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By using the Gauss-Bonnet theorem, the bending angle of light in a static, spherically symmetric and
asymptotically flat spacetime has been recently discussed, especially by taking account of the finite
distance from a lens object to a light source and a receiver [Ishihara, Suzuki, Ono, Asada, Phys. Rev. D 95,
044017 (2017)]. We discuss a possible extension of the method of calculating the bending angle of light to
stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we consider the light rays on
the equatorial plane in the axisymmetric spacetime. We introduce a spatial metric to define the bending
angle of light in the finite-distance situation. We show that the proposed bending angle of light is
coordinate-invariant by using the Gauss-Bonnet theorem. The nonvanishing geodesic curvature of the
photon orbit with the spatial metric is caused in gravitomagnetism, even though the light ray in the four-
dimensional spacetime follows the null geodesic. Finally, we consider Kerr spacetime as an example in
order to examine how the bending angle of light is computed by the present method. The finite-distance
correction to the gravitomagnetic deflection angle due to the Sun’s spin is around a pico-arcsecond level.
The finite-distance corrections for Sgr A� also are estimated to be very small. Therefore, the
gravitomagnetic finite-distance corrections for these objects are unlikely to be observed with present
technology.
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I. INTRODUCTION

Since the experimental confirmation of the theory of
general relativity [1] succeeded in 1919 [2], a lot of
calculations of the gravitational bending of light have been
done not only for black holes [3–16] but also for other
objects such as wormholes and gravitational monopoles
[17–29].
Gibbons and Werner (2008) proposed an alternative way

of deriving the deflection angle of light [30]. They assumed
that the source and receiver are located at an asymptotic
Minkowskian region and they used the Gauss-Bonnet
theorem to a spatial domain described by the optical
metric, for which a light ray is described as a spatial
curve. Ishihara et al. have recently extended Gibbons and
Werner’s idea in order to investigate finite-distance cor-
rections in the small deflection case (corresponding to a
large impact parameter case) [31] and also in the strong
deflection limit for which the photon orbits may have the
winding number larger than unity [32]. In particular, the
asymptotic receiver and source have not been assumed.
However, the earlier treatments [31,32] are limited

within the spherical symmetry. It is not clear whether
the Gauss-Bonnet method with using the optical metric can
be extended to axisymmetric cases or not. This is mostly
because there can exist off-diagonal (time-space) compo-
nents of the spacetime metric in an axisymmetric space-
time. The time-space components seem to make it unclear
whether the optical metric can be constructed. After the
gravitational lensing by a spinning object [33–35] and that

by a relativistic binary [36] were discussed extensively by
perturbative approaches such as the post-Newtonian
approximation, Werner (2012) [37] proposed the use of
the Kerr-Randers optical geometry on this issue [38]. To be
more precise, he used the osculating Riemann approach in
Finsler geometry in order to discuss the lensing by the Kerr
black hole, for which the metric can be written in the
Randers form. However, this approach requires that the
endpoints (namely, the source and the receiver) of
the photon orbit are in Euclidean space, for which angles
can be easily defined. This requirement is mainly because
jump angles at the vertices in the Gauss-Bonnet theorem are
problematic in the Finsler geometry. Namely, it is unlikely
that the Finsler geometry can be used for computing the
finite-distance corrections.
Therefore, the main purpose of the present paper is to

extend the earlier formulation in Refs. [31,32], especially in
order to examine finite-distance corrections to the deflec-
tion angle of light in the axisymmetric spacetime, for which
the gravitational deflection of light may include gravito-
magnetic effects (e.g. [33–36]). The geometrical setups in
the present paper are not those in the optical geometry, in
the sense that the photon orbit has a non-vanishing geodesic
curvature, though the light ray in the four-dimensional
spacetime obeys a null geodesic.
This paper is organized as follows. Section II discusses a

possible extension to stationary and axisymmetric space-
times. In particular, it is shown that the proposed definition
of the deflection angle is coordinate-invariant by using the
Gauss-Bonnet theorem. Section III uses the Kerr metric as a
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known example of the stationary and axisymmetric space-
times in order to discuss how to compute the gravitational
deflection angle of light by the proposed method.
Section IV is devoted to the conclusion. In the Appendix,
the deflection angle of light is computed at the second order
of the mass and the spin parameter in order to examine
whether the deflection angle is in agreement with the
known one. Throughout this paper, we use the unit of
G ¼ c ¼ 1, and the observer may be called the receiver in
order to avoid a confusion between rO and r0 by using rR.

