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Supernovae in our universe are potential sources of gravitational waves (GW) that could be detected in a
network of GW detectors like LIGO and Virgo. Core-collapse supernovae are rare, but the associated
gravitational radiation is likely to carry profuse information about the underlying processes driving the
supernovae. Calculations based on analytic models predict GW energies within the detection range of the
Advanced LIGO detectors, out to tens of Mpc for certain types of signals e.g. coalescing binary neutron
stars. For supernovae however, the corresponding distances are much less. Thus, methods that can improve
the sensitivity of searches for GW signals from supernovae are desirable, especially in the advanced
detector era. Several methods have been proposed based on various likelihood-based regulators that work
on data from a network of detectors to detect burst-like signals (as is the case for signals from supernovae)
from potential GW sources. To address this problem, we have developed an analysis pipeline based on a
method of noise reduction known as the harmonic regeneration noise reduction (HRNR) algorithm. To
demonstrate the method, sixteen supernova waveforms from the Murphy et al. 2009 catalog have been used
in presence of LIGO science data. A comparative analysis is presented to show detection statistics for a
standard network analysis as commonly used in GW pipelines and the same by implementing the new
method in conjunction with the network. The result shows significant improvement in detection statistics.
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I. INTRODUCTION

Supernovae (SN) in our universe are potential sources of
gravitational waves (GW) [1–3] that could be detected in a
network of GW detectors. Several GW detectors are in
operation, e.g., like LIGO [4], Virgo [5], and GEO600 [6].
Core-collapse supernovae are rare, but the associated
gravitational radiation is likely to carry profuse information
about the underlying processes driving the supernovae.
Calculations based on analytic models predict GWenergies
within the detection range of the Advanced LIGO [7]
detectors, out to tens of kpc.
Analysis of theGW signal of the post-bounce evolution of

core-collapse supernovae using relativistic, two-dimensional
explosion models have been calculated [8]. The waveforms
show the accelerated mass motions associated with the
characteristic evolutionary stages, which were also seen in
previous studies [9,10]. The basic model is that a quasi-
periodic modulation by prompt post-shock convection is
followed by a phase of relative quiescence. Following this,
the amplitudes grow again due to violent hydrodynamical
activity caused by convection and the standing accretion
shock instability. Finally, a high-frequency, low-amplitude

variation from proto-neutron star convection below the
neutrinosphere appears superimposed on the low-frequency
trend associated with the aspherical expansion of the SN
shock after the onset of the explosion. The GW frequency
from neutrino driven core collapse supernovae is expected to
evolve from approximately100 Hz to about 1000 Hz.
Since the signals from these sources are weak, methods

that can improve the sensitivity of searches for GW signals
from SN are desirable, especially in the advanced detector
era. Several methods have been proposed [11–13] based on
various likelihood-based regulators that work on data from a
network of detectors to detect burst-like signals (as is the case
for signals from supernovae) from potential GW sources. To
address this problem, we have developed and implemented a
new technique of noise reduction in the supernova search
pipeline based on harmonic regeneration noise reduction
(HRNR) algorithm [14–17]. Themethod is based on amulti-
stage, high accuracy spectral estimation to effectively
achieve higher signal to noise ratio (snr).
The paper is organized as follows. Section II toVdescribes

the algorithmdevelopment in detail. SectionVI describes the
analysis pipeline where sixteen supernova waveforms from
theMurphy et al.2009catalog [9] have been used in presence
of LIGO science data. A comparative analysis is presented to
show detection statistics for a standard network analysis as
commonly used in GW pipelines and the same by imple-
menting the new method in conjunction with the network.
Section VII discusses the results and Sec. VIII summarizes
the conclusion.
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II. REVIEW OF PREVIOUS STUDY

