave. To build
initial data we use the solver of [22]. Our main tool for
classifying spacetimes as supercritical is the axisymmetric
apparent horizon finder AHLOC, which we run in post-
processing. A detailed description of the setup can be found
in [2,23].

III. CENTERED GEOMETRICALLY
PROLATE BRILL WAVES

In this section we present our evolutions of centered
geometrically prolate Brill waves. The first numerical
evolutions of Brill waves that we are aware of were
presented in [24]. Since then Brill wave initial data have
been considered multiple times in the numerical relativity
literature [1,25–28]. Therefore to ensure that BAMPS is
performing properly we start with a detailed comparison of
the evolutions performed with the seed function (3) away
from criticality. We then compare with the results of [8]
before going towards criticality.

A. Review and comparison with earlier work

Alcubierre et al.: In [25] Brill waves were evolved
numerically for the first time in 3d. The Baumgarte-
Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK)
formulation was used in combination with maximal slicing
and vanishing shift. Using the given data (3) with
ρ0 ¼ z0 ¼ 0, σρ ¼ σρ ¼ 1, which we consider throughout,
it was found that the critical point lies between A ¼ 4 and
A ¼ 6, and furthermore that this finding could be refined to
A ¼ 4.85� 0.15, although the data for this latter claim
were never presented. Supercriticality was diagnosed by
finding an apparent horizon, which occurred for the A ¼ 6
data at t ¼ 7.7. In [29] it was shown that BSSNOK
combined with this gauge choice results in an ill-posed
PDE system, meaning that this approach should be either
abandoned or modified if we are to achieve accurate results
that converge to the continuum solution as resolution is
increased.
Garfinkle and Duncan: In [26] it was found, evolving

Brill wave initial data with q as in (3), again taking

ρ0 ¼ z0 ¼ 0, σρ ¼ σρ ¼ 1, that the critical amplitude A⋆
lies between A ¼ 4 and A ¼ 6. The data was classified
either by evolving until the spacetime was close to flat and
subsequent collapse seemed implausible, or by explicitly
finding an apparent horizon. The formulation employed
was explicitly axisymmetric, and consisted of a mixed
elliptic-hyperbolic system with maximal slicing K ¼ 0,
well-posedness of which, to the best of our knowledge, has
not been studied. We agree with the findings of both
[25,26]. Because our method employs a different gauge
however, it is difficult to make a side-by-side comparison
beyond classifying the spacetimes as sub or supercritical.
The effect of changing the shape of the initial data
parameters σρ and σz was also studied in [26], but we
have not yet followed up on this.
Rinne: In the PhD thesis [27] evolutions of centered

geometrically prolate Brill waves were presented with a
free-evolution and a partially constrained scheme, both in
explicit axisymmetry. We focus on the free-evolution
scheme, the Zð2þ 1Þ þ 1 formulation, since that is where
we are able to make the clearest comparisons. In that case
harmonic slicing was taken with vanishing shift. This
choice is convenient for our comparison because although
we can not choose the same shift condition, harmonic lapse
is a pure slicing condition, which means that we should
obtain the same foliation of the same spacetime (starting
from the same initial lapse) albeit with different spatial
coordinates. Since there is a preferred observer, namely that
at the origin, we can compare quantities explicitly there.
Fortunately the work [27] contains several plots along this
worldline. In the upper left panel of Fig. 1 we plot the
Kretschmann scalar

I ¼ RabcdRabcd; ð4Þ

at the origin as a function of time for A ¼ 1 centered Brill
wave data, which should be compared with Fig. 9.2 of [27].
In this test we evolved with harmonic slicing ηL ¼ 0 and
the damped harmonic shift ηS ¼ 6 and otherwise our
standard setup. The agreement, at least by eye, is extremely
good. Taking A ¼ 4 it was found that with sufficient
resolution a sharp feature in the gradient of the lapse could
be resolved. It was found that the data was, in agreement
with [26], subcritical. We see the same result. In the upper
right panel of Fig. 1 we show ∂ρ ln α at t ¼ 1.72. This is the
time at which Rinne finds the largest peak in this quantity.
A similar plot is Fig. 9.3 in [27], which cannot be directly
compared because of the differing spatial coordinates,
although the qualitative agreement is very clear. We find
that the largest peak appears at around t ¼ 2.08, but the
magnitudes in ∂ρ ln α differ by less than 5% across these
times. In the lower two panels of Fig. 1, to be compared
with Fig. 9.9 of [27], the left panel shows the logarithm of
the lapse at the origin as a function of coordinate time for
amplitudes A ¼ 4, 5, 6. In the right hand panel we plot the
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value of the Kretschmann scalar at the origin. At lower
resolutions we find that the Kretschmann scalar exhibits
high-frequency oscillatory behavior, but that these wiggles
converge away rapidly. The most challenging data evolved
in Rinne’s experiments was the A ¼ 5 wave, for which sub
and supercriticality was not discerned using the free-
evolution algorithm, partially because the data was still
oscillatory at the time the method failed at around t ¼ 6.
All of the different resolutions we tried with A ¼ 5 in this
suite of tests crashed at coordinate time t≃ 12. We ran our
apparent horizon finder on this data, the result of which is
plotted in Fig. 2. We find the apparent horizon first at
t≃ 6.2 and thereafter until the evolution fails. Rinne
correctly concluded that the critical amplitude lies below
A ¼ 6, although no apparent horizon could be found in his
data. Instead his classification was made by observing that
the Kretschmann scalar was blowing-up. This diagnostic is
flawed because as one approaches the critical point we

