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We show that the simplicity constraints, which define the dynamics of spin foam models, imply, and are
implied by, the first law of thermodynamics, when the latter is applied to causal diamonds in the quantum
spacetime. This result reveals an intimate connection between the holographic nature of gravity, as reflected
by the Bekenstein entropy, and the fact that general relativity and other gravitational theories can be
understood as constrained topological field theories. To state and derive this correspondence we describe
causal diamonds in the causal structure of spin foam histories and generalize arguments given for the near
horizon region of black holes by Frodden, Gosh and Perez [Phys. Rev. D 87, 121503 (2013); Phys. Rev. D
89, 084069 (2014); Phys. Rev. Lett. 107, 241301 (2011); 108, 169901(E) (2012).] and Bianchi
[arXiv:1204.5122.]. This allows us to apply a recent argument of Jacobson [Phys. Rev. Lett. 116,
201101 (2016).] to show that if a spin foam history has a semiclassical limit described in terms of a smooth
metric geometry, that geometry satisfies the Einstein equations. These results suggest also a proposal for a
quantum equivalence principle.

DOI: 10.1103/PhysRevD.96.104042

I. INTRODUCTION

Ever since Jacob Bekenstein proposed that black holes
have entropy [4], the idea that the dynamics of spacetime
are expressions of the laws of thermodynamics has been
contemplated. Indeed, Bekenstein was inspired by the
observations of Bardeen, Carter and Hawking that black
holes obey a set of laws analogous to those of thermody-
namics [5]. Bekenstein’s groundbreaking 1972 paper was
followed by Hawking’s discovery of black hole radiation
[6], as well as the work of Davies [7], Fulling [8] and Unruh
[9] on Unruh radiation. Reflecting on these results,
Candelas and Sciama [10] and others posed the question
of whether the Einstein equations were a result of the
statistical mechanics of some quantum gravity theory.
Ted Jacobson took a large step towards this goal in his

1995 paper in which he showed that the Einstein equations
emerge as the equation of state of some atomic structure of
spacetime [11].1

There are twoways to read these result connecting gravity,
the quantum and thermodynamics. The conservative point of
view is that the laws of thermodynamics and the Einstein
equations both emerge at the semiclassical level. Here
I provide evidence for a deeper possibility, which is that
the first law of thermodynamics is expressed by the micro-
scopic dynamics of the quantum spacetime.
To see how this arises we can trace the story of responses

to Bekenstein’s great discovery.
First, in 1993, Louis Crane proposed that quantum

gravity be closely related to topological quantum field

theory, as the latter is characterized by finite dimensional
Hilbert spaces of states appearing on boundaries, as is
suggested by the Bekenstein bound [13]. Indeed,
Plebanski [14], Capovilla, Dell and Jacobson [15], and
others had shown that general relativity is elegantly
expressed as a topological field theory, called BF theory,
modified by the imposition of certain constraints. This is
the theory of a two form-the B field, interacting with a
gauge field. The constraints are known as classical
simplicity constraints, as they require that B field be
simple. More precisely, the Einstein’s equations are a
consequence of constraining the gauge degrees of free-
dom of the B field. These constraints reduce the gauge
invariance of the theory. This in turn liberates certain bulk
gauge modes to become physical, and they are exactly the
massless spin two modes. At the same time, the boundary
degrees of freedom remain those of the topological field
theory.
Moreover, as shown in [16], when boundary conditions

are imposed within this framework which code the
presence of an horizon, the boundary dynamics is exactly
Chern-Simons theory and the boundary Hilbert space has
a finite dimension that grows with the exponential of the
area, as defined in loop quantum gravity.2

This led to an understanding of black hole entropy in
LQG [18,19], but left the relation between area and entropy
dependent on a free parameter: the Immirzi parameter,
which gives the area gap. This ambiguity was resolved
when the original canonical picture of isolated horizons on
which Chern-Simons theory is induced was developed in
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a spacetime or spin foam language by Frodden, Gosh
and Perez [1] and Bianchi [2]. The dependence on the
Immirzi parameter was shown to be a feature of the
ensemble of states at fixed area, and is lifted when we
consider instead ensembles based on constraining the
temperature or energy. For these ensembles, the entropy
is exactly the Bekenstein-Hawking entropy, with the
correct 1

4
. In particular, the ensembles of fixed boost energy,

seen by a stationary near horizon observer, plays a key role
in [1,2], as it does in this paper.3

The key to these spin foam derivations of the Bekenstein
entropy is the imposition of a quantum version of the
simplicity constraint, in the measure of the path integral
of the corresponding topological quantum field theory.
This again liberates the spin two modes. These simplicity
constraints [21,22], defined by (14) below, reduce the
partition function of a topological field theory to the
partition function of general relativity.
Meanwhile, around the same time as Crane’s papers, ’t

Hooft, also inspired by Bekenstein’s discovery, proposed
the holographic principle [23]. This was quickly taken up
by Susskind in the context of string theory [24]. This
inspired Maldacena to propose the AdS=CFT correspon-
dence [25]. This has become a cornerstone of contemporary
physics, with many examples developed in string theory.
In addition, there are indications that this reflects a deep
correspondence between conformal field theories and
diffeomorphism invariant theories that transcend any single
realization [26].
By making use of the AdS=CFT correspondence, the

authors of several ingenious papers were recently able to
show that the linearized Einstein equations are a conse-
quence of entanglement [27]. These suggest a principle of
maximal entanglement which appears to generalize the fact
that the vacuum of a QFT on Minkowski spacetime is
maximally entangled.
This very recently inspired Jacobson to return to the

subject and rework his 1995 argument as a demonstration
that the Einstein equations express such a principle of
extremal entanglement [3].
Like his 1995 paper, Jacobson’s derivation can be

understood as a schema for deriving the Einstein equations
as the statistical thermodynamics of a discrete theory of
quantum spacetime. In this paper we realize this schema in
the context of spin foam models.
The key result we find is a close relationship between

thermodynamics and the simplicity constraint of spin foam
models [21,22,28]. Our major result is that under certain
conditions, the simplicity constraint implies directly the
first law of thermodynamics. We also show that under
reasonable assumptions the first law implies the simplicity

constraints. These results extend and generalize previous
results [1,2,29].
This result ties together the holographic principle with

the understanding of general relativity as a constrained
topological field theory.
There are actually several closely related results, which

are the following.
(1) The first result is not new, it is rather an interpretation

of a result given in different forms by Carlip and
Teitelboim [30], Massar and Parentani [31,32],
Bianchi and Wieland [33], Frodden, Gosh and Perez
[1] and the author [34]. They consider the exterior of
a black hole horizon or, more generally, a causal
diamond. These regions have a bifurcation two
sphere, W or, more generally, a “corner” or “waist”,
which is fixed under a family of boost transforma-
tions. (SeeFig. 1.) The simplest example of this are the
transformations generated by boost killing fields in
Rindler spacetime, but these exist for any causal
diamond. These authors compute the contribution
to the Hamiltonian which generates such a boost,
coming from a boundary term at the corner. (There are
also bulk terms, but they vanish on solutions because
they are proportional to constraints.) They show that

HðWÞBoost ¼
1

8πG
AðWÞ ð1Þ

where AðWÞ is the area of W, computed by the two
metric inducedonW.Now, assume thatW is indeed the
bifurcation two sphere of a stationary black hole. Then
AðWÞ is the area of the horizon andwe canmake use of
the classical second lawof black holemechanicswhich
tells us that under a physical process that converts one
stationary black hole into another, AðWÞ can never
decrease [5]. This suggests we define an entropy by
introducing a discrete unit of area, Δa, so that4

FIG. 1. A causal diamond defined by two events, f and e. W is
the corner, or waist, bounding a space like three-disk, S.

3For a review of different approaches to black hole entropy
within LQG, see [20].

4As [29] emphasize, even if (3) is a classical result, the fact that
we have to introduce a finite unit of area Δa to give the surface
entropy a meaning points to a hidden role of quantum spacetime
in defining the thermodynamics of the gravitational field.

