
Particle collisions and optical effects in the mining Kerr-Newman spacetimes

Zdeněk Stuchlík,* Martin Blaschke,† and Jan Schee‡

Institute of Physics and Research Centre of Theoretical Physics and Astrophysics,
Silesian University in Opava, Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic

(Received 14 August 2017; published 28 November 2017)

We study ultrahigh-energy particle collisions and optical effects in the extraordinary class of mining
braneworld Kerr-Newman (KN) naked singularity spacetimes, predicting extremely high efficiency of
Keplerian accretion, and compare the results to those related to the other classes of the KN naked
singularity and black hole spacetimes. We demonstrate that in the mining KN spacetimes the ultrahigh
center-of-mass energy occurs for collisions of particles following the extremely-low-energy stable circular
geodesics of the “mining regime,” colliding with large family of incoming particles, e.g., those infalling
from the marginally stable counter-rotating circular geodesics. This is qualitatively different situation in
comparison to the standard KN naked singularity or black hole spacetimes where the collisional ultrahigh
center-of-mass energy can be obtained only in the near-extreme spacetimes. We also show that observers
following the stable circular geodesics of the mining regime can register extremely blue-shifted radiation
incoming from the Universe, and see strongly deformed sky due to highly relativistic motion along such
stable orbits. The strongly blue-shifted radiation could be thus a significant source of energy for such
orbiting observers.
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I. INTRODUCTION

The higher-dimensional string theory and particularly
M-theory [1,2], becoming effectively 4D at low enough
energies, inspired the so-called braneworld models with the
observable universe being a 3-brane on which the standard
particle-model fields are confined, while gravity enters the
extra spatial dimensions [3]. In the braneworld models,
gravity can be localized near the 3D brane in the bulk space
with a noncompact, infinite size extra dimension with the
warped spacetime satisfying the 5D Einstein equations [4]
with the noncompact dimension assumed to be related to
the M-theory.
When the 5D Einstein equations at the bulk space are

constrained to the 3D brane, modified 4D Einstein equa-
tions arise [5], solution of which is quite complex in the
presence of the matter stress energy tensor, e.g., in the
case of models of neutron stars [6–8], but it is simple
for the vacuum solutions related to the braneworld black
holes and naked singularities. The spherically symmetric
and static braneworld black holes can be described by the
Reissner–Nordström geometry (RN) [9], the axially sym-
metric and stationary braneworld rotating black holes can
be described by the Kerr–Newman (KN) geometry [10],
where the influence due to the tidal effects from the bulk is
simply represented by a single parameter called tidal

charge due to the similarity of the effective stress-energy
tensor of the tidal effects of the bulk space and the
stress-energy tensor of the electromagnetic field [9]. The
tidal charge parameter can be both positive and negative
[9,10], while in the standard general relativity the square of
the electric charge occurs giving thus only positively valued
parameter.
There exist many studies of the RN or KN black hole and

naked-singularity geodesic motion [11–21] that can be
straightforwardly applied for the braneworld black holes
and naked singularities with positive tidal charge.
Moreover, the astrophysically relevant studies of the brane-
world black holes (with both positive and negative tidal
charges) were presented in a number of papers related to
the optical effects [22–25], or the accretion phenomena
[26–29]. The astrophysical relevance of the KN naked
singularity spacetimes can be expected in connection to the
so called superspinars—the Kerr (and KN) superspinars
were proposed as possible remnants of the early phases of
the existence of the Universe governed by the String theory
[30]. Exterior of the Kerr (and KN) superspinars is assumed
to be described by the Kerr (and KN) naked singularity
geometry, their interior is assumed to be described by a
solution of the string theory, while the matching surface has
to be located above the region of causality violation of the
external spacetime; the Kerr superspinars can be stable
against perturbations [30–32].
Quite recently, we have studied the Keplerian accretion

and its efficiency for whole variety of the braneworld KN
black hole and naked singularity spacetimes [33].
Surprisingly, we have found an extraordinary class of the
braneworld KN naked singularity spacetimes, having the
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braneworld dimensionless tidal charge b∈ ð1=4;1Þ
and the dimensionless spin a ∈ ð2 ffiffiffi

b
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp

;
2

ffiffiffi
b

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þp Þ, that demonstrate existence of an

infinitely deep gravitational well centered at the stable
photon circular orbit. Such spacetimes enable mining of
unlimited energy due to the Keplerian accretion, therefore,
we call them mining KN naked singularity spacetimes. Of
course, the mining KN naked singularity spacetimes have to
be unstablewith respect to the “mining”Keplerian accretion;
the “perpetuum-mobile” character of the mining process has
to be stoppedwhen the assumption of the test particle motion
of the accreting matter is violated due to the increasing
(binding) energy of the accreting matter [33]. Note that the
same conclusions as for the braneworld mining spacetimes
hold for the standard KN spacetimes containing an electric
charge Q; all the results can be obtained with simple
transition b → Q2.
In the present paper, we study two astrophysically

important phenomena for particles (observers) following
in the braneworld mining KN spacetimes the circular
geodesics of the mining regime (i.e., near the stable photon
circular orbit). First, we study the so called Banados, Silk
and West (BSW) collisional processes demonstrated by an
extremely large center-of-mass (CM) energy [34]. We
demonstrate that the BSWeffect is allowed for all members
of the family of mining KN naked singularities, if one of
the colliding particles is orbiting very close to the stable
photon circular geodesic, contrary to the case of the KN
black holes or ordinary naked singularities where the BSW
effect is efficient only for the extreme or near-extreme
spacetimes. We compare the obtained results to those
related to ordinary braneworld KN black hole and naked
singularity spacetimes, with both the positive and negative
tidal charge parameter b. We thus study the collisional
processes in the case of the ordinary naked singularities for
the known model of collisions at (and near) the special
radius of r ¼ M when ultrahigh CM energy can be
obtained for all the colliding particles that could reach
this radius from large distances [20,21,35]; we study in
detail the simplest situation of collisions of “radially”
incoming and outgoing (after reaching a turning point of
the radial motion) particles, discussing specially the case
that was not treated in previous studies, namely, depend-
ence of the CM energy on the distance from which the
colliding particles start to fall. For these purposes, we
present also a detailed study of the equatorial radial motion
of particles with vanishing angular momentum in the
braneworld KN spacetimes. For the braneworld KN black
hole spacetimes the collisional processes were treated in
[36]; we do not repeat this discussion, making only short
comparison to the naked singularity cases.
Second, we study simple optical effects related to

frequency shift of radiation emitted (or received) by the
observers orbiting the KN naked singularities, especially in
the mining regime, and appearance of the sky for observers

orbiting the braneworld KN naked singularities. We give
dependence of the frequency shift of the principal null
congruence (PNC) photons (for physical importance of this
special photon family see, e.g., [37]) radiated from the
stable circular geodesics, as this simple case can give
fundamental knowledge on the intensity of optical effects
in the deep gravitational field of naked singularities (black
holes) [14]. For observers following the special family of
the “mining” orbits we show that blueshift of the cosmic
microwave background (CMB) radiation can be extremely
large, enabling for such observers to obtain sufficient
energy supply related to the blue-shifted CMB radiation,
implying thus the possibility of a new variant of intelligent
life survival in the cold expanding Universe, which could
represent an additional possibility to the known mechanism
related to the observers orbiting Kerr black holes [38–40].
These simple illustrative calculations are complemented by
detailed modeling of the sky (related to the CMB radiation)
as seen by observers following the circular geodesics in the
deepest parts of the gravitational well in vicinity of the
innermost stable circular geodesics of KN spacetimes.

II. BRANEWORLD KERR–NEWMAN GEOMETRY

In the Boyer-Lindquist coordinates ðt; r; θ;φÞ and the
geometric units ðc ¼ G ¼ 1Þ, the line element of a brane-
world Kerr-Newman black hole or naked singularity,
representing solution of the Einstein equations constrained
to the 3D-brane, reads [9,10]

ds2¼−
�
1−

2Mr−b
Σ

�
dt2−

2að2Mr−bÞ
Σ

sin2θdtdφþΣ
Δ
dr2

þΣdθ2þ
�
r2þa2þ2Mr−b

Σ
a2sin2θ

�
sin2θdφ2; ð1Þ

with

Δ ¼ r2 − 2Mrþ a2 þ b; ð2Þ

Σ ¼ r2 þ a2cos2θ; ð3Þ

whereM is the mass parameter of the spacetime, a ¼ J=M
is the specific angular momentum of the spacetime with
internal angular momentum J, and the braneworld tidal
charge parameter b represents imprint of the nonlocal, tidal,
gravitational effects of the bulk space [10].
The form of the metric (1) is identical to that of the

standard Kerr–Newman solution of the 4D Einstein–
Maxwell equations, with squared electric charge Q2 being
replaced by the tidal charge b [41]. We can separate
three cases:
(a) b ¼ 0 corresponding to the standard Kerr metric.
(b) b > 0 corresponding the standard KN metric.
(c) b < 0 corresponding to the non-standard KN metric

with negative tidal effects.
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It should be stressed that in the braneworld Kerr–Newman
spacetimes the geodesic structure is relevant also for the
motion of electrically charged particles, as there is no
electromagnetic field related to the tidal charge of the
spacetimes. Of course, the case (b) can be equally consid-
ered for the analysis of the uncharged particle motion in the
standard electrically charged Kerr–Newman spacetimes.
We put in the following M ¼ 1 for simplicity. The

spacetime parameters a and b, and the time t and radial
r coordinates become then dimensionless. Equivalently, we
express the relevant quantities in units of M making
redefinitions: a=M→a, b=M→ b, t=M → t, and r=M → r.
Separation between the black hole and naked singularity

spacetimes is given by the relation

a2 þ b ¼ 1 ð4Þ
determining the extreme black holes with coinciding
horizons. The condition 0 < a2 þ b < 1 governs the black
hole spacetimes with two distinct event horizons, the
condition a2 þ b < 0 governs black hole spacetimes with
only one distinct event horizon at r > 0. For a2 þ b > 1,
the KN spacetimes describe naked singularities.
For positive tidal charges, the black hole spin has to

satisfy the relation a2 < 1, as in the standard Kerr–
Newman spacetimes, but for negative tidal charges the
black holes can violate the well know Kerr limit, having
a2 > 1 [25,29]. The physical “ring” singularity of the
braneworld rotating black holes and naked singularities
is located at r ¼ 0 and θ ¼ π=2, as in the Kerr spacetimes.
Behavior of the Kretschman scalar around the ring singu-
larity, properties of the ergosphere (ergoregion in the naked
singularity spacetimes) and the causality violation region of
the braneworld KN spacetimes have been discussed in [33].
In the following, we shall consider the particle and photon
motion above the event horizon in the black hole cases,
and above the causality violation region in the naked
singularity cases.
It is convenient to express physical quantities in local

reference frames. To describe the physical processes in the
rotating Kerr–Newman spacetimes, the family of locally
nonrotating frames (LNRF) corresponding to zero angular
momentum observers (ZAMO) is most convenient [42].
The vectors of the LNRF tetrad are given by the relations

eðtÞ ¼ ðω2gφφ − gttÞ12dt; ð5Þ

eðφÞ ¼ ðgφφÞ12ðdφ − ωdtÞ; ð6Þ

eðrÞ ¼
�
Σ
Δ

�1
2

dr; ð7Þ

eðθÞ ¼ Σ1
2dθ; ð8Þ

where the angular velocity of the LNRF relative to distant
observers ω reads

ω ¼ −
gtφ
gφφ

¼ að2r − bÞ
Σðr2 þ a2Þ þ ð2r − bÞa2sin2θ : ð9Þ

Convenience of the LNRF is clearly demonstrated for the
particles freely falling from rest at infinity that is purely
radial namely in the family of LNRFs [43].