expect to generate arbitrarily large curvature scalars even in
subcritical data. In the absence of an apparent horizon or
event horizon however, other diagnostics may be similarly
flawed, and the Kretschmann scalar is at least a spacetime
scalar, so one might prefer it as a diagnostic to “collapse of
the lapse” [30] which is clearly gauge dependent. Running
our apparent horizon finder on the A ¼ 6 data we find an
apparent horizon at t≃ 2 and later.
Previous studies with: BAM In 2005 [28] the BAM finite

differencing code [31–33] was used to evolve centered
geometrically prolate Brill waves with the BSSNOK
formulation combined with several different gauge con-
ditions, maximal slicing, harmonic slicing, and the moving
puncture gauge condition. The main complications were
reported to be constraint violation, which was likely caused
by lack of resolution, and which did vary significantly from
one gauge to another. To understand how much further, if at
all, standard modern numerical relativity methods can go

FIG. 1. On the upper left we show the central value of the Kretschmann scalar I0 in a centered Brill wave A ¼ 1 evolution, with BAM
and BAMPS. BAM was used with moving puncture coordinates (data taken from in [1]) and BAMPS was run with pure harmonic slicing.
This figure is meant to be directly compared to Fig. 9.2 of [27]. The fact that we employ a different spatial gauge does not matter here
because harmonic lapse is a pure slicing condition, so values of the lapse function can be compared one-to-one at the symmetry axis. On
the upper right we show a snapshot of ∂rα in the xz plane at t ≈ 1.72, which should be compared with Fig. 9.3 of [27]. Although the
spatial coordinates differ, there is an obvious qualitative agreement. In the bottom two panels the comparison with the work of Rinne
[27] continues. In these runs we evolve a brill wave using harmonic lapse and ηS ¼ 6.0 for the shift. On the left we show the logarithm of
the central lapse over time for A ¼ 4, 5 and 6. These results should be compared with Fig. 9.9 in [27]. The line for A ¼ 4 agrees quite
well. The others disagree. On the right we show the central value of the Kretschmann scalar.
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beyond those previously discussed, recently in [1] the BAM

code was once again used, this time alongside the code of
[34] with the focus purely on the moving puncture gauge.
Starting with A ¼ 1 (that is, weak) data, it was found that
the lapse initially decreased, but rapidly returned back to
unity; we find qualitatively the same behavior despite the
different gauge used in BAMPS, although the lapse function
decreases by a smaller amount in the new data. The
Kretschmann scalar decreases from a maximum of about
216 at t ¼ 0 to zero and reaches a second maximum at
t ¼ 0.7. The maximum value of the Kretschmann scalar in
the domain immediately decreases and never grows beyond
the initial value as the wave propagates away. In the upper
left panel of Fig. 1 we also plot the central value of the
Kretschmann scalar obtained in this BAM experiment. Since
the time coordinates used differ, the horizontal axes would
be different, but the values of the maxima should be the
same. The BAM value is about I0 ∼ 75 which agrees
extremely well with the BAMPS experiment. The
Hamiltonian constraint violation in this particular BAM

run is of the order 10−3 at the time of the second local in
time maximum, whereas the roughly analogous Ft con-
straint inside BAMPS is less than 10−6. This is not a fair
comparison, because we are not considering computational
cost whatsoever, but does indicate that the BAMPS data is
superior in this case. Therefore one expects that as more
resolution is added to the BAM grid the result would
converge to the BAMPS result. Taking data that is stronger,
for example A ¼ 5, the method of [1] failed as an incoming
pulse in the lapse became evermore sharp, resulting in what
seemed to be a coordinate singularity. This would be
acceptable if an apparent horizon could be found before
the code crashed, but this was not the case. Going to higher

amplitudes still, similar failures occurred, and the con-
clusion was drawn that moving puncture coordinates were
not suitable for managing this initial data. We have already
seen in our comparison with [27] that using BAMPS the
A ¼ 5 data can be classified supercritical, and we did not
see any sign of a coordinate singularity before an apparent
horizon was discovered despite the two lapse functions
appearing qualitatively similar at the beginning.

