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We do a start-to-finish calculation of the stochastic gravitational wave background to be expected from
cosmic strings. We start from a population of string loops taken from simulations, smooth these by
Lorentzian convolution as a model of gravitational backreaction, calculate the average spectrum of
gravitational waves emitted by the string population at any given time, and propagate it through a standard
model cosmology to find the stochastic background today. Except for modeling back reaction as
smoothing, we take into account all known effects, including changes in the number of cosmological
relativistic degrees of freedom at early times and the possibility that some energy is in rare bursts that we
might never have observed.
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I. INTRODUCTION

Our universe may contain a network of cosmic strings,
which could be either flux tubes arising from a symmetry-
breaking transition at high energies or the fundamental
strings of superstring theory (or one-dimensional D-branes)
stretched out to astrophysical lengths [1–3]. The best way
to discover such a network, if it exists, is to observe the
stochastic background of gravitational waves emitted by
cosmic string loops. Nonobservation of such a background
in pulsar timing arrays currently gives the strongest bounds
on the energy scale of a possible cosmic string network.
In usual models, cosmic strings do not have ends. Thus

they exist as a “network” of infinite strings and closed
loops. Intersections between strings lead to reconnections,
and when a string intersects itself, it produces a loop. Loops
then oscillate relativistically and decay by the emission of
gravitational waves. If the string energy per unit length is μ,
the gravitational power emitted is ΓGμ, where Γ is a
number of order 50 depending on the shape of the string,
andG is Newton’s constant. We work in units where c ¼ 1.
In both the matter and the radiation era, the flow of

energy from long strings into loops and thence into
gravitational waves maintains the network in a scaling
regime, where all linear measures, such as the average
distance between strings, stay at a fixed multiple of the
horizon distance (or the age of the universe). Scaling allows
us to extrapolate over many orders of magnitude between
what can be studied in a simulation and the universe today.

To connect observations or observational limits to the
properties of possible cosmic strings, we need to accurately
compute the spectrum of gravitational waves to be expected
from a cosmic string network of a given energy scale. The
steps in this process are as follows.
(1) First we simulate the network of cosmic strings to find

the rate of production of loops of various sizes from
the long string network, and we extract a represen-
tative sample of loop shapes from the simulation.

(2) This gives the distribution of loop shapes at the time
the loops are formed, but gravitational backreaction
modifies these shapes. Since we do not yet have a
code for calculating these changes in shape, we use a
toy model of smoothing to estimate them.

(3) We then compute the gravitational spectrum and
total power Γ for each loop.

(4) Using Γ, which also gives the evaporation rate, we
integrate the production and evaporation processes
over cosmological time to determine the distribution
of loops existing at each redshift z.

(5) We integrate the spectrum of individual loops over
the loop distribution at each z to find the overall
emission spectrum.

(6) Then we integrate the emission spectrum over cos-
mological time to get the present-day background.

Items 1, 2, and 4 have already been done in Refs. [4–6].
The purpose of this paper is to complete the program with
items 3, 5, and 6. We include all known effects except that
we use a smoothingmodel rather than computing directly the
effects of gravitational back reaction on loop shapes.
A companion paper compares the results with current
observations [7].
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It is traditional in papers such as this to consider “small
loop” models in which the predominant size of loops at
production is ΓGμ times the production time, so loops last
for only about one Hubble time. In our opinion, there is no
reason to consider such models any more. They were
inspired by early simulations [8,9] that found loops at the
resolution scale, but recent simulations [4,10–14], with
much greater reach, found loop production at scales related
to the horizon size at the time of production.
In this work we consider local cosmic strings (those

which do not have any long-range forces or couplings to
massless particles other than the graviton) that do not have
vertices where 3 or more strings join. This includes
Abelian-Higgs strings and fundamental superstrings, but
not axion strings, non-Abelian gauge strings, or ðp; qÞ
superstrings.
We model these strings using the Nambu approximation

of a linelike relativistic string, as in Refs. [4,8–15]. This is
an extremely good approximation even in the Abelian-
Higgs case. The present-day ratio of loop size or curvature
scale, ΓGμt0, to the string thickness, about

ffiffiffiffiffiffiffiffi
μ=ℏ

p
, is

ΓðGμÞð3=2Þt0=tPlanck ∼ 1044. Thus on any possible scale
relevant to field theory dynamics, strings are straight to
fantastically good approximation, and their motion should
be given by the Nambu-Goto equations of motion. Indeed
this was shown to be the case in simulations of individual
Abelian-Higgs strings when the curvature scale was larger
than the thickness [16–18].
Many calculations of gravitational waves from cosmic

strings have been done before. Reference [19] made the first
estimate of the background from strings, using a simple
scaling distribution of horizon size loops radiating in the
fundamental mode, and Ref. [20] used a similar analysis to
generate a bound based on pulsar timing. Reference [21]
calculated the background using all modes in the spectrum of
simple loops. References [22–24] derived bounds based
using the “small loop” models suggested by simulations at
the time, and Refs. [23,24] included the changes in the
number of relativistic degrees of freedom. References [25–
27] introduced the possibility of low intercommutation
probability appropriate to cosmic superstrings and compared
the results with the capabilities of modern interferometric
gravitational wave detectors. References [28–32] explored a
wide range of different scenarios of loop sizes, power
spectrum, and intercommutation probability, and investi-
gated the implications for several current and projected
observatories. In [6] we used the number density distribution
of loops from the latest numerical simulations, in the
approximation that all radiated power is due to cusps.
In the present paper we will use not only the number density
but the shapes of loops found in simulations.
References [33–36] analyzed bursts coming from cosmic

string cusps and their potential observability.
The remainder of this paper is structured as follows.

In the next section we calculate the gravitational wave

background in terms of the expansion history of the
universe, the distribution of loops at each epoch, and the
power spectrum of gravitational waves emitted from a
typical loop. We discuss these three components in turn in
Secs. III, IV, and V. Section VI gives our results, and we
conclude in Sec. VII.
Some technical matters are deferred to appendices.

Appendix A gives the details of the calculation of the
radiated power from a cusp. Appendix B discusses how
many harmonics need to be computed to find the spectrum
in any given direction. Appendix C discusses summing
contributions from the discrete modes emitted by loops,
and Appendix D considers whether the fact that some
power is in very rare bursts requires a modification of the
stochastic background calculation.

II. STOCHASTIC GRAVITATIONAL
WAVE BACKGROUND

We will compute the stochastic background of gravita-
tional waves presently existing as the fraction of the critical
density given by the energy of gravitational waves in unit
logarithmic interval of frequency,1

Ωgwðln fÞ ¼
8πG
3H2

0

fρgwðt0; fÞ; ð2Þ

where ρgw is the energy density in gravitational waves per
unit frequency. Since gravitational waves persist from very
early times, the energy in a comoving region is just the
redshifted total energy deposited there,

ρgwðt0; fÞ ¼
Z

t0

0

dt
ð1þ zðtÞÞ4 Pgwðt; f0Þ

∂f0
∂f ; ð3Þ

where Pgwðt; f0Þ is the total gravitational wave power of all
loops existing at time t into unit range of emitted frequen-
cies. The emitted frequency that becomes frequency f
today is just f0 ¼ ð1þ zÞf, so we find