A. Geodesics and Carter’s equations

In the braneworld Kerr spacetimes, the separated first
order differential equations of the geodesic motion take the
form [44,45]

Σ
dr
dw

¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð10Þ

Σ
dθ
dw

¼ �
ffiffiffiffiffiffiffiffiffiffiffi
WðθÞ

p
; ð11Þ

Σ
dφ
dw

¼ −
PW

sin2θ
þ aPR

Δ
; ð12Þ

Σ
dt
dw

¼ −aPW þ ðr2 þ a2ÞPR

Δ
; ð13Þ

where

RðrÞ ¼ P2
R − Δðm2r2 þ ~KÞ; ð14Þ

WðθÞ ¼ð ~K − a2m2cos2θÞ −
�

Pw

sin θ

�
2

; ð15Þ

PRðrÞ ¼ ~Eðr2 þ a2Þ − a ~Φ; ð16Þ

PWðθÞ ¼ a ~Esin2θ − ~Φ: ð17Þ

The so called Carter equations presented above contain four
constants of motion: the rest energy m, the energy (related
to the time Killing vector field) ~E, the axial angular
momentum (related to the axial Killing vector field) ~Φ,
and the constant of motion connected to the total angular
momentum (related to the Killing tensor field) ~K that is
usually replaced by the constant ~Q ¼ ~K − ða ~E − ~ΦÞ2,
since for the motion in the equatorial plane (θ ¼ π=2)
there is ~Q ¼ 0. These equations can be integrated and
expressed in terms of the elliptic integrals [41,46,47]. The
Carter equations have been generalized to the motion in the
Kerr–Newman-de Sitter spacetimes [18,45,46,48–50].
For the geodesic motion of photons, m ¼ 0 in the Carter

equations. In the standard KN spacetimes, analysis of the
photon motion has been presented in [13,51,52] and it can
be directly applied to the case of the braneworld Kerr-
Newman spacetimes with positive tidal charge. Extension
to the KN spacetimes with negative tidal charges can be
found in [24,25].
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Analysis of the test particle geodesic motion in the KN
spacetimes can be found in [12]. Detailed classification of
the braneworld KN spacetimes according to the properties
of the circular geodesics related to the Keplerian accretion
has been presented quite recently in [33].

III. CIRCULAR GEODESICS

In the Kerr and KN spacetimes, the circular geodesic
motion is possible in the equatorial plane only [42]. Except
the rest energym, two integrals of the motion are relevant as
~Q ¼ 0:

Ut ¼ −E; Uφ ¼ L; ð18Þ

where Uα ¼ gανdxν=dτ denotes the particle covariant
4-velocity, with τ being the affine parameter. The motion
constant E ¼ ~E=m is identified as the specific energy at
infinity, i.e., energy related to the rest energy, and the
motion constant L ¼ ~Φ=m as the specific angular momen-
tum at infinity.
For circular geodesics, the conditions

RðrÞ ¼ 0 and ∂rRðrÞ ¼ 0 ð19Þ

have to be satisfied simultaneously. For the spacetime line
element of the braneworld KN spacetimes given by (1)
[10,29,53], with the assumption of M ¼ 1 and a > 0, we
obtain the radial profiles of the specific energy E, specific
axial angular momentum L, and the angular velocity related
to infinity Ω in the form:

E ¼ r2 − 2rþ b� a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3rþ 2b� 2a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

pp ; ð20Þ

L ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p ðr2 þ a2 ∓ 2a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p Þ ∓ ab

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3rþ 2b� 2a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

pp ; ð21Þ

Ω ¼ � 1
r2ffiffiffiffiffiffi
r−b

p � a
; ð22Þ

where the upper and lower signs refer to two families of
solutions. We refer to these two families as the upper sign
family, and the lower sign family [33]. At large distances,
the upper family orbits are corotating, while the lower
family orbits are counterrotating with respect to rotation of
the spacetime. This separation is valid in the whole region
above the event horizon of the KN black hole spacetimes,
but in some of the KN naked singularity spacetimes the
upper family orbits become counterrotating close to the
naked singularity as demonstrated in [14,33].
Equations (20)–(22) imply two restrictions on the

existence of circular geodesics:

r2 − 3rþ 2b� 2a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
≥ 0; ð23Þ

r ≥ b: ð24Þ

The first condition determines in the equality limit the
photon circular geodesics—positions of circular orbits of
test particles are limited by the circular geodesics of
massless particles. The second condition is relevant in
the KN spacetimes with positive tidal charge b only, if we
restrict attention to the region of positive radii. In some of
the KN spacetimes its equality limit determines the inner-
most circular orbits.
The specific energy of particles following the circular

geodesics related to the LNRF (ELNRF) is given by the
projection of the 4-velocity on the timelike vector of the
frame:

ELNRF¼UðtÞ ¼UμeðtÞμ ¼
�
dt
dτ

�
eðtÞt

¼ r2�a
ffiffiffiffiffiffiffiffiffiffi
r−b

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þa2ðr2þ2r−bÞ

p ffiffiffiffi
Δ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−3rþ2b�2a

ffiffiffiffiffiffiffiffiffiffi
r−b

pp :

ð25Þ

The locallymeasured particle energymust be always positive
for the particles in the positive-root states assumed here. The
locally measured energy is negative for the particles in
the negative-root states that are physically irrelevant in the
context of our study [54]. For particles in the positive-root
states the time evolution vector is oriented to future, i.e.,
dt=dτ > 0, while particles in the negative-root states have
past oriented time vectors, dt=dτ < 0.
InEq. (25), theþð−Þ sign corresponds to theupper (lower)

family orbits. It is immediately clear fromEq. (25) that for the
upper sign family orbits, demonstrating the mining effect,
there is always ELNRF > 0 as r2 þ a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
> 0. For the

lower family orbits, we can also show that in the range of
validity, above the photon circular orbit ðr > rph−Þ, there is
also r2 − a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
> 0 and LLNRF > 0.

In fact, the LNRF energy of particles following the
circular geodesics diverges on the photon circular orbits.
For more details see [33].

A. Photon circular geodesics and marginally
stable circular geodesics

Loci of the photon circular geodesics in the Kerr and KN
spacetimes are determined by the relation [24,51,55]

r2 − 3rþ 2b� 2a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
¼ 0 ð26Þ

that implies the same reality condition on the radius of the
photon circular orbit rph as the one that follows from
Eqs. (20)–(22):
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rph ≥ b: ð27Þ

The solution of Eq. (26) can be expressed in the form

a ¼ aphðr; bÞ≡�ð3r − r2 − 2bÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
r − b

p : ð28Þ

For given a > 0 and given b, the function aphðr; bÞ
determines radius of both the corotating and counterrotat-
ing photon circular orbits. The zeros of the function
aphðr; bÞ are located at radii giving photon circular orbits
in the Reissner-Nordstron spacetimes [12,19]

rph� ¼ 1

2
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8b

p
Þ: ð29Þ

The local extrema of the function aphðr; bÞ are located at
r ¼ 1 and at r ¼ 4b=3. They correspond to the extreme KN
black holes when

aph-eðr ¼ 1; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
; ð30Þ

and to the KN spacetimes satisfying the condition

aph-exðr ¼ 4b=3; bÞ ¼ �
ffiffiffi
b

p

3
ffiffiffi
3

p ð8b − 9Þ: ð31Þ

Detailed discussion of the photon circular geodesics in the
braneworld KN spacetimes can be found in [33].
Loci of the stable circular geodesics are governed by the

condition

∂2Rðr; a; b; E; LÞ
∂r2 ≤ 0: ð32Þ

For the marginally stable circular orbits the equality must
hold along with the relations for the energy and angular
momentum of the circular geodesics—such orbits corre-
spond to an inflexion point of the effective potential of the
test particle motion [33].
Using the condition determining the marginally stable

orbits ∂2R=∂r2 ¼ 0 and inserting for specific energy and
angular momentum E, L the relations (20) and (21), we
obtain for the braneworld KN spacetimes the relations
determining radius of the marginally stable orbits [29,56]

rð6r − r2 − 9bþ 3a2Þ þ 4bðb − a2Þ ∓ 8aðr − bÞ3=2 ¼ 0:

ð33Þ

The solutions of Eq. (33) can be expressed in the form

a¼ amsðr;bÞ≡∓ 4ðr−bÞ3=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3br2− ð2þ4bÞr3þ3r4

p
4b−3r

;

ð34Þ

where the ∓ signs correspond to the upper and lower
family of the circular geodesics while the � signs corre-
spond to the two possible solutions of Eq. (33). The local
extrema of the function amsðr; bÞ are given by the relation

a ¼ amsðextrÞðbÞ≡ ∓ ð2
ffiffiffi
b

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð4b − 1Þ

p
Þ: ð35Þ

In the braneworld KN spacetime parameter space, the
function amsðextrÞ separates the KN spacetimes where
marginally stable orbits exist for both the upper and lower
family of circular geodesics, from those where they exist
only for the lower family orbits, and finally those where the
marginally stable circular geodesics does not exist neither
for the upper and lower family circular geodesics—for
details see [33]. Dependence of the radii of the photon
circular geodesics, and separately of the marginally stable
circular geodesics, on the spacetime parameters a and b is
illustrated in Fig. 1, while the “spin a” profiles of the radii
rphða; b ¼ constÞ and rmsða; b ¼ constÞ are compared in
Fig. 2 for typical values of the braneworld parameter b,
representing thus the classification of the braneworld KN
spacetimes introduced in [33]. Recall for completeness that
the innermost limit on existence of the circular geodesics is
given by the radius r ¼ b. Notice that in the mining KN
naked singularity spacetimes radius of the stable circular
photon geodesic is almost independent of the spin param-
eter a, being located closely to the limiting radius r ¼ b.
Simultaneously, this radius corresponds also to the radius
of the innermost stable circular geodesic.

B. Classification of the braneworld KN spacetimes

Classification of the braneworld KN spacetimes accord-
ing to the properties of the circular geodesics relevant for
accretion in the quasigeodesic (Keplerian) regime has been
recently given in [33]. Note that the classification is mainly
related to the regime of accretion that is at large distances
corotating with respect to the rotating spacetime.
Classification of the braneworld KN spacetimes due

to the Keplerian accretion is in the spacetime parameter
space a − b governed by the functions aph-eðr ¼ 1; bÞ,
aph-exðr ¼ 4b=3; bÞ, and amsðextrÞðbÞ. Concerning the
Keplerian accretion of matter corotating with the central
naked singularity or black hole at large distances, three
fundamentally different basic types of the KN spacetimes
has been found. These simple cases correspond only to
some of the introduced classes. In the other classes, a
combination of the basic simple types occurs, as generally
two sequences of the stable circular geodesics can exist in
the KN naked singularity spacetimes (or even RN naked
singularity spacetimes [19]), being separated by a sequence
of unstable circular geodesics or regions where existence of
circular geodesics is forbidden—see [33] for details. The
three basic types are the following.
(a) Mining KN naked singularity spacetimes where the

Keplerian accretion ends at the stable corotating photon
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circular geodesic were introduced in [33] and denoted as
Class IIIa spacetimes. In this case the final stage of the
accretion of matter corotating at large distances occurs in an
unlimitedly deep gravitational well centered at the photon
circular geodesic, and formally corresponds to unlimited
efficiency of the accretion process.
The radial motion in the equatorial plane can be

governed in the standard way due to the effective potentials
defined by the relation

grr

�
dr
dτ

�
2

¼ ðE − VeffþÞðE − Veff−Þ; ð36Þ

where Veffþðr; a; b; LÞ (Veff−ðr; a; b; LÞ) governs motion
of particles in the positive-root states (negative-root states)
[41]. Here we consider the positive-root states governed by
the effective potential Veffþðr; a; b; LÞ that in the brane-
world KN spacetimes takes the form [33]

Veffþðr;a; b; LÞ

¼ aLð2r − bÞ þ r
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2r2 þ r4 þ a2ðr2 þ 2r − bÞ

p
r4 þ a2ðr2 þ 2r − bÞ :