B. Comparison with Sorkin

Having collected a bank of evidence that our numerical
results are correct we now compare with [8]. We demon-
strate first that we can obtain qualitatively the same type of
behavior described therein, namely that the peak of the
Kretschmann scalar appears away from the symmetry axis.
This we achieve however just by evolving supercritical
Brill wave data and changing the gauge source function we
use to evolve it. We find that the position of the peak of the
Kretschmann scalar can be controlled by the choice of
gauge source function. This can be understood geometri-
cally. Second, by locating an apparent horizon in the time
development, we demonstrate explicitly that the amplitude
A ¼ 6.073, evolved and classified in [8] as subcritical, is in
fact supercritical. We looked at evolutions of this data at
several resolutions, both of the numerical spacetime and the
apparent horizon computed on top of the data, and find that
the outcome is robust.
Simulation setup: The simulations of this subsection

have been carried out on a cubed-ball grid, as described in
[2,23], with the following setup. The inner cube extends
from rcu ¼ 0.5 to −rcu and is divided into N cu ¼ 9
subpatches with Ncu ¼ 21 gridpoints in each dimension.
For the transition shell from rcu to rcs ¼ 1.0 we use only
one shell N cs ¼ 1 with Ncs ¼ 35 points in the radial
direction. From here we go to the outer boundary at rss ¼
12 using N ss ¼ 22 outer shells with also Nss ¼ 35 radial
collocation points. These tests were carried out in 3d using
the octant symmetry mode of BAMPS.
Position of the peak curvature: Consider a collapse

spacetime with the standard causal structure. Different
foliations of the spacetime, in which the time coordinate
tends to tick more or less slowly in a region of high
curvature depending on some singularity avoidance param-
eter will have different profiles in a spacetime diagram.
If we are given a patch of this spacetime up to a finite
time coordinate, as in a numerical relativity simulation, the
specific observer that encounters the largest curvature
before the code crashes depends, among other things, on
the singularity avoidance parameter. In our case such a
parameter is given by ηL. We performed evolutions of a
centered Brill wave with A ¼ 6.073. This amplitude is
shown to be supercritical in the next paragraph. We evolved
with fixed ηS ¼ 6; p ¼ 1 and one of ηL ¼ 0, 0.2 or
ηL ¼ 0.4. In the left plot of Fig. 3 we show the lapse
in the evolutions at coordinate times t ¼ 1, which

FIG. 2. Here we plot the development of the apparent horizon
for Brill waves with amplitude A ¼ 5, evolved with pure
harmonic slicing and damped harmonic shift. The horizon is
first found at t ¼ 5.82, with area AH ¼ 15.7. At the end of the
evolution at t ¼ 11.9 the area has increased to AH ¼ 16.7.
Similar results are obtained in the A ¼ 6 evolution. The initial
area at t ¼ 2.1 is AH ¼ 33.7 and the final is AH ¼ 40.6 at
t ¼ 8.24.
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demonstrate the effect of the singularity avoidance param-
eter ηL. In the pure harmonic slicing case ηL ¼ 0 we have
the strongest singularity avoidance, and find that the peak
of the Kretschmann scalar appears at ρ ¼ 0.88, where it
simply grows until the numerics fail. Increasing the
parameter to ηL ¼ 0.2, 0.4 we find that the peak of the
Kretschmann appears at a coordinate radius of ρ ¼ 0.73
and ρ ¼ 0.64 respectively, before the numerics fail.
Apparent horizon formation: We evolved the same

centered A ¼ 6.073 data with different resolutions, fixing
the gauge parameters ηS ¼ 0.4; p ¼ 1 and ηS ¼ 6, so the
largest choice of ηL from above. We find rapid conver-
gence of the constraints. In particular we used our
standard cubed-sphere setup with N ¼ 213, 253 and 293

points per subpatch, and find that, for example, the
maximum of the Cx component of the Harmonic con-
straints along the x-axis are approximately 5 × 10−5;
9 × 10−6 and 8 × 10−7 respectively at t ≈ 1.25. We then
searched for apparent horizons using the method
described in [2,23]. We first find an apparent horizon at
around t ¼ 1. On a fixed numerical spacetime data set we
find perfect fourth order convergence in the apparent
horizon data consistent with the Runge-Kutta method
employed. Comparing the apparent horizons discovered
on the different data we find perfect qualitative agreement.
Furthermore we see behavior consistent with rapid con-
vergence when evaluating the differences between the
discovered horizons. The apparent horizons of different
time slices are plotted in Fig. 3, where the coordinate
expansion of the horizon can clearly be seen. For
comparison we again evolved the same initial data inside
the BAM finite differencing code, but were unable with
our current setup to find apparent horizons from that data.
One issue is that the constraint violation is many orders
of magnitude greater in the finite differencing code.
Qualitatively however we find good agreement in the
evolution, at least initially.