LEE SMOLIN PHYSICAL REVIEW D 96, 104042 (2017)

104042-2



SðWÞ ¼ AðWÞ
Δa

ð2Þ

Then our relation for the boost Hamiltonian, (1) must
be related to the first law of black hole mechanics. We
do not show this here, but we note that it can bewritten
in the suggestive form,

HðWÞBoost ¼ TBSðWÞ ð3Þ

where the universal, Unruh-like, boost temperature is
TB ¼ Δa

8πG. Of course when we pickΔa ¼ 4Gℏ we get
the usual results, but the point is that (3) is a classical
relationship. This relation (3) is more general than the
first law of black hole mechanics, because it holds on
the corner of every causal diamond.We can call (3) the
first law of classical spacetime dynamics. FGP call it
the local form of the first law [1]. Indeed, as Jacobson
shows [3,11], this quasi thermodynamic relation im-
plies the Einstein equations.
With this classical preludewe go on to see that it has

a consequence for quantum gravity, which is the
simplicity constraint.

(2) The relation between (3) and the simplicity con-
straint emerges as soon as we express the operators
for boosts and area in the language of loop quantum
gravity. For experts, the result can be telegraphed in
a few lines.
In a spin foam model a space like two surface like

W is represented by a set of triangles, W ¼ ∪△, in
the simplicial decomposition of the spacetime. Each
triangle is the home of a representation of the lorentz
group, S△. Each △ is also oriented as part of the
boundary of a tetrahedron by a space like unit vector,
n△a . The boost Hamiltonian is equal to a boundary
term

HðWÞB ¼ ℏ
X
△∈W

K̂an△a ð4Þ

plus bulk terms which are linear combinations of
quantum constraints. K̂a is the generator of boosts in
S△. The area operator is

ÂW ¼ 8πℏGγ
X
△∈W

L̂an△a ð5Þ

where L̂a is the generator of rotations in S△ and γ is
the Immirzi parameter.
We should now consider that any triangle can be

part of a corner of some boost transformation.
Moreover in these case the normals will vary. Hence,
these three relations, (3), (4), (5) together imply that
when Δa ¼ 4ℏG, physical states satisfy a constraint
separately on each triangle, independent of the
normals,

hðK̂a − γL̂aÞi ¼ 0 ð6Þ

But these are the simplicity constraints that define
the spin foam models [2,21,22,28]. Hence, the
simplicity constraints are a consequence of (3),
the first law of classical spacetimes. They express
this classical relation on quantum states.
The other results require a bit more structure to

describe.
(3) Given a spin foam history, X, consider a closed

space like two surface made of triangles, W ¼ P
△

bounding a three disk, Σ. ToW there is associated a
Hilbert space, HðWÞ ¼⊗△ V△ ⊗ HΣ. Here V△ is
an infinite dimensional reducible representation of
SLð2; CÞ and HΣ contains bulk states that depend
on degrees of freedom in the interior of Σ.
Let HBðWÞ be a corresponding generalized boost
(or bubble) Hamiltonian, to be described below.
A generalized boost is a transformation that evolves
the interior of Σ forward in time while leaving its
boundary and exterior fixed. Let SðWÞ be the
entanglement entropy which is a consequence of
tracing a global state over degrees of freedom in the
exterior. Then we show that the simplicity con-
straints, (6), imply

hHBðWÞi ¼ TUSðWÞ ð7Þ

where

TU ¼ ℏ
2π

ð8Þ

is the (angular) Unruh temperature.
We can call (7) the first law of quantum space-

time dynamics. Thus, we show that the classical
relation (1) implies the quantum constraint, (6) and
that (6), in turn, implies a quantum form of (1),
which is (7).
(1) and (7) have the form of the first law, but they

are not yet that law. To invoke it we need still more
structure. One might think one has to introduce
black holes, but it turns out that we can work in a
more general context which is causal diamonds [3].

(4) So now, let W be the two surface bounding the
“waist” of a causal diamond (all defined for a class
of spin foam models below). Let δQ be the expect-
ation value of matter energy density crossing Σ,
while δSðWÞ is the change in entropy from a casual
diamond of the same spatial volume (of an extremal
slice Σ) in a flat simplicial spacetime. Then we show
that in a semiclassical approximation, the usual first
law of thermodynamics holds

δQ ¼ TUδSðWÞ ð9Þ
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(5) In a certain semiclassical regime, to be defined
below, in a weak sense, we can follow Jacobson’s
2015 derivation to recover the Einstein equations
[3]. It should be emphasized that the result is weak in
two senses. First, we do not show that a spin foam
model has a good semiclassical limit. We show
rather that if it does, and if that limit is described in
terms of a slowly varying metric geometry, then that
metric satisfies the semiclassical Einstein equations.5

Second, the expectation value of the energy mo-
mentum tensor that appears in those Einstein equa-
tions is defined from the thermodynamics, as the
source of the heat flow, and not from a quantization
of microscopic degrees of freedom.

Before going on to the details, we make some comments
on the results.6

It is interesting to note that the Unruh temperature
appears in this derivation, as the temperature of a subsystem
defined by a causal domain. This suggests that when a
generalized boost creates an horizon, tracing the vacuum
state of the quantum gravity theory by degrees of freedom
outside that horizon thermalizes the state. If correct, this
reflects a maximization of information shared between the
regions of space on each side of the horizon, as in the
vacuum of Minkowski spacetime.
One can also derive the Unruh temperature for the

boosted frames in a causal diamond, following the calcu-
lation of Bianchi [2]. In this case the Bekenstein-Hawking
entropy, with the correct 1

4
, follows as a consequence of the

simplicity constraint of the spin foam model. This, indeed,
was essentially the result of Bianchi, for quantum Rindler
domains representing the near horizon quantum geometry.
What we show here is that the logic of Bianchi’s derivation
applies more generally to causal diamonds of spin foam
models, and that at the root of these results is a very general
connection between the first law and the simplicity
constraint.
Finally, these results suggest a form of the quantum

equivalence principle, which has been long sought [10].
In flat spacetime an accelerating observer sees a region of
spacetime limited by an horizon, which is generated by a
two surface, W, fixed by a boost. We can generalize the
notion of a boost to mean any evolution of a region of
quantum or classical spacetime that fixes a two surface,W.
This two-surface W divides a spacial slice of the universe
into two parts. In flat spacetime these are maximally
entangled with each other. We can posit that this is also
true in a dynamical quantum spacetime. As this generalizes

a property of flat spacetime it is appropriate to call it a
version of the equivalence principle.
The result is that an observer inside the causal diamond

sees a thermal state, given by

ρW ¼ e−HboostðWÞ=TU ð10Þ

where HboostðWÞ is the generator of the boosts that fix W.
As will be explained, because of refoliation invariance in
the interior of the causal diamond, this is unique.
In Jacobson’s 2015 paper a key role is played by causal

diamonds of a classical spacetime. In the present paper we
work with an analogous notion defined using the causal
structure of a spin foam model. Our first job is then to
review spin foam models, and the discrete causal structures
they carry. These causal structures are induced when the
spin foam history is constructed by sequences of dual
Pachner moves acting on an initial state, as was shown in
[37] by Markopoulou. We find that we are able to describe
causal domains and their boundaries in sufficient detail to
be useful for defining physical observables.
Having control of these causal structures will allow us to

define and study causal diamonds in spin foam histories.
We give a general description of causal diamonds in these
discrete causal structures, this allows us to define observ-
ables for spin foammodels in terms of expectation values of
currents defined on the boundaries of causal diamonds.
The thermodynamics of these quantum spacetimes is

then defined by vacuum expectation values on the spatial
boundary of the causal diamond, where by vacuum we
mean the case that the currents on the null boundaries
vanish.
Physical quantities relevant to the low energy or semi-

classical limit will, as Dittrich has emphasized, have to be
defined following a process of coarse graining and renorm-
alization. Also, as she emphasizes, physical observables are
to be defined by coarse graining boundaries [38]. It is then
important to show that the connection between the sim-
plicity constraints and the first law emerges in a way that is
largely independent of these processes and the details of
how they are carried out. To accomplish this we give a very
brief sketch of these processes. The key point is that the
linear simplicity constraints, acting on boundary observ-
ables, apply just as well to coarse grained and renormalized
quantities, because they are linear.
In the next section we review the construction of causal

spacetime histories, which we use in Sec. III to describe
causal diamonds in those histories. Section IV describes the
quantum mechanics of causal diamonds and their associ-
ated observables in both the canonical and path integral
language. We use these results in Sec. V to present the main
results, which are a set of relationships between the
simplicity constraints and different versions of the first
law. Section VI is brief and sketches the application of
Jacobson’s 2105 argument in [3] to show that if a spin foam

5We note that this weak recovery of general relativity from spin
foam models has been shown previously in other ways, including
a large spin or semiclassical limit [35] as well as by mimicking
the logic of Jacobson’s 1995 paper [36].