II. EXTENSION TO AXISYMMETRIC
SPACETIMES

Henceforth, we assume a stationary and axisymmetric
spacetime, for which we shall define the gravitational
deflection angle of light by using the Gauss-Bonnet
theorem: Suppose that T is a two-dimensional orientable
surface with boundaries ∂Ta (a ¼ 1; 2;…; N) that are
differentiable curves. See Fig. 1. Let the jump angles
between the curves be θa (a ¼ 1; 2;…; N). Then, the
Gauss-Bonnet theorem can be expressed as [41]

Z Z
T
KdSþ

XN
a¼1

Z
∂Ta

κgdlþ
XN
a¼1

θa ¼ 2π; ð1Þ

where K denotes the Gaussian curvature of the surface T,
dS is the area element of the surface, κg means the geodesic
curvature of ∂Ta, and l is the line element along the
boundary. The sign of the line element is chosen such that it
is compatible with the orientation of the surface.

A. Stationary, axisymmetric spacetime

We consider a stationary axisymmetric spacetime.
The line element for this spacetime is [42–44]

ds2 ¼ gμνdxμdxν

¼ −Aðyp; yqÞdt2 − 2Hðyp; yqÞdtdϕ
þ Fðyp; yqÞðγpqdypdyqÞ þDðyp; yqÞdϕ2; ð2Þ

where μ, ν run from 0 to 3, p, q take 1 and 2, t and ϕ
coordinates are associated with the Killing vectors, and γpq
is a two-dimensional symmetric tensor. It is more conven-
ient to reexpress this metric into a form in which γpq is
diagonalized. The present paper prefers the polar coordi-
nates rather than the cylindrical ones, because the Kerr
metric in the polar coordinates is considered in Sec. III.
In the polar coordinates, Eq. (2) becomes [45]

ds2 ¼ −Aðr; θÞdt2 − 2Hðr; θÞdtdϕ
þ Bðr; θÞdr2 þ Cðr; θÞdθ2 þDðr; θÞdϕ2: ð3Þ

The null condition ds2 ¼ 0 is solved for dt as [35]

dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijdxidxj

q
þ βidxi; ð4Þ

where i, j run from 1 to 3, γij and βi are defined as

γijdxidxj ≡ Bðr; θÞ
Aðr; θÞ dr

2 þ Cðr; θÞ
Aðr; θÞ dθ

2

þ Aðr; θÞDðr; θÞ þH2ðr; θÞ
A2ðr; θÞ dϕ2; ð5Þ

βidxi ≡ −
Hðr; θÞ
Aðr; θÞ dϕ: ð6Þ

This spatial metric γijð≠ gijÞ may define the arc length
(l) along the light ray as

dl2 ≡ γijdxidxj; ð7Þ

for which γij is defined by γijγjk ¼ δik. Note that l defined
in this way is an affine parameter along the light ray. See
e.g. Appendix of Ref. [35] for the proof on the affine
parameter [46].
γij defines a 3-dimensional Riemannian space ð3ÞM in

which the motion of the photon is described as a motion in
a spatial curve. The unit tangential vector along the spatial
curve is defined as

ei ≡ dxi

dl
: ð8Þ

The light ray follows the Fermat’s principle [18].
By using the variational principle, this gives the equation
for the light ray as [35]

eijkek ¼ ai; ð9Þ

where j denotes the covariant derivative with γij and ai is
defined as

ai ≡ γijðβkjj − βjjkÞek: ð10ÞFIG. 1. Schematic figure for the Gauss-Bonnet theorem.
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Here,

eijkek ¼
dei

dl
þ ð3ÞΓi

jkejek; ð11Þ

where ð3ÞΓi
jk denotes the Christoffel symbol associated

with γij.
The vector ai is the spatial vector that means the

acceleration originated from βi. In particular, ai is caused
in gravitomagnetism as discussed below in more detail.
This has an analogy as the acceleration by the Lorentz force

∝ v⃗ × ð∇⃗ × A⃗m) in electromagnetism, where A⃗m denotes
the magnetic vector potential.
We should note that γij is not an induced metric. As a

result, the photon orbit can deviate from a geodesic in ð3ÞM
with γij if βi ≠ 0, even though the light ray in the four-
dimensional spacetime follows the null geodesic.
For a stationary and spherically symmetric spacetime,

one can always find a set of suitable coordinates such that
g0i can vanish to lead to ai ¼ 0. In this case, the photon
orbit becomes a spatial geodesic curve in ð3ÞM.
The present paper discusses an extension to axisym-

metric cases, which allow g0i ≠ 0. Therefore, we have to
take account of nonzero κg along the photon orbit in the
Gauss-Bonnet theorem. This nonvanishing κg of the photon
orbit makes a crucial difference from the previous
papers [31,32].