Summary: We are unable to reproduce the results of [8],
despite using, to the best of our knowledge, identical initial
data and gauge. In fact our results appear to contradict the
earlier study. The reason for the disagreement is presently
not clear. It is possible that an apparent horizon search on
Sorkin’s older finite differencing data was too challenging
because of numerical error, or perhaps even that the
numerical dissipation was sufficient to let these strong
data spuriously settle down to flat-space, although the latter
does not seem likely. The power-law scaling obtained in [8]
in the rapid oscillations of the curvature is nevertheless
interesting, and would be good to properly understand in
the future. Given our earlier code validation [2] and the
literature comparison in Sec. III A however, we have no
reason to doubt the BAMPS results, so for now we move on.

C. Discussion

Critical collapse of the scalar-field: Before moving to
harder experiments, consider the case of the minimally
coupled massless scalar field. Working in spherical sym-
metry, evolving families of initial data with strength
parameter A, Choptuik found [35] compelling numerical
evidence for the existence of a critical solution at A ¼ A⋆
serving as the boundary between dispersion and collapse.
The appearance of critical phenomena with A in a neigh-
borhood of A⋆ was neatly explained by the conjecture that
the critical solution is an attractor of codimension one in
phase space. In other words in a neighborhood of the critical
solution there should to be just one growing mode. Working
in perturbation theory around the critical solution, but
crucially allowing for aspherical mode perturbations,
Gundlach and Martín-Gárcía found strong numerical evi-
dence for this conjecture [36]. They found that the most
slowly decaying mode came with an eigenvalue of −λ1 ≈
0.02 associated with a Y20 spherical harmonic. For this
matter model the single unstable mode has eigenvalue

FIG. 3. In the left panel the lapse for the centered A ¼ 6.073 Brill wave is plotted with the three generalized harmonic gauges ηL ¼ 0,
0.2 and ηL ¼ 0.4 at coordinate time t ¼ 1.0. The more “singularity avoiding” the gauge choice, the smaller the lapse becomes around the
origin. In the right hand panel the apparent horizons Brill wave initial data is plotted. The initial horizon mass is MH ¼ 0.84 and has
increased to around MH ¼ 0.90 before the code fails. These values are to be compared with the ADM mass, MADM ¼ 1.02.
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λ0 ≈ 2.7. Because of the exponential decay of the former it
was conjectured that the qualitative picture obtained in
spherical symmetry using the full Einstein equations would
not be altered for generic initial data close to criticality.
This picture, roughly speaking, says that in a neighborhood of
critical collapse the fields should strongly interact in a
confined region for a finite, but ever longer time as the
critical solution is approached, and ultimately either collapse
or disperse. Interestingly for the current study, Choptuik and
collaborators [37] then studied axisymmetric configurations
and found evidence of a second growing mode associated
with a Y20 spherical harmonic, causing the strong field
solution to bifurcate into two strongly interacting regions,
in apparent contradiction with the earlier perturbative result.
Issues with the apparent horizon as a diagnostic: The

apparent horizon is used for classification of the spacetime
as sub or supercritical. In earlier work the apparent horizon
mass has also been used to indicate power-law scaling in
the critical regime. Therefore it is worth noting explicitly
the weaknesses of this approach. First, the appearance of
an apparent horizon guarantees the existence of an event
horizon only in strongly asymptotically predictable
spacetimes, which arise from generic asymptotically flat
initial data only if the weak-cosmic censorship conjecture
holds [38,39]. This fact makes our approach blind to

violations of weak-cosmic censorship. It is also possible
that no apparent horizon appears in our particular foliation,
even if there is a black hole region [40]. Second, the foliation
dependence of the apparent horizonmakes it difficult to trust
the black hole masses obtained from the horizon area,
particularly away from spherical symmetry. We may try to
diagnose power-law scaling by looking at horizon mass, but
the foliation could be such that the apparent horizon always
forms with large area, and we have to choose when to
evaluate the mass for each member of the one-parameter
family. In fact in preliminary experiments we found that
when approaching the critical regime, behavior resembling
power-law scaling in the initial horizon masses could appear
with a particular choice of gauge source function, but then
completely disappear once we altered the choice to avoid
coordinate singularities. These difficulties make us strongly
prefer to study the subcritical approach to black hole
formation, because there we can, as in [8], unambiguously
consider the spacetimemaximumof theKretschmann scalar,
provided that we are able to evolve the spacetime long
enough to be confident that it is really subcritical.