ð37Þ

For fixed values of the angular momentum L and the
spacetime parameters a, b, the local extrema of Veffþ (if
they exists) determine the circular geodesic orbits. In the
KN black hole spacetimes, the standard behavior occurs—
stable and unstable circular orbits (at minima and maxima
of the effective potential) exist for L > Lmsþ > 0 (corotat-
ing orbits), and L < Lms− < 0 (counterrotating orbits). The
situation is more complex for the KN naked singularities. In
the Kerr naked singularity spacetimes with a < 1.3, the
marginal value of angular momentum of the stable plus
family orbits, Lmsþ, becomes to be negative. In the mining
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FIG. 1. Marginally stable and photon circular geodesics. We give dependence of the radii of marginally stable or innermost stable and
photon circular geodesics on the parameters a, b of the braneworld KN spacetimes in the form of functions rmsða; b ¼ constÞ
and rphða; b ¼ constÞ. In the upper row the radii of the upper family marginally stable orbits are given for positive tidal charges (left box)
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KN naked singularity spacetimes, the effective potential
has only one minimum for all L > 0, but the sequence of
these minima continues for decreasing L < 0, with energy
E of these minima being negative and being decreasing
without any limit for L and r → rphþ, giving thus unlimited
well of the effective potential. For L < Lms− < 0, addi-
tional local extrema occur in the effective potential,
corresponding to counterrotating unstable and stable cir-
cular orbits, energy of these circular orbits, both stable and
unstable, is positive, and in the limit L → −∞, there is
r → rph− > rphþ, and E → ∞—for details see discussion
of class IIIa in [33]. Nevertheless, it should be mentioned
that some of the braneworld KN naked singularity space-
times demonstrate behavior of the effective potential that is
formally even more extraordinary than in the case of the
mining spacetimes—see, e.g., the class IIIb of the KN
spacetimes discussed in [33].
Of course, such a “perpetuum mobile” regime of

accretion must be limited by the validity conditions for
the test particle motion that is involved in the assumption of
the Keplerian accretion [33]. The typical radial profiles
of the quantities characterizing the geodesic circular
motion, E, L, and Ω, are illustrated in Fig. 3.
(b) Overcharged KN naked singularity spacetimes where

the final state of the accretion along the stable circular

geodesics is located at the limiting radius r ¼ b, given by
the tidal charge. These KN naked singularity spacetimes
have the tidal charge parameter b > 1, and their accretion
efficiency is independent of the spin parameter a [33]. The
typical radial profiles of E, L, andΩ are illustrated in Fig. 3.
At the final state of the accretion, the specific energy

EISCO ¼
�
b − 1

b

�
1=2

ð38Þ

and axial angular momentum and the angular velocity
related to the distant static observers are given by

LISCO ¼ −
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðb − 1Þp ; ð39Þ

ΩISCO ¼ 0: ð40Þ

The accreting matter is thus concentrated at a ring at (and
near) r ¼ b, where it is at rest relative to distant observers,
but it is counterrotating relative to the LNRFs. For
vanishing rotation parameter, a ¼ 0, the overcharged KN
naked singularity spacetimes reduce to the Reissner-
Nordstrom (RN) naked singularity spacetimes; properties
of their geodesic structure were studied in [12,19]. The final
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FIG. 2. Relative locations of the marginally stable and photon circular geodesics in the braneworld KN spacetimes. We give the radial
profiles of the marginally stable circular geodesics, rmsða; b ¼ constÞ, and the photon circular geodesics, rphða; b ¼ constÞ, for typical
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state of the Keplerian accretion now has both LISCO ¼ 0;
ΩISCO ¼ 0, and due to the spherical symmetry of the RN
spacetimes, the final state of the accretion can be a sphere,
similarly to the other strong gravity spacetimes (e.g., the
regular spacetimes) without an event horizon [57,58]. In the
classification introduced in [33], the simple situation
corresponding to the continuously decreasing energy pro-
file of accretion is represented by the class Va. In the other
KN (RN) spacetimes exhibiting this kind of Keplerian
accretion, only the inner sequence of circular geodesics
ends at the final state r ¼ b. The inner sequences can
start at an outer marginally stable geodesic (located under
the inner marginally stable orbit of the outer region
of the Keplerian accretion), or at a stable photon circular
geodesic [19,33].
(c) Ordinary KN naked singularity and black hole

spacetimes where the Keplerian accretion ends at the

marginally stable circular geodesic. This is the standard
case, relevant for the Kerr naked singularity and black hole
spacetimes [14,20,42]. All the braneworld KN black hole
spacetimes are of the ordinary type above the outer horizon.
However, only the braneworld KN naked singularity
spacetimes with negative tidal charges are of the exact
ordinary type, having qualitatively the same character of
the E, L, Ω radial profiles as Kerr naked singularities.
We illustrate typical behavior of the radial profiles of the
specific energy E, specific axial angular momentum L, and
angular velocity relative to distant observers Ω in Fig. 3.
In the KN naked singularity spacetimes with positive

tidal charge (b > 0), the region of ordinary Keplerian
accretion with E, L, Ω radial profiles similar to those of
the Kerr naked singularity spacetimes is an outer one, and it
is always combined with an inner region of Keplerian
accretion having a nonstandard character being, e.g., of the
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FIG. 3. Radial profiles of the specific energy E, specific angular momentum L, and the angular velocity Ω, given for spacetime
parameters representing the ordinary, black hole (a ¼ 0.3 and b ¼ 0.7) and naked singularity (a ¼ 4 and b ¼ 0.5) spacetimes, the
mining naked singularity spacetimes (a ¼ 1.5 and b ¼ 0.8), and the overcharged (a ¼ 2 and b ¼ 1.5) spacetimes. The black holes and
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mining type or, inversely, representing a sequence of stable
geodesics with E and L decreasing from stable photon
circular geodesic [33]. Note that except the KN naked
singularity spacetimes of Class IIIa and Va, demonstrating
the “pure stable” regime of the (corotating) Keplerian
accretion, all the other naked singularity spacetimes dem-
onstrate a combined character of the Keplerian accretion
where the outer region of the Keplerian accretion is of the
ordinary type, ending at the marginally stable circular
geodesic followed by region of unstable circular geodesics,
while the inner Keplerian region is of nonstandard char-
acter. In fact, we can consider the KN naked singularity
spacetimes having the outer Keplerian region with inner
boundary at a marginally stable circular geodesic as
“effectively” ordinary KN naked singularities.

C. Gradient of the angular velocity
of the Keplerian accretion

In the present paper we extend our consideration of the
Keplerian accretion for the notion of the gradient of the
radial profile of the circular geodesic angular velocity
related to distant observers Ω that is relevant for the
mechanism governing the Keplerian accretion. It is well
known that the so called magneto-rotational instability
(MRI) mechanism [59] can work only in regions where
dΩ=dr < 0. Therefore, we shall test in which regions
related to the “corotating” Keplerian accretion in the three
kinds of the braneworld KN naked singularity spacetimes,
the condition dΩ=dr > 0 requiring a different Keplerian
accretion mechanism occurs. Such a different mechanism
can be simply related to the gravitational (electromagnetic)
radiation of the orbiting matter, or to some different
viscosity mechanism; detailed discussion of the phenomena
related to the switching of the angular velocity gradient,
and possible behavior of matter in the region where
dΩ=dr ∼ 0, can be found in [57,58]. Here, we only
determine in which KN spacetimes the regions where
dΩ=dr > 0 occur. Using Eq. (22), we find that the con-
dition dΩ=dr ¼ 0 is satisfied just at the radii satisfying the
relation

r ¼ 4b
3
: ð41Þ

The comparison of the radius r ¼ 4b=3 with the radii of the
marginally stable circular geodesics, or the stable photon
circular geodesics, is thus the clue for the extension of the
classification of the braneworld KN spacetimes. We can
introduce the following types of the braneworld KN
spacetimes according to the behavior of the gradient of
the angular velocity of the circular geodesics; we specify
these regions also by using the classification introduced
previously in [33]:
(a) Spacetimes with dΩ=dr < 0 at all circular geodesics

(Classes I, VIII, IX, X).

(b) Black holes where dΩ=dr ¼ 0 occurs under the inner
horizon (Class II).

(c) Naked singularities where dΩ=dr ¼ 0 occurs in the
single continuous sequence of stable circular geo-
desics (Classes IIIa, IVa, Va, and Vb).

(d) Naked singularities where dΩ=dr ¼ 0 occurs at the
inner region of stable circular geodesics separated
from the outer one by a region of unstable geodesics
(Class IIIb, IVb, and Vc).

(e) Naked singularities where dΩ=dr > 0 at the inner
region of stable circular geodesics starting at the stable
photon circular geodesic, while dΩ=dr < 0 at the
outer region of the circular geodesics ending at the
unstable photon circular geodesic (Class VI and VII).
In this case there is no radius where dΩ=dr ¼ 0.

We illustrate the extended classification of the brane-
world KN spacetimes, based on the properties of the
circular geodesic angular velocity radial profiles, in
Fig. 4 with details given in Fig. 5. Notice that naked
singularity spacetimes where dΩ=dr ¼ 0 occurs at the
region of unstable circular geodesics, separating two
regions of stable circular geodesics, do not exist.
We can conclude that in all the considered KN space-

times, the MRI mechanism of the Keplerian accretion is
possible only at the region of r > 4b=3. Therefore, in the
mining KN naked singularity spacetimes, the mining
regime occuring in the vicinity of the radius of the stable
photon circular geodesic is possible only due to some
different mechanisms, similarly to the case of the final
stages of accretion in the overcharged KN spacetimes
(b > 1) ending at r ¼ b—for details see [57]. In the case
of the ordinary braneworld KN spacetimes, or in the outer
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FIG. 4. Classification (a)-(e) of the braneworld KN spacetimes
according to the properties of the radial profile of the angular
velocity of the circular geodesics. Classes (a)-(e) are introduced
according to the existence and position of the local extremum of
the radial profile of the angular velocity Ωðr; a; bÞ; the local
maximum is located at r ¼ 4b=3. The classification is comple-
mentary to those related to the properties of energy E and angular
momentum L radial profiles, introduced in [33].
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regions of the effectively ordinary KN naked singularity
spacetimes having an outer region of standard Keplerian
accretion ending at the marginally stable circular geodesic,
the angular velocity is decreasing in the region of the stable
circular geodesics, and the Keplerian accretion can be
everywhere governed by the MRI mechanism.

D. Possible high-energy particle collisions
on circular geodesics

The circular geodesics in the deep gravitational well of
the Kerr naked singularity spacetimes admit existence of
astrophysically very interesting events demonstrating ultra-
high energy that could be observationally relevant [21,35].
In the braneworld KN naked singularity spacetimes the
possibility of such ultrahigh energetic processes is even
much wider.
We thus extensively study in the present paper the so

called collisional Banados-Silk-West (BSW) processes
[34], i.e., collisions of particles giving extremely large
CM energy, concentrating our attention to the braneworld
KN naked singularity spacetimes, as the case of the
braneworld KN black hole spacetimes was addressed in
[36]. Such processes can occur in vicinity of the event
horizon of the near-extreme rotating black hole spacetimes,
if the motion constants of colliding particles are well tuned
[60,61], or in special region r ∼ 1 of the near-extreme Kerr
naked singularity spacetimes under much lesser restrictions
on the motion constants of the colliding particles [21,35].
Namely, in the near-extreme Kerr naked singularity space-
times the particles freely falling from infinity along radial
(θ ¼ const.) trajectories and colliding at the radius r ¼ 1
with the related returning particles can yield efficiently
extremely large CM energy [21,35].
Here, we study the possibility to obtain ultrahigh CM

energy for particles incoming from large distances and

colliding with particles orbiting the mining KN naked
singularities in the “mining regime,” i.e., at circular orbits
located extremely close to the stable photon circular
geodesic radius. We then consider also the collisional
processes at the specific radius r ¼ 1 in the braneworld
KN naked singularity spacetimes of the ordinary type;
notice that in the overcharged KN naked singularity
spacetimes (having tidal charge parameter b > 1) the
special radius r ¼ 1 is located in the forbidden region
[33], and it is thus irrelevant for this specific kind of the
collisional processes. Usually, it is assumed that the
particles colliding at r ¼ 1 are incoming from infinity
(or very large distances). Here, we extend the study of the
BSW processes at r ¼ 1 for collisions of particles freely
falling from small distances, concentrating attention to the
simple case of the collisions of particles moving in
equatorial plane with zero angular momentum. Then the
CM energy on the colliding particles will be determined by
their energy at the starting point. In the next section we thus
give the analysis of the related test particle motion.