Logue et al. [18] have used the supernova model
extraction extractor (SMEE) algorithm to infer physical
information from core-collapse supernovae. SMEE is a
Bayesian approach where simulated supernovae signals are
decomposed into principal components and a nested
sampling algorithm [19,20] to classify the injected signal
as to belonging to a particular model in given supernovae
catalogs [21]. The study uses simulated Advanced LIGO
noise and a single detector to demonstrate that the method
successfully distinguishes magnetorotational explosions in
the Milky Way galaxy (distance ≤ 10 kpc) and the neutrino
driven explosions (distance ≤ 2 kpc). Moreover, the
method is able to accurately differentiate between rotating
accretion-induced model for white dwarves and rotating
iron core-collapse up to several kpc. While the study is one
of the first systematic attempt to infer core-collapse physics
from the SMEE detection and classification algorithm, it
uses some simplifying assumptions e.g. Gaussian noise,
linear polarization and optimally oriented GW emission.
Gossan et al. [22] have discussed detection of GW from

CCSN using a network of detectors. The method used is
called the X-Pipeline [23], a coherent network analysis
pipeline that searches for excess power in time-frequency
space. The study shows that neutrino-driven CCSN can be
detected up to 5.5 kpc, while rapidly rotating CCSN can be
detected all the way up to 50 kpc (Large Magellanic
Cloud.) Extreme GW emission models [24,25] are detect-
able out to 0.77 Mpc.
In a 2016 study, Powell et al. [26] demonstrated for the

first time that SMEE can determine explosion mechanism
up to galactic distances in presence of real non-Gaussian
and nonstationary noise. The authors inferred that GW
signals from neutrino-driven convection have a smaller
amplitude than those from rapidly-rotating core collapse.
Model selection is enhanced by a careful selection of the
number of principal components that considers the relative
complexity of the dierent explosion models.
Hayama et al. [27] have studied three dimensional

hydrodynamical simulation models for detection, recon-
struction, and source localization of the gravitational-wave
(GW) signals using a coherent network of detectors
(RIDGE pipeline) that included the network of LIGO
Hanford, LIGO Livingston, VIRGO and Kagra [28]. The
output of their pipeline could recover several important
hydrodynamics features in the original waveforms. The
authors identified the excess in the spectrograms to the
features of the collapse process. Not only were the rotating
core collapse, bounce, and subsequent ringdown of the
proto-neutron star seen, but also formation of magnetohy-
drodynamics jets and nonaxisymmetric instabilities in the
vicinity of the proto-neutron star could be recognized. The
horizon distance was up to 18 kpc for the most rapidly
rotating 3D model in this work. Following the rotating core
bounce, the dominant source of the GW emission shifts to

the nonaxisymmetric instabilities. The horizon distances
extended up to 40 kpc when seen from the spin axis.

III. METHOD

Noise reduction can be viewed as an estimation problem,
where an unknown signal is to be estimated in the presence
of noise, where only the noisy observation is available. We
achieve noise reduction by exploiting the spectral diversity
between the signal and the noise, along with the high
degree of the nonstationarity of the signal. Consequently, it
is natural to perform enhancement in the frequency domain.
We closely follow the development in [14]. The method
comprises replacing the input data to the pipeline with the
noise-reduced data.
We assume that the data segments used in the analysis

satisfy assumptions of wide-sense stationarity (WSS) [29,30].
Let us first establish some basic definitions.
In general, a WSS process xðtÞ is a weak form of

stationary process in which the first and the second
moments don’t vary significantly with respect to time. In
other words the mean is constant, i.e.

E½xðtÞ� ¼ Eðxðtþ τÞÞ; ∀ τ: ð1Þ

Here E½xðtÞ� denotes the expectation value.
The correlation function depends only on the difference

between two time instances, i.e.

E½xðt1Þxðt2Þ� ¼ Eðt1; t2Þ ¼ Eðt1 þ τ; t2 þ τÞ
¼ Eðt1 − t2; 0Þ; ∀ τ; t1; t2 ð2Þ

We will now write the discrete Fourier transform (DFT)
coefficients as Xðp; kÞ. Thus, jXðp; kÞj is the amplitude
spectrum. Here, k is the frequency bin index and p is the
time frame (or segment) index. The variance of the signal’s
DFT coefficients is given by σ2XXðp; kÞ ¼ EðjXðp; kÞj2Þ.
The periodogram is defined as 1