6After this paper was in draft, Aldo Riello pointed out [29]
where some of the same results are noted, but in the course of
making a very different, though complementary, argument.
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model has a suitable semiclassical limit, described in terms
of slowly varying metric and matter fields, those fields obey
the Einstein equations. Some comments are presented in
the last Sec. VII.

II. SUMMARY OF CAUSAL SPIN FOAM MODELS

We start by summarizing the basic structures used to
define spin foam models.7

A. Causal spin foam models

(i) We define a Hilbert space of states, H, arising from
the quantization of general relativity, on a spacetime
manifold with topology Σ × R, where Σ is a three
dimensional manifold which is either compact or
compact with a boundary. In the latter case there will
be boundary conditions imposed on ∂Σ. A basis for
H is given by spin networks embedded in Σ, modulo
diffeomorphisms of Σ. A dual description of this
basis is triangulations of Σ, in terms of tetrahedra,
representing a space like slice, i i.e. a three dimen-
sional simplicial complex, made by gluing tetrahe-
dra together. The faces of the tetrahedra are triangles
which are labeled by representations j of SUð2Þ. The
tetrahedra themselves are labeled by intertwiners in
the product of representations of its triangles.

(ii) A spacetime history is denoted X. A history is a four
dimensional simplicial complex that interpolates
between an initial state jini and a final state jouti.

(iii) Events of X, denoted e1; e2;…, are dual to four
simplifies S. A four simplex represents a bubble
move that evolves a small region of a state, con-
sisting of a small number of tetrahedra.

(iv) Each history X interpolating between jin > and
jouti contributes a complex amplitude AðXÞ to
the transition from jini to jouti. The total amplitude
is the sum,

A½jini → jouti� ¼
X

Xj∂X¼jini−jouti
AðXÞ ð11Þ

The amplitudes are computed by the following rules.
(v) The spacelike triangles of the four simplifies that

make up a history are labeled by representations of
the lorentz group, ðρ; jÞ. We associate to each
spacelike triangle a Hilbert space which is the
corresponding representation space, Vðρ;jÞ. Acting
on this Hilbert space are generators of boosts, K̂a

and rotations, L̂a. Associated to each triangle, △, is
also a unit normal, na, which lives in an auxiliary flat
spacetime, M4.
The sum of the unit normals for the triangles of a

tetrahedra are constrained to vanish.

X
τ∈T

naτ ¼ 0 ð12Þ

We will be interested in a class of simple
representations, which are given by a map from
representations of SUð2Þ.

Yγ∶j → ðγðjþ 1Þ; jÞ ð13Þ

where γ is the Immirzi parameter. These represen-
tations satisfy the simplicity constraint, S

hΨjŜajΨi ¼ hΨjðK̂a − γL̂aÞjΨi ¼ 0 ð14Þ

B. Causal structures in spin foam histories

We review the causal structure of spin foam models, first
proposed in [37].

(i) A four simplex S contains 5 tetrahedra, T. n of these
are in PSðSÞ, the past set of S. 5 − n of these are in
FSðSÞ, the future set of S.

(ii) Each tetrahedra (except those in the future or past
boundary of X) is in the future set of one four
simplex S1 and the past set of another four simplex
S2. We say that S2 is in the immediate future of S1:

S2 ∈ IFðS1Þ ð15Þ

and S1 is in the immediate past of S2:

S1 ∈ IPðS2Þ ð16Þ

Dual to T is a link connecting the event, e1, dual to
S1 to the event, e2, dual to S2.

We can write also S1 ¼ PðTÞ, i.e. the four
simplex, S1 is the past of the tetrahedron T if the
causal link which is the deal of T points directly
from the event dual to S1. Similarly, S2 ¼ F ðTÞ.

(iii) We assume that the triangles which bound the
tetrahedra are all spacelike. This will be the case
when the four dimensional simplicial complex that
defines the spin foam history is constructed from a
dual spin network (a union of tetrahedra joined alone
triangles that are dual to the edges of a spin network)
by a succession of Pachner moves, each representing
an event where the dual spin network state is
changed locally.

(iv) We say that an event f is in the causal future of an
event e if there is a chain of future pointing causal
links taking e to f. We write

f ∈ F ðeÞ ð17Þ
Similarly we write that e is in the causal past of f

e ∈ PðfÞ ð18Þ7For reviews of spin foam models, see [28].
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C. Wieland structures on spin foams

We will also make use of a version of spin foam
dynamics introduced by Wieland [39,40]. These make
use of causal structures, based on energetic causal sets
[41–43]8 This formulation makes use of a future pointing
normal pT

a associated to each tetrahedron,T, in the auxiliary
flat spacetime, M4, which is constrained two ways.

(i) Conservation. The five normals of tetrahedra T
making up a four simplex, S sum to zero.

PS
a ¼

X
T∈FSðSÞ

pT
a −

X
T∈PSðSÞ

pT
a ¼ 0 ð19Þ

(ii) Normalization. Each pT
a is constrained as if volume

were the mass of a relativistic particle.

CT ¼ pT
apT

bη
ab þ VðTÞ2 ¼ 0 ð20Þ

where η is a flat metric, in M4, and the volume of a
tetrahedron VðTÞ is a function of the spins and
intertwiners on its faces and bulk.

The action for a Wieland spin foam then has a part made
of these constraints.

S ¼
X
S

zaSP
S
a þ NTCT þ � � � ð21Þ

where zaS and NT are lagrange multipliers. Note that the zaS
live in the dual space toM4, which inherits a flat metric, ηab
from the metric ηab of M4.

III. CAUSAL DIAMONDS ON SPIN FOAMS

In this section we use the causal structures we identified
in causal spin foams to define causal diamonds and related
structures.

A. The boundary of a past set

We begin with some further definitions.
(i) Now divide PðfÞ into the disjoint union of two sets

PðfÞ ¼ BPðfÞ∪P̄ðfÞ ð22Þ

called the bulk and boundary of the causal past of f.
g ∈ BPðfÞ if IFðgÞ ∈ PðfÞ i.e. if the immediate

future of g consists entirely of members of the causal
past of f.
Otherwise, g ∈ P̄ðfÞ, i.e. g is an event in the

boundary of the causal past of f. g is dual to a four
simplex, which c an also be considered as residing in
the boundary of the past of f.

It is useful to extend the notion of the boundary of
a past set to tetrahedra and triangles. These give the
three-boundary, P̄ðfÞð3Þ and two-boundary, P̄ðfÞð2Þ.

(ii) The tetrahedron, T is in P̄ðfÞð3Þ if both its past and
future four simplifies are dual to events in P̄ðfÞ.

(iii) The triangle △ is in P̄ðfÞð2Þ if it is in the boundary
both of tetrahedra in P̄ðfÞð3Þ and tetrahedra in the
exterior of PðfÞ.

Similar definitions hold for the boundary of a future set.

B. The causal diamond

(i) Now we define the causal diamond of two events
e ⊂ f.