ρgwðt0; fÞ ¼
Z

t0

0

dt
ð1þ zðtÞÞ3 Pgwðt; ð1þ zÞfÞ: ð4Þ

1The same background can be expressed as its power spectral
density,

ShðfÞ ¼
3H2

0

2π2f3
Ωgwðln fÞ; ð1Þ

or as its characteristic strain hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShðfÞ

p
. Pulsar timing arrays

use these quantities directly, but interferometers adjust them by
averaging interferometer sensitivity over polarization and arrival
direction, reducing Sh by 5 and hc by

ffiffiffi
5

p
over the values given

here. For a clear explanation of various measures of the back-
ground see Ref. [37].
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Consider one loop of length l existing at time t. It emits
gravitational waves at a set of discrete frequencies.
Radiation in harmonic n is emitted at frequency
f0 ¼ 2n=l, and there is a discrete power spectrum Pn,
giving the power in each harmonic, in units of Gμ2. Each
loop has its own spectrum, but we will use the loops we get
from simulations to produce an average spectrum and then
treat all loops as emitting with that spectrum.
To find Pgwðt; f0Þ, we sum over the contributions coming

from all n. For each n there is a specific length of loop,
l ¼ 2n=f0, that gives frequency f0 in that harmonic. Let
nðl; tÞ be the number density per unit length interval of
loops of length l existing at time t. Then

Pgwðt; f0Þ ¼ Gμ2
X∞
n¼1

nðl; tÞ dl
df0

Pn

¼ Gμ2
X∞
n¼1

2n
f02

nðl; tÞPn: ð5Þ

Thus we can write

ρgwðt; fÞ ¼ Gμ2
X∞
n¼1

CnPn; ð6Þ

with

CnðfÞ ¼
Z

t0

0

dt
ð1þ zÞ5

2n
f2

nðl; tÞ: ð7Þ

We can now change the integration variable using

dt ¼ −
dz

HðzÞð1þ zÞ ð8Þ

to get

CnðfÞ ¼
2n
f2

Z
∞

0

dz
HðzÞð1þ zÞ6 n

�
2n

ð1þ zÞf ; tðzÞ
�
. ð9Þ

Equations (6), (9) give the stochastic background in terms
of the cosmology ðHðzÞ; tðzÞÞ, the loop density nðl; tÞ, and
the radiation power spectrum of each loop, Pn. In the
following, we will discuss these effects in turn.

III. COSMOLOGY

The cosmological dependence in Eq. (9) is inHðzÞ in the
denominator and tðzÞ appearing as an argument to the loop
distribution nðl; tÞ. We will consider a flat radiationþ
matter þ Λ cosmology, with

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ð1þ zÞ3Ωm þ GðzÞð1þ zÞ4Ωr

q
; ð10Þ

where the function

GðzÞ ¼ TðzÞ4g�ðzÞ
T4
0ð1þ zÞ4g�;0

ð11Þ

corrects for the change in the number of relativistic degrees
of freedom at early times. Here TðzÞ is the temperature at
redshift z, g�ðzÞ the effective number of relativistic degrees
of freedom then, and T0 and g�;0 these quantities today.
Neutrinos today are presumably nonrelativistic and

should technically be included in Ωm and not Ωr. But
the value of Ωr is important only at early times when
neutrinos were relativistic. So we define Ωr here to be the
value it would have with massless neutrinos of temperature
(because neutrino decoupling takes place before electron-
positron annihilation) ð4=11Þ1=3 times the present cosmic
microwave background temperature.
The age of the universe at redshift z is the integral of

Eq. (8),

tðzÞ ¼
Z

∞

z

dz0

Hðz0Þð1þ z0Þ ; ð12Þ

where we will use [38]

ΩΛ ¼ 0.69; ð13aÞ

Ωm ¼ 0.31; ð13bÞ

and we can compute

Ωr ¼
32πGσg�;0T4

0

3H2
0

; ð14Þ

where σ is the Stefan-Boltzmann constant, and g�;0 ≈ 3.36
is the effective number of relativistic degrees of freedom
with photons and massless neutrinos. With T0 ¼ 2.2725K
and writing H0 ¼ 100h km=s=Mpc as usual, we find

h2Ωr ¼ 4.15 × 10−5: ð15Þ

When necessary we will use the value h ¼ 0.68 [38].

IV. LOOP DENSITY

A. Uniform radiation era

Reference [6] gives an analytic approximation to the
number density of loops in the radiation era,

nrðl; tÞ ¼
0.18

t3=2ðlþ ΓGμtÞ5=2 ð16Þ

for l < 0.1t. The loop density at any given time is an
integral over the previous loop production. In the radiation
era, the integrand is sharply peaked and so it is quite
accurate to treat the loop production as a δ-function in loop
size whose position and amplitude are chosen to match
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simulation results, leading to Eq. (16). For details
see Ref. [6].
Equation (16) applies when the universe has been in the

radiation era (without changes in the degrees of freedom)
for a long time. Accordingly it exhibits scaling behavior in
which

nrðl; tÞ ¼ t−4nðxÞ; ð17Þ

where x ¼ l=t and nðxÞ is the number of loops per unit x in
volume t3,

nðxÞ ¼ 0.18

ðxþ ΓGμÞ5=2 : ð18Þ

In this case, there is a simple result. Deep in the radiation
era, and ignoring changes in the degrees of freedom,

HðzÞ ¼ ð1þ zÞ2Hr; ð19Þ

tðzÞ ¼ 1

2ð1þ zÞ2Hr
; ð20Þ

where

Hr ¼ H0

ffiffiffiffiffiffi
Ωr

p
ð21Þ

is the contribution from radiation to the Hubble con-
stant today.
Putting Eq. (19) into Eq. (9) gives

CnðfÞ ¼
2n
f2

Z
dz

ð1þ zÞ8Hr
n
�

2n
ð1þ zÞf ; tðzÞ

�
: ð22Þ

We use Eq. (17) to change from nðl; tÞ to nðxÞ, with t given
by Eq. (20), to get

CnðfÞ ¼
32H3

r

f2

Z
dz nðxÞ: ð23Þ

Then we change the variable of integration from z to

x ¼ l
t
¼ 8nð1þ zÞHr

f
; ð24Þ

giving

CnðfÞ ¼
8H2

r

f

Z
dx nðxÞ: ð25Þ

From Eq. (25), we see that Cn has no dependence on n,
so the stochastic background depends only on

Γ ¼
X∞
n¼1

Pn; ð26Þ

that Cn depends only on the total loop number density2 in
volume t3,

Z
∞

0

dx nðxÞ ¼ 0.12ðΓGμÞ−3=2; ð27Þ

and finally that CnðfÞ ∼ 1=f, so the power per unit
logarithmic interval of frequency, Ωgwðln fÞ, is constant.
Using Eqs. (2), (6), (25), (26), (27), we find

Ωgwðln fÞ ¼ 8.0Ωr

ffiffiffiffiffiffiffi
Gμ
Γ

r
; ð28Þ

and Eq. (15) gives

h2Ωgwðln fÞ ¼ 3.3 × 10−4

ffiffiffiffiffiffiffi
Gμ
Γ

r
¼ 4.7 × 10−5

ffiffiffiffiffiffiffi
Gμ

p
;

ð29Þ

with Γ ¼ 50.
The high-frequency background comes almost entirely

from deep in the radiation era, so one might expect a
plateau in Ωgwðln fÞ given by Eq. (29). However, we will
see below that changes in the number of degrees of freedom
introduce a few smooth steps on this plateau region of the
spectrum.