K jXðp; kÞj2, where K is the
length of each time frame. The power spectral density (psd)
is defined as PXXðp; kÞ ¼ 1

K EðjXðp; kÞj2Þ, for K → ∞.
The basic problem can be stated as follows. We assume

an additive noise model.

xpðtÞ ¼ spðtÞ þ npðtÞ ð3Þ

where xðtÞ is the data stream, sðtÞ is the signal, embedded
in noise nðtÞ. Here t denotes the discrete time index of the
segment p.
Because of the linearity of the fourier transform, the

noise model is expressed in the frequency domain as

Xðp; kÞ ¼ Sðp; kÞ þ Nðp; kÞ: ð4Þ

Here Xðp; kÞ, Sðp; kÞ and Nðp; kÞ are DFT coefficients
obtained at frequency index k and time frame p for noisy
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data, signal and noise respectively. It is reasonable to
assume that S and N are independent. Therefore, the
correlation between them is zero, i.e.

E½Sðp; kÞNðp; kÞ� ¼ 0; ∀ k; p: ð5Þ

Thus, the relation between the corresponding psd’s is
given by

PXXðp; kÞ ¼ PSSðp; kÞ þ PNNðp; kÞ: ð6Þ

Our aim is to find an estimator ~Sðp; kÞ of the signal from
the noisy observed data Xðp; kÞ such that expectation value
of distortion between the true signal and its estimate based
on spectral noisy features is minimized. In other words, the
estimate ~Sðp; kÞ of the signal is a function (denoted by F )
of all three quantities—signal psd, noise psd and the
observed data,

Ŝðp; kÞ ¼ F ðPNNðp; kÞ; PSSðp; kÞ; xðp; kÞÞ: ð7Þ

This is further developed in more explicit details later in
this section through Eqs. (12)–(15).
Since we do not have a unique spectral estimate (the

noise floor being nonstationary), we begin by estimating
the snr from the noisy data.
An estimate of Sðp; kÞ is then obtained by applying a

spectral gain Γðp; kÞ to each short-time spectral compo-
nent Xðp; kÞ.
The most widely accepted definition of the snr [31] in the

GW literature is given by

snr ¼
�
4

Z
∞

0

df
j~sðfÞj2
ðNðfÞÞ

�1
2

: ð8Þ

Here, NðfÞ is the one-sided psd of the noise and ~sðfÞ is
the fourier transform of GW time domain data sðtÞ.
In keeping with the general definition of the snr, which is

the ratio of the signal power to the noise power, at this
point, for convenience in further derivation, two parameters
are introduced: the a posteriori snr and the a priori snr,
respectively defined by

snrpostðp; kÞ ¼
jXðp; kÞj2
PNNðp; kÞ

ð9Þ

and

snrprioriðp; kÞ ¼
PSSðp; kÞ
PNNðp; kÞ

: ð10Þ

We also define the instantaneous snr as follows.

snrinsðp; kÞ ¼
jXðp; kÞj2 − PNNðp; kÞ

PNNðp; kÞ
¼ snrpostðp; kÞ − 1: ð11Þ

snrinsðp; kÞ is taken as a measured estimate of the local
a priori snr in a spectral subtraction approach [32]. We
would like to note that the a priori and a posteriori are not
used in a Bayesian sense, but rather to denote the previous
and subsequent data segments in the analysis.
In reality, PNNðp; kÞ and PSSðp; kÞ are both unknown

and need to be estimated. PNNðp; kÞ can be estimated by
the classical minimum statistics methods [15,33]. This
method provides a good estimate of psd even in presence
of nonstationarity of noise. The method involves tracking
spectral minima in each frequency band and minimization
of a mean square estimation error (MMSE) in each time
step. Specifically, if we describe χ1; χ2; χ3;…; χn as the
minima in the frequency bands, we can make an estimate of
PNNðp; kÞ in the following way. Let P0

NNðp; kÞ represent
such an estimator of PNNðp; kÞ. The error in the above
estimate is

εðXÞ ¼ PNNðp; kÞ − P0
NNðp; kÞ: ð12Þ

Since ε is a random variable, Efjεj2g represents the mean
square error. Under the MMSE, the best estimator for
PNNðp; kÞ is given by the conditional mean

P0
NNðp; kÞ ¼ E½PNNðp; kÞjχ�: ð13Þ

This leads to an optimal unbiased smoothed estimate of the
spectral density.
After this, the spectral gain is expressed as follows.