CDðf; eÞ ¼ PðfÞ∩F ðeÞ ð23Þ

(ii) We define the 3-waist of CDðf; eÞ, which we label
Wðf; eÞ to be the set of tetrahedra T such that T is
both in P̄ðfÞð3Þ and F̄ ðeÞð3Þ.

(iii) Define the two-boundary of Wðf; eÞ to be those
triangles of T ∈ Wðf; eÞ which are dual to edges
that connect a vertex dual to a tetrahedra in Wðf; eÞ
to a tetrahedra not in CDðf; eÞ. Denote these
triangles by W̄ðf; eÞð2Þ. This is called the 2-waist
of the causal diamond.

(iv) Define the area of the causal diamond,Aðf; eÞ to be
the sum of the areas of the triangles in W̄ðf; eÞð2Þ.

(v) Define a cross-section of CDðf; eÞ to be a connected
three surface, antichain (i.e. mutually acausal) Σ,
made of tetrahedra in CDðf; eÞ whose boundary is
W̄ðf; eÞ. We use the volume operator to define the
volume of such an anti chain.

(vi) Define the maximal cross section Σðf; eÞ of
CDðf; eÞ to be the cross-section with the maximal
volume.

(vii) Define the volume of CDðf; eÞ to be the volume of
its maximal cross section. Denote it Vðf; eÞ.

C. The three-boundary of a causal diamond

(i) Define the future boundary of a causal diamond,
CDðf; eÞ to consist of the tetrahedra which are in the
boundary of PðfÞ and also in CDðf; eÞ, and denote
this set Iþðf; eÞ.

Define the past boundary of a causal diamond
similarly, as

I−ðf; eÞ ¼ F̄ ðeÞ∩CDðf; eÞ ð24Þ

(ii) Define the 3-boundary of a causal diamond to
consist of

¯CDðf; eÞð3Þ ¼ Iþðf; eÞ∪I−ðf; eÞ∪Wðf; eÞ ð25Þ
8The role of causal sets in quantum spacetime was proposed in

[44] and developed in different ways in [37,45,46].
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D. The two-boundary of a causal diamond

We will need also the two-boundary of ¯CDðf; eÞð3Þ.
(i) ¯CDðf; eÞð2Þ consists of triangles on the boundaries of

tetrahedra in ¯CDðf; eÞð3Þ that link to, or are also in
the boundary of, tetrahedra outside of CDðf; eÞ.

E. Relations amongst causal diamonds

Consider four events causally related as in

d < e < f < g: ð26Þ

Then consider two causal diamonds, CDðd; gÞ and
CDðf; eÞ.

(i) We have,

CDðf; eÞ ⊂ CDðg; dÞ ð27Þ

(ii) One can also show that there exists a cross section
Σg;d of CDðd; gÞ and a cross section Σf;e of CDðf; eÞ
such that

Σf;e ⊂ Σg;d ð28Þ

Given a state ρðg; dÞ ∈ Hðg; dÞ we write the partial
trace,

ρðf; eÞ ¼ Tr0ρðg; dÞ ∈ Hðf; eÞ ð29Þ

F. Elementary causal diamonds in spin foams

An elementary causal diamond consists of two sequen-
tial events, e < f or e → f such that

FSðeÞ ¼ PSðfÞ: ð30Þ

There are then three time slices,

Σ1 ¼ PSðeÞ; Σ2 ¼ FSðeÞ ¼ PSðfÞ;
Σ3 ¼ FSðfÞ ð31Þ

They have a common spatial boundary Wðf; eÞ which
is a set of triangles. Hence the area of the boundary is
fixed:

Aðf; eÞ ¼
X

△∈Wðf;eÞ
A△ ¼

X
△∈Wðf;eÞ

8πGℏγj△ ð32Þ

The volume of the elementary causal diamond is the
volume of the middle slice, which is a sum of intertwiners
on tetrahedra.

Vðf; eÞ ¼ VðΣ2Þ ¼
X
T∈Σ2

ðℏGÞ32v̂T : ð33Þ

where v̂T is an operator in the space of intertwiners
associated with each tetrahedra.
Examples are pairs of complementary Pachner moves:

3 → 2 → 3; 2 → 3 → 2; 1 → 4 → 1;

4 → 1 → 4 ð34Þ

Indeed, these are all there are, because of the structure of
the Pachner moves.
Associated with the three slices are three finite dimen-

sional Hilbert spaces, HI , I ¼ 1, 2, 3, in each of which
there is generally a mixed state ρI ∈ HI (because the slice
is an open system). These Hilbert spaces are made from the
dual spin networks, with the boundary spins fixed.

G. Flat spin foams

Below we will need to work with a spin foam history
corresponding to flat a spacetime. Fortunately there is
available a characterization of a flat spin foam history,
which makes use of the connection between Wieland’s spin
foam model [39] and energetic causal sets [41–43]. This
formulation makes use of a future pointing normal pT

a
associated to each tetrahedron, T which is subject to the
two constraints, (19) and (20).
The action for a Wieland spin foam has a part made of

these constraints.

S ¼
�X

S

zaSP
S
a þ

X
T

�
NTCT þ rTa

X
△∈T

na
△

�

þ
X
△

w△na△p
Tð△Þ
a

�
ð35Þ

where zaS are Lagrange multilpliers. They give an embed-
ding of the events dual to the four simplicies in a four
dimensional flat spacetime with metric ηab which is dual to
the space the normals pT

a live in. This embedding is
determined by the equations of motion for the pT

a gotten
from the variation of S.

δS
δpT

a
¼ 0 → zaTþ − zaT− ¼ NTη

abpT
b þ

X
△∈T

w△na△ ð36Þ

where T� are the two four simplices that share T, to its past
and future, respectively. Note that these depend on the NT
which are also Lagrange multipliers.
A simple counting argument suggests that the equations

can generically always be solved to yield a spin foam
history embedded in a flat spacetime. Altogether there are
4nS þ 5nT variables, the pT

a ; NT and zaS. But nT ¼ 2nS
yielding 14nS variables. (The volumes V and potentials, U
are fixed functions of the spins and intertwiners which are
not counted here.) These are exactly enough to solve 14nS
equations, given by (19), (20), (36).
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In order that the mapping preserve the causal structure of
the spin foam, the offsets,

P
△∈Tw△na△ in (36) must leave

the intervals zaTþ − zaT− timelike and future pointing, which
they otherwise are as the momenta pT

a are both. This can be
achieved by setting the lagrange multipliers w△ ¼ 0.
Once the imbedding of the spin network into M4 is

accomplished the next task is to choose spins and inter-
twiners corresponding to a triangulation of M4 matching
the causal structure.

IV. QUANTUM GRAVITY
ON A CAUSAL DIAMOND

We define the quantum theory on a causal diamond,
defined by holding the boundary B fixed and summing over
the degrees of freedom on the interior. We define first the
Hamiltonian theory; first the kinematical, then the physical
Hilbert spaces. Then we define the spin foam amplitudes
that compute the physical expectation values.

A. The causal diamond Hilbert space
and the boost energy

Consider the waist of a causal diamond, which is a space
like two surface,W. The waist bonds a family of space like
three surfaces, Σ, such that ∂Σ ¼ W, which span the
interior of the causal diamond.
In the spin foam we can decompose the two surface as a

sum of triangles

W ¼
X
τ

△τ ð37Þ

while Σ is composed of tetrahedra (see Fig. 2).
On each triangle there sits a representation of the lorentz

group, Vðγðjþ1Þ;jÞ and a unit normal in an internal flat
space na ∈ M4.
The kinematical Hilbert space of a causal diamond can

be written as

Hkin
CD ¼⊗△∈WðCDÞ V

j
△
⊗ Hbulk ð38Þ

where V△j is the simple representation ðγðjþ 1Þ; jÞ and the
bulk portion Hbulk is made up of spin networks in the
interior of a space like slice, Σ, with the topology of a disk,
whose boundary matches W.
Loop quantum gravity tells us how to define operators on

the kinematical Hilbert space, Hkin
CD. These include the

quantum Hamiltonian and diffeomorphism constraints,
CðNÞ and DðvÞ where N is a density and va is a vector
field on Σ, both of which vanish on W.