B. Changes in the number of degrees of freedom

At early times, the expansion rate of the universe
changes because of the annihilation of relativistic species,
which injects additional energy into the universe and
reduces its rate of cooling. These changes are incorporated
into the function GðzÞ of Eq. (11). We handle them as
follows.
We do not consider changes to the scaling properties of

the string network, but assume that it always traces the
current rate of expansion. But we do take into account the
fact that the important loops at any given time are relics of
earlier times when GðzÞ was different.
First consider a universe which spends a long time in a

radiation era withGðzÞ ¼ G1. Instead of Eqs. (19), (20), we
have

HðzÞ ¼ ð1þ zÞ2Hr

ffiffiffiffiffiffi
G1

p
ð30Þ

and

tðzÞ ¼ 1

2ð1þ zÞ2Hr
ffiffiffiffiffiffi
G1

p : ð31Þ

The loop density is still given by Eq. (16), with t from
Eq. (31),

2This agrees with Eq. (21) of Ref. [6], which gives the number
in volume d3h ¼ 8t3.
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nrðl; tÞ ¼
0.18 × 23=2ðH2

rG1Þ3=4ð1þ zÞ3
ðlþ ΓGμtÞ5=2 ð32Þ

and

l ¼ 2n
ð1þ zÞf : ð33Þ

We will use Eq. (32) even in the case where GðzÞ is
changing, although this is not entirely accurate. Taking into
account more effects would lead to an even smoother
dependence of Ωgw on f.
Once loops of a certain size are no longer being produced

in significant numbers, their density merely dilutes, going
as ð1þ zÞ3, and the loops become shorter by gravitational
back reaction. Both these processes are included in
Eq. (32), so Eq. (32) holds for in any later era, with G1

always being the GðzÞ at the time at which the loop was
produced.
Of course not all loops of the same size were produced at

the same time, but the loop production function is peaked in
a fairly narrow range of loop size to production time ratio
around 0.1 [6], so we will make this approximation to
compute G1. Suppose a loop with length l at time t was
produced at time t1. Then its length at production was lþ
ΓGμðt − t1Þ and its ratio of length to production time was

x1 ¼
lþ ΓGμðt − t1Þ

t1
: ð34Þ

Setting x1 ¼ 0.1 and using the approximation ΓGμ ≪ x1,
we find

t1 ≈ 10ðlþ ΓGμtÞ: ð35Þ

and then

G1 ¼ Gðzðt1ÞÞ: ð36Þ

We compute GðzÞ using a code for g�ðzÞ written by Masaki
Yamada, which includes the contributions from all the
particles in the standard model. The result is to introduce
small steps in the GðzÞ function, noticeable especially
around electron-positron annihilation and the QCD phase
transition.
Putting Eq. (32) in Eq. (9) gives

CnðfÞ ¼
0.18 × 25=2H3=2

r n
f2

×
Z

dz
G1ðl; tÞ3=4

HðzÞð1þ zÞ3ðlþ ΓGμtÞ5=2 ; ð37Þ

where z is the redshift at which the gravitational wave is
emitted, t ¼ tðzÞ is the age of the universe at redshift z,

given by Eq. (20) in the radiation era after electron-positron
annihilation, l is given by Eq. (33), and G1ðl; tÞ is
computed using Eqs. (35), (36).

C. Matter era

In the matter era, there are two kinds of loops. For Gμ
compatible with observational bounds, the most important
loops were formed in the radiation era. Their density is
given by Eq. (32), which already includes dilution as the
universe expands and loss of length due to gravitational
radiation. We thus use Eq. (37) in all eras, with HðzÞ and
tðzÞ as appropriate.
With t in the matter era and Gμ around current limits, we

can set G1 ¼ 1, although we do not make this approxi-
mation in our numerical calculations. The largest loops
formed at the time of electron-positron annihilation have
size about 0.1tep. For them to survive until matter-radiation
equality at teq requires ΓGμteq < 0.1tep and thus ΓGμ <
0.1tep=teq ≈ 6 × 10−13, or Gμ≲ 10−14.
There are also loops formed in the matter era. Analysis of

simulations [6] gives the density of such loops in a scaling
regime,

nmðl; tÞ ¼
0.27 − 0.45ðl=tÞ0.31

t2ðlþ ΓGμtÞ2 ð38Þ

for l < 0.18t. Loop production in the matter era is not so
strongly peaked as in the radiation era. Equation (38) is the
result of a two-parameter analytic fit to the loop production
seen in simulations. For details see Ref. [6]
Using Eq. (38) in Eqs. (6), (9) gives the stochastic

background arising from these loops. We give the result in
Sec. VI, but it is negligible compared to the background
from relic loops from the radiation era. The basic reason is
that for the dominant loop size l ∼ ΓGμt, Eq. (16) is larger
than Eq. (38) by factor ðΓGμÞ−1=2. For Gμ < 2 × 10−11,
this is at least 3 × 104.
We did not study loops formed during the matter to

radiation transition. But these also have little consequence.
In fact, even loops formed near the end of the radiation era
make little contribution. From Eqs. (31), (35) and taking
t0H0 ≈ 1,G1 ¼ 1, and using Eq. (15), we find the dominant
loops today were produced at redshift about

0.16Ω−1=4
r ðΓGμÞ−1=2 ≈ 16ðΓGμÞ−1=2 > 5 × 105 ð39Þ

for Gμ < 2 × 10−11. This is far larger than the redshift of
matter-radiation equality, about 3000.

V. SPECTRUM OF A LOOP

A. Population of loops

The last ingredient is Pn, the average gravitational
spectrum radiated from a loop. We compute this separately
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for loops formed in the matter era and those formed in the
radiation era. In each case, we use a sample of loops found
in simulations. (See Ref. [4] for a discussion of simulation
techniques.). We used 1060 loops in the radiation era and
812 in the matter era.
These simulation loops, however, are not representative

of loops existing at any given time, because those loops
have lost a significant fraction of their energy due to
gravitational wave emission and thus have had their shapes
modified by back reaction. For the present paper, we model
this effect by smoothing the loops by convolving them with
a Lorentzian [5], even though we know [39,40] that this
model is not entirely correct. We consider the last three
smoothing steps, corresponding to loss of 1=8, 1=4, and
1=2 of the initial loop length. In the next section we give
some separate results for these three steps, but for the final
result we used only the last step. Including the others would
not make any noticeable difference.
Convolution yields a set of smooth loops whose radi-

ation power Pn we would like to compute. We should not
model these loops in a piecewise linear form, as we do for
loops in our simulations. A piecewise linear loop would
have kinks between the pieces, and at sufficiently high
frequencies these fictitious kinks could make a big differ-
ence to the gravitational radiation power.
Instead, we represent the strings as smooth functions

given by their Fourier transforms. We keep the Fourier
amplitudes for some finite number Nf (up to 4096) of
frequencies. To compute the gravitational radiation spec-
trum of such loops, we must understand their motion,
which we now discuss.

B. Loop motion and cusps

The expansion of the universe is very important for the
evolution of the string network and later for the propagation
of gravitational waves. But the loops we will study are
always much smaller than the Hubble distance, and so their
evolution takes place essentially in flat space.
The general solution for the motion of a Nambu-Goto

string in flat spacetime can be written

Xμðt; σÞ ¼ 1

2
½Xμ

−ðσ−Þ þ Xμ
þðσþÞ�; ð40Þ

where σ� ¼ t� σ, are the lightcone coordinates on the
string worldsheet built from the timelike coordinate t and
the spacelike parameter σ. We will work in the gauge where
the 4-vector functions Xμ

� have X0
� ¼ σ�, and the spatial

part obeys the constraints jX0
−ðσ−Þj ¼ jX0þðσþÞj ¼ 1,

where, as usual, the prime denotes a derivative of the
function with respect to its argument. The two functions
X� specify the motion of the loop. It is these functions that
we smooth to emulate gravitational backreaction effects,
and it is these smooth functions that we represent by their
Fourier coefficients.