Γðp; kÞ ¼ fðcsnrprioriðp; kÞ; csnrpostðp; kÞÞ: ð14Þ

The function f is chosen in this case to be a Wiener filter
[34] described below. The signal estimate can then be
obtained as follows.

Ŝðp; kÞ ¼ Γðp; kÞXðp; kÞ ð15Þ

A. Wiener filter

The Wiener filter is based on the MMSE between the
estimated signal and the true signal. The basic assumption
here is that the sp and np are jointly WSS with known
covariance functions RsðpÞ, RnðpÞ and RsnðpÞ. The aim of
the process is to estimate sp as a function of x by finding the
linear MMSE estimate of sp based on xp.
Let us consider a finite impulse response (FIR [35]) filter

of length N þ 1.
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ŝp ¼
Xp

m¼p−N
hp−mxm ¼

XN
j¼0

hjxp−j: ð16Þ

The coefficients hj need to be calculated such that the
MMSE is achieved.
In order to achieve this, let us first determine the optimal

condition equation (i.e. the expanded error equation).

ϵ ¼ E

�� Xþ∞

k¼−∞
h½k�x½n − k� − s½k�

�2�
: ð17Þ

The value that minimizes ϵ can the be obtained by setting
∂ϵ

∂h½m� ¼ 0 for all values of m except when h½m� ¼ 0.

∂ϵ
∂h½m� ¼ E

��
2
X
k

h½k�x½n − k� − s½k�
�
s½n −m�

�
¼ 0:

ð18Þ

Denoting 2
P

kh½k�x½n − k� − s½k� ¼ e, the above equa-
tion indicates that

Res½m� ¼ E½e½n�s½n −m�� ¼ 0 ∀ m: ð19Þ

Thus, the error is orthogonal or uncorrelated to all data
used to form the optimal estimate. It may be noted here that

Res½m� ¼ Ef½e½n�s½n −m��g
¼ Ef½ðx̂½n� − x½n�Þs½n −m��g
¼ Rbxs½m� − Rxs½m�: ð20Þ

In other words, the orthogonality principle can also be
stated as

Rbxs½m� ¼ Rxs½m�: ð21Þ

To find the actual values of h½n�, the following relation is
used.

Rbxs½m� ¼ h½m� � Rss½m� ¼ Rxs½m�: ð22Þ

An equivalent way to state this is

X
k

h½k�Rss½m − k� ¼ Rxs½m�: ð23Þ

The above equation is a set if linear equations that needs
to be solved for the values of h½n�. For a filter of length
N þ 1, there are N þ 1 equations of N þ 1 values of h½n�.
In matrix form, these equations can be written as

2
6664
Rss½0� Rss½1� … Rss½N�
Rss½1� … … …

… … … Rss½1�
Rss½N� … Rss½1� Rss½0�

3
7775
2
6664
h0
…

…

hN

3
7775 ¼

2
6664
Rxsð0Þ
…

…

RxsðNÞ

3
7775

In a compact form, h is given by

h ¼ R−1
s Rxs: ð24Þ

These are the Yule-Walker Eq. [36]. It is noted that Rx ≥ 0.
The matrix on the left is a Toeplitz matrix, i.e. constant
along the diagonals. They can be solved by Levinson-
Durbin [37] methods that are standard applications in
software packages like the MATLAB [38].
The MMSE can now be computed as follows [39]:

E½ðŝp − spÞ2� ¼ Rss½0� − hTRxs: ð25Þ

B. How to find Γðp;kÞ: Relation between local
a priori and local a posteriori snr

In order to obtain the mathematical form of the estimate
of Γðp; kÞ, we introduce the relation between the a priori
and a posteriori snr by following an approach developed
in [40].
Assuming the model given in Eq. (3), the amplitude of

the noisy signal is given by,

jXðp; kÞj ¼ ðjSðp; kÞj2 þ jNðp; kÞj2
þ 2jSðp; kÞjjNðp; kÞj cos βðp; kÞÞ12 ð26Þ

where βðp; kÞ is the phase angle between Sðp; kÞ and
Nðp; kÞ. Assuming that we now have some knowledge of
the signal and noise from Eqs. (13) and (15), let us define a
local a priori and a poteriori snr as follows.

snrlocalpost ðp; kÞ ¼
jXðp; kÞj2
jNðp; kÞj2 ð27Þ

and

snrlocalprioriðp; kÞ ¼
jSðp; kÞj2
jNðp; kÞj2 ð28Þ

Using Eq. (26) in Eq. (27), we get

snrlocalpost ðp; kÞ ¼ 1þ snrlocalprioriðp; kÞ
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
snrlocalprioriðp; kÞ

q
× cos βðp; kÞ ð29Þ

For Wiener filter, snrpostðp; kÞ is assumed to be equal to
1þ snrprioriðp; kÞ. This implies that the phase difference is
constant, or, βðp; kÞ ¼ π=2 or, the signal and the noise add
in quadrature. This is also already seen in Sec. II.
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IV. INFORMATION FROM THE PREVIOUS TIME
FRAME: THE DECISION DIRECTED APPROACH

A. Principle

One of the most commonly used methods to obtain an
estimator is known as the “decision directed” (DD) [16,17]
approach. The DD estimator combines the estimated
amplitude of the previous time frame and the noisy
amplitude of the current frame under analysis into one
estimator of the signal spectrum. Using the noise psd, the
a priori and a posteriori snrs are computed as follows.

csnrpostðp; kÞ ¼ jXðp; kÞj2
PNNðp; kÞ

ð30Þ

and

csnrDD
prioriðp; kÞ ¼ ϵ

j ~Sðp − 1; kÞj2
PNNðp; kÞ

þ ð1 − ϵÞP½csnrpostðp; kÞ − 1� ð31Þ

where ~Sðp − 1; kÞ stands for estimated signal spectrum at
the previous frame and P½csnrpostðp; kÞ − 1� is the half wave
rectification (HWR). The HWR in this case implies that the
maximum relative to zero, is taken into account.P½:� or the
HWR has the following properties.

P½x0� ¼ x0 if x0 ≥ 0

P½x0� ¼ 0 otherwise: ð32Þ

This is made to ensure that the result is not negative. ϵ is
chosen to be 0.98. The above estimate is the DD estimate
[17]. The estimator is obtained by combining Eqs. (14) and
(15). The main idea here is that the signal amplitude is
estimated from the (p − 1)th frame instead of the amplitude
itself in the pth frame. It is so named because csnrDD

prioriðp; kÞ
is updated on the basis of the previous signal amplitude
estimate.
With the spectral gain being chosen as the Wiener filter

[34], we have

ΓDDðp; kÞ ¼
csnrDD

prioriðp; kÞ
1þ csnrDD

prioriðp; kÞ
ð33Þ

Derivation of Eq. (32) is given in detail in [17].

1. Consequences

Two observations are important here: (i) when the
instantaneous snr is ≫ 0, snrprioriðp; kÞ corresponds to a
frame delayed version of the instantaneous snr; (ii) when
the instantaneous snr is < 0 or ¼ 0, snrprioriðp; kÞ corre-
sponds to a highly smoothed and delayed version of
instantaneous snr. These two effects are observed from

Eq. (11). This means that the variance of the a priori snr is
reduced compared to the instantaneous snr. The direct
effect of this phenomenon is the reduction of underlying
noise to effectively enhance the signal [16].
However, it may be noted that the delay inherent to the