NjW ¼ vajW ¼ 0: ð39Þ

The physical Hilbert space, Hphys
CD ⊂ Hkin

CD consists of
states jΨ > in the kernel of these constraints,

CðNÞjΨi ¼ DðvÞjΨi ¼ 0; jΨi ∈ Hphys
CD : ð40Þ

We also impose the simplicity constraints on all triangles,
including those in the boundary,

hΨjSajΨi ¼ 0; jΨi ∈ Hphys
CD ð41Þ

where the inner product in Vðρ;jÞ is the usual one in which
L̂a and L̂a are hermitian.
Now a lesson we learn from FGP [1] and Bianchi [2], is

that the right Hamiltonian to evolve a system in a near
horizon region or, more generally, a causal diamond, is the
generator of boosts in the boundary set, W plus constraints
acting in the interior.

Hboost
W ¼ ℏ

X
△∈W

K̂a
τna þ constraints ð42Þ

where K̂a is a generator of boosts in Vj
△
and na is a unit

normal in the internal space (with respect to the fixed
internal lorentz metric).
Note that because a boost is parametrized by a hyper-

bolic angle, the boost Hamiltonian has units of angular
momentum.
In more detail we write

Hboost
W ðN; vÞ ¼ ℏ

X
△∈W

K̂a
τna þHðNÞ þDðvÞ: ð43Þ

The constraints act on the spacelike three surface that W
bounds. These terms vanish when acting on physical states
so that acting on physical states, the Hamiltonian that
generates the generalized boost is a sum of boundary
contributions.
Physical observables on Hphys

CD , denoted O, satisfy

½O;HðNÞ� ¼ ½O;DðvÞ� ¼ 0: ð44Þ

Note that ÂðWÞ is physical, as is Hboost
W ðN; vÞ for all N and

va, that vanish on W.
Among the physical observables are the area of the waist,

AðWÞ. One version of the area operator, appropriate for a
spin foam model, is [28]

Â ¼ 8πγGℏ
X
I

L̂a
I na ð45Þ

expressed in terms of the operators for components angular
momentum, L̂ana. Here γ is the Immirzi parameter.

B. Generalized boosts

Stripped of reference to a specific set of rigid coordinates
here is what a boost is: A generalized boost, B is a
transformation that takes a portion of a space like slice,
Σ1 to another portion of a spacelike slice, Σ2 that share a
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common boundary, W ¼ ∂Σ1 ¼ ∂Σ2. The resulting trans-
formation between states is a boost operator.

ÛB∶jΨ1i ¼ jΨ2i ð46Þ
where ÛBðηÞ ¼ e−

{
ℏHBðWÞη where η is a dimensionless

hyperbolic angle.
The usual definition of a boost in Minkowski spacetime

satisfies this, as does a change of slicing of a causal
diamond. A boost captures the idea of bubble evolution, of
a local refoliation which affects a compact region of space,
Σ1 and leaves the rest of space, Σ0

0 untouched.
In the case of causal diamonds, the transformations

generated by HBðWÞ given by (43) are generalized boosts.
In a spin foam model a generalized boost which fixes a

triangle, △, is generated by a series of 1 → 4 moves which
fix that triangle. This is illustrated in Fig. 3, taken from
[36], and Fig. 4, in the 1þ 1 dimensional case, where a
series of 1 → 2 moves fixes a dual vertex.
The 3þ 1 boost move is illustrated in Figs. 5 and 6.
By combining boost moves for triangles in W we can

define spin foam histories that boost the interior of a causal
diamond, fixing its waist.

C. Topological field theory and simplicity relations

The physical states are defined by summing over spin
foam histories. In loop quantum gravity we describe the
dynamics in terms of a sumover histories we call spin foams.
Depending on the context and boundary conditions, we use a
sum over spin foam histories to define a projection operator
onto physical states, or physical evolution amplitudes.
The basic idea of a spin foam model is to represent

general relativity as a constrained topological field theory
[21,22,28,47]. This holds both classically and quantum
mechanically. The constraints reduce the gauge freedom of
a topological quantum field theory precisely in the right

way as to induce the two degrees of freedom per point of
general relativity. Given a history, expressed as a four
dimensional simplicial complex, X, labeled as above, we
introduce the key features of the partition function (below
we add additional structure to write the full amplitudes,
for the present we stick to the following simple form.) The
partition function for the topological BF theory is

ZBFðXÞ ¼
Y
△

Z
dρ△

X
j△

Y
T

X
iT

Y
S

ASðρ; j; iÞ ð47Þ

where the amplitude ASðρ; j; iÞ attached to each four-
simplex is a 10 − j symbol, which satisfies recursion
relations needed to make the partition function triangula-
tion independent.
The expectation value of a functional of the representa-

tions and intertwiners, F ½ρ; j; i� can be expressed as

hF i ¼ 1

Z

Y
△

Z
dρ△

X
j△

Y
T

X
iT

Y
S

ASðρ; j; iÞF ½ρ; j; i�:

ð48Þ

FIG. 2. A tetrahedron and its labeling. FIG. 3. The quantum near horizon region R constructed in a
spin foam by a series of generalized boosts, here generated by
1 → 4 moves, which are here illustrated in this two dimensional
figure by 1 → 2 moves.

w

FIG. 4. A generalized boost realized in 1þ 1 dimensional dual
Pachner moves.
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We then can write the simplicity constraint as follows.
For every triangle, △ of a history we impose

0 ¼ hSa
△
i: ð49Þ

This defines a new partition function, which is taken to be a
definition of quantum general relativity. This is because we
have implemented, in the measure of the state sum model
for a BF theory, the simplicity constraint that reduces that
topological field theory to general relativity.

ZGRðXÞ ¼
Y
△

Z
dρ△

X
j△

Y
T

X
iT

Y
S

×ASðρ; j; iÞδ½ρ − γðjþ 1Þ�: ð50Þ

In the literature there are several different ways to impose
the simplicity constraints in a spin foam model. But they
agree that the expectation value of the constraints vanishes,
as in (49). This expectation value is all we will need to
derive the first law of thermodynamics below.

D. The full spin foam path integral

We combine the constrained topological field theory
structure with the Wieland causal structure.
The full amplitude for a given history is given by

ZGRðXÞ¼
Y
△

Z
dρ△

X
j△

dna
△
δðS△Þδðnanbηab−1Þ

×dw△A△ðρ;j; iÞ

×
Y

T¼tetrahedra

X
iT

Z
dpT

a

Z
dNTdrTATðρ;j; iÞ

×
Y

S¼four-simplex

Z
dzaSASðρ;j; iÞ

×e
{

hP
S
zaSP

S
aþ
P

T
ðNTCTþrTa

P
△∈T

na
△
Þþ
P

△
w△na△p

Tð△Þ
a

i
:

ð51Þ

The general model is made precise by specifying the
amplitudes, ASðρ; j; iÞ, ATðρ; j; iÞ and A△ðρ; j; iÞ. The
preferred choices for these are discussed in [28]. These
change in any case under renormalization, as we describe
now briefly. But the important point is that the results
concerning the second law we describe in the next section
are to a large extent independent of these amplitudes, as
long as the simplicity constraints are imposed and there is a
semiclassical limit.

E. Observables on the boundary of a causal diamond

We can define a set of observables of quantum gravity,
expressed in terms of a causal diamond CD.
We first define a causal diamond spin foam to be a causal

spin foam history, X which has the structure of a causal
diamond. We fix a particular X and extract its two boundary
X̄ð2Þ ¼ ¯CDðf; eÞð2Þ ¼ B. Now we fix a particular B and
consider the ensemble of spin foam histories XB to consist
of all X such that X̄ð2Þ ¼ B.