For a closed loop in the rest frame, X� are periodic,
X�ðσ�Þ ¼ X�ðσ� þ lÞ, and thus

Z
l

0

X0
�ðσ�Þdσ� ¼ 0: ð41Þ

Thus X0þ and X0
− each trace out a loop on the “Kibble-

Turok” unit sphere [41–43], and the center of gravity of the
loop is at the center of the sphere. Generically these two
paths will cross, so there are usually points where

X0þðσcþÞ ¼ X0
−ðσc−Þ: ð42Þ

Thus at tc ¼ ðσcþ þ σc−Þ=2, σc ¼ ðσcþ − σc−Þ=2, the string
velocity (formally) reaches the speed of light,

���� dXdt
���� ¼ 1; ð43Þ

and the string doubles back on itself,

dX
dσ

¼ 0; ð44Þ

so such a point is called a cusp.3

The existence of cusps leads to difficulties in computing
the gravitational radiation spectrum from a loop. When
there is a cusp, the spectrum falls only as n−4=3 [21], where
n is the harmonic number of the radiation. Thus the
integrated power falls only as n−1=3. This slow decrease
makes it impractical to accurate compute the total power by
simply computing numerically up to some maximum n.
Instead we compute the power from cusps analytically (See
Appendix A), and use this computation for high frequen-
cies in directions near cusps.
Cosmic strings may also have kinks: places where there

is a discontinuous change in X0. These lead to a spectrum
which falls as n−5=3 [43]. However, in the present analysis,
kinks are smoothed out by convolution, so that we do not
have to consider them in our computations. A better
analysis of kink evolution [39] show that kinks are opened
out rather than being rounded off. In future work we will
compute the actual backreaction numerically, but at the
moment we are restricted to modeling it as a smoothing
process.

C. Radiation power

Computation of the radiation power spectrum, Pn, for
each of our loops proceeds as follows. First we find cusps,
the places where the paths of X0þ and X0

− cross on the unit
sphere. We do this by generating by fast Fourier transform

3Note that cusps are not artifacts of Nambu-Goto dynamics. In
fact they are formed in field theory cosmic strings, as we showed
[16] in the Abelian-Higgs model.
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(FFT) at least 10Nf samples of each function and looking
for crossings between the great-circle paths connecting
adjacent samples. When we find such a crossing, we
narrow it down using the Fourier transform representations
of X�.
Then we integrate the gravitational radiation power over

solid angle by dividing the sphere of emission directions into
triangles. We start with an icosahedron projected onto the
sphere and then repeatedly divide each triangle into 4 smaller
triangles by inserting a point at the center of each edge [44].
If we perform the division process Nsplit times, the total
number of triangles is 20 × 4Nsplit . We used Nsplit ¼ 5.
We now see how close each triangle comes to the

direction (i.e., the X0þ ¼ X0
−) of any cusp. If there is a

cusp inside the triangle or within a threshold angle, taken as
0.1, we compute the emission using the cusp emission
procedure described Sec. V E below. If not, we compute the
radiation using the generic expression for the power given
in Sec. V D in the direction of the center of the triangle
(given by the normalized average of the 3 corner directions)
and multiply by the area of the triangle on the unit sphere.

D. Radiation in a generic direction

To compute the radiation power in a given direction Ω̂,
we follow Refs. [45–47]. The goal of this section is the
same as that of Ref. [46], but here we benefit from much
larger simulations enabled by 25 years of improvement in
computer power, and we deal with smoothed loops rather
than those taken directly from simulations.
The angular power density emitted in harmonic n is

dPn

dΩ
¼ Gμ2l2

2π
ω2
nðjAþj2 þ jA×j2Þ

¼ 8πGμ2n2ðjAþj2 þ jA×j2Þ; ð45Þ

where l is the length of the loop, ω ¼ 4πn=l and Aþ and A×
are the amplitudes of the two gravitational wave polar-
izations. If we construct a coordinate system whose z axis is
in the Ω̂ direction, they are given by

Aþ ¼ I−x Iþx − I−y Iþy ; ð46aÞ

A× ¼ I−y Iþx þ I−x Iþy ; ð46bÞ

where

I�ðnÞðΩ̂Þ ¼ 1

l

Z
l

0

dσ�X0
�ðσ�Þeð2πin=lÞðσ�−Xzðσ�ÞÞ: ð47Þ

From Eqs. (46) we find

jAþj2 ¼ jI−x j2jIþx j2 þ jI−y j2jIþy j2 − 2ReðI−x I−�y Iþx Iþ�
y Þ; ð48Þ

jA×j2 ¼jI−y j2jIþx j2 þ jI−x j2jIþy j2 þ 2ReðI−�x I−y Iþx Iþ�
y Þ; ð49Þ

where asterisk means complex conjugation. Thus

jAþj2 þ jA×j2 ¼ jI−⊥j2jIþ⊥j2 þ 4ImðI−x I−�y ÞImðIþx Iþ�
y Þ; ð50Þ

where jI�⊥j2 ¼ jI�x j2 þ jI�y j2. We can write

ImðI�x I��
y Þ ¼ ðII × IRÞz; ð51Þ

where the subscripts I and R mean the imaginary and real
parts of the vector. This shows that the result is independent
of the choice of the coordinate system in the
perpendicular plane.
We would now like to compute I�ðnÞ

⊥ in directions far
from any cusp, for specific X� given in terms of their
Fourier transforms. To do this quickly, we would like to use
FFT to compute all necessary n at once. However, Eq. (47)
does not have the form of a Fourier transform, because the
exponent is not simply 2πinσ�=l. But we can approximate
it as a nonuniform discrete Fourier transform as follows.
First take N positions σj ¼ jL=N, j ¼ 0…N − 1. To

compute Iþx , for example, we generate X0
xðσjÞ and ϕj ¼

ðσj − Xþ
z ðσjÞÞ=l at these N positions. This can be done by

FFT using the Fourier components of Xþ
x . We then have

IþðnÞ
x ðΩ̂Þ ¼ 1

N

XN−1

j¼0

X0þ
x ðσjÞe2πinϕj : ð52Þ

This is a nonuniform Fourier transform problem, which can
be solved in OðN lnNÞ time. We use the method of Potts,
Steidl, and Tasche [48]. The choice of how many n to
compute is discussed in Appendix B.

E. Radiation in a cusp direction

In the case where the triangle is close to the direction of
the cusp, the situation is more difficult. In any given
direction the gravitational power from the cusp decreases
with frequency only as ω−2=3, so the power per logarithmic
interval of ω increases as ω1=3. This continues until the
radiation is cut off at some maximum frequency propor-
tional to θ−3, where θ is the angle between the cusp
direction and the direction of observation. The angular area
over which a given frequency ω is important is proportional
to θ2 ∼ ω−2=3, so the radiation from a cusp, integrated over
solid angle, declines as ω−4=3 and the contribution per
logarithmic interval goes as ω−1=3.
This long tail makes it difficult to compute the radiation

accurately using the techniques above. First, we would
need huge numbers of harmonics near the cusp, and
second, the high-frequency radiation varies rapidly over
small distances within the triangle. To solve this problem,
we calculate the high-frequency cusp radiation analytically
using a simple model of the cusp, and then integrate
numerically over the triangular region.
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Because this model does not work well for low frequen-
cies, we compute those using Eqs. (45)–(47) even in the
direction of the cusps. Because of aliasing, FFT techniques
do not give accurate answers even at low frequencies,
unless all frequencies with significant power are included.
So we compute the integral in Eq. (47) directly. The
decision of which frequencies are done by which technique
is made by using the cusp technique whenever the
frequency would have significant variation over the range
of directions in the triangle.
The details of the cusp procedure are given in

Appendix A. We show in Fig. 1 an example of the radiation
density emitted by a typical loop. We see the enhancement
of the radiation density along the directions of the cusps.