DD algorithm can be a drawback especially in the begin-
ning and end of the signal. Furthermore, this delay
introduces a bias in gain estimation which limits noise
reduction performance.
To explain this effect more, let us consider that a signal

appears in frame p. Thus, a priori snr is zero in frame
(p − 1). In the current frame, we have

csnrDD
prioriðp; kÞ ¼ ð1 − ϵÞP½csnrpostðp; kÞ − 1Þ�: ð34Þ

Thus, from Eq. (10), the estimated a priori snr is the
attenuated version of the instantaneous snr, the attenuation
factor being (1 − ϵ). If the phase factor βðp; kÞ in
Eq. (31) is π

2
,

csnrlocalprioriðp; kÞ ¼ ½csnrpostðp; kÞ − 1� ¼ csnrlocalins ðp; kÞ: ð35Þ

In the case that the signal ends in a frame, the a priori snr
may be overestimated. In this case, the second term in
Eq. (31) is zero, leading the estimate to have a nonzero
value determined by the first term. However, a null value is
desired. Thus the signal spectrum may be overestimated.

V. OVERCOMING THE OVERESTIMATION
PROBLEM: TWO STEP NOISE REDUCTION
TECHNIQUE USING INFORMATION FROM

A LATER FRAME

In order to avoid some of the problems faced in the
estimation of the a priori snr, a two step noise reduction
(TSNR) technique has been developed. The DD algorithm
introduces a frame delay when ϵ is ∼1. As a result of this,
the spectral gain matches the values in the pth and the
(p − 1)th frame. We now adopt a two step approach by
applying the DD algorithm to the (pþ 1)th frame too. In
this approach, we first calculate spectral gain as given by
Eq. (33). In the next step, this gain is used to calculate
the a priori snr in the (pþ 1)th frame. The gain factor is
given by

csnrTSNRpriori ðp; kÞ ¼ csnrDD
prioriðpþ 1; kÞ: ð36Þ

Hence,

csnrTSNRpriori ðp; kÞ ¼
jΓDDðp; kÞXðp; kÞj2

PNNðp; kÞ
: ð37Þ

It is possible to write this step by putting the weight factor
in Eq. (31) equal to 1. Finally, the spectral gain is calculated
as follows.

NEW METHOD FOR ENHANCED EFFICIENCY IN … PHYSICAL REVIEW D 96, 104033 (2017)

104033-5



ΓTSNRðp; kÞ ¼
csnrTSNRpriori ðp; kÞ

1þ csnrTSNRpriori ðp; kÞ
ð38Þ

and hence the enhanced signal estimate is

Ŝðp; kÞ ¼ ΓTSNRðp; kÞXðp; kÞ: ð39Þ

As before, we have taken the chosen spectral gain to be the
Wiener filter [34].
To summarize, the TSNR algorithm improves the noise

reduction performance since the gain matches to the current
frame whatever the snr.
To understand the improvement more clearly, the follow-

ing is observed: (i) when the instantaneous snr is ≫ 0,
snrTSNRpriori ðp; kÞ corresponds to the instantaneous snr without
any delay as was found in the DD approach. Further, as thecsnrinsðp; kÞ increases or decreases (corresponding to onset
and offset of the signal), the response of the snrTSNRpriori ðp; kÞ
is also instantaneous, unlike the DD estimator; (ii) when the

instantaneous snr is < 0 or ¼ 0, snrTSNRpriori ðp; kÞ is reduced
more compared to the DD estimator.

A. Theoretical justification of the TSNR

If no signal is present in the (p − 1)th frame,

Ŝðp − 1; kÞ ¼ 0: ð40Þ

At the pth frame, the DD approach gives the estimation
for a priori snr as

csnrDD
prioriðp; kÞ ¼ ð1 − ϵÞPðcsnrpostðp; kÞ − 1Þ: ð41Þ

When refining the a priori snr in the TSNR technique,
according to Eq. (31),

FIG. 1. The figure shows 8 supernovae waveforms used in the study from Murphy et al. 2009 catalog [9] with progenitor masses 12
and 15.
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csnrTSNRpriori ðp; kÞ ¼
� ð1 − ϵÞPð ˆsnrpostðp; kÞ − 1Þ
1þ ð1 − ϵÞPð ˆsnrpostðp; kÞ − 1Þ