B. Geodesic curvature and equatorial plane

Let us imagine a parameterized curve in a surface. The
geodesic curvature of the parameterized curve is the
surface-tangential component of acceleration (namely cur-
vature) of the curve, while the normal curvature is the
surface-normal component. The normal curvature has
nothing to do with the present paper. The geodesic
curvature can be defined in the vector form as (e.g. [47])

κg ≡ T⃗ 0 · ðT⃗ × N⃗Þ; ð12Þ
where we assume a parameterized curve with a parameter,
T⃗ is the unit tangent vector for the curve by reparametrizing
the curve using its arc length, T⃗ 0 is its derivative with
respect to the parameter, and N⃗ is the unit normal vector for
the surface. In this paper, Eq. (12) can be rewritten in the
tensor form as

κg ¼ ϵijkNiajek; ð13Þ
where T⃗ and T⃗ 0 correspond to ek and aj, respectively. Here,
the Levi-Civita tensor ϵijk is defined by ϵijk ≡ ffiffiffi

γ
p

εijk,
where γ ≡ detðγijÞ, and εijk is the Levi-Civita symbol
(ε123 ¼ 1). In the present paper, the space is ð3ÞM.
Therefore, we use γij in the above definitions but not gij.
For a case of ai ≠ 0 due to g0i, there can exist a

nonvanishing integral of the geodesic curvature along the
light ray in the Gauss-Bonnet theorem by Eq. (1).

By substituting Eq. (10) into ai in Eq. (13), we obtain

κg ¼ −ϵijkNiβjjk; ð14Þ

where we use γijeiej ¼ 1.
Up to this point, the surface in ð3ÞM is not specified.

Henceforth, we focus on the equatorial motion of the
photon. We choose θ ¼ π=2 as the equatorial plane. Then,
the unit normal vector for the equatorial plane can be
expressed as

Np ¼ 1ffiffiffiffiffiffi
γθθ

p δθp; ð15Þ

where we choose the upward direction without loss of
generality.
For the equatorial case, one can show

ϵθpqβqjp ¼ −
1ffiffiffi
γ

p βϕ;r; ð16Þ

where the comma denotes the partial derivative, we use
ϵθrϕ ¼ −1= ffiffiffi

γ
p

and we note βr;ϕ ¼ 0 owing to the axisym-
metry. By using Eqs. (15) and (16), an explicit form of κg in
Eq. (14) is obtained as

κg ¼ −
1ffiffiffiffiffiffiffiffi
γγθθ

p βϕ;r: ð17Þ

C. Impact parameter and the photon directions
at the receiver and source

We study the orbit equation on the equatorial plane with
Eq. (3). Associated with the two Killing vectors, there are
the two constants of motion as

E ¼ AðrÞ_tþHðrÞ _ϕ; ð18Þ

L ¼ DðrÞ _ϕ −HðrÞ_t; ð19Þ

where the dot denotes the derivative with respect to the
affine parameter.
As usual, we define the impact parameter as

b≡ L
E

¼ −HðrÞ_tþDðrÞ _ϕ
AðrÞ_tþHðrÞ _ϕ

¼ −HðrÞ þDðrÞ dϕdt
AðrÞ þHðrÞ dϕdt

: ð20Þ

In terms of the impact parameter b, ds2 ¼ 0 leads to the
orbit equation on the equatorial plane as
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�
dr
dϕ

�
2

¼ AðrÞDðrÞ þH2ðrÞ
BðrÞ

DðrÞ − 2HðrÞb − AðrÞb2
½HðrÞ þ AðrÞb�2 ;

ð21Þ

where we use Eq. (3). Let us introduce u≡ 1=r to rewrite
the orbit equation as

�
du
dϕ

�
2

¼ FðuÞ; ð22Þ

where FðuÞ is

FðuÞ ¼ u4ðADþH2ÞðD − 2Hb − Ab2Þ
BðH þ AbÞ2 : ð23Þ

Finally, we examine the angles at the receiver and source
positions. The unit tangent vector along the photon orbit in
ð3ÞM is ei. On the equatorial plane, its components are
obtained as

ei ¼ 1

ξ

�
dr
dϕ

; 0; 1

�
: ð24Þ

Here, ξ satisfies

1

ξ
¼ AðrÞ½HðrÞ þ AðrÞb�

AðrÞDðrÞ þH2ðrÞ ; ð25Þ

which can be derived from γijeiej ¼ 1 by using Eq. (21).
The unit radial vector in the equatorial plane is