D. Towards the critical regime

Search strategy: Our previous tests demonstrate that
apparent horizon formation first occurs between A ¼ 4

TABLE I. In the upper table we summarize the runs obtained in each sample, withΔA ¼ ð0.1Þi, and afterwards in the bisection search.
A is the strength parameter of the wave (3), MADM the ADM mass of the initial data set, tAH the coordinate time at which an apparent
horizon was first discovered,MH the horizon mass at first and at the end of the simulation, tc the coordinate time that the code crashed.
The final column summarizes changes to the setup not described in the main text. We denote the strength parameters of our current
bounding runs in bold. In the lower table the various cubed-ball grids are specified using the notation of [2]. The grid parameters are rcu
the extent of the central cube, rcs the radius at which the transition shell ends, rss the coordinate position of the outer boundary,N cu the
number of subpatches per dimension in the central cube,N cs,N ss the number of radial subpatches within the transition and outer shells
respectively and N ¼ Ncu ¼ Ncs ¼ Nss the number of collocation points per dimension per subpatch in our lowest resolution runs on
this grid.

Sweep A MADM tAH MH tc Changes

i ¼ 1 4.7 0.622 15.0 0.27=0.30 16.6
4.6 0.597 X X X

i ¼ 2 4.70 0.622 15.0 0.27=0.30 16.6
4.69 0.619 X X X p ¼ 0

i ¼ 3 4.697 0.621 16.4 0.08=0.08 16.5 p ¼ 0.5
4.696 0.621 X X X p ¼ 0.5

Bisect
1 4.6965 0.621 X X X p ¼ 0.5
2 4.69675 0.621 17.5 0.03=0.03 17.7 p ¼ 0.5
3 4.696625 0.621 X X X p ¼ 0.5
4 4.6966875 0.621 X X X p ¼ 0.5
5 4.69671875 0.621 17.9 0.03=0.05 18.6 p ¼ 0.5
6 4.696703125 0.621 18.7 0.03=0.06 19.0 p ¼ 0.5

Grid rcu rcs rss N cu N cs N ss N

G0 1.0 7.0 20.0 33 11 13 31
G1 2.5 10.5 21.5 63 11 13 31
G2 2.5 10.5 21.5 95 11 13 31
G3 3.0 12.0 21.0 199 18 13 19
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and A ¼ 5. We therefore searched for a critical amplitude
A⋆ in this range. Running exclusively in cartoon mode, we
started with that bracketing and within it sampled A at 10
equally spaced values, thus obtaining a new bracket 10
times smaller. We did this in three times, with ΔA ¼ ð0.1Þi
for i ¼ 1, 2, 3. At each level, once the critical amplitude is
bracketed we increase resolution on the bracketing ampli-
tudes to check convergence and be sure that we truly have
bracketed A⋆. After the third such sweep we went to a
straightforward bisection search, increasing resolution,
adjusting grids and gauge sources as seemed appropriate.
Our current best bound for the critical point is that
A⋆ ∈ ½AL; AU� ¼ ½4.6966875; 4.696703125�, an interval
of width ∼1.6 × 10−5. Afterwards we performed additional
runs away from the critical point to help understand the
behavior of the Kretschmann scalar and the initial apparent
horizon masses as a function of A. We started with the
gauge source parameters

ηL ¼ 0.4α−2; p ¼ 1; ηS ¼ 6; ð5Þ

and take our defaults for the GHG formulation settled on in
[2,23]. The parameters of our base grid (G0 in Table I)
result in a total of 1105 subpatches in cartoon mode.
Spreading this over the maximum number of cores possible
on SuperMUC (i.e., one subpatch per core), the code
computes at around 3 time units per hour at the lowest
resolution. Modifications to the gauge and grid are sum-
marized in Table I, which gives the results both of the
bracketing for each sweep and in the bisection search. Grids
G1, G2 and G3 consist of 2560,4608 and 16200 sub-
patches, respectively. The ADM masses of each initial data
set are also given in the table, although one should be
careful to remember that we impose boundary conditions at
a finite coordinate radius, which could affect the dynamics
of the evolution, and furthermore makes the interpretation
of MADM non-trivial.
Termination of search: It may be possible to push to a