�
2

× snrpostðp; kÞ: ð42Þ

By comparing Eqs. (41) and (42) to search for the
intersection of the curves defined by these equations, we
find that

csnrpostðp; kÞ > 1

2ϵ

�
1þ 2ϵþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ϵ

1 − ϵ

r �
ð43Þ

It is evident from the above equation that the TSNR
method delivers a greater signal power than the DD
algorithm. Consequently, if a signal component appears
abruptly at frame p, thus increasing the a posteriori snr, the
estimated a priori snr tends to the a posteriori snr
suppressing the bias introduced by the DD approach.
This bias decreases when the a posteriori snr increases.
However, if signal is absent at frame p too, keeping the

a posteriori snr to a low level, the estimated a priori snr
becomes lower than for the DD approach further limiting
the noise.
Looking at the other extreme case, where a priori snr is

higher in ðp − 1Þth frame than in the pth frame (i.e. the
signal decays rapidly), the following approximation can be
done.

csnrDD
prioriðp; kÞ ∼ ϵcsnrinsðp − 1; kÞ: ð44Þ

The spectral gain is then approximated as follows.

ΓDDðp; kÞ ¼
ϵcsnrinsðp − 1; kÞ

1þ ϵcsnrinsðp − 1; kÞ : ð45Þ

Moreover, it is reasonable to assume that csnrinsðp − 1; kÞ
1 and is much greater than 1 and ϵ ∼ 1, Eq. (39) becomes

FIG. 2. The figure shows 8 supernovae waveforms used in the study from Murphy et al. 2009 catalog [9] with progenitor masses 20
and 40.
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ΓDDðp; kÞ ∼ 1: ð46Þ
Inducting this approximation in (31) leads to

csnrTSNRpriori ðp; kÞ ∼ csnrpostðp; kÞ;
∼ csnrinsðp; kÞ: ð47Þ

The TSNR method leads to suppression of a priori snr
overestimation.

VI. HARMONIC REGENERATION
NOISE REDUCTION

The output signal from the previous step may still suffer
some distortion due to estimation errors that may be
present. It is very difficult to obtain a 100% reliable
spectral estimate and hence some errors are expected to
remain. Most of the distortion happend due to loss of some
harmonics. The harmonic regeneration noise reduction
(HRNR) consists of applying a nonlinear function to the
time signal enhanced in the process described in the
previous section. The restored signal is given by

srectifiedðtÞ ¼ Φð~sðtÞÞ; ð48Þ

where Φ is the nonlinear function. The maximum value
relative to zero (i.e. HWR) has been used in this case.

It is important to note that the SrectifiedðtÞ are created at
the same positions as the original signal, thus no distortions
are produced. Moreover, it contains a useful information
that leads to a further refinement in the a priori snr estimate
as follows.

csnrHRNRpriori ðp; kÞ ¼
1

PNNðp; kÞ
× ðΔðp; kÞj~sðp; kÞj2

þ ð1 − Δðp; kÞÞjsrectifiedðp; kÞj2Þ: ð49Þ

The Δðp; kÞ is a mixing parameter.

0 ≤ Δðp; kÞ ≤ 1: ð50Þ

Mixing is important at this stage because the nonlinear
function Φ is able to restore the harmonics lost due to
spectral estimation error. Δ should meet the following
conditions: When ~Sðp; kÞ provided by the TSNR method is
reliable, Δ is equal to 1; if the estimate is not a reliable one,
Δðp; kÞ ¼ 0. A standard value, e.g. 0.5, can also be used in
some cases. We will use

Δðp; kÞ ¼ ΓTSNRðp; kÞ; ð51Þ

to meet the required conditions.
The refined a priori snr from Eq. (43) is now used to

calculate the new spectral gain with preservation of all
features of the original signal. As before, we have chosen
the spectral gain to be the Wiener filter. Thus,

ΓHRNRðp; kÞ ¼
csnrHRNRpriori ðp; kÞ

1þ csnrHRNRpriori ðp; kÞ
: ð52Þ

At the final stage, the desired signal spectrum is given by,

~Sðp; kÞ ¼ ΓHRNRðp; kÞXðp; kÞ ð53Þ

This method is illustrated in detail in the 2006 study by
Plapous et al. [14].