Ri ¼
�

1ffiffiffiffiffiffi
γrr

p ; 0; 0

�
; ð26Þ

where we choose the outgoing direction for a sign
convention.
Therefore, we can define the angle measured from the

outgoing radial direction by

cosΨ≡ γijeiRj

¼ ffiffiffiffiffiffi
γrr

p AðrÞ½HðrÞ þ AðrÞb�
AðrÞDðrÞ þH2ðrÞ

dr
dϕ

; ð27Þ

where Eqs. (24), (25) and (26) are used. This can be
rewritten as

sinΨ ¼ HðrÞ þ AðrÞbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞDðrÞ þH2ðrÞ

p ; ð28Þ

where we use Eq. (21). Note that sinΨ by Eq. (28) is more
convenient in practical calculations, because it needs only
the local quantities, whereas cosΨ by Eq. (27) needs the
derivative as dr=dϕ.

D. Deflection angle of light

For the equatorial case in the axisymmetric spacetime,
we define

α≡ΨR −ΨS þ ϕRS: ð29Þ
This definition seems to rely on a choice of the angular
coordinate ϕ.
Let us consider a quadrilateral R

∞
□S

∞
, which consists of

the spatial curve for the light ray, two outgoing radial lines
from R and from S and a circular arc segment Cr of
coordinate radius rC (rC → ∞) centered at the lens which
intersects the radial lines through the receiver or the source.

See Fig. 2 for the configuration such as the domain R
∞
□S

∞
.

See also Ref. [32] for the case that the winding number is
larger than unity. For the asymptotically flat spacetime,
κg → 1=rC and dl → rCdϕ as rC → ∞ (See e.g. [30]).
Hence,

R
Cr
κgdl → ϕRS.

By using the Gauss-Bonnet theorem Eq. (1), Eq. (29) is
rewritten as

α ¼ −
Z Z

R
∞
□S

∞ KdSþ
Z

R

S
κgdl; ð30Þ

where dl is positive for the prograde motion of the photon
and it is negative for the retrograde motion. Equation (30)
shows that α is coordinate-invariant also for the axisym-
metric case.
Up to this point, equations for gravitational fields are not

specified. Therefore, the above discussion and results are
not limited within the theory of general relativity (GR) but
they are applicable to a certain class of modified gravity
theories if the light ray in the four-dimensional spacetime
obeys the null geodesic.

III. APPLICATION TO THE KERR LENS

A. Kerr spacetime and γij
This section focuses on the Kerr spacetime as one of the

most known examples with axisymmetry. The Boyer-
Lindquist form of the Kerr metric is

FIG. 2. Quadrilateral R
∞
□S

∞
embedded in a curved space. Note

that the inner angle at the vertex R is π − ΨR.
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ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4aMr sin2 θ
Σ

dtdϕ

þ Σ
Δ
dr2 þ Σdθ2 þ

�
r2 þ a2 þ 2a2Mr sin2 θ

Σ

�
× sin2 θdϕ2; ð31Þ

where Σ and Δ are denoted as

Σ≡ r2 þ a2 cos2 θ; ð32Þ

Δ≡ r2 − 2Mrþ a2: ð33Þ

By using Eqs. (5) and (6), one can see that γij and βi for
the Kerr metric are given by

γijdxidxj ¼
Σ2

ΔðΣ − 2MrÞ dr
2 þ Σ2

ðΣ − 2MrÞ dθ
2

þ
�
r2 þ a2 þ 2a2Mr sin2 θ

ðΣ − 2MrÞ
�

Σ sin2 θ
ðΣ − 2MrÞ dϕ

2;

ð34Þ

βidxi ¼ −
2aMr sin2 θ
ðΣ − 2MrÞ dϕ: ð35Þ

Note that γij has no terms linear in the Kerr parameter a,
because g0i ∝ H enters γij in a quadratic form through
g0ig0j ∝ H2 as shown by Eq. (5).
In order to see what is κg for the present case, we employ

the weak field and slow rotation approximations, for which
M and a can be used as book-keeping parameters.

B. Path integral of κg
By substituting βi by Eq. (35) into Eq. (17), we obtain

κg ¼ −
2aM

r2ðr − 2MÞ
�

1 − 2M
r þ a2

r2

1þ a2

r2 þ 2a2M
r3

�
1=2

¼ −
2aM
r3

þO
�
aM2

r4

�
; ð36Þ

where we use the weak field and slow rotation approx-
imations in the last line and the terms of anM ðn ≥ 2Þ
vanish.
The path integral of κg is computed as

Z
R

S
κgdl ¼ −

Z
R

S

�
2aM
r3

þO

�
aM2

r4

��
dl

¼ −
2aM
b2

Z
ϕR

ϕS

cosϑdϑþO

�
aM2

b3

�

¼ −
2aM
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �

þO

�
aM2

b3

�
; ð37Þ

where we assume the prograde case dl > 0 that the orbital
angular momentum of the photon is aligned with the spin of
the black hole and we use a linear approximation of the
photon orbit as r ¼ b=cos ϑþOðM;aÞ and l ¼ b tan ϑþ
OðM; aÞ in the second line. Note that, in the retrograde
case, the sign of dl is negative and thus the magnitude of
the above path integral remains the same but the sign is
opposite.