VI. RESULTS

A. Total radiation power Γ of a loop

The simplest result that one can obtain is the total
radiation power, integrated over directions and frequencies.
This has the form P ¼ ΓGμ2, so the goal is to determine the
constant Γ. The slowest known radiator is the Allen-
Casper-Ottewill (ACO) loop [49] studied extensively by
Anderson [50–52], with Γ ≈ 39.0025. There is no upper
limit to Γ. For example, the Γ of Burden [45] loops grows
without bound as the angle between the planes of Xþ and
X− decreases. The power spectrum and the total power
emitted from these loops can be computed using the
expressions found in [45]. We have used these simple loop
solutions as test beds for our numerical code. The results
are in very good agreement with the analytic calculations.
A histogram of Γ for loops taken from simulations with

various degrees of smoothing is shown in Fig. 2.
Remarkably, for the great majority of loops, Γ ∼ 50.
Since smoothing the loop produces cusps that were not
there before, one might think that smoother loops would

have higher radiation power. However, as shown in Fig. 3,
the additional power emitted by the cusp comes at the
expense of noncusp emission. Thus the presence of cusps
moves the power to higher frequencies but produces little
change in the overall power.
Consequently it is a good approximation to use Γ ¼ 50

always, and we do not need to concern ourselves with
the fact that different loops evaporate at different rates.
We have calculated the average value of Γ for a population
of 1060 loops obtained in 3 radiation era runs and
obtained Γ̄r ¼ 51.43.
In the matter era we consider 812 loops and the average

total radiation power is Γ̄m ¼ 53.55.

B. Power spectrum

The power spectrum of the loop is the set of discrete
numbers Pn, n ¼ 1…∞. We use this spectrum in Eq. (6) to

FIG. 1. Spatial distribution of the gravitational radiation from a
smooth loop. We show the Mollweide projection of the radiation
density on a sphere surrounding the loop. The brighter regions
represent the high radiation density in the direction of the cusps.
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FIG. 2. Histogram of Γ values for the loops in the radiation era
at various stages of smoothing. The results for the matter era are
very similar.
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FIG. 3. Average power spectrum scaled by n4=3 of radiation era
loops at three stages of smoothing. The feature at n ≈ 107 is an
artifact. See the end of Appendix B
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compute ρgwðfÞ and so Ωgwðln fÞ. But of course we cannot
compute an infinite set of numbers. Instead we compute a
finite number of Pn, with the n chosen to give an accurate
result in ρgwðfÞ, taking account of our expectation that Pn

will drop as n−4=3. The details are given in Appendix C. We
take a weighted average4 of the Pn of the smoothed loops
from the simulation to use in Eq. (6). The average Pn for
loops in the radiation and matter eras are shown in Fig. 4.
We note that even though the average power spectrum is

very smooth, some of the loops have quite different shapes,
which leads to some variety in the power spectra as shown
in Fig. 5. Of course this variation is amplified by the way
we choose to represent the power spectrum by n4=3Pn.

C. Stochastic gravitational wave spectrum: Ωgwðln f Þ
With the Pn, and the Cn from Eq. (9) using the loop

densities computed in Sec. IV, we compute Ωgwðln fÞ for a
range of frequencies f using Eqs. (2), (6). The results are
shown in Fig. 6. This includes the contributions from the
loops in all the eras, as described earlier in the text.
The general form of the spectra can be understood as

follows. Very low frequencies can only be emitted by large
loops, but large loops are suppressed by l−5=2, as in
Eq. (16). There is an extra power of f in Eq. (2), so at
very low frequencies, Ωgw goes as f−3=2. At even lower
frequencies there is a cutoff because there are essentially no
strings of size l > 0.1t at time t, but this does not appear
in Fig. 6.
At high frequencies, we are sensitive only to loops

radiating in the radiation era. According to Eq. (29) this

would give a plateau proportional to
ffiffiffiffiffiffiffi
Gμ

p
. However,

changes in the number of relativistic degrees of freedom
at early times turn the plateau into a series of decreasing
plateaus, which are smoothed into a decline with some
wiggles.5 At intermediate frequencies there is a peak
resulting from gravitational wave emission in the mat-
ter era.
Decreasing Gμ does not change the frequencies at which

any given loop radiates, but the overall power drops
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FIG. 4. Average power spectrum scaled by n4=3 of radiation and
matter era loops. We show here only the power spectrum at the
last step on the smoothing procedure. See the end of Appendix B
for a discussion of the artifact at n ≈ 107
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FIG. 5. Power spectra of a few individual loops in the radiation
era, chosen to show the diversity of possibilities. The great
majority of loops have spectra similar to loop 1 here, but some are
quite different. Nevertheless, averaging over many loops gives
the smooth spectra shown in Fig. 4.
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FIG. 6. The stochastic gravitational wave spectrum for string
tensions between Gμ ¼ 10−8 and 10−14.

4See Ref. [5] for a detailed description of the weighting
procedure to compute the averages from our sample of loops
from the simulation.

5Note that adding new ingredients in the thermal history of the
universe, such as new physics beyond the standard model, could
introduce new features in this spectrum. In principle, detecting
this stochastic background from strings could allow us to probe
the thermal history of the universe, though in fact the effect
occurs only at very high frequencies.
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proportionately to Gμ. Simultaneously, the lower Gμ
allows loops to survive longer, so that at any given time
there is now a new, larger population of older and smaller
loops, which radiate at higher frequencies. The net result is
that the curve of Ωgw moves downward proportionately toffiffiffiffiffiffiffi
Gμ

p
and to the right as 1=ðGμÞ.

To model intercommutation probability p < 1 in the
standard way one should move up the graph for the desired
Gμ by factor 1=p. However, we feel that more work is
needed to understand low-p string networks. While
increasing the loop density by 1=p reproduces the p ¼ 1

average reconnection rate between unrelated strings, the
production of loops requires a long string to intersect with
itself, and the chance of that is unaffected by the overall
density. So the evolution of a p < 1 network may be more
complicated than a simple rescaling.

VII. CONCLUSION

We have computed the stochastic background of gravi-
tational waves to be expected from a network of local
cosmic strings with Gμ ranging from 10−8 to 10−14. We
used a ΛCDM cosmology with string loops taken from
simulations and smoothed by Lorentzian convolution as a
model of gravitational backreaction [5]. We analyzed
strings in the radiation era, strings from the radiation era
radiating in the matter era, and strings produced in the
matter era (though these, and all strings in the recent Λ-
dominated era, make no essentially no contribution). We
took account of changes in the number of relativistic
degrees of freedom in the very early universe, which give
an important reduction in the background at high frequen-
cies. We found (see Appendix D) that there is no need
remove energy contained in rare bursts from the observable
stochastic background. The only missing ingredient is a
real calculation of gravitational backreaction, which the
subject of work currently in progress.
A companion paper [7] compares the results predicted

here with limits from current observations and discusses the
prospects of detection in the future. The data shown in Fig. 6,
with the range Gμ extended down to 10−25, are available at
http://cosmos.phy.tufts.edu/cosmic-string-spectra/.
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APPENDIX A: GRAVITATIONAL WAVE POWER
FROM CUSPS

In this Appendix we compute the gravitational radiation
power due to the string near a cusp in directions close to the
direction in which the cusp is moving,Xþ ¼ X−. The idea
of the analysis is very similar to Refs. [33–36], but those
analyses were interested in the waveform for burst detec-
tion, whereas here we need the power spectrum to compute
the stochastic background. We also compute the power
spectrum for cusps with specific parameters rather than
what is expected for a generic cusp.
To simplify the calculation, we will choose our coor-

dinate system so that the z axis lies in this direction (note
that this is a different convention from that of Sec. V), and
the y axis lies perpendicular to both the cusp direction and
the observation direction, which we can thus write