FIG. 6. Two 3þ 1 dimensional boost moves in the last figure.
Each is a 1 → 4move represented by a four simplex that fixes the
black triangle.

FIG. 5. Two 3þ 1 dimensional boost moves carried out in
succession. Each fixes the black triangle which common to three
tetrahedra, in blue, purple and red. Two 1 → 4 moves are carried
out in succession, which evolve from the blue to the purple to the
red tetrahedra.
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B splits into three components as described above

B ¼ Iþ∪I−∪W̄: ð52Þ

On each triangle △ ∈ B we fix a normal n△.
Consider a set of currents on the past and future null boundaries, J −;J þ and JW on the spatial boundary W. We will

assume that these couple to areas, but there are also other possibilities. The partition function for a fixed spinoff history,X, is

ZGR½X;J � ¼
X
X∈XB

Y
△

Z
dρ△

X
j△

½dna
△
�0δðS△Þδðnanbηab − 1Þdw△A△ðρ; j; iÞe{

P
△∈B

J△j△

×
Y

T¼tetrahedra

X
iT

Z
dpT

a

Z
dNTdrTATðρ; j; iÞ

Y
S¼four-simplex

Z
dzaSASðρ; j; iÞ

× e
{

hP
S
zaSP

S
aþ
P

T
ðNTCTþrTa

P
△∈T

na
△
Þþ
P

△
w△na△p

Tð△Þ
a

i
: ð53Þ

Here ½dna
△
�0 means we do not integrate over the normals of triangles in the boundary, as those are fixed.

To get the full amplitude we sum over all causal spin foam histories with the same boundary

ZGR½B;J � ¼
X
X∈XB

ZGR½X;J �: ð54Þ

ZGR½B;J � is a generating functional for scattering of gravitational degrees of freedom across the causal diamond.
We define the vacuum expectation value of a function of the boundary observables as

hF ðρ△; j△Þi ¼
X
X∈XB

Y
△

Z
dρ△

X
j△

½dna
△
�0δðS△Þδðnanbηab − 1Þdw△A△ðρ; j; iÞ ð55Þ

F ðρ△; j△Þe{
P

△∈B
J△j△

Y
T¼tetrahedra

X
iT

Z
dpT

a

Z
dNTdrTATðρ; j; iÞ

×
Y

S¼four-simplex

Z
dzaSASðρ; j; iÞ

×
�
e{½
P

S
zaSP

S
aþ
P

T
ðNTCTþrTa

P
△∈T

na
△
Þþ
P

△
w△na△p

Tð△Þ
a �

�
J¼0

: ð56Þ

F. Renormalization

We now sketch the processes of renormalization and coarse graining, as mentioned in the introduction, we do this mainly
to show that the first law for causal diamonds emerges in a way which is largely independent of those processes.
Given a given spin foam history, X we may act with a five dimensional Pachner move, P5 to yield another spin foam

history with the same topology and boundary, X0 ¼ P∘X. The equivalent amplitude for X0 is

ZGR0½X0;J � ¼
X
X∈XB

Y
△

Z
dρ△

X
j△

½dna
△
�0δðS△Þδðnanbηab − 1Þdw△A△ðρ; j; iÞ0e{

P
△∈B

J△j△

×
Y

T¼tetrahedra

X
iT

Z
dpT

a

Z
dNTdrTA0

Tðρ; j; iÞ
Y

S¼four-simplex

Z
dzaSASðρ; j; iÞ0

× e
{

hP
S
zaSP

S
aþ
P

T
ðNTCTþrTa

P
△∈T

na
△
Þþ
P

△
w△na△p

Tð△Þ
a

i
: ð57Þ
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Note that as gravity is not a topological field theory,
ZGR0½X0;J � is not equal to the original amplitude evaluated
on X0,

ZGR0½X0;J � ≠ ZGR½X0;J �: ð58Þ

Pachner’s theorem tells us that given any two spin foam
histories, X1 and X2 with the same topology and boundary
there is a sequence of Pachner moves, PI that connects
them. Thus, beginning with a definition of the fundamental
theory in terms of an vertex amplitude, one arrives at a
coarse grained renormalized amplitude.
This is defined, as emphasized in [38], in terms of a

coarse graining of the boundary. So we now focus on how
to do that.

G. Coarse graining of the spatial boundary

We have a simple point to make, which is the invariance
of the linear simplicity constraints on the boundary, under
coarse graining of the boundary.
Let us consider a grouping of the triangles of W̄ into a

fewer number of larger triangles, τ0. We have

△0
I ¼ ∪△i∈f△0

Ig△i: ð59Þ

We define this to be the coarse grained waist. Let B0 be a
course graining of the boundary B that contains this coarse
graining of the waist. Given a spin foam history X with
boundary B, there is a coarse graining of X, labeled X0 that
has the boundary B0, which can be reached by a sequence of
Pachner moves.
We define the operators on the new coarse grained

triangles to be the sums of those of their constituents,

L̂a
△0 ¼

X
△∈△0

L̂a
△
; K̂a

△0 ¼
X
△∈△0

K̂a
△
: ð60Þ

We note that for any such coarse graining the simplicity
constraint of any boundary triangle is respected

hSa
△0

I
i ¼ 0 ð61Þ

This is a key, if simple, result, as it means that the
connections with the first law of thermodynamics we are
about to discuss are stable under renormalization and
coarse graining of the boundary.
Let us now presume that a particular state yields an

effective geometry which has a radius of curvature, R, large
in Planck units, R ≫ lP. Then we can expect to be able to
coarse grain up to a scale, L satisfying, lP ≪ L ≪ R. In this
case we can expect to be able to choose the normals on the
boundary triangles so that j∇anbj < 1

R.
This further implies that j∇anbj < 1

l where l is the scale
of the causal diamond itself, since we require that l ≪ R.
So if the coarse grained triangles are large on the Planck

scale, but small compared to l and R, we can ignore the
variations in the normals of the triangles making up the
coarse grained triangles.
We then may choose the normals in each of the larger

triangles to be equal, up to terms of order 1
R.

fi; jg ∈ I → na
△i

¼ na
△j

¼ na
△0

I
ð62Þ

We then have also, up to terms of order 1
R,

L̂a
△0n△

0
a ¼

X
△∈△0

L̂a
△
n△

0
a : ð63Þ

V. THE SIMPLICITY CONSTRAINT
AND THE FIRST LAW

Using the result above, we can establish several relation-
ships between the simplicity constraint (14) and the first
law.
Stripped of the technical details, the point is very simple:

the simplicity constraint of spin foam models is equivalent
to the first law of thermodynamics, in the sense that they
imply each other. Indeed this was implicit in Bianchi’s
derivation of horizon entropy [2], as well as in the Frodden-
Gosh-Perez papers [1].

A. Derivation of the first law of quantum spacetime
from the simplicity constraint

We begin with the simplicity constraint, which can be
expressed as follows. For every space like triangle in a spin
foam history, we have the simplicity constraint,

hŜa
△i ¼ 0: ð64Þ

We consider triangles in the waist. Each has a fixed unit
normal, n△a, we multiply by these

hŜa
△n△ai ¼ 0: ð65Þ

Sum this over the triangles in the wast of a causal
diamond, W ¼ P

△△

hŜðWÞi ¼ h
X
△

Ŝa
△n△ai: ð66Þ

This means

h
X
△

K̂a
△
n△ai ¼ γh

X
τ

L̂a
△
n△ai: ð67Þ

Multiply by ℏ, use the definition of the boost Hamiltonian
(43) and the area of W (45) to find that on physical states,

hHBðWÞi ¼
�
ℏ
2π

� hÂðWÞi
4Gℏ

ð68Þ
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We call this the first law of quantum spacetime. It is the
quantum version of the first law of classical spacetime (1).
Note also that (61) holds for any coarse graining of the

boundary, and after an arbitrary number of renormalization
steps. We sketched the coarse graining and renormalization
processes just to indicate that the result that the first law in
the form of (68) holds as a consequence of the simplicity
constraint is independent of those processes. In particular,
the first law holds at the level of coarse grained, renor-
malized observables. This is because it is a consequence of
a constraint which is linear in terms of both bare and
renormalized quantities.
In particular, this is due to the assumption that the

normals of the triangles, na
△

can be taken to be constant
over the coarse grained boundary triangles. There will be
higher order corrections coming from terms in ∂bna△.