C. ϕRS part

The integral of the angular coordinate ϕ becomes

ϕRS ¼
Z

R

S
dϕ

¼ 2

Z
u0

0

1ffiffiffiffiffiffiffiffiffiffi
FðuÞp duþ

Z
0

uS

1ffiffiffiffiffiffiffiffiffiffi
FðuÞp du

þ
Z

0

uR

1ffiffiffiffiffiffiffiffiffiffi
FðuÞp du; ð38Þ

where we use the orbit equation given by Eq. (22), By
substituting Eq. (23) into FðuÞ in Eq. (38), we obtain

ϕRS ¼
Z

u0

uS

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u02 − u2
p þM

u03 − u3

ðu02 − u2Þ3=2 − 2aM
u03ðu0 − uÞ
ðu02 − u2Þ3=2

�
du

þ
Z

u0

uR

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u02 − u2
p þM

u03 − u3

ðu02 − u2Þ3=2 − 2aM
u03ðu0 − uÞ
ðu02 − u2Þ3=2

�
duþOðM2; a2Þ

¼
�
π

2
− arcsin

�
uS
u0

�
þM

ð2u0 þ uSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − us2

p
u0 þ uS

− 2aM
u03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − us2

p
u02 þ u0uS

�

þ
�
π

2
− arcsin

�
uR
u0

�
þM

ð2u0 þ uRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − uR2

p
u0 þ uR

− 2aM
u03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − uR2

p
u02 þ u0uR

�
þOðM2u20; a

2u20Þ; ð39Þ

where we assume the prograde case. For the retrograde case, the sign of the term linear in a becomes opposite.
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Equation (22) gives the relation between the impact
parameter b and the inverse of the closest approach u0 as
b ¼ u−10 þM − 2aMu0 þOðM2; a2Þ in the weak field and
slow rotation approximations. By using this relation, aM
part of ϕRS in Eq. (39) can be rewritten in terms of b as

−
2aM
b2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2uS2
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2uR2
p �

: ð40Þ

See Eq. (32) of Ref. [31] for M part of ϕRS.

D. Ψ parts

For the Kerr metric by Eq. (31), Eq. (28) becomes

sinΨ ¼ b
r
×

1 − 2M
r þ 2aM

brffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r þ a2

r2

q : ð41Þ

This is approximated as

sinΨ ¼ b
r

�
1 −

M
r
þ 2aM

br

�
þO

�
M2

r2
;
a2

r2
;
aM2

r3

�
: ð42Þ

By using this, we obtain

ΨR−ΨS ¼ arcsinðbuRÞþ arcsinðbuSÞ−π

−
MbuR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2uR2

p −
MbuS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2uS2

p
þ 2aMuR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−b2uR2
p þ 2aMuS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−b2uS2
p

þOðM2u2R;M
2u2S;a

2u2R;a
2u2S;aM

2u3R;aM
2u3SÞ:
ð43Þ

E. Deflection angle of light in Kerr spacetime

By substituting Eqs. (40) and (43) into Eq. (29), the
deflection angle of light on the equatorial plane in the Kerr
spacetime is obtained as

αprog ¼
2M
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �

−
2aM
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �

þO

�
M2

b2

�
; ð44Þ

where we assume the prograde motion of light. For the
retrograde case, it is

αretro ¼
2M
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �

þ 2aM
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �

þO

�
M2

b2

�
: ð45Þ

Note that a2 terms at the second order in the deflection
angle cancel out. See Appendix for more detail.
For both cases, we take the far limit as uR → 0 and

uS → 0. Then, we obtain

α∞prog →
4M
b

−
4aM
b2

þO

�
M2

b2

�
; ð46Þ

α∞retro →
4M
b

þ 4aM
b2

þO
�
M2

b2

�
; ð47Þ

which show that Eqs. (44) and (45) recover the asymptotic
deflection angles that are known in literature [4,33,34].