better bound by brute force with the current method, but
we stopped our bisection search at the range A⋆ ∈ ½AL; AU�
as we prefer to conserve resources to attack alternative
initial data. A main issue preventing us from going further
economically is the lack of mesh-refinement inside BAMPS.
The implementation of a true pseudospectral adaptive
mesh-refinement algorithm is a major undertaking due to
its complexity, and because efficient parallelization then
becomes challenging. Another issue is that our initial data
solver can only solve the Hamiltonian constraint down to
around the 10−10 level, which is presumably caused by the
use of irregular coordinates, the Chebyschev-Fourier-
Fourier discretization and simply machine precision [23],
but this level of error is certainly not the leading order in
our present simulations. It is curious that in studies with
various matter models it has been possible to fine-tune to
much higher accuracy, even in cases where the basic

accuracy of the numerical method is much lower than in
ours. This can often be achieved by keeping the numerical
resolution and everything else, except the amplitude fixed.
However, the fine-tuning error in A⋆ for a given resolution
can be much smaller than the drift towards convergence
when increasing the resolution. As we explain below, we
believe that in the present simulations the main issue
preventing us from going further in the fine-tuning of
A⋆ is related to gauge choice.
Description of dynamics: The basic dynamics from each

of the initial data are initially rather similar. At first a pulse
in the Kretschmann scalar propagates out from the origin
predominantly in the ρ direction. The pulse then propagates
more slowly, eventually turning around and traveling
towards the origin. As it propagates in, the pulse is smeared
out parallel to the z-axis. As the pulse hits the axis, there is a
rapid growth resulting in a maximum at some �zpeak ≠ 0.
In the first sweep, for A ≥ 4.8 data an apparent horizon is
found around or just after the time of this growth. In the
A ¼ 4.7 run, this peak in the Kretschmann occurs at
zpeak ¼ 1.25, with a value of 5.5 × 107. The feature then
starts to propagate away, predominantly in the ρ-direction,
and no apparent horizon is found until later. Instead the
evolution continues until a second large peak appears in the
Kretschmann scalar around zpeak ≃ 1 on the symmetry axis,
as the wave content leftover from the first big peak again
crashes onto the axis. An apparent horizon is found shortly
afterwards and consistently until the evolution fails at
t≃ 16.6, as the Kretschmann scalar starts to grow ever
more rapidly around these peaks. In the second sweep we
switch the slicing condition to p ¼ 0 to avoid spikes
appearing in the lapse. The largest amplitude of this sweep,
A ¼ 4.69, is subcritical. The peak of the Kretschmann in
this run is around 3.25 × 107 and appears at zpeak ¼ 1.34; a
movie of the dynamics can be found online [41]. As we go
closer to the critical point we see the appearance of yet-
more spikes, which then propagate up and down the axis.
This behavior is discussed in more detail in the following
paragraphs.
Disjoint apparent horizons: Starting with the third

sweep, ΔA ¼ ð0.1Þ3, we find in supercritical data two
disjoint apparent horizons, centered roughly around the
position of the second large feature growing on the axis at
�zpeak. An example is shown in Fig. 4. In other words,
close to the critical point these initial data produce what
seem to be axisymmetric binary black hole spacetimes.
Obviously in the case of gravitational waves spherical
decay is impossible, so this bifurcation is perhaps the
generic near-critical behavior. Evidence for this could be
sought by evolving different families of data. We expect
that the reflection symmetry about the x-axis plays a role
here in the outcome however. For generic axisymmetric
supercritical data, with one loosely defined strong-field
region, one might expect that the bifurcation happens but
that apparent horizon formation appears on only one side.
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This result means that with our current setup we are not
able to evolve to a final end-state, as BAMPS does not have a
moving-excision setup or the control mechanism of SpEC
[42,43]. Within the lifetime of our simulations we do not
find a common horizon surrounding the disjoint MOTS.
But the lifetime of the simulations after horizon formation
is short, so this to be anticipated. To be sure that these
spacetimes really do contain two black holes it will be
necessary to search for an event horizon, but the short
lifetime prohibits this also. Nevertheless the fact that as we
get closer to the critical solution, the initial apparent
horizon size gets smaller, whilst the coordinate distance
between the horizons remains roughly constant hints that
the spacetimes do contain two black holes. In the context of
critical collapse we are predominantly interested in the
strong-field region near to the critical threshold, so we
continue with the search, focusing primarily on the sub-
critical regime. The detailed study of supercritical data is
left for future work.
Scaling of the Kretschmann scalar: According to [44], if