B. The microcanonical entropy

To go further we must distinguish different ensembles.
As the area of the waist is a physical observable, we can
define the ensemble at fixed area. We may call this the
micro canonical ensemble.
The boundary Hilbert space on W is finite dimensional

once the simplicity constraints have been imposed, since it
is equivalent to the LQG boundary Hilbert space. The
microcanonical entropy is defined as the log of the
dimension of the Hilbert space. This has been computed
to be proportional to the area,

SmicroðWÞ ¼ hÂðWÞi
4αGℏ

ð69Þ

where α depends on the Immirzi parameter. Different
assumptions lead to slightly different values of α, all of
order unity [20].
Once we postulate this microcanical the quantity in

parentheses then has to be identified as a boost temperature
in the microcanical ensemble at fixed area.

Tmicro ¼
ℏα
2π

: ð70Þ

We stress that the argument we have given yields (68).
Thus, this argument fixes the product TUSðWÞ. If either of
these has an independent derivation, the other one is fixed.
But there is an independent derivation of the temper-

ature, given by [2], to which we now turn.

C. The temperature of a causal diamond

Instead of working with fixed area, we can work with the
canonical ensemble at fixed temperature. To do this, we
need an independent computation of the temperature. To
get this, we can note that the description of a quantum
causal diamond we have given is very similar to Bianchi’s
near horizon quantum geometry described in terms of a

quantum Rindler spacetime [2]. There he follows the path
of Unruh and deWitt and couples a two state detector to
the boundary state and computes the temperature of the
detector in equilibrium. This computation is done by
computing the transition amplitude for exciting the detec-
tor, as a function of time, as measured by a clock carried by
the detector.
We can then consider exactly the same process, and

couple the boundary state of the causal diamond to a two
state detector and compute the temperature of the detector.
As the Hilbert of the boundary triangles of the causal
diamond are the same as considered by Bianchi, we can
apply his result, computed in [2], Eqs. (10) to (18). This
leads to the conclusion that the state is hot, with an
(angular) Unruh temperature.

TU ¼ ℏ
2πc

: ð71Þ

We note that because all boosts are equivalent in this
context, there is just a single, angular, Unruh-like temper-
ature. There is no refoliation invariant meaning that could
be given to the acceleration of an observer, usually denoted
a. Hence we can give no meaning to an Unruh temperature,
if by that we mean a quantity with units of energy. But we
can give a meaning to an angular temperature like (71),
with units of angular momentum. This makes sense
because a boost translates in a hyperbolic angle, which
is dimensionless.
The result is that the entropy must be identified as

ScanonicalðWÞ ¼ hÂðWÞi
4Gℏ

: ð72Þ

We then have from (68) the canonical first law of
quantum spacetime.

hHBðWÞi ¼ TUScanonicalðWÞ ð73Þ

D. Thermalization and the Boltzman entropy

We may comment that the entropy in (73) is inferred
from the first law together with the computation of the
temperature. It does not come from a counting of micro-
scopic degrees of freedom. (This is why it disagrees with
such state countings at fixed area [16,20], which involve the
Immirzi parameter.) To gain more insight into its meaning,
we next investigate the thermalization of the state asso-
ciated with a causal diamond.
Now let us consider density operators, ρ onHphys

CD . These
satisfy

½ρ;HðNÞ� ¼ ½ρ;DðvÞ� ¼ 0 ð74Þ

as well as
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½ρ;Sa� ¼ 0: ð75Þ

We are interested in states that describe equilibrium,
these are states that the system reaches after arbitrary
boosts. These are analogous to the quantum Rindler states
of [2]. They are thermal states at fixed temperature rather
than microcanonical states at fixed area.
Once a state has been boosted sufficiently it is not going

to be changed by boosting it further. Thus, these should
satisfy

½ρE;Hboost
W ðN; vÞ� ¼ 0 ð76Þ

for all N and va which satisfy (39). Such states are given by

ρEðN; vÞ ¼ e−
2π
ℏH

boost
W ðN;vÞ ð77Þ

Note that the temperature, β−1 ¼ TU ¼ ℏ
2π is determined

independently by comparison with Bianchi’s calculation in
([2]). Once this coefficient is determined there remains the
freedom of choosing N and va, subject to the condition that
they vanish on W. However, note that, so far as physical
observables are concerned, these are all equivalent to each
other, because we can use the quantum constraints to
transform them into each other. We have

Tr½OρEðN; vÞ� ¼ Tr½OρEðN0; v0Þ�: ð78Þ

Thus, because of the many fingered time invariance, there is
only one physically distinct boost generator. We can define

hOiboost ¼ Tr½OρEðN; vÞ� ð79Þ

using any smooth N and va that vanishes on W.
This boosted state behaves like a Rindler state. Notice

that because the Hamiltonian is modular,we can compute
the Boltzmann statistical mechanical entropy directly

SðWÞstat ¼ −TrρE ln ρE ¼ hHboost
W i
TU

: ð80Þ

This is the genuine first law of statistical thermodynamics.
If we put this together with the previous results we can
deduce that

SðWÞstat ¼
hÂðWÞi
4Gℏ

: ð81Þ

This allows us to regard SðWÞstat as the statistical
mechanical entropy of the quantum geometry degrees of
freedom, represented by the Hilbert space over each
triangle in W, in the equilibrium state given by (77).

E. The thermodynamic first law

We now finally are in a position to present an argument
that the first law of thermodynamics itself, as a principle of
statistical thermodynamics, is a consequence of the sim-
plicity constraints, plus some natural assumptions.
Let us compare two quantum states of a causal diamond.
(1) The vacuum, which we assume is dominated by flat

spin foam history, constructed as described in
Sec. III G with no matter, and

(2) a low lying excitation of the flat spin foam whose
gravitational field is weak. This means that the
quantum state of the causal diamond is in the
semiclassical regime, which is defined as follows.

Let RðTÞ ¼ h 1ffiffiffiffiffiffiffiffi
RðTÞ

p i be the curvature scale of a tetra-

hedron and similarly, Rðf; eÞ ¼ h 1ffiffiffiffiffiffiffiffiffiffi
Rðf;eÞ

p i be the curvature
scale of a causal diamond.
A spin foam history is in the semiclassical domain if

there is a scale l ≫ lP such that for every causal diamond
such that

Vðf; eÞ ≈ l3; ð82Þ
and the curvature scales of that causal diamond and all of its
tetrahedra satisfy

Rðf; eÞ ≫ l ≫ lP; RðTÞ ≫ l ≫ lP: ð83Þ
We will assume that both states have the same volume.
We assume also that the quantum constraints are sat-

isfied, as are the classical constraints to leading order.
Given (83) we can deduce that the contributions to the
Hamiltonian constraint coming from gravitational radiation
may be neglected. That is, we assume that to leading order
the boot energy is dominated by the heat flow, so that

δhHBðWÞi ¼ hHBðWÞi2 − hHBðWÞi1 ¼ δQ ¼ Q2 −Q1:

ð84Þ
A calculation ([3]) shows δQ is given by an averaged
energy-momentum tensor by

δQ ¼ −
Ωð2Þl4

15
hTabitatb ð85Þ

is the energy from matter flowing through the causal
diamond. Here ta is the normal to a slice Σ.
But by the first law of quantum spacetime,

δhHBðWÞi ¼ TUδSB ð86Þ
where the change in the Bekenstein entropy is

δSB ¼ S2 − S1: ð87Þ
However, on the assumption that the state of the causal

diamond is the equilibrium state (77), the Bekenstein
entropy is the Boltzman entropy. Thus we arrive at the
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standard first law of statistical thermodynamics, relating the
heat flow, the temperature and the Boltzmann entropy.
Gravity no where appears in this relation, which indeed
contains no G, but its origin in this context is gravity,
indeed we have traced it to the simplicity constraint of
quantum gravity.