IV. GEODESIC MOTION WITH ZERO ANGULAR
MOMENTUM AND PURELY RADIAL GEODESICS

In order to determine family of geodesics that could
reach regions where the ultrahigh energy collisions can
occur, i.e., the vicinity of the horizon in the black hole case,
and the regions of r ∼ 1 in the ordinary near-extreme
naked singularity spacetimes, or the region of r ∼ rphðsÞ
in the mining naked singularity spacetimes, we consider a
simple case of the equatorial motion with vanishing axial
angular momentum (L ¼ 0). We also consider the special
case of the “radial” geodesics starting at infinity [14].

A. Equatorial geodesics with zero angular momentum

The equatorial motion with zero angular momentum
requires automatically Q ¼ 0 and vanishing axial angular
momentum, L ¼ 0. Then the motion is governed by the
specific energy E having the allowed values restricted
by an effective potential giving turning points of the
motion (where dr=dτ ¼ 0) due to the condition E ¼ Veff .
We shall thus discuss properties of the effective poten-
tial Veffðr; a; b;Q ¼ 0; L ¼ 0Þ ¼ Veffðr; a; bÞ.

1. Kerr spacetimes

It is convenient to remind first as a reference the case of
the Kerr geometry when b ¼ 0. Then the effective potential
takes the form

Veffðr; a; b ¼ 0Þ ¼ r
ffiffiffiffi
Δ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ a2ðr2 − 2rÞ

p : ð42Þ

The local extrema of the effective potential, given by the
condition V 0

effðr; a; b ¼ 0Þ ¼ 0, where 0≡ d=dr, can be
expressed by the relation
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FIG. 5. Classification of the braneworld KN spacetimes ac-
cording to the properties of the radial profile of the angular
velocity of the circular geodesics. Detailed situation around the
extreme black hole states.
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a2 ¼ a2sol�ðrÞ≡ 2r − r2 � 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − 1Þ

p
: ð43Þ

The local extrema of the effective potential determine the
special class of equatorial circular geodesics with L ¼ 0.
The character of these local extrema of the effective
potential is determined by the sign of the second derivative
V 00
effðr; a; b ¼ 0Þ. As demonstrated in Fig. 6, for r > 3=4 all

the local extrema are minima corresponding to stable
circular geodesics, while at r < 3=4 maxima of the effec-
tive potential occur, corresponding to unstable circular
geodesics. We can see that the function asol−ðrÞ is always
defined between the horizons, governed by the condition

a ¼ aHðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r − r2

p
; ð44Þ

and has no physical relevance. The inflexion point of the
effective potential occurs at

r ¼ 3

4
; a ¼ 3

ffiffiffi
3

p

4
∼ 1.299: ð45Þ

The effective potential (42) has only six different types of
behavior—see Fig. 7. The circular geodesics with L ¼ 0

exist only in the Kerr spacetimes with a ≤ 3
ffiffiffi
3

p
=4 ∼ 1.299

[14]. In the naked singularity spacetimes with 1 < a ≤
3

ffiffiffi
3

p
=4, there are both stable and unstable circular geo-

desics, the unstable being located under the stable one; in
the spacetimes with a > 3

ffiffiffi
3

p
=4, the effective potential is

monotonically increasing with increasing radius. In the
black hole spacetimes, unstable circular geodesic with
L ¼ 0 can exist only, being located under the inner horizon.

2. Braneworld Kerr-Newman spacetimes

For nonzero values of the tidal charge parameter b, the
effective potential takes the form

Veffðr;a; bÞ ¼
r

ffiffiffiffi
Δ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ a2ðr2 − 2r − bÞ

p : ð46Þ

Assuming the spin a > 0, the effective potential vanishes at
r ¼ 0 and at the inner and the outer horizons in the black
hole spacetimes. Radius of divergence of the effective
potential is governed by vanishing of denominator in the
VEffðr; a; bÞ and can be determined by the relation

b ¼ bdivðr; aÞ≡ r4 þ a2ðr2 − 2rÞ
a2

: ð47Þ

Notice that the divergence radius of the effective potential
corresponds to the boundary of the causality violation
region in the equatorial plane [33]; the corresponding test
particles have thus turning points of their radial motion
before they can reach this physically forbidden region. The
local extrema of the effective potential are for a > 0
governed by the condition

b ¼ bext�ðr; aÞ≡ −Gðr; aÞ � ða2 þ r2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðr; aÞp

2a2
; ð48Þ

where

Gðr; aÞ ¼ r4 þ a4 þ 2a2ðr − 2Þ; ð49Þ

while for the Reissner-Nordstron (RN) spacetimes with
a ¼ 0, we obtain simple relation

b ¼ bextðRNÞðrÞ≡ r: ð50Þ

In the RN case the local extrema are located at r ¼ b and
their character is given by the second derivative of the
effective potential that takes the form
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FIG. 6. Equatorial geodesicswith vanishing angularmomentum.
Characteristic functions for the Kerr spacetimes.
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FIG. 7. Equatorial geodesicswith vanishing angularmomentum.
Effective potentials for the Kerr spacetimes are given for typical
values of spin parameter a.
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d2Veffðr ¼ b; a ¼ 0; bÞ
dr2

¼ 1

b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb − 1Þbp : ð51Þ

That is the reason why for b ∈ ð1;∞Þ there is minimum of
the effective potential at r ¼ b, while for b ∈ ð0; 1Þ the
second derivative is not well defined and there is no local
extremum of the effective potential outside the black hole
horizons [12,19].
The behavior of the effective potential Veffðr; a; bÞ in the

braneworld KN spacetimes is thus determined by the
functions bdivðr;aÞ (discussed in detail in [33]) and
bextr�ðr; aÞ, where the condition Δ > 0 guaranteeing posi-
tions outside the dynamic regions of the spacetime has to be
satisfied. For the braneworld KN black hole spacetimes, the
equation bextr ¼ b, has solutions only under the inner
horizon. For naked singularities the situation is more
complex. The limit of the reality of the function
bextr�ðr; aÞ is governed by the function that is identical
with the function governing its zero points. The limits of
reality and the zero points are given by the relation

a2¼ a2extrðrÞ�ðrÞ¼ a2extrðzÞðrÞ≡rð2−rÞ�2r
ffiffiffiffiffiffiffiffiffiffi
1− r

p
: ð52Þ

The function a2extrðrÞ�ðrÞ is represented in Fig. 8. In order to
fully understand the behavior of the effective potential (46),
we have to determine the second derivative of the effective
potential at the extrema points,

∂2Veffðr; a; bextr�Þ
∂r2 ; ð53Þ

that determine the character of the extremal points of the
functions bextr�ðr; aÞ. The local extrema of the function
bextr�ðr; aÞ are given by the function a2extrðexÞðrÞ that is

implicitly determined by the relation

4a2ð1− rÞ�2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðr;aÞ

p
�2ðr2þa2Þ½ðr−1Þa2þ r3�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðr;aÞp ¼ 0:

ð54Þ

The resulting function a2extrðexÞðrÞ is determined numeri-

cally and is also illustrated in Fig. 8.
The zeros of the function bextr�ðr; aÞ, given in Fig. 8,

determine a branching point at a ¼ 1.299; r0 ¼ 0.755; i.e.,
the highest value of the spin parameter awhere the functions
bextr�ðr; aÞ intersect the b ¼ 0 line. For a > 1.299, there is
bextrþðr; aÞ > 0 and bextr−ðr; aÞ < 0, and both branches of
the bextr�ðr; aÞ function have an extremal point.
The characteristic functions of the effective potential,

i.e., the functions bdivðr; aÞ and bextr�ðr; aÞ, are illustrated
for six typical situations in Fig. 9 for six properly chosen
values of the spin parameter a. We give also explicitly the
character of the extremal points of the effective potential. In
the black hole spacetimes, there is no extremum above the
outer horizon, while under the inner horizon there can be
none, one or two extrema if b > 0, while only one local
extremum exist for b < 0. In the naked singularity space-
times, one, two, or three local extrema exist if b > 0, while
none, one, or two local extrema exist, if b < 0.
Let rsd�ða; bÞ be the positions of the inflexion points of

the effective potential, i.e., the solution of the equation

∂2VEffðr; a; bextr�Þ
∂r2 ¼ 0: ð55Þ

Then we define the functions giving the limiting behavior
of the effective potential in the form

b1ðaÞ≡ bextrþðr ¼ rsdþÞ ð56Þ

b2ðaÞ≡ bextr−ðr ¼ rsd−Þ: ð57Þ

The functions b1ðaÞ and b2ðaÞ govern the classification of
the braneworld KN spacetimes according to the equatorial
motion with vanishing angular momentum, giving the
values of the spacetime parameters a and b for whom
the effective potential changes its character. Namely, the
effective potential changes the number and/or kind of its
local extrema. These two functions are illustrated in Fig. 10
giving the classification of the braneworld KN spacetimes.
In the classification we consider three criteria: number of

the extrema of the effective potential, sign of the brane-
world parameter b, and type of the spacetime (black hole or
naked singularity). The spacetime parameter space (a − b)
can be then separated into eight areas (I-VIII) with differing
number of solutions of the equation bextr�ðr; aÞ ¼ b. The
results can be seen in Fig. 10. The arabic number in the
brackets corresponds to the number of solutions for each
region. The functions b1ðaÞ and b2ðaÞ were obtained by
numerical calculations. They intersect at the point P2 with
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FIG. 8. Equatorial geodesicswith vanishing angularmomentum.
Characteristic functions for the braneworld KN spacetimes—
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function bextðr; aÞ and divergence function bdivðr; aÞ.
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the spacetime parameters taking the values a ¼ 1.39771,
b ¼ 0.312654; the function b2ðaÞ intersects the zero axes at
a ¼ 1.299. The graph of the function b2ðaÞ is always above
the curve a2 þ b ¼ 1 corresponding to the extreme black
holes and separates black holes from naked singularities.
Point P in Fig. 10 where the function b1ðaÞ intersects the
curve a2 þ b ¼ 1 is at a ¼ 0.938756, b ¼ 0.118485.