Ω̂ ¼ ðsin θ; 0; cos θÞ; ðA1Þ

where θ is the angle between cusp and observation
directions.
We put the point of the cusp at σ� ¼ 0, and expand the

string around that point,

XþðσþÞ ¼ σþẑþ
1

2
x00þσ2þ þ 1

6
x000þσ3þ ðA2aÞ

and

X−ðσ−Þ ¼ σ−ẑþ
1

2
x00
−σ

2
− þ 1

6
x000
−σ

3
−; ðA2bÞ

where we defined x00
� ¼ X00

−ð0Þ and x000
� ¼ X000

− ð0Þ. The
constraints of the equations of motion require that

x�00
z ¼ 0; ðA3Þ

and

x�000
z ¼ −jx00

�j2: ðA4Þ
We ignore other components of x000, which contribute only
at higher orders in θ, so Eqs. (A2) become

X�ðσ�Þ ¼ σ�ẑþ
1

2
x00
�σ

2
� −

1

6
jx00

�j2σ3�ẑ; ðA5Þ

and Eq. (47) can be written

I� ¼ 1

l

Z
l

0

X0
�e

ði=2Þðωσ�−k·X�Þdσ�; ðA6Þ

where ω is the frequency of the emitted radiation and
k ¼ ωΩ̂ is its wave vector.
To describe the polarization of the gravitational waves,

we need two unit vectors lying in the plane perpendicular to
Ω̂. We choose
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n̂1 ¼ ðcos θ; 0;− sin θÞ; ðA7Þ

n̂2 ¼ ŷ: ðA8Þ

We use Eqs. (45), (50) and convert from discrete to
continuous frequencies with ω ¼ 4πn=l to get the spectral
power density

dP
dωdΩ

¼ Gμ2l3ω2

8π2
½jIþ⊥j2jI−⊥j2 þ 4ImI−1 I

−�
2 ImIþ1 I

þ�
2 �;

ðA9Þ
where I�i ¼ I�ðniÞ ¼ ni · I� and jI�⊥j2 ¼ jI�1 j2 þ jI�2 j2.
Since we are interested in the radiation near the cusp, we

expand ni and k in the small parameter θ to get

k ¼ ωðθ; 0; 1 − θ2=2Þ ðA10Þ

n̂1 ¼ ð1 − θ2=2; 0;−θÞ ðA11Þ

n̂2 ¼ ð0; 1; 0Þ: ðA12Þ

Using Eqs. (A2),

I�ðn̂Þ ¼ 1

l

Z
l

0

ðn̂z þ σ�ðx00
� · n̂ÞÞ

× eðiω=4Þðθ2σ�−ðk·x00�Þσ2�þjx00�j2σ3�=3Þdσ�: ðA13Þ

Using Eq. (A3), the second derivatives of the X� at the
cusp can always be written

x00
−ðσ−Þ ¼ ðα− cosϕ−Þx̂þ ðα− sinϕ−Þŷ ðA14Þ

and similarly,

x00þðσþÞ ¼ ðαþ cosϕþÞx̂þ ðαþ sinϕþÞŷ; ðA15Þ

giving

I�ðn̂Þ ¼ 1

l

Z
l

0

ðQ�ðn̂Þ þ P�ðn̂Þσ�ÞeiðA�σ�þB�σ2�þC�σ3�Þdσ�;

ðA16Þ
where

Q�ðn̂1Þ ¼ ẑ · n1 ¼ −θ ðA17Þ

P�ðn̂1Þ ¼ x00
� · n1 ¼ α� cosϕ� ðA18Þ

Q�ðn̂2Þ ¼ ẑ · n2 ¼ 0 ðA19Þ

P�ðn̂2Þ ¼ x00
� · n2 ¼ α� sinϕ� ðA20Þ

A� ¼ ωθ2

4
ðA21Þ

B� ¼ −
ωθ

4
α� cosϕ� ðA22Þ

C� ¼ ω

12
α2�; ðA23Þ

and where we kept only the lowest order in θ in each term.
The integral in Eq. (A16) can be done in closed form,
giving

I�1 ¼ I�ðn̂1Þ

¼ e−iΦ�

�
2ffiffiffi
3

p θ2

α�l
sin2ϕ�ði cosϕ�K2=3ðξ�Þ

− j sinϕ�jK1=3ðξ�ÞÞ
�

ðA24Þ

I�2 ¼ I�ðn̂2Þ

¼ e−iΦ�

�
2ffiffiffi
3

p θ2

α�l
sinϕ�j sinϕ�jðij sinϕ�jK2=3ðξ�Þ

þ cosϕ�K1=3ðξ�ÞÞ
�
; ðA25Þ

where Φ� are some irrelevant phases,

ξ� ¼ 1

6
ωθ3

jsin3ϕ�j
α�

; ðA26Þ

and K is the modified Bessel function. Thus

jI�1 j2 þ jI�2 j2 ¼
4

3

θ4

α2�l
2
sin4ϕ�ðK1=3ðξ�Þ2 þ K2

2=3ðξ�ÞÞ

ðA27Þ

ImI�1 I
�
2 ¼ 4

3

θ4

α2�l
2
sin4ϕ�signðsinϕ�ÞK1=3ðξ�ÞK2=3ðξ�Þ:

ðA28Þ

Putting these in Eq. (A9), we find

dP
dωdΩ

¼ 2Gμ2ω2θ8

9π2l
sin4ϕþsin4ϕ−

α2þα2−
½ðK2

1=3ðξþÞ þ K2
2=3ðξþÞÞðK2

1=3ðξ−Þ þ K2
2=3ðξ−ÞÞ

þ 4signðsinϕþ sinϕ−ÞK1=3ðξþÞK2=3ðξþÞ
× K1=3ðξ−ÞK2=3ðξ−Þ�: ðA29Þ

Note that this expression gives the power emitted by the
cusp per frequency and per solid angle as a function of
the length of the loop and four parameters that describe the
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cusp, namely ðα�;ϕ�Þ, which describe the crossing of the
vectors X0þ and X0

− on the Kibble-Turok sphere and the
relative angle with respect to the observation direction. Our
code to compute the power spectrum from individual loops
in the simulation first looks at the possible cusps in each
loop and identifies these parameters. We can then integrate
Eq. (A29) over solid angle and over ranges of frequency to
include in the gravitational radiation spectrum from tri-
angles that are near cusps.
We do not use it for low frequencies where the approxi-

mation of the set of discrete harmonics by the continuous
frequency ω would lead to significant inaccuracy.