F. Finite-distance corrections to the gravitomagnetic
deflection angle of light

The above calculations discuss the deflection angle of
light due to the rotation of the lens (its spin parameter a). In
particular, we do not assume that the receiver and the
source are located at the infinity. The finite-distance
correction to the deflection angle of light, denoted as δα,
is the difference between the asymptotic deflection angle
α∞ and the deflection angle for the finite distance case. It is
expressed as

δα≡ α − α∞: ð48Þ

Equations (44) and (45) suggest the magnitude of the finite-
distance correction to the gravitomagnetic deflection angle
by the spin as

jδαGMj ∼O

�
aM
r2S

þ aM
r2R

�

∼O

�
J
r2S

þ J
r2R

�
; ð49Þ

where J ≡ aM is the spin angular momentum of the lens
and the subscript GM denotes the gravitomagnetic part. As
usual, we introduce the dimensionless spin parameter as
s≡ a=M. Hence, Eq. (49) is rewritten as

jδαGMj ∼O

�
s

�
M
rS

�
2

þ s

�
M
rR

�
2
�
: ð50Þ

This suggests that δα is comparable to the second
post-Newtonian effect (multiplied by the dimensionless
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spin parameter). It is known that the second-order
Schwarzschild contribution to α is 15πM2=4b2. This
contribution can be found also by using the present method,
especially by computing ϕRS, where we use a relation
between b and r0 in M2. Please see Appendix for detailed
calculations at the second order of M and a, especially the
integrals of K and κg in the present formulation. See also
the next subsection.
Note that δα at the leading order in the approximations

does not depend on the impact parameter b. In fact, δα
depends much weakly on b.

G. Possible astronomical applications

We discuss possible astronomical applications. First, we
consider the Sun, where we ignore its higher multipole
moments. The spin angular momentum of the Sun J⊙ is
∼2 × 1041 m2 kgs−1 [48]. Thus, GJ⊙c−2 ∼ 5 × 105 m2,
which implies the dimensionless spin parameter as
s⊙ ∼ 10−1.
We assume that an observer at the Earth sees the light

bending by the solar mass, while the source is practically at
the asymptotic region. If the light ray passes near the solar
surface, Eq. (50) implies that the finite-distance correction
to this case is of the order of

jδαGMj ∼O

�
J
r2R

�
∼ 10−12 arcsec: ×

�
J
J⊙

��
1 AU
rR

�
2

;

ð51Þ
where 4 M⊙=R⊙ ∼ 1.75 arcsec: ∼ 10−5 rad., and R⊙
denotes the solar radius. This correction is around a
pico-arcsecond level and thus it is unlikely to be observed
with present technology [49,50].
Please see Fig. 3 for numerical calculations of the finite-

distance correction due to the receiver location. The
numerical results are consistent with the above order-of-
magnitude estimation. The figure suggests that the depend-
ence of δα on the impact parameter b is very weak.
Next, we consider Sgr A� at the center of our Galaxy,

which is expected as one of the most plausible candidates
for the strong deflection of light. In this case, the receiver
distance is much larger than the impact parameter of light,
while a source star may be in the central region of our
Galaxy.
For Sgr A�, Eq. (49) implies

jδαGMj ∼ s

�
M
rS

�
2

∼ 10−7 arcsec:

×

�
s
0.1

��
M

4 × 106 M⊙

�
2
�
0.1 pc
rS

�
2

; ð52Þ

where we assume the mass of the central black hole
as M ∼ 4 × 106 M⊙. This correction around a sub-
microarcsecond level is unlikely to be measured with
present technology.

Please see Fig. 4 for numerical calculations of the finite-
distance correction due to the source location. The numeri-
cal results are consistent with the above order-of-magnitude
estimation. The figure shows that the dependence on the
impact parameter b is very weak.

H. Consistency of the present formulation

Before closing this section, let us check the consistency
of the above formulation. The Gaussian curvature is related
with the 2-dimensional Riemann tensor as [37]

FIG. 3. δαGM for the Sun. The vertical axis denotes the finite-
distance correction to the gravitomagnetic deflection angle of
light and the horizontal axis denotes the receiver distance rR. The
solid curve (blue in color) and dashed one (red in color)
correspond to b ¼ R⊙ and b ¼ 10R⊙, respectively. The dotted
line (black in color) denotes the leading term of δαGM given by
Eq. (49). The overlap between these curves suggest that the
dependence of δαGM on the impact parameter b is very weak.