Now we can give for the established classes of the
braneworld KN spacetimes typical sequences of the effec-
tive potential, taking fixed braneworld parameter b and
correspondingly varying spin parameter a. We separate the
braneworld spacetime with negative and positive parameter
b, and use only a > 0 values as the equatorial motion with
vanishing angular momentum is independent of the sign of
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FIG. 9. Equatorial geodesics with vanishing angular momentum. Characteristic functions governing the radial motion in the
braneworld KN spacetimes—bextðr; aÞ and bdivðr; aÞ. We give the radial profiles of these functions for typical values of the spin
parameter a that govern the classification of the KN spacetimes related to the equatorial L ¼ 0 geodesics.
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the spin. We also give distribution of the local maxima
(minima) of the effective potential giving unstable (stable)
circular geodesics with L ¼ 0.
Typical effective potentials corresponding to the classes I

(0), II(1), III(2), VIII(0) of the braneworld KN spacetimes
with negative values of brane parameter, b < 0, are
represented in Fig. 11. The local extrema of the effective
potential correspond to the function bextr−ðr; aÞ. The
behavior of the effective potential for the b < 0 spacetimes
is quite simple as suggested by Fig. 11. In the black hole
region I(0), the effective potential is simply descending to
zero value at the horizon, having no local extremum. In the

black hole region II(1), one local maximum exists under the
inner horizon. If we increase sufficiently value of the spin
parameter a, we enter the naked singularity region III(2)
where the effective potential demonstrates one local maxi-
mum and one local minimum. Further increase of the spin
parameter a will eventually cause that these two extrema
coalesce into an inflexion point, and we then enter the
naked singularity region VIII(0) where no extrema points
of the effective potential exist.
For the braneworld spacetimes with b > 0, the behavior

of the effective potential is more complex in comparison
with the b < 0 spacetimes, as shown in Fig. 12. In the black
hole region IV(0), there are no local extrema of the effective
potential that is not defined between the horizons, being
decreasing (increasing) above the outer (under the inner)
black hole horizon. As the spin parameter a increases and
the brane parameter b is kept at b < 0.118485, we enter the
black hole region V(2). In this region there are two extrema
points (one minimum and one maximum) under the inner
horizon. Further increase of the parameter a causes
transition from the black holes region to the naked
singularities region VI(3) where the effective potential
demonstrates existence of two local minima and one local
maximum. Finally, the region VII(1) corresponds to naked
singularity spacetimes demonstrating one local minimum
of the effective potential; notice that the corresponding case
illustrated for b ¼ 0.2 is mixed with the case VI(3), as can
be seen in the classification map reflected in Fig. 10.

B. Radial fall from infinity

As demonstrated in [14,43,62], there is a special class of
test particle trajectories corresponding to the purely “radial”
trajectories, i.e., trajectories keeping constant latitude
θ ¼ const, but with varying azimuthal coordinate φ caused
by the dragging of inertial frames. Such particles fall freely
from infinity, having zero angular momentum, L ¼ 0,
Q ¼ 0, and energy equal to the rest energy, E ¼ m.
Such test particles move purely radially relative to the
family of the locally nonrotating frames introduced in [42].
For the purely radial geodesics with the motion constants

L ¼ 0; Q ¼ 0; E ¼ m, the function governing the radial
motion takes in the braneworld KN spacetimes the follow-
ing simple form

Rðr; a; bÞ ¼ m2ðr2 þ a2Þð2r − bÞ: ð58Þ

We can see that the particles falling from infinity with
L ¼ 0; Q ¼ 0; E ¼ m have turning point of their radial
motion at the radius r ¼ b=2. Clearly, in the equatorial
plane the turning point is located outside the causality
violating region, as follows from behavior of the effective
potential Veffðr; a; bÞ. Notice that the turning point of the
equatorial radial geodesics is given by the solution of the
equation Veffðr; a; bÞ ¼ 1.
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FIG. 11. Equatorial geodesics with vanishing angular
momentum—the effective potential VEffðr; a; b; L ¼ 0Þ given
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V. ULTRAHIGH ENERGY PARTICLE
COLLISIONS IN THE BRANEWORLD KN
NAKED SINGULARITY SPACETIMES

Kerr naked singularities (or Kerr superspinars) were
extensively studied for a variety of astrophysical
[11,14,21,63,64] and optical [18,32,52] phenomena.
Kerr superspinars, proposed in [30], can be expected in
active galactic nuclei (AGN) where supermassive black
holes are usually assumed [65], or in microquasars, i.e.,
galaxy black hole candidates (GBHC) observed in some
x-ray binary systems [66]. The primordial Kerr super-
spinars have to be converted into a near-extreme Kerr
black hole due to accretion, but if they avoid a period of
very efficient accretion from counterrotating Keplerian
disc, they could well survive to the era of high redshift
quasars [20] when they could enter near-extreme
states appropriate for the ultrahigh energy collisions.
The ultrahigh energy collisions in the field of near-extreme
Kerr naked singularities (superspinars) were studied in
[21,35,67–71]

Here we shall study the ultrahigh energy collisional pro-
cesses in the braneworld spacetimes for two relevant cases:
(a) in the standard case of the near-extreme braneworld

KN naked singularity spacetimes, when the ultrahigh
energy collisions occur near the radius r ¼ 1, recall
that we have put M ¼ 1

(b) in the special extraordinary class of the mining KN
naked singularity spacetimes when one of the collid-
ing particles is orbiting in the so called mining regime,
being located very close to the radius of the stable
photon circular geodesic.

For comparison we give also the results for the collisions
in the extreme black hole spacetimes.

A. Center-of-mass energy of colliding particles

The CM energy of two colliding particles with
4-momenta pα

1 , pα
2, rest masses m1 m2, and the total

momentum pα
tot ¼ pα

1 þ pα
2, is given by the standard

relation characterizing the so called Banados-Silk-West
(BSW) process [34]
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FIG. 12. Equatorial geodesics with vanishing angular momentum—the effective potential VEffðr; a; b; L ¼ 0Þ for braneworld
(and standard) KN spacetimes with positive tidal charge, in regions IV(0),V(2),VI(3) and VII(1), are given for properly chosen values
of b and a.
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~E2
CM ¼ −pα

totptotα ¼ m2
1 þm2

2 − 2gαβpα
1p

β
2:

The CM energy is a scalar independent of the coordinate
system; the Carter equations imply its general form

~E2
CM ¼ m2

1 þm2
2 þ

2m1m2

Σ

�
PR1PR2 − ϵ1r

ffiffiffiffiffiffi
R1

p
ϵ2r

ffiffiffiffiffiffi
R2

p
Δ

−
PW1PW2

sin2θ
− ϵ1θ

ffiffiffiffiffiffiffi
W1

p
ϵ2θ

ffiffiffiffiffiffiffi
W2

p �
ð59Þ

where ϵir takes value of þ (−) for outward (inward) radial
motion, and ϵiθ takes value of þ (−) for increasing
(decreasing) latitude.
In the standard BSW processes, we are looking for

situations when for both the Kerr black hole or naked
singularity spacetimes the collision occurs at radius where
Δðr; aÞ → 0, indicating thus possibility of extremely large
values of the CM energy. In the black hole spacetimes, this
possibility occurs near the black hole outer horizon, and it
is shown that such processes are realistic for extreme or
near-extreme Kerr black holes [34,60,61,68]. This is also
the case of the braneworld KN black holes [72]. In the
naked singularity spacetimes, the standard mechanism
assumes collisions of particles infalling from large dis-
tances (e.g., purely radially moving particles) that can be
both inward and outward oriented at the special radius of
collisions at r ¼ 1 where the ultrahigh CM energy could
occur in the near-extreme Kerr naked singularity space-
times; the opposite orientation of the radial motion of the
colliding particles is a necessary condition for the ultrahigh
CM energy [20,21,35]. Note that the high CM energy can
be obtained also due to collision of a particle orbiting at (or
very close to) r ¼ 1 with radially infalling particle [21], but
the efficiency is substantially reduced in comparison with
the case of the radially opposite motion of the colliding
particles. Here we shall consider the standard mechanism
for the case of the near-extreme braneworld KN naked
singularity spacetimes, testing also the dependence of the
CM energy of collisions at r ¼ 1 on the energy of particles
falling with vanishing angular momentum in the equatorial
plane from rest at small distance to the collision radius.
In the mining braneworld KN naked singularity space-

times, a new mechanism of very efficient ultrahigh energy
collisions is possible for particle orbiting in the so called
mining regime following the stable circular geodesics in the
extremely deep gravitational well located very close to the
stable circular photon geodesic; in this case we consider as
the collisional partners both the particles incoming from
large distances along the purely radial orbits, and the
particles incoming from the marginally stable counter-
rotating circular geodesic.
For simplicity we shall consider in the following that

both colliding particles have the same rest energy.
Therefore, we assume m1 ¼ m2 ¼ m.

We first give the radial profiles of the CM energy for
collisions near the horizon of the extreme Kerr black hole in
Fig. 13, or an extreme KN black hole in Fig. 14. For
completeness, we give the CM energy also for collisions
under the horizon. We can see that the energy increases as
the collision point is approaching the radius corresponding
to the black hole horizon, for sufficiently low angular
momentum of incoming particles. Generally, there is
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FIG. 13. Radial profile of the CM energy of the BSW collisions
in the field of extreme Kerr black hole, when spin a ¼ 1 and tidal
charge b ¼ 0. Angular momentum of the first particle is exactly
L ¼ 2, in order to allow for the BSW effect, while for the
secondary colliding particle L < 2 in order to obtain diverging
CM energy for r → 1. Particles with L > 2 cannot reach the
horizon.
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divergence of the CM energy for r → rh from both sides,
with exception of the special limiting value of the angular
momentum parameter when the radial profile is continuous
(in the extreme Kerr spacetime the value is l ¼ 2). The
divergence of the CM energy in the BSW effect in the
extreme black hole spacetimes has been discussed in detail
by [34,73].

B. Collisions in the near-extreme braneworld
KN naked singularity spacetimes

First, we consider the standard ultrahigh CM energy
collisional processes occurring at (or near) the special
radius r ¼ 1 in the near-extreme braneworld KN super-
spinning spacetimes with

a2 þ b ¼ 1þ δ; δ ≪ 1: ð60Þ

Then the condition Δðr ¼ 1; a; bÞ ¼ δ ≪ 1 is satisfied,
guaranteeing possibility of the ultrahigh CM energy colli-
sional processes. The ultrahigh CM energy can be obtained
only under the condition ϵ1rϵ2r ¼ −1, i.e.,when the colliding
particles move oppositely in the radial direction [74].

1. Collisions of particles following the
purely radial geodesics

For the radially falling and returning particles with the
motion constants ~E ¼ m and L ¼ Q ¼ 0, the extremely
high CM energy can be obtained, if they collide at the
radius r ¼ 1 and at arbitrary latitude θ, in the near-extreme
KN naked singularity spacetimes. Since we assume the
same rest energy of the colliding particles, m1 ¼ m2 ¼ m,
the CM energy can be approximately expressed in the
following form

~E2
CM ∼

4m2

1þ a2cos2θ

�
1þ 2a2 þ a4

δ
þ a2cos2θ − a2

�
: ð61Þ

Note that in this case the expression is in the basic
approximation independent of the tidal charge parameter
b (the dependence on b is hidden in parameter δ), and
follows the expression obtained for the Kerr naked singu-
larity spacetimes in [21] where detailed discussion is
presented. Of course, in the more precise, higher-order,
approximation, the tidal charge enters the ~E2

CM formula.

2. Collisions of particles moving with zero angular
momentum in the equatorial plane

Now we study the ultrahigh CM energy collisional
processes in the case of test particles moving in the
equatorial plane (Q ¼ 0), with zero angular momentum
L ¼ 0 and specific energy ~E=m < 1. We assume that such
particles start their motion from rest at the radius given by
the effective potential studied in the previous section.

The collisional CM energy of the inward and outward
moving particles with energy ~E1 and ~E2, which collide at an
arbitrary allowed radius, takes the general form

~E2
CM ¼ 2m2

r2Δ

�
~E1

~E2

m2
ðr4 þ a2r2 þ 2a2r − a2bþ

ffiffiffiffiffi
A1

p ffiffiffiffiffi
A2

p
Þ

þ r4 − 2r3 þ ðbþ a2Þr2
�

ð62Þ

where

Ai ¼ ða2 þ r2Þ2 − Δ
�
a2 þ r2m2

~E2
i

�
ð63Þ

and the covariant specific energy ~Ei=m of the colliding
particles is given by the effective potential (46) where we
have to apply the substitution r → ri for the initial position
of the colliding particles, while r in the previous equation
denotes the radius of the collision event.
An ultrahigh CM energy can be obtained, if Δ → 0.