critical phenomena are present during gravitational col-
lapse, then one should see power-law scaling of curvature
invariants in the subcritical regime A≲ A⋆. Since we are
working in vacuum any scalar built from the Ricci
curvature is unavailable so, as in [8], we focus on the
Kretschmann scalar. In the right hand panel of Fig. 4 we
plot the maximum value of the Kretschmann scalar in the
spacetimes as a function of A − A⋆ in a log-log plot. There
is a plateau in the maximum before it starts to increase
rapidly in A − A⋆. The rapid increase occurs as a later
implosion of the wave onto the axis starts to dominate over
the previous implosion. The resulting curve can be fit as,

logðI1=4maxÞ≃ −γ logðA⋆ − AÞ þΨ½logðA⋆ − AÞ�; ð6Þ

with γ ∼ 0.37 and Ψ of period around 8. Over one period
the maximum in the Kretschmann scalar increases by a
factor of e4Δ, with Δ ∼ 3. The first of these numbers agrees
with that obtained in [6], whilst our value of Δ does not.
It is not yet clear how seriously these numbers should be
taken because so far we observe only one full period in the
Kretschmann scalar. Therefore we postpone the assignment
of error bars and for now simply advise caution against
overinterpretation of the finding.
Comparison with the scalar-field: Our results are rem-

iniscent of the bifurcation of the scalar field [37] discussed
earlier in Sec. III C. It is possible that there is a direct
relationship; our results indicate that in vacuum axisym-
metry, near the critical solution, decay proceeds by the
aforementioned bifurcation. On the other hand, we know
empirically that in spherical symmetry dispersion of the
scalar field is determined by a single unstable spherical
mode. Take a spacetime with a single strong-field region
with scalar field and gravitational wave content. Imagine
fixing, in some sense, the ratio of gravitational wave and
scalar field content, and heading towards the threshold of
black hole formation. By continuity, we expect the critical
solution to interpolate between the two scenarios of
bifurcation (driven by the gravitational wave content)
and spherical decay (driven by the scalar-field content)
as the ratio of the two is adjusted. This idea is compatible
with [37], in which gravitational wave content is added to
the initial data by placing axisymmetric perturbations on
the metric. It is also compatible with the perturbative
results of [36]. By construction the Choptuik solution is
absent of gravitational waves, so a linear analysis could
not spot a complicated nonlinear admixture of the decay
mechanisms. Alternatively, it may not matter whether the
strong-field is formed by a gravitational wave or other

FIG. 4. In the left panel the apparent horizons at different times in A ¼ 4.698 centered Brill wave initial data, as obtained in sweep 3
with ΔA ¼ ð0.1Þ3, are plotted. Evidently two apparent horizons appear in the data, each around the observed peaks in the Kretschmann
scalar at z ¼ �zpeak, indicating the likelihood that the family results in head-on binary black hole spacetime near the critical amplitude.
This behavior is robust in that in weaker supercritical data that we can successfully classify, we always find such horizons. In the right
hand panel we plot the logarithm of the absolute value of the Kretschmann scalar against − logðA⋆ − AÞ taking A⋆ ¼ 4.6966953125 as
the critical amplitude. The result can be well-fitted by a straight-line with gradient ∼0.37 plus a function of period ∼8. This is indicative
of critical behavior [44], but since we see only one full period, starting from around − logðA⋆ − AÞ ¼ 2, we do not consider the result
conclusive.
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source. Comparing spherically symmetric with axisym-
metric evolutions, the main difference is that it is possible to
form multiple centers of collapse in axisymmetry. With
sufficiently large asphericity this could be generic.
Wishlist for future work: Evidence for the above sug-

gestion could be sought in several obvious ways. First,
evolution of different families of axisymmetric vacuum
data must be performed to see whether or not the bifurca-
tion behavior really is generic. Next, it would be good to
compute accurately the value of Δ in vacuum (assuming
that the tentative behavior persists) and to compare with the
value obtained by [37] as the critical solution is deformed
by gravitational wave content. At first glance our value
Δ ∼ 3 appears consistent with that of [37], but at this stage
nothing is certain. Another possibility is to work in second
order perturbation theory about the Choptuik critical
solution and to look for evidence of the bifurcation
behavior. Finally, more results for the critical axisymmetric
scalar field are also highly desirable.
Spikes in the Kretschmann scalar and code failure: For