FIG. 4. δαGM for the Sgr A�. The vertical axis denotes the finite-
distance correction to the deflection angle of light and the
horizontal axis denotes the source distance rS. The solid curve
(blue in color) and dashed one (red in color) correspond to b ¼
102M and b ¼ 104M, respectively. The dotted line (yellow in
color) denotes the leading term of δαGM given by Eq. (49). The
overlap between these plots suggest that δαGM depends faintly on
the impact parameter b.
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K ¼
ð3ÞRrϕrϕ

γ

¼ 1ffiffiffi
γ

p
� ∂
∂ϕ

� ffiffiffi
γ

p
γrr

ð3ÞΓϕ
rr

�
−

∂
∂r

� ffiffiffi
γ

p
γrr

ð3ÞΓϕ
rϕ

��
; ð53Þ

where ð3ÞΓi
jk and ð3ÞRabcd are associated with γij. For the

Kerr case, it becomes

K ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3

BðADþH2Þ

s
∂
∂r

×

"
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3

BðADþH2Þ

s
∂
∂r

�
ADþH2

A2

�#

¼ −
2M
r3

þO

�
M2

r4
;
a2M
r5

�
; ð54Þ

where we use the weak field and slow rotation approx-
imations in the last line. Note that K has no terms linear

in a. This is because γij has no terms linear a as already
mentioned. Furthermore, a2 terms cancel out in K. See
Appendix for more detail.
In order to compute the surface integral of the

Gaussian curvature in the Gauss-Bonnet theorem, we
need know the integration domain, especially the photon
orbit S → R for the present case. By straightforward
calculations, the iterative solution of Eq. (22) for the
Kerr case in the weak field and slow rotation approx-
imations is obtained as

u ¼ 1

b
sinϕþM

b2
ð1þ cos2 ϕÞ

−
2aM
b3

þO

�
M2

b3
;
a2

b3

�
: ð55Þ

By using this, the surface integral of the Gaussian
curvature is computed as

−
Z Z

R
∞
□S

∞ KdS ¼
Z

∞

rOE

dr
Z

ϕR

ϕS

dϕ
2M
r2

þO
�
M2

b2
;
aM2

b3

�

¼ 2M
Z

ϕR

ϕS

dϕ
Z

1
b sinϕþM

b2
ð1þcos2ϕÞ−2aM

b3

0

duþO

�
M2

b2
;
aM2

b3

�

¼ 2M
Z

ϕR

ϕS

dϕ½u�
1
b sinϕþM

b2
ð1þcos2ϕÞ−2aM

b3

u¼0 þO

�
M2

b2
;
aM2

b3

�

¼ 2M
b

Z
ϕR

ϕS

dϕ sinϕþO

�
M2

b2
;
aM2

b3

�

¼ 2M
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �
þO

�
M2

b2
;
aM2

b3

�
: ð56Þ

It follows that a2 terms do not exist in this calculation.
By combining Eqs. (37) and (56), we obtain

−
Z Z

R
∞
□S

∞ KdS −
Z

S

R
κgdl

¼ 2M
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �

−
2aM
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �
þO

�
M2

b2

�
:

ð57Þ
This equals to the right-hand side of Eq. (44). This means
that the present approach is consistent with the Gauss-
Bonnet theorem.

IV. CONCLUSION

By using the Gauss-Bonnet theorem in differential
geometry, we discussed a possible extension of the method

of calculating the bending angle of light to stationary,
axisymmetric and asymptotically flat spacetimes. We
introduced a spatial metric γij to define the bending angle
of light, which was shown to be coordinate-invariant.
We considered the light rays on the equatorial plane in

the axisymmetric spacetime. We showed that the geodesic
curvature of the photon orbit with γij can be nonzero in
gravitomagnetism, even though the light ray in the four-
dimensional spacetime follows the null geodesic. Finally,
we considered Kerr spacetime in order to examine how the
bending angle of light is computed by the present method.
We made an order-of-magnitude estimate of the finite-
distance corrections for two possible astronomical cases;
(1) the Sun and (2) the Sgr A�. The results suggest that the
finite-distance corrections due to gravitomagnetism are
unlikely to be observed with present technology.
However, our analysis on possible astronomical obser-

vations in this paper is limited within the Kerr model.
It might be interesting to examine the gravitomagnetic
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bending of light by using other axisymmetric spacetimes in
GR or in a specific theory of modified gravity. A further
study along this direction is left for the future.
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APPENDIX: DETAILED CALCULATIONS AT OðM2=b2Þ AND Oða2=b2Þ
First, we investigate K. Up to the second order, it is expanded as