Using again the near-extreme case a2 þ b ¼ 1þ δ, we
arrive to the basic approximation for the collisions at r ¼ 1
in the form

~E2
MC ¼ 4 ~E1

~E2

δ
ð1þ a2Þ2: ð64Þ

The modification due to the various starting positions of the
colliding particles is given by the shift m2 → ~E1

~E2.
At the radius of the collision, the specific energy of the

colliding particles must satisfy the relation

E2
1;2 ≥

r2Δ
r4 þ a2ðr2 þ 2r − bÞ≡ V2

effðr; a; b; L ¼ 0Þ: ð65Þ

Inspecting behavior of the effective potential
V2
effðr; a; b; L ¼ 0Þ, we conclude that the collisions in

the KN naked singularity spacetimes with b > 0 can occur
for all particles starting at rest, if they have specific energy
in the interval

1 ≥ Ei ≥ EminðoÞ; ð66Þ

where EminðoÞ denotes the outer minimum of the effective
potential V2

effðr; a; b; L ¼ 0Þ. On the other hand, for the
colliding particles in the braneworld KN naked singularity
spacetimes with b < 0, the specific energy has to satisfy the
condition

Emax ≥ Ei ≥ Emin; ð67Þ

where Emax (Emin) denotes the maximum (minimum) of
the effective potential. Clearly, the negatively charged
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braneworld spacetimes give only restricted possibilities for
the ultrahigh CM energy collisions.

3. Collisions of particles falling from rest from
infinity in the equatorial plane with arbitrary

axial angular momentum

We consider two colliding particles falling from infinity
with constants of motion ~E1 ¼ m;L1; q1 ¼ 0 and ~E2 ¼
m;L2; q2 ¼ 0 in the field of a near-extreme superspinning
Kerr geometry with parameters satisfying the condition
a2 þ b ¼ 1þ δ. Assuming δ ≪ 1, we find for the particles
with oppositely oriented radial motion the CM energy at the
surface r ¼ 1 to be given in the first approximation by the
formula

~E2
CM ∼

4m2ð1þ a2 − aL1Þð1þ a2 − aL2Þ
1þ a2cos2θ

1

δ
ð68Þ

that is again explicitly independent of the tidal charge b; the
dependence on b is hidden in the parameter δ. We assume
a > 0, L1;2 > 0 and the conditions

L1 >
1þ a2

a
∧ L2 >

1þ a2

a
;

L1 <
1þ a2

a
∧ L2 <

1þ a2

a
: ð69Þ

We have to give also the conditions for the axial angular
momentum, guaranteeing that the particles could reach the
collision radius r ¼ 1. Recall that in the Kerr spacetime, the
condition for L allowing the radial fall reads [35]

−2ð1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p Þ ≤ L ≤ 2ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
Þ: ð70Þ

In the case of the braneworld KN spacetimes, the boundary
of the allowed values of L is implicitly given by the regular
part of the relation
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FIG. 15. Axial angular momentum L of particles falling in the equatorial plane from rest at infinity ( ~E ¼ m) and reaching the radius
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a ¼ alðtÞ ≡ L�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3L2 − XÞðL2 þ XÞð4bþ L2 þ XÞ2

p
8ðL2 þ XÞ

ð71Þ

where

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ðL2 − 8bÞ

q
: ð72Þ

This expression determines implicitly the boundary values
Lb�ðaÞ, where þ sign corresponds to larger value of the
specific angular momentum. In the parameter space L − a,
the allowed regions of the axial momentum parameter L are
given for characteristic values of the tidal charge parameter
b in Fig. 15.

C. Ultrahigh energy collisions in the mining
braneworld KN naked singularity spacetimes

Such high-energy phenomenon occurs at any braneworld
KN naked singularity spacetimes, where the stable circular
geodesics with negatively valued energy and angular
momentum enter the so-called mining regime near the
stable circular geodesic representing a final state of the
accretion process; notice that in the typical mining space-
time of class IIIa there are no near-extreme naked singu-
larities [33] (with exception of those having b ∼ 1=2). The
ultrahigh energy can be then reached due to an extremely
low energy (extremely fast velocity) of the particle orbiting
in the mining regime, for collisions with any particle—
incoming from large distances, or from vicinity of the
particle orbiting in the mining regime. Moreover, the CM
energy in this case is independent of the orientation of the
radial motion of the colliding particle. We thus consider
two special cases of the incoming particles.

1. Colliding particles falling from large distance

We assume the first particle moving along the circular
geodesics of the upper family, located extremely close to
the stable photon circular geodesic, and having the con-
stants of motion ð ~E=mÞc and ð ~Φ=mÞc. The second, incom-
ing particle is assumed to be the radially freely falling
particle with constants of motion ~E ¼ m,Q ¼ 0, and L. We
restrict the second particle to be moving in the equatorial
plane, as the first particle is orbiting just in the equatorial
plane. The CM energy can be then expressed by the relation

~E2
CM ¼ 2m2 þ 2m2ðr2 � ða − LÞ ffiffiffiffiffiffiffiffiffiffiffi

r − b
p Þ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3rþ 2b� 2a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

pp ; ð73Þ

and we see immediately that the energy takes the
extremely high values for the particle orbiting extremely
close to the photon circular geodesic when r2 − 3rþ 2bþ
2a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
→ 0. This dependence is reflected in Fig. 16.

Clearly, in the mining KN spacetimes, the ultrahigh CM

energy results due to the increasing (negatively valued)
energy of the particle orbiting in the mining regime that
results due to simple accretion process. Of course, a similar
phenomenon could occur at any KN spacetime, if the
incoming particle collides with a particle orbiting the
central naked singularity (or a black hole) with extremely
high (positively valued) energy. Such states are, however,
unstable in the black hole spacetimes, or astrophysically
unrealistic in the naked singularity spacetimes (for detailed
discussion see [57]).
In order to understand the increasing of the CM energy in

this kind of collisional processes, we make transformation
of the CM energy formula. In dependence on the extremely
small distance from the photon circular geodesic, we
introduce the KN naked singularity spin in the form a ¼
aph þ δwhere the implicit expression of the photon circular
geodesic radius reads

aphþ ¼ 3r − r2 − 2b

2
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p : ð74Þ

Using the first order Taylor expansion in δ ≪ 1, we arrive
to the formula
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FIG. 16. Radial profile of the CM energy of the BSW collisions
in the field of mining KN naked singularity with spin a ¼ 1.2 and
tidal charge b ¼ 0.8. The first particle is orbiting at a stable
circular geodesic in the mining regime close to the stable photon
circular geodesic, the second colliding particle fall from rest at
infinity in the equatorial plane with axial angular momentum L.
For all particles that can reach the position of the stable photon
circular geodesic the CM energy diverges while the circular
geodesic is approaching rphðsÞ. For large values of L, the particles
cannot reach the particles orbiting in the mining regime. By thick
line represents the result of collisions of the orbiting particles with
the particles leaving the counterrotating (lower family) margin-
ally stable geodesic—then the CM energy differs for circular
geodetics at large distance from rphðsÞ, but nearly coincides
for r → rphðsÞ.
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~E2
CM ¼ 2m2 þ 2m2ðr2 þ 3r − 2b − 2L

ffiffiffiffiffiffiffiffiffiffiffi
r − b

p Þffiffiffi
2

p
rðr − bÞ1=4

1ffiffiffi
δ

p

þOð
ffiffiffi
δ

p
Þ: ð75Þ

We have now obtained the same dependence on the
parameter δ, as the one that occurs for the collisions of
incoming particles with particles orbiting at r ¼ 1 in the
field of near-extreme Kerr naked singularities [21]. Note
that in our case the condition

L ≠
r2 þ 3r − 2b

2
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p ð76Þ

has to be satisfied.
It should be stressed that there is a special subclass of the

mining KN naked singularity spacetimes where the ultra-
high energy collisions can occur also at the radius r ¼ 1,
namely the exceptional near-extreme mining KN space-
times that arise for b ∼ 1=2 and a ∼ 1=

ffiffiffi
2

p
, if a2 þ b > 1.

The other mining KN spacetimes cannot be near-extreme
and the ultrahigh energy collisions at r ¼ 1 cannot be
obtained in such spacetimes.

2. Particles falling from the marginally stable
lower-family circular geodesics

In this case we consider the particle orbiting at the
mining regime colliding with a particle that freely falls
from the marginally stable geodesics of the second (retro-
grade) family of the circular geodesics. Then the CM
energy can be expressed in the form

~E2
CM ¼ 2m2 þ 2m2

�
r2bþ ffiffiffiffiffiffiffiffiffiffiffi

r − b
p

r2msðaþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rms − b

p Þ
rrms

ffiffiffiffiffiffiffiffiffiffiffiffi
BþðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B−ðrmsÞ

p
þ r2½rmsðrms − 2Þ − a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rms − b

p �
rrms

ffiffiffiffiffiffiffiffiffiffiffiffi
BþðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B−ðrmsÞ

p �
; ð77Þ

where

BðrÞ� ¼ r2 − 3rþ 2b� 2a
ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
: ð78Þ

where rms corresponds to the lower family orbits radius
rms−, implicitly determined by the relation [33]

rð6r − r2 − 9bþ 3a2Þ þ 4bðb − a2Þ þ 8aðr − bÞ3=2 ¼ 0:

ð79Þ

We represent the dependence of this CM energy on the
spacetime parameters in Fig. 16.
It is interesting to note that very similar results were

obtained in [75] and subsequently in [76], where the
authors showed that ultrahigh-energy collisions could
occur in the Kerr black hole ergosphere, between a particle

with large negative values of angular momentum and
another particle that are both incoming from large distances
from the black hole. In the mining KN spacetimes, the
particle with large negatively valued angular momentum
follows the circular geodesic in the mining regime.

VI. OPTICAL EFFECTS RELATED
TO CIRCULAR GEODESICS

We study simple optical phenomena related to the
circular geodesics in the braneworld KN naked singularity
spacetimes, focusing to the frequency shift and appearance
of the sky connected with the circular geodesics in the
mining spacetimes, especially in the case when their radius
is very close to the radius of the stable circular photon
geodesic of the upper family. The frequency shift is
calculated for the most fundamental principal null con-
gruence (PNC) geodesics representing the radially moving
photons that give the simplest and most representative
results [37]. The results obtained for the mining KN
naked singularity spacetimes are compared to those related
to the ordinary naked singularity spacetimes, or black hole
spacetimes.

A. Frequency shift of the radiation from
the circular geodesics

The frequency shift g represents the ratio of the observed
photon energy γo to the emitted photon energy γe and can
be expressed in the standard form

g ¼ γo
γe

¼ Uν
oðkoÞν

Uν
eðkeÞν

ð80Þ

where Uν
o (Uν

e) is the 4-velocity of the observer (emitter),
and ðkoÞν (ðkeÞν) is the covariant component of the photon
4-momentum at the observation (emission) event.
Generally, the photon motion is characterized by the

motion constants γ, l, q and m ¼ 0, but the motion itself is
governed by the impact parameters [24,55,77,78]

λ≡ l
γ
; η≡ q

γ2
: ð81Þ

The 4-velocity of the static distant observers reads
Uo ¼ ð1; 0; 0; 0Þ. For emitters following the circular geo-
desic orbits we have Ue ¼ ðUt

e; 0; 0; U
φ
e Þ. The components

of the emitter 4-velocity can be given in the form [79]

ðUt
eÞ−2 ¼ 1 −

2

re
ð1 − aΩÞ2 − ðr2e þ a2ÞΩ2 þ b

r2e
ð1 − aΩÞ2

ð82Þ

and

Uφ
e ¼ ΩUt

e; ð83Þ
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where Ω ¼ dφ=dt denotes the angular velocity of the
emitter relative to distant observers. The frequency shift
of a photon emitted from a circular geodesic located at
radius re and observed by static observers at infinity (large
distances) reads

g ¼
½1 − 2

re
ð1 − aΩÞ2 − ðr2e þ a2ÞΩ2 þ b

r2e
ð1 − aΩÞ2�1=2

1 − λΩ
:

ð84Þ

Notice that for the photons emitted from the equatorial
circular geodesics the frequency shift is independent of the
impact parameter η, however, their trajectory depends on η.