our final test, which we can not yet classify, close to the
critical point we evolved initial data with amplitude
A ¼ 4.6966953125. If this experiment were successful it
would correspond to the next bisection step. We find that
there are a sequence of large spikes on the symmetry axis as
the gravitational wave implodes, then propagates up and
down the symmetry axis before imploding once more. Each
of the large spikes is finer and therefore requires more
resolution for accuracy. It is tempting to label the sequence
of strong oscillations “echoes,” but again, perhaps because
of a suboptimal gauge, we can not quantify this claim and
therefore resist. Figure 5 shows the run-up to and the
evolution of the final spike before the code crashes. In
practice the numerics fail not as such a spike forms but
rather as it dissipates away. As this happens we see along
the z-axis that a sharp feature suddenly forms in the metric
component gzz and causes the code to crash. The difficulty
is in classifying the spacetime rather than the code crash
per se, as do not find an apparent horizon in the data before
the crash. The cause of the feature is unclear, but possible
candidates are simple numerical error, the formation of an
apparent horizon that the present method is unable to
unveil, the formation of a coordinate singularity, or even the
seemingly unlikely formation of a naked singularity.
Increasing resolution very substantially hardly affects the
appearance of the feature or crash-time of the code, so in
this case it is doubtful that even mesh-refinement could
address the problem directly. The main suspect is therefore
the formation of a coordinate singularity. This view is
further enforced by the fact that coordinate problems,
although of a different specific form, also occurred in
simulations with the qualitatively similar 1+log slicing
using the BSSNOK formulation [1,28]. To investigate
this we have evolved with different gauge source param-
eters. Informed by earlier experience we increased ηS.

This however has the unfortunate side-effect of allowing
the strong-field region to bleed out from the central cube
into the transition shell where we have lower resolution,
and so results in other problems. Going to slightly lower
wave amplitudes, the sudden spike in gzz persists even
with a large value of ηS, albeit at a later coordinate time.
Ultimately a radical change of coordinates may be needed.
Addressing the problem with an improved continuum
formulation and numerical method is a priority.

IV. CONCLUSIONS

Wehave continued our study of gravitational waves in the
regime separating dispersion from black hole formation. To
maximizeoverlapwith earlier resultswe focused exclusively
on Brill waves with the seed function (3), and evolved only
prolate (σρ ¼ σz ¼ 1), geometrically prolate (A > 0) cen-
tered (ρ0 ¼ z0 ¼ 0) data. Our main findings are first that,
while our results are in agreement with several other
publications, we are unable to reproduce those of [8], despite
performing evolutions of the same initial data with the same
gauge conditions. In particular we unambiguously find
apparent horizons in data classified there as subcritical.
The reason for this difference is not clear. Moving closer to
the threshold of black hole formation, surprisingly, we find
that two disjoint apparent horizons are found centered
around some non-zero z0 on the symmetry axis, indicating
the likelihood that theBrill wave collapses to form a head-on
collision of two black holes. The fact of, and time-scale for
the merger of these horizons is to be determined. Finally we
have bounded the critical amplitude within a range of about
10−5. This is an improvement over the previous bound by
some orders of magnitude. We see evidence of power-law
scaling, since the maximum of the Kretschmann scalar is
well described by the form (6), as expected if critical

FIG. 5. Here we plot the logarithm of the Kretschmann scalar
along the symmetry axis around the times when the largest spikes
appear in the A ¼ 4.6966953125 experiment. Note that we have
not classified this spacetime as sub or supercritical because with
our current setup doing so will be very expensive to do so with
confidence. We believe that the crash is caused by a coordinate
singularity however, which forms as the biggest peak dissipates.
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phenomena are present [44]. The power-law exponent, at
least, appears consistent with the value of Abrahams and
Evans [6], but our tentative value of Δ ∼ 3 is very different
from theirs Δ≃ 0.6. On the other hand our value of Δ is
compatiblewith that of themixedaxisymmetric gravitational
wave and scalar-field data [37]. Sincewe only see one period
of the wiggle however, we must warn against premature
jubilation. The wiggle could disappear, or the period of
subsequent wiggles may differ substantially with more
tuning of A, so further work is definitely needed. Closer
to the critical point we findmore andmore extreme behavior
in the Kretschmann scalar. Particularly interesting are the
ever-finer spikes that rapidly form on the symmetry axis.
Superficially this even seems evocative of Belinsky-
Khalatnikov-Lifshitz (BKL) type behavior.
Close to the critical point our current method suffers

from larger errors, particularly in the form of constraint
violation around the spikes and, we suspect, because
coordinate singularities form. Evidently there is still much
to understand. The next steps will include looking at
different initial data, including Brill waves with A < 0,

prolate and off-centered seed functions, along with the
Teukolsky waves of [6], which suit better the original
spirit of [35] since they consist of incoming colliding
waves. In the future we furthermore hope that the combi-
nation of mesh-refinement and the use of the dual-foliation
[4,45] approach will help to allay our current difficulties.
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