F. Deriving the simplicity constraints from
the first law of thermodynamics

Now we go the reverse way, from the first law to the
simplicity constraints.
Start with a classical solution to the Einstein equations,

with arbitrary matter and pick a causal diamond, CDðf; eÞ,
based on two causally related events, f > e. It has been
shown that the first law of thermodynamics holds on the
waist, Wðf; eÞ of CDðf; eÞ,

HBðWÞ ¼ TUSðWÞ: ð88Þ

Note that the ℏ’s cancel, so the classical relation is actually
what might be called the first law of classical spacetime,

HBðWÞ ¼ 1

8πG
AðWÞ: ð89Þ

Expressed in terms of a single spin foam history, in which
Wðf; eÞ is a union of triangles, W ¼ ∪△, this is,

X
△∈W

�
HBð△Þ − 1

8πG
Að△Þ

�
¼ 0: ð90Þ

But the quantum theory is defined by a sum over histories.
Moving (90) inside the path integral express this as an
expectation value.

	X
△∈W

�
ĤBð△Þ − 1

8πG
Âð△Þ

�

¼ 0: ð91Þ

Since the path integral defines a projection operator on
physical states, we may assume that the state is physical.
Hence the boost Hamiltonian is represented by its boundary
term. Meanwhile, we express the area in terms of the area
operator. Factoring out an ℏ, this gives us

	X
△∈W

ðK̂a
△
na△ − γL̂a

△
na△Þ



¼ 0: ð92Þ

But any single triangle could be part of many waists of
causal diamonds, each with different normals. Hence, (92)
has to hold for each triangle and normal and we have
derived the simplicity constraints

hŜai ¼ hðK̂a
△
− γL̂a

△
Þi ¼ 0: ð93Þ

G. The principle of maximal entanglement

We can understand the unique equilibrium state, (77) and
unique Unruh temperature, (71), in the following way.
Consider a causal diamond, Cðf; eÞ, small compared to

the radius of curvature, but large on the Planck scale. We
can consider it as embedded in any number of larger causal
diamonds as described above. Let us call A ¼ Cðf; eÞ, C ¼
Cðg; dÞ and B ¼ Cðg; dÞ − Cðf; eÞ.
Now we reason by analogy to flat spacetime. Start with a

generic ρðg;dÞ on Hðg; dÞ. What happens when we make a
boost, defined by the condition that we fix the two surface
which is the waist of the smaller causal diamond? The
result must be to define the state on the smaller diamond by
tracing out the degrees of freedom external to it.
Define this reduced density matrix on A as usual by

ρA ¼ TrBρAþB: ð94Þ
The principle of maximal entanglement says that for large
C and small A the state ρA has a minimal amount of
information in it as to physics in A. i.e the state ρAþB was
maximally entangled, so when we trace by B and destroy
all the correlations generated by that entanglement we have
no information left. Thus, by analogy with the situation in
Rindler spacetime, this must be a thermal state. Since all
boosts that fix W but boost its interior are equivalent, we
can conjecture that

ρA ¼ ρE ¼ e−HboostðWÞ=TU : ð95Þ
There is just a single choice for this state because all boosts
are equivalent, so up to gauge transformations all boost
Hamiltonians are equivalent.
We also see that if the global state is maximally

entangled this gives rise to a universal boost temperature.

TU ¼ ℏ
2πc

: ð96Þ

H. Proposal for a quantum equivalence principle

This last result can be reformatted as a statement of the
quantum equivalence principle.

(i) Let us consider a pure physical state of the quantum
gravitational field ρ holding in a region, R, of
spacetime. Let A ¼ CDðf; gÞ be a causal diamond
within that region, with waist, W, defined by two
events, f and e. Let B be the complement of A inR.
Then the state

ρA ¼ TrBρ ð97Þ

is maximally entangled with degrees of freedom in
the complement, B.

To see this, let HboostðWÞ be the quantum
Hamiltonian that generates generalized boosts in
A, leaving W fixed. Then (95) holds.

This is a version of the equivalence principle because it
says that a general boosted observer in a quantum
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spacetime sees the same thing that a boosted observer in flat
spacetime sees, namely that the region inside the surface
fixed by the boost is maximally entangled with the region in
the exterior of that surface.

VI. THE RECOVERY OF GR

Our final step is to use the results gotten so far to
understand why the Einstein equations must characterize
the semiclassical limit of spin foam models. We do not
show that such a limit exists, but we do show that if it does,
its dynamics are captured by the semiclassical Einstein’s
equations. We get to this result by following Jacobson
in [3].
We work in the semiclassical regime described above in

Sec. V E. We consider as in that section a comparison
between a flat causal diamond and a low energy excitation
which is describable in terms of classical fields, slowly
varying on the scale of the causal diamond. This low energy
excitation has the same volume, but a different area. The
variation of the area at fixed volume can be related to the
spatial scalar curvature averaged on the causal diamond
[3,48].

δAðf; eÞ ¼ Aðf; eÞ − AflatðVÞ ¼ −
Ωð2Þl4

30
Rðf; eÞ: ð98Þ

We follow Jacobson [3] in describing the geometry of the
causal diamond in Riemann normal coordinates. In that
case the extrinsic curvature can be taken to vanish to
leading order and we have

Rðf; eÞ ¼ 2Gabtatb; ð99Þ

where Gab is the Einstein tensor. The heat flow is given by
(85). Plugging these relations into the first law (86) we find

tatbðGab − 8πGhTabiÞ ¼ 0: ð100Þ

Jacobson points out that the remaining steps of the
derivation are simplest if we impose that the matter is
conformally invariant [3].

gabhTabi ¼ 0: ð101Þ

(We refer the reader to [3] for the case of nonconformally
invariant matter, as well as the case of nonvanishing
cosmological constant.) In this case we can argue that
since R ≫ l, within one curvature scale there will be many
causal diamonds, with different normals ta. This means we
can remove the ta to find

Gab ¼ 8πGhTabi: ð102Þ

VII. CONCLUSIONS

By extending results of [1,2,29], we have shown that,
given suitable conditions, the linear simplicity constraint of
spin foam models, (14) implies the first law of quantum
spacetime (68). This is initially expressed in terms of a micro
canonical entropy, given by the ensemble at fixed area. But if
we go to the canonical ensemble at fixed temperature we can
follow [2] to compute the temperature. and from that, the
entropy and assign the causal diamond to an equilibrium
state at fixed temperature. This then implies the relationship
between the area and the Boltzmann entropy (81), with the
correct 1

4
, independent of the Immirzi parameter.

We have also showed that the first law of thermody-
namics implies the simplicity constraint.
We further showed that if there exists a semiclassical

limit (which we do not prove) this implies the thermody-
namic first law, (86). This, in turn, implies the Einstein
equations, as shown by Jacobson in [3].
These results establish that there is a close connection

between the holographic behaviour of quantum gravity and
the fact that general relativity is closely related to a
topological field theory. Indeed, this is precisely the con-
nection anticipated in [13,16], The fact that general relativity
is a constrained topological field theory is then the root of
the holographic nature of gravity. Indeed, this has been since
then a central feature of loop quantum gravity [16], which
has been developed in different ways in [49]. It is fitting that
this connection between the holographic and topological
aspects of gravity is deepened by the simplicity constraints,
which were also first used in works of Barrett and Crane [47].
There is one big question that these results raise, which is

that if general relativity, which is a time reversible theory,
corresponds to equilibrium statistical mechanics, what is
the time irreversible extension of general relativity that
corresponds to nonequilibrium statistical mechanics9?
In particular, might it be one of the known irreversible
extensions of general relativity [51]?
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