1. Frequency shift of PNC photons

The fundamental information on the frequency shift can
be obtained using the so called PNC photons since these
photons are purely radial in similar sense, as the freely
radially falling observers, as they move along the θ ¼ const
trajectories, but with varying azimuthal coordinate; how-
ever, they are not purely radially moving relative to the
family of LNRFs, but relative to the so called Carter frames
[14,37,55]. For the emitter moving along a circular geo-
desic, the PNC photon has to be radiated in the equatorial
plane. The motion constants for the motion of the PNC
photons in the equatorial plane read

l ¼ aγ; q ¼ −ðl − aγÞ2 ¼ 0: ð85Þ
The frequency shift formula then simplifies to the form

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr2e þ a2ÞΩ2

ð1 − aΩÞ2 þ b − 2re
r2e

s
: ð86Þ

For the angular velocity Ω related to the circular geo-
desics, given by Eq. (22), we arrive to the simple relation

gðr; a; eÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − 3re þ 2b� 2a

ffiffiffiffiffiffiffiffiffiffiffiffi
re − b

pp
re

: ð87Þ

Clearly, this relation is astrophysically relevant, if the
emitter is located at a stable circular geodesic. (Emission
of radiation from a source orbiting at an unstable circular
geodesic causes departure of the source from the circular
geodesic due to the radiation back-reaction effect.) The
local extrema of the radial profiles of the PNC frequency
shift of photons radiated from the circular geodesics, given
by the condition dg=dr ¼ 0, is determined by

∂gðrÞ
∂r ¼ ð4b − 3rÞða −

ffiffiffiffiffiffiffiffiffiffiffi
r − b

p Þ
2gðrÞr3 ffiffiffiffiffiffiffiffiffiffiffi

r − b
p : ð88Þ

Discussing the properties of the second derivative, d2g=dr2,
we find that maxima of the profiles are located at

r ¼ rgðmaxÞ ≡ 4b
3
; ð89Þ

while minima of the radial profiles are located at

r ¼ rgðminÞ ≡ a2 þ b: ð90Þ

Notice that the radius rgðmaxÞ coincides with the radius where
dΩ=dr ¼ 0 and the angular velocity reaches maximal value.
We can see that in the mining KN naked singularity

spacetimes, for the photons radiated from geodesic circular
orbits of the mining regime, there is clearly g → 0 as the
photon stable circular geodesic is approached. In the case of
the overcharged KN naked singularity spacetimes (b > 1),
the frequency shift of PNC photons radiated from the inner-
most circular geodesics at r ¼ b is independent of the spin
parameter a, taking the value of

gðr ¼ b; a; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − 1Þp
b

: ð91Þ

On the other hand, in the KN naked singularity space-
times with negative tidal charges, there is g → ∞, as the
circular geodesics approach r ¼ 0, similarly to the case of
pure Kerr naked singularities [14]. The local extrema
rgðmaxÞ are irrelevant at the region r > 0 in this case.
We represent in two ways the special optical signatures

of the braneworld KN naked singularity spacetimes related
to the representative congruence of radial null geodesics.
First, we give the radial profiles of the frequency shift of the
PNC photons radiated by sources following circular geo-
desics of appropriatelly selected KN spacetimes of various
classes in Fig. 17 for the KN spacetimes with b > 0, and in
Fig. 18 for the KN spacetimes with b < 0. We concentrate
attention to the radial profiles gðr;a; bÞ related to the black
holes and the basic cases of the KN naked singularities, i.e.,
the mining and overcharged KN naked singularities with
b > 0 and ordinary type KN singularities with b < 0. We
can see that outside the black hole horizon, the radial
profiles are always of the same character as in the Kerr
black hole spacetimes, being increasing with radius r.
Under the inner horizon of black holes with b > 0 there is a
maximum at the radius r ¼ 4b=3, while the profile is
purely decreasing with increasing radius under the inner
horizon of black holes with b < 0. In the mining KN naked
singularity spacetimes (class IIIa of the classification in
[33]), the radial profile gðr; a; bÞ demonstrates a minimum
followed by a maximum, with decreasing r, approaching
g ¼ 0 as the radius of the circular geodesic approaches the
stable photon circular geodesic. It is explicitly demon-
strated that a similar radial profile occurs for the KN naked
singularity spacetimes of class IIIb, similar to the class IIIa,
where some part of the radial profile located between the
local minimum and maximum corresponds to the sequence
of unstable circular geodesics. Similar radial profile of
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gðr;a; bÞ occurs also in the case of the overcharged KN
naked singularities, with different behavior at the innermost
circular geodesics at r ¼ b, where g is nonzero. In the KN
naked singularities or ordinary type (with b < 0), the radial
profile corresponds to the case of Kerr naked singularities,
and we observe a local minimum of the profile at rgðminÞ,
located at the region of stable circular geodesics.
Second, we give dependence of the frequency shift from

the innermost stable circular geodesics in the braneworld
Kerr spacetimes in dependence on the spin parameter a for
appropriately selected values of the tidal charge b in
Fig. 19. Recall that the innermost stable circular geodesics,
giving an endpoint of Keplerian accretion, can be of three
types: marginally stable, stable photon circular geodesics,
or innermost orbits at r ¼ b. In the case of the effectively
ordinary KN naked singularities (for the spacetimes with
both b < 1 and b > 1), we consider as relevant the
marginally stable orbit of the outer region of stable circular
geodesics.

We select four regions of the value of the braneworld
parameter b giving different behavior of the profiles
gða; bÞ. In the case of b < 0.25, including the negative
values of b, the profiles reflect only the marginally stable
geodesics, the minimum of the profile corresponds to the
extreme KN black holes. In the case of 0.25 < b < 0.5, the
naked singularity region has two subregions related to
the marginally stable orbits (for the effectively ordinary KN
naked singularities), interrupted by the region related to the
mining KN naked singularities where g ¼ 0. In the case of
0.5 < b < 1, the region of the mining KN naked singularity
spacetimes reaches the region of black holes, and only the
outer region of effectively ordinary KN naked singularities
remains. In the case of 1 < b < 1.25 of overcharged KN
naked singularities, for appropriately chosen values of the
spin, when the Keplerian accretion ends at r ¼ b, the radial
profile gðr; a; bÞ is independent of spin, being given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − 1Þ=bp

, however, the effectively ordinary KN naked
singularities exist for sufficiently small and sufficiently
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large values of the spin parameter a and gðr; a; bÞ is
decreasing with increasing spin. In the case of b > 1.25,
the effectively ordinary overcharged KN naked singularity
spacetimes exist only for sufficiently large values of spin a.
Notice that the frequency shift of PNC photons radiated
from the marginally stable orbits of the effectively ordinary
KN naked singularity spacetimes with large values of spin
a takes relatively high values corresponding to blue-shift,
gða; eÞ > 1.
Clearly, in the braneworld KN naked singularity space-

times with b > 0, the radial profiles of the frequency shift
of the PNC photons radiated from the circular geodesics
have qualitatively different character in comparison to the
Kerr naked singularity case given in [14], while it is of the
same character in the KN naked singularity spacetimes
with b < 0.

B. Frequency shift of CMB observed
at the mining stable geodesics

Now we study the frequency shift of photons incoming
from large distance (e.g., the CMB photons) as observed by
observers orbiting in the deep gravitational well of brane-
world KN black holes and naked singularities. We focus
our attention to the special case of the observers following
the circular geodesics of the mining regime, with radius
extremely close to the radius of the stable circular photon
geodesics of the mining KN naked singularity spacetimes.
The frequency shift is then governed by the general
frequency formula used before, but with inverse meaning
of the observer (following the circular geodesic) and
emitter (for simplicity static source at large distance)—this
formally means Uo → Ue and Ue → Uo. Thus we could
simply use the inversion of the formula in Eq. (84) with the
frequency shift denoted as 1=g. However, for the purpose of
the study in the mining regime, it is convenient to apply an
alternate formula where we use directly the specific energy
E and specific angular momentum L of observer following
a circular geodesic in the mining regime, as in this regime
extremely small changes of radius imply extremely large
changes of E and L that are thus appropriate quantities for
description of the physical phenomena in the mining
regime. The frequency shift ð1þ zÞMNS ≡ 1=gMNS is then
given by the relation

ð1þ zÞMNS ¼ −gttEþ gtφLþ ðgtφE − gφφLÞ l
γ
; ð92Þ

where γ and l denote the energy and axial angular
momentum of the arriving photon.
In the case of the observers in the braneworld mining KN

naked singularity spacetimes, following the circular geo-
desics in the mining regime with specific energy E < 0, the
radius of the circular geodetic can be well approximated as
r ≈ rph, where rph represents the radius of the stable photon
circular geodesic that is related to the spacetime parameters
a and b as

a ¼ aph� ¼ � 3rph − r2ph − 2b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rph − b

p : ð93Þ

Since r ≈ rph, in the mining regime the following
relations hold

E ¼ γ

l
L; ð94Þ

and

l
γ
¼ � 3rph þ r2ph − 2b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rph − b

p : ð95Þ

Using these relations, we arrive for the frequency shift of
incoming photons observed by observers following circular
geodesics in the mining regime to the resulting approx-
imative formula

1þ zMNS ¼
2Erphða; bÞ
rphða; bÞ − 1

: ð96Þ

Note that in the mining regime, there is rphða; bÞ < 1 for all
the values of energy E < 0, so that we always obtain a
frequency blueshift. In Fig. 20, we demonstrate the radial
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FIG. 20. The frequency shift 1=g ¼ 1þ z of the PNC photons
radiated by static observers at large distance and observed by
geodesic observers orbiting the mining KN spacetimes of class
IIIa, or the related effectively ordinary KN naked singularity
spacetimes of class IIIb, is given in terms of the specific energy E
of the circular geodesic orbit. Such a way of characterizing the
frequency shift is convenient especially for the observers orbiting
in the mining regime in the mining KN naked singularity
spacetimes of class IIIa (a ¼ 1.5, b ¼ 0.8) and the class IIIb
(a ¼ 3.5, b ¼ 0.5), as the frequency shift can be expressed by
very simple approximative relation in the limit of E → −∞. We
give the exact energy (or corresponding radial) profiles, and
compare them with the approximative line that is very precise for
sufficiently low specific energy, and well approximates the exact
relation for E < −1.

STUCHLÍK, BLASCHKE, and SCHEE PHYSICAL REVIEW D 96, 104050 (2017)

104050-24



profile of the frequency shift related to the observers
orbiting a typical braneworld mining KN naked singularity
of Class IIIa with a ¼ 1.5, b ¼ 0.8. The frequency shift is
constructed for both the approximative and exact formulas,
and it is demonstrated explicitly that the approximative
formula works quite well for orbits in the mining regime,
with sufficiently large values of magnitude of the specific
energy of the circular geodesic. For comparison we show
the frequency shift radial profiles for the braneworld KN
spacetimes of the class IIIb (effectively ordinary type,
where we consider the inner mining region).
For the CMB radiation, the total frequency shift is

governed by the simple formula

1þ ztot ¼ ð1þ zMNSÞ × ð1þ zCMBÞ; ð97Þ

where 1þ zCMB denotes the standard cosmological fre-
quency shift of the CMB radiation at the corresponding
cosmic time, related to local stationary observers at
sufficiently large distance from the KN naked singularity
(or black hole) where the spacetime can be considered
nearly flat. Clearly, for an arbitrarily large cosmic redshift
of the CMB radiation, one can obtain any sufficiently high
total blueshift of the CMB radiation, if the circular orbit of
the observer is located sufficiently close to the stable
photon circular geodesic of the mining KN naked singu-
larity. Its characteristic specific energy can be determined
by the relation

E ∼
rphða; bÞ − 1

2rphða; bÞ
1þ ztot
1þ zCMB

: ð98Þ

We have to stress that such a mechanism of enhancement of
the CMB radiation, representing an enormous energy
supply to the orbiting observer, can work, if the magnitude
of the energy of the circular orbit is sufficiently smaller than
the mass parameter M of the braneworld mining KN
spacetime [33].