APPENDIX B: THE NUMBER OF HARMONICS
TO COMPUTE

Except for directions near cusps, we find the power
spectrum by computing IðnÞ� by fast Fourier transform.
This yields all harmonics up through some maximum nmax.
In most directions, the power falls quickly, and we only
need to compute a few harmonics. But in directions close to

any X0
�, the corresponding IðnÞ� may fall very slowly. We

estimate how many harmonics we need to compute for any
given direction as follows.
We consider the computation of IþðnÞ

x and suppress all þ
subscripts and superscripts for this section. We define

fðσÞ ¼ σ − XzðσÞ ðB1Þ

gðσÞ ¼ X0
xðσÞ ðB2Þ

hðσÞ ¼ f0ðσÞ ¼ 1 − X0
zðσÞ ðB3Þ

so that

IðnÞx ¼ 1

l

Z
l

0

dσgðσÞeiϖnfðσÞ; ðB4Þ

with ϖn ¼ 2πn=l. We can set the origin of coordinates so
that xð0Þ ¼ 0. Then as σ goes from 0 to l, fðσÞ also goes
from 0 to l, and hðσÞ ≥ 0 so f is nondecreasing.
We can write Eq. (B4) as a Fourier transform [46], by

changing variables from σ to f, getting

IðnÞx ¼ 1

l

Z
l

0

dfsðfÞeiϖnf; ðB5Þ

where

sðfÞ ¼ gðσðfÞÞ
hðσðfÞÞ ; ðB6Þ

and σðfÞ is the inverse of fðσÞ.
We would like to bound Ix by bounding the derivatives

of sðfÞ. We integrate by parts m times in Eq. (B5), finding

IðnÞx ¼ im

lϖm
n

Z
l

0

dfsðmÞðxÞeiϖnx; ðB7Þ

where sðmÞ is the mth derivative of s. If we can bound the

derivatives, jsðmÞj < sðmÞ
max, then we will find jIðnÞx j < Bm ¼

sðmÞ
max=ϖm

n .
To differentiate sðfÞ, we can take ds=df ¼ ðds=dσÞ=

ðdf=dσÞ. The effect is to differentiate with respect to σ and
then divide by h. We thus have

sðmÞ ¼
�
h−1

d
dσ

�
m
ðh−1gÞ: ðB8Þ

One term found in sðmÞ is the one where we repeatedly
differentiate the inverse power of h, which thus grows by
two units each step, giving

sðmÞ⊇ ð2m − 1Þ!!h0m
h−ð2mþ1Þ g: ðB9Þ

We conjecture that this is the dominant term. Considering it
alone, we can derive a bound. We need to know the largest
value of Eq. (B9) anywhere on the string. Since we are not
concerning ourselves here with structure in g, we will
merely observe that jgj < 1. Now h ¼ 1 − cos θ, where θ is
the angle between x0 and the direction of observation. We
expect that jh0j ¼ jX00

z j is not too large, because of smooth-
ing. Also when h is small, X00 is mostly transverse to the
observation direction. So write

sðmÞðσÞ ≈ ð2m − 1Þ!! rðσÞ
m

hðσÞ ; ðB10Þ

where

rðσÞ ¼ jX00
z ðσÞj

hðσÞ2 : ðB11Þ

We are interested in m ≫ 1, so Eq. (B10) has its maximum
at the σ that maximizes r, regardless of m. Let us call this
point σmax and let rmax ¼ rðσmaxÞ. Then

Bm ¼ ð2m − 1Þ!! rmmax

hðσmaxÞϖm
n
: ðB12Þ

Ignoring the extra power of h,

lnBm ≈mðln 2m − 1þ lnðrmax=ϖnÞÞ; ðB13Þ

which is minimized at m ¼ ϖn=ð2rmaxÞ, at which point

Bm ≈ e−m ¼ e−ϖn=ð2rmaxÞ: ðB14Þ

Thus IðnÞx falls off as e−ϖn=ð2rmaxÞ. For a given string and a
given Ω̂, we scan the string to find rmax for Iþ and I−.
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Using Eqs. (45), (50) this gives us an exponentially
declining bound on dPn=dΩ and thus a value of nmax
after which the power is insignificant.
When we do the calculation using this nmax, we check

that indeed the computed dPn=dΩ are small for the last few
n. Thus the even if the conjecture above is not correct, we
have good reason to believe that we are not missing
any power.
In certain cases, computational resources do not allow us

to compute as many harmonics as recommended above. In
particular, some loops have “pseudocusps” [53,54], places
where X0þ and X0

− come close without crossing. Because
such a point is not an actual cusp, it is handled by direct
computation, rather than our cusp code. But in observation
directions close toX0þ andX0

−, h is very small and thus rmax
large for both Iþ and I−, so the power remains high for
many harmonics. We limit the computation to 107 har-
monics, so we miss n > 107 power coming from such
regions. This leads to a fictitious drop in the computed
power spectrum at n ¼ 107, as shown in Figs. 3 and 4. This
is of much less significance than it appears in the figures,
because the actual power is multiplied by n−4=3 over what is
shown there.

APPENDIX C: NUMERICAL SUMMATION
OF AN INFINITE SERIES

In this Appendix we discuss the computation of an
infinite sum,

X∞
n¼1

An; ðC1Þ

such as appears in Eq. (6). Of course the An must decrease
rapidly enough so that the sum converges. We can evaluate
only a finite number of An, and we must get from there to an
approximation for the infinite sum.
A great deal has been written on the subject of numerical

integration, but much less on numerical summation. Most
of what there is involves the Euler-Maclaurin formula,
which enables one to convert a sum of discrete samples of a
smooth function into an integral. But here we do not have
samples of a smooth function but rather a function defined
only at discrete values n. Thus we will develop a little of the
needed techniques for numerical summation by analogy
with numerical integration.
A numerical integration method can be though of as a

way of taking a finite number of samples of the integrand,
producing from those an approximation to the integrand,
and integrating that instead. For example, in the trapezoidal
rule, the integrand is approximated by linear interpolation
between sampled points. We will use a similar technique
here.
The standard procedure for integrals going to infinity

(for example see Ref. [55]) is to perform a change of

variable to render the integration range finite. For example
if one has

Z
∞

1

dxfðxÞ; ðC2Þ

one can let t ¼ 1=x to get

Z
1

0

dtfð1=tÞ=t2: ðC3Þ

If fðxÞ decreases at least as fast as 1=x2 [55], then fðtÞ=t2
will be bounded as t → 0.
In our case, An ¼ CnPn. For very large n, the power Pn

is dominated by cusp emission and goes as n−4=3. The
coefficients Cn decrease, so An decreases at least as n−4=3

but not necessarily faster. If we had fðxÞ going as x−4=3 in
Eq. (C2), we should change variables to t ¼ x−1=3,
giving

3

Z
1

0

dtfðt−3Þ=t4; ðC4Þ

where the integrand is bounded as t → 0.
We will now use Eq. (C4) as a guide to approximate

Eq. (C1) using a finite number of n. The discrete approxi-
mation to the integrand in Eq. (C4) is Sn ¼ n4=3An, and it is
this Sn that we will interpolate between computed values.
Furthermore the variable of interpolation, analogous to t,
should be n−1=3. Thus if we have computed Sn and Sm, we
will find Sl for l ∈ ðm; nÞ by

Sl ¼
m−1=3 − l−1=3

m−1=3 − n−1=3
Sn þ

l−1=3 − n−1=3

m−1=3 − n−1=3
Sm: ðC5Þ

The sum of terms from m through n − 1 is given by

Xn−1
l¼m

n−4=3Sl ¼
Sm − Sn

m−1=3 − n−1=3
½ζð5=3; mÞ − ζð5=3; nÞ�

−
n−1=3Sm −m−1=3Sn

m−1=3 − n−1=3

× ½ζð4=3; mÞ − ζð4=3; nÞ�; ðC6Þ

where

ζðs;mÞ ¼
X∞
k¼0

ðmþ kÞ−s ðC7Þ

is the Hurwitz ζ function.
Suppose we have computed Sn for some set of nj,

j ¼ 1…N. For simplicity, let us require that nN ¼ ∞. Of
course A∞ ¼ 0, but if Cn approaches a nonzero limit as
n → ∞, then S∞ is a constant that we can compute, and
using it improves the approximation. This occurs when we
compute the total power Γ, where Cn ¼ 1.
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We can write