K ¼ Rrϕrϕ

γ
¼ −

2M
r3

þ 3M2

r4
þO

�
a2M
r5

�
; ðA1Þ

where γ denotes detðγijÞ. Note that there are no a2 terms in K. More interestingly, only the a2M term among the third order
terms do exist in K. By noting that K begins with OðMÞ, what we need for the second-order calculations is only the linear
order in the area element on the equatorial plane. This is obtained as

dS≡ ffiffiffi
γ

p
drdϕ ¼

�
rþ 3M þO

�
M2

r

��
drdϕ; ðA2Þ

where terms at OðaÞ and also at Oða2Þ do not exist in dS. This is because all terms including the spin parameter cancel out
in γ for θ ¼ π=2 and γ thus depends only on M, as can be shown by direct calculations.
By using Eqs. (A1) and (A2), the surface integration of the Gaussian curvature is done as

−
ZZ

KdS ¼
Z

rOE

∞
dr

Z
ϕR

ϕS

dϕ

�
−
2M
r3

þ 3M2

r4

�
ðrþ 3MÞ þO

�
M3

b3
;
aM2

b3
;
a2M
b3

�

¼
Z

1
b sinϕþM

b2
ð1þcos2ϕÞ

0

du
Z

ϕR

ϕS

dϕð2M þ 3uM2Þ þO

�
M3

b3
;
aM2

b3
;
a2M
b3

�

¼
Z

ϕR

ϕS

�
2uM þ 3u2

2
M2

�1
b sinϕþM

b2
ð1þcos2ϕÞ

0

dϕþO

�
M3

b3
;
aM2

b3
;
a2M
b3

�

¼
Z

ϕR

ϕS

�
2M
b

sinϕþ M2

2b2
ð7þ cos2ϕÞ

�
dϕþO

�
M3

b3
;
aM2

b3
;
a2M
b3

�

¼ 2M
b

½cosϕ�ϕS
ϕR

þ M2

2b2

�
30ϕþ sinð2ϕÞ

4

�
ϕR

ϕS

þO

�
M3

b3
;
aM2

b3
;
a2M
b3

�

¼ 2M
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �
þ 2M2

b

�
uSð2 − b2uS2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2uS2
p þ uRð2 − b2uR2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2uR2
p �

þ 15M2

4b2
½π − arcsinðbuSÞ − arcsinðbuRÞ�

−
M2

4b2

�
buS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ buR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �
þO

�
M3

b3
;
aM2

b3
;
a2M
b3

�

¼ 2M
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �
þ 15M2

4b2
½π − arcsinðbuSÞ − arcsinðbuRÞ�

þ M2

4b2

�
buSð15 − 7b2uS2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2uS2
p þ buRð15 − 7b2uR2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2uR2
p �

þO

�
M3

b3
;
aM2

b3
;
a2M
b3

�
; ðA3Þ

where we use, in the second line, an iterative solution for the orbit equation by Eq. (21) for the Kerr spacetime.
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Next, we study the geodesic curvature. On the equatorial
plane, we obtain

κg ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σ2

ΔðΣ−2MrÞ

�
r2 þ a2 þ 2a2Mrsin2θ

Σ

�
Σsin2θ

ðΣ−2MrÞ

s βϕ;r

¼ −
2aM
r3

þO

�
aM2

r3

�
; ðA4Þ

where a2 terms do not exist. From this, we obtain

Z
cp

κgdl ¼ −
Z

R

S
dl

�
2aM
r2

þO

�
aM2

r3

��

¼ −
2aM
b2

Z
ϕR

ϕS

cosϑdϑþO
�
aM2

b3

�

¼ −
2aM
b2

½sinϕR − sinϕS� þO

�
aM2

b3

�

¼ 2aM
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �

þO

�
aM2

b3

�
; ðA5Þ

where we use sinϕS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS2 − b2

p
=rS þOðM=rSÞ and

sinϕR ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR2 − b2

p
=rR þOðM=rRÞ.

By combining Eqs. (A3) and (A5), we obtain

α≡ −
Z Z

R
∞
□S

∞ KdS −
Z

S

R
κgdl

¼ 2M
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �

þ 15M2

4b2
½π − arcsinðbuSÞ − arcsinðbuRÞ�

þ M2

4b2

�
buSð15 − 7b2uS2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2uS2
p þ buRð15 − 7b2uR2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2uR2
p �

−
2aM
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �

þO

�
M3

b3
;
aM2

b3
;
a2M
b3

�
: ðA6Þ

Note that a2 terms and a3 ones do not appear in α for the
finite distance situation as well as in the infinite distance
limit. If we assume the infinite distance limit uR, uS → 0,
Eq. (A6) becomes

α →
4M
b

þ 15πM2

4b2
−
4aM
b2

: ðA7Þ

This agrees with the previous results, especially the
numerical coefficients at the order of M2 and aM.
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