VII. APPEARANCE OF THE SKY TO OBSERVERS
ORBITING ON THE CIRCULAR GEODESICS

In order to calculate the appearance of the sky as given
for the observers following the circular geodesics, we have
to make transformation from the LNRFs to the frame tetrad
related to the circular geodesic observers. For this purpose
we have to calculate first the velocity of the geodesic
observers relative to the LNRFs and realize the Lorentz
transformation to the circular geodesic rrames (CGF). Then
we can make calculations in the CGFs giving the defor-
mations of the observed sky in dependence on the KN
spacetime parameters a and b and the radius of the circular
geodesic.

A. Velocity of the circular geodesics relative to LNRFs

The circular geodesic frames have just single nonzero,
axial, velocity component relative to the LNRFs. We can
express the axial φ-component of the velocity of the
circular motion with 4-velocityUμ ¼ ðUt; 0; 0; UφÞ relative
to the LNRFs in the form

VðφÞ ≡UðφÞ

UðtÞ ¼
UμeðφÞμ

UνeðtÞμ
; ð99Þ

using the LNRF tetrad. The axial velocity of the orbiting
observers, related the LNRFs, takes the form

VðφÞ
LNRF ¼ gφφΩþ gtφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2tφ − gttgφφ
q ð100Þ

where

Ω≡ Uφ

Ut ð101Þ

represents the angular velocity of the circular orbits of the
observers relative to distant static observers.
Using for the angular velocity the Keplerian relation

relevant for the circular geodesics, we arrive to

VðφÞ
LNRF� ¼ �ðr2 þ a2Þ ffiffiffiffiffiffiffiffiffiffiffi

r − b
p ∓ að2r − bÞffiffiffiffi

Δ
p ðr2 � a

ffiffiffiffiffiffiffiffiffiffiffi
r − b

p Þ : ð102Þ

Concentrating attention to the case of the mining KN
spacetimes and the motion in the mining regime, we obtain
a simple zero-approximation relation

VðφÞ
LNRF;m ∼

jrphðsÞ − 1j
rphðsÞ − 1

; ð103Þ

where rphðsÞ < 1 denotes the radius of the stable photon
geodesic—as expected, the LNRF velocity of such geo-
desic circular observers has to be negative (the observers
are counter-rotating relative to LNRFs) and close to
velocity of light, as these observers are located close to
the stable circular geodesic; in the zero-approximation
given above, the velocity is equal to the velocity of light.
We thus can expect strong focusing of light rays along the
direction of the orbital motion.
We give the CGF velocity relative to the LNRFs, exactly

calculated according to Eq. (102), in Fig. 24 for a mining
KN naked singularity spacetime of class IIIa and the related
KN spacetime of class IIIb, in dependence on the specific
energy E.
In order to obtain the first-order correction to the zeroth

approximation of the CGF velocity, it is useful to express
for the circular geodesics in the mining regime the
dependence of the extremely small variation of the circular
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geodesic radiusΔr on the specific energy E of the orbit. We
thus assume r ¼ rph þ Δr, where Δr ≪ 1 satisfies the
mining regime conditions. In the linear approximation,
we then arrive to the formula relating Δr and the specific
energy E taking the form

Δr ¼ ð1 − rphÞðrph − bÞ
2E2ð4b − 3rphÞ

: ð104Þ

Clearly, the following conditions have to be satisfied for its
validity:

(i) rph < 1,
(ii) rph > b,
(iii) rph < 4b=3.

The first condition is well known—the maximum values of
rph occur at the mining KN spacetimes with b ¼ 1 where
rphmax ¼ 1. The second condition represents the general
lower limit on existence of circular geodesics in the KN
spacetimes. The third condition is related to the behavior
of the radial profile of the angular velocity of circular
geodesics. The first-order approximation in terms of E2 as
the parameter (or equivalently Δr as parameter) of the
velocity of the CGF observers relative to the LNRFs can be
then given as follows

VðφÞ
LNRF;m ∼

jrph − 1j
rph − 1

þm2ð2b2 − 7brph þ ð6þ bÞr2ph − 3r3ph þ r4phÞ
2E2r2phðr2ph þ 3rph − 2bÞ :

ð105Þ

This formula is correctly behaving as at rph there is
E2 → ∞, the first order term is positive, lowering thus
the magnitude of the CGF velocity below the light velocity.

B. Circular geodesic frames

The observers orbiting on the circular geodesics of the
braneworld KN spacetimes can be equipped with the CGF
tedrad that can be created from the LNRF tetrade by the
Lorentz boost with the axial CGF velocity calculated
above. The CGF tetrade then takes the form (see, e.g., [32])

ωðtÞ ¼ r2 − 2rþ b� F
Z�

ωt ∓ ðr2 þ a2ÞF ∓ að2r − bÞ
Z�

ωφ;

ωðφÞ ¼∓
ffiffiffiffi
Δ

p
F

Z�
ωþ

ffiffiffiffi
Δ

p ðr2 � aFÞ
Z�

;

ωðrÞ ¼
ffiffiffiffi
Σ
Δ

r
ωr;

ωðθÞ ¼
ffiffiffi
Σ

p
ωθ; ð106Þ

where

F≡ ffiffiffiffiffiffiffiffiffiffiffi
r − b

p
ð107Þ

and

Z� ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 3rþ 2b� 2aF

p
: ð108Þ

The upper (lower) sign refers to upper (lower)
family circular geodesic frames; recall that the lower family
orbits are purely counterrotating. We consider in the
following only the upper family circular geodesics.

C. Construction of the local sky

We construct the sky image related to the CMB radiation
by using the approach developed in [24,32], using photons
representing all the higher order images. We briefly
summarize the main idea of this approach.
The position of an image on the observer sky is

characterized by the observing angles θo;φo. The photon
4-momentum relative to the CGF reads

k ¼ kðtÞωðtÞ þ kðrÞωðrÞ þ kðθÞωðθÞ þ kðφÞωðφÞ: ð109Þ

The two angles ðθo;φoÞ that identify an image on the local
sky of the observer can be expressed by the formulas

kðtÞ ¼ −kðtÞ ¼ 1; ð110Þ

kðrÞ ¼ kðrÞ ¼ sin θo cosφo; ð111Þ

kðθÞ ¼ kðθÞ ¼ sin θo sinφo; ð112Þ

kðφÞ ¼ kðφÞ ¼ cos θo: ð113Þ

For each double ðθo;φoÞ one can determine the correspond-
ing impact parameters of the photon using the formulas

λ≡ l
γ
; η≡ k − ðl − aγÞ2

γ2
; ð114Þ

andwe can express themotion constants l, γ, and k by locally
measured components of the photon 4-vector k. They read

l≡ kφ ¼ ωðtÞ
φ kðtÞ þ ωðrÞ

φ kðrÞ þ ωðθÞ
φ kðθÞ þ ωðφÞ

φ kðφÞ;

γ ≡ −kt ¼ ωðtÞ
t kðtÞ þ ωðrÞ

t kðrÞ þ ωðθÞ
t kðθÞ þ ωðφÞ

t kðφÞ;

k ¼ 1

Δ
½ðγðr2 þ a2Þ − alÞ2 − ΣΔðkðrÞÞ2�: ð115Þ

The next step is to integrate equations of motion to infinity
(large distance) to find the intersection of the photon geo-
desics with the global sky, obtaining corresponding θs andφs
coordinates corresponding to the source (CMB radiation in
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FIG. 21. Sky as observed in the CGFs in the KN black hole spacetime with parameters a ¼ 0.9, b ¼ 1=10. The radial coordinate of the
circular geodesics of the CGFs takes values r0 ¼ 103, 50.0, 5.0, and 2.014 (from left to right).

FIG. 22. Sky as observed in the CGFs in the ordinary KN naked singularity spacetime with parameters a ¼ 1.48803, b ¼ 1=10. The
radial coordinate of the circular geodesics of the CGFs takes values r0 ¼ 5.0, 3.0, 1.5, and 0.8643 (from left-top to right-bottom).
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the present case), and taking into account the focusing and
frequency shift effects. This way we obtain a mapping
ðθo;φoÞ → ðθs;φsÞwhich is used tomap a point from global
sky to the local one—for details see [24,32,35].
We have constructed the local sky snapshots for three

representative central object characterized by the spin a and
the tidal charge b. For comparison we first give the standard
known images of the CMB created for CGF at close

vicinity of the KN black holes in Fig. 21—these are of
the same character as those obtained for the Kerr black
holes (see, e.g., [80]). We can observe the standard
increasing deformation of the flat-space sky as the observer
circular geodesic approaches the black hole horizon. The
case of so called effectively ordinary KN naked singular-
ities is represented in Fig. 22 demonstrating similarities
to the black hole case when the radius of the orbit is small,
and the differences demonstrated by existence of some part
of the image of the sky in the central dark region, if the
orbit radius is large enough. Finally, we represent evolu-
tion of the CGF sky in the case of the mining KN naked
singularities in Fig. 23, demonstrating the crucial
differences related to the CGF motion in the mining regime
where the local sky shrinks to small circular object with
radius decreasing as the circular geodesic approaches the
stable photon circular geodesic.

VIII. CONCLUSIONS

We considered collisional processes and optical phenom-
ena in the braneworld KN spacetimes, concentrating our
attention to the newly discovered “mining” KN naked
singularity spacetimes demonstrating possibility of a special,
mining regime of accretion processes with very large
efficiency and non-standard radial profile of angular velocity
having dΩ=dr > 0. The vanishing of the angular velocity
gradient, dΩ=dr ¼ 0, occurs at r ¼ 4b=3 independently of
spin a; implications of this effect are discussed in [57].

FIG. 23. Sky as observed in the CGFs in the mining KN naked singularity spacetime with parameters a ¼ 1.48803, b ¼ 1=3. The
radial coordinate of the circular geodesics of the CGFs takes values r0 ¼ 5.0, 1.5, 0.35, and 0.3397 (from left-top to right-bottom).
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FIG. 24. The velocity of the observers (frames) orbiting along
stable circular geodesics as related to the LNRFs. The CGF
velocity is determined for the mining KN naked singularity
spacetime of class IIIa (a ¼ 0.7, b ¼ 0.6), and the related
spacetime of class IIIb (a ¼ 5, b ¼ 0.6).
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We have demonstrated explicitly that the ultrahigh CM
energy collisional processes can be obtained in whole the
family of Class IIIa braneworld mining KN naked singu-
larity spacetimes for quite generic incoming particles, if the
collisions occur with particles orbiting in the mining regime
near the stable photon circular geodesic. This is situation
contrasting the collisions in the ordinary KN (Kerr) naked
singularity spacetimes where the ultrahigh energy colli-
sions are possible at the special radius r ¼ 1, in the near-
extreme naked singularity spacetimes with a2 þ b ∼ 1, but
for a relatively wide range of the motion constants of the
colliding particles. On the contrary, in the near-extreme KN
black hole spacetimes the extremely large collisional
energy can be obtained only for finely tuned motion
constants of particles approaching from infinity.
In the braneworld KN naked singularity spacetimes the

ultrahigh energy collisional processes couldbequite frequent
as these are not confined to a special choice of spacetime
parameters, or the motion constants of colliding particles.
We have also demonstrated interesting optical phenom-

ena related to the mining KN naked singularity spacetimes,

especially in the so called mining regime when an observer
is orbiting very close to the limiting stable photon circular
geodesic. Then the observer motion is ultrarelativistic that
causes an enormous energy supply from the CMB radiation
due to enormous blue-shift of the radiation; however, the
observer local sky is strongly shrinking to a small circular
region in the direction of its motion. Due to this effect, the
mining KN naked singularities (superspinars) could be
even more efficient sources of energy for orbiting planets in
the cold accelerating Universe in comparison with the
standard case of planets orbiting black holes that was
discussed in [38–40,80]. Of course, our results give only
indications for such a possibility, requiring more detailed
and extended studies.
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