X∞
n¼1

An ¼
X∞
n¼1

n−4=3Sn ¼
XN−1

j¼1

Xnjþ1−1

l¼nj

l−4=3Sl ≈
XN
j¼1

cjSnj ; ðC8Þ

where cj is the sum of the coefficient of Sm in Eq. (C6) with m ¼ nj, n ¼ njþ1 and the coefficient of Sn in Eq. (C6) with
m ¼ nj−1, n ¼ nj,

cj ¼
ζð5=3; njÞ − ζð5=3; njþ1Þ − ½ζð4=3; njÞ − ζð4=3; njþ1Þ�n−1=3jþ1

n−1=3j − n−1=3jþ1

−
ζð5=3; nj−1Þ − ζð5=3; njÞ − ½ζð4=3; nj−1Þ − ζð4=3; njÞ�n−1=3j−1

n−1=3j−1 − n−1=3j

: ðC9Þ

For j ¼ 1, there is no contribution from the previous
interval. For j ¼ N, there is no contribution from the next
interval.
Equation (C5) still holds with n ¼ ∞ and consequently

n−1=3 ¼ 0. Then Eq. (C9) holds also. For cN−1, everything
vanishes in the first line except the first terms in the
numerator and the denominator, while the second line is
normal. For cN the first line is absent because it is the last
interval, and in the second line all terms involving nj
vanish.
One might approximate an integral such as Eq. (C4) by

evaluating the integrand at evenly spaced t. By analogy, we
can choose the nj so that the n−1=3j are evenly spaced, as
much as possible. We do this by picking a fiducial number
N0, in our case 1000, choosing ti ¼ i=N0 for i ¼ 0…N0, and
letting fnjg be the distinct integers, plus infinity, found by
rounding the t−3i . The number of such modes is about
4ðN0=3Þ3=4. In our case N ¼ 312.

APPENDIX D: HANDLING OF RARE BURSTS

The above computation of Ωgw is the computation of its
average value. If what we observe is the total contribution
due to many loops, then by the central limit theorem we
should expect a Gaussian background. But if the average is
dominated by a few rare bursts, so rare that we might not
have seen any of them, then we should expect a smaller
signal. Thus rare bursts should be excluded from the
background calculation [34].
Suppose an experiment runs for time T and reports the

average signal at some typical frequency f. If strong bursts
occur less often than the duration of the experiment, then
we would probably not have seen even one, so their
contribution should be excluded from our estimate of the
average power. So the question is whether any significant
contribution to Ωgw comes from strong bursts that typically
do not occur within a time interval T. We will see below
that it does not.

One can also consider the status of bursts that occur with
frequency greater than 1=T but less than frequency f.
This might matter for experiments such as LIGO and LISA,
but not for pulsar timing, where the typical frequency is
about the inverse of the observation time. Bursts with these
intermediate rates contribute to the average power over
the entire interval T in the usual way, so if that is the
observation with which we compare, they do not need to be
excluded. In fact, such bursts are likely to be detected by
burst detection pipelines, rather than being reported as part
of the background. However, this makes the effect more
detectable, not less. So including intermediate-rate bursts
makes no mistake in detection through the average power,
but neglects the possibility of detection of bursts as bursts.
That, however, is the subject of a different body of work,
and here we will show that there is no need to exclude burst
with rates less than 1=T.
We will show that rare bursts are not important by

analyzing a particular population of bursts that are stronger
than those that make significant contributions to the
background and nevertheless occur frequently in period
T. There are two factors that lead to an energetic burst:
large loop length l, and recent emission, i.e., small redshift.
We are concerned with tightly beamed bursts emitted by

cusps, which means with radiation at frequencies high
compared with the loop oscillation frequency 2=l. Thus the
discrete nature of the loop harmonics is not relevant, and we
can consider a continuous form of the power, PðyÞ, with
y ¼ ð1þ zÞfl, where f is the observed frequency today.
We define PðyÞ to be the power per unit y from the given
loop, so the power per unit range of observed frequency
is PðyÞdy=df ¼ ð1þ zÞlPðyÞ.
We now compute the dependence of the burst energy

density on l and z. The period in the emitting frame
between burst emissions is proportional to l. Thus we
multiply by l to convert the power emitted into the energy
permitted per burst. Then we divide by 1þ z because the
energy is decreased by redshifting. Thus the present-day
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energy of a burst per unit range of observed frequency is
proportional to l2PðyÞ. Since PðyÞ ∝ y−4=3 [21], this goes
as l2=3ð1þ zÞ−4=3.
Now we consider beaming. We define an approximate

beaming angle θ by setting ξ� ¼ 1 in Eq. (A26). Since
α� ∼ 1=l, we find θ ∼ ðlωÞ−1=3 ∼ y−1=3. Beaming thus
enhances the burst energy density by a factor of
θ2 ∼ y2=3, giving in all l4=3ð1þ zÞ−2=3.
In addition, the energy of the burst is diluted by the square

of the proper distance to the point of emission, which is
proportional to z for z ≪ 1 and asymptotes to the horizon
distance for large z. Again, recent bursts are stronger.
Since recent bursts from large loops are the strongest, we

will consider bursts coming from strings of length around
some specific l > ΓGμt0 at places with z < 1. Even these
large loops are dominated by radiation-era relics, so we can
use Eq. (32), with G1 ¼ 1, z ≪ 1, and l > ΓGμt0,

nrðl; t0Þ ≈
0.5ðH2

rÞ3=4
l5=2

: ðD1Þ

Using Eq. (15), we find the number of loops per loga-
rithmic interval in l,

lnrðl; t0Þ ≈ 9.3 × 109
�
l
yr

�
−3=2

Gpc−3: ðD2Þ

The proper distance to z ¼ 1 is about 3.3 Gpc [56], so the
volume is 150 Gpc3, and the total number of loops

Nðln lÞ ≈ 1.4 × 1012
�
l
yr

�
−3=2

: ðD3Þ

Almost all our smoothed loops have 2 cusps per oscillation,
so each loop produces bursts at rate 4=l. The fraction of

bursts we can see is given by the fraction of solid angle
occupied by the beam, θ2=4, where, as before, θ ≈ ðflÞ−1=3.
Thus the rate of bursts received from a population of loops
with lengths around l and z < 1 is

R ¼ 1.4 × 1012
�
l
yr

�
−19=6

ðf · yrÞ−2=3 yr ¼ 1.4 × 107

×

�
l
yr

�
−19=6

�
f
Hz

�
−2=3

yr: ðD4Þ

For pulsar timing, we take f ¼ ð5 yrÞ−1 and consider
loops around l ¼ 1000 yr. Then we find about 4 × 107

loops emitting 2 × 105 bursts per year, of which we can see
about 0.7%, giving 1400 bursts per year. Even these large
loops give frequent events which would be seen as a
Gaussian background.
We found [7] that Gμ < 2 × 10−11, so ΓGμ < 10−9 and

the dominant size of loops today, ΓGμt0, is no more than
14 yr. Thus the loops we just considered with l ∼ 1000 yr
contribute a negligible fraction of the total background, and
ignoring loops larger than these has no effect.
Turning now to LISA, we choose f ¼ 10−2 Hz and

consider loops around l ¼ 100 yr, still several times larger
than ΓGμt0. Then Eq. (D4) gives R ¼ 140=yr, so once
again rare bursts do not need to be excluded.
For LIGO, we choose f ¼ 102 Hz and consider loops

around l ¼ 14 yr, finding R ¼ 150=yr. Thus loops right
at ΓGμt0 do not need to be excluded, but significantly
larger ones might. But this is very far from making a
difference to the background seen by LIGO, which comes
almost entirely from emission during the radiation era.
Even excluding all matter-era emission would make little
difference.
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