A. Theoretical explanation of HRNR

As stated in the previous section, we choose the non-
linear function Φ as follows.

srectifiedðtÞ ¼ Max½ŝðtÞ; 0� ¼ ŝðtÞ × ρðŝðtÞÞ; ð54Þ

where ρ is defined as

ρðgÞ ¼ 1 if g > 0

ρðgÞ ¼ 0 if g < 0: ð55Þ

In other words, we have chosen the HWR. ρðgÞ defines an
elementary repetitive waveform. It is reasonable to assume
that, over a short time period, the signal is quasistationary.

FIG. 3. The analysis pipeline starts with obtaining the raw data
from three LIGO detectors (H1: Hanford 4k and L1: Livingstion
4k.) Supervovae signals are added to the data stream. The
prepared data streams are now subjected to the data conditioning
step where data are bandpassed between 50 Hz and 2048 Hz and
all narrowband noise in this range is suppressed. The conditioned
data now passes through the TSNR and HRNR module. The
output from this module is supplied as the input to the network
analysis pipeline. The network analysis pipeline yields the
detection statistics in accordance with Eqs. (58) and (59).
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FIG. 5. The figure shows the spectrograms of the signal ðgrw 12 2Þ þ noise after being conditioned without the TSNRþ HRNR
denoising effect (top left panel) and the same with the inclusion of the TSNRþ HRNR denoising (top right panel.) The x-axis represents
time in seconds and the y-axis represents frequency in Hz. The bottom row of figures shows the radial statistics (as given in equation
[17]) for the analysis performed without the proposed denoising (left panel) and with the TSNRþ HRNR denoising (right panel.) The x-
axis represents time in seconds and the y-axis represents the radial distance.

FIG. 4. The waveform (grw_12_2, left panel) is injected into the data stream (right panel) with a scale factor of 30. The x-axis
represents time in seconds and the y-axis is the amplitude.
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The fourier transform (FT) of ρðgÞ is given by,

~ρðŝðtÞÞ ¼ 1

T

X∞
n¼−∞

Q

�
n
T

�
δ

�
ν −

n
T

�
; ð56Þ

where δ is the Dirac delta function and ν denotes the
frequency. QðnTÞ is the FT of the underlying elementary
waveform at discrete frequency n

T. Using [56], the FT of
srectifiedðtÞ is given by,

~SrectifiedðtÞ ¼ FTðŝðtÞÞ × e−iθ

T

×
X∞
n¼−∞

Q

�
n
T

�
δ

�
ν −

n
T

�
: ð57Þ

θ is the phase angle at the origin. In summary, the spectrum
of the rectified signal is the convolution between the signal
enhanced by the TSNR and a harmonic comb with the same
frequency as the signal. Moreover, ~ρð~sðtÞÞ rapidly
decreases as jnj increases, ensuring that regeneration takes
place only using information from its near neighbors.

VII. ANALYSIS

A. Data used

Sixteen supernova waveforms from the Murphy et al.
2009 catalog [9] have been used in presence of LIGO
fourth science run (S4 [41]) data for demonstration of
results from the search algorithm. The catalog describes the
GW signals from neutrino driven core collapse supernovae.

FIG. 6. The figure shows the radial statistics as a function of distance for four waveforms from the catalog. The x-axis represents the
distance in kpc. The y-axis represents the detection snr defined from Eq. (59). The detection snr is equal to the average value of the radial
distance Rrad subtracted from the maximum value of the same that corresponds to the event detected. The lower curve (in blue) is the
operating characteristic for the original pipeline without the implementation of the proposed TSNRþ HRNR denoising module. The
upper curve (in red) represents the same with the incorporation of the TSNRþ HRNR denoising.
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The waveforms used in the study are shown in Fig. 1
and Fig. 2.
The analysis pipeline is shown in Fig. 3.
Sets of test data, each 60 seconds long, from the main

GW channel (DARM_ERR) from two Hanford detectors
(4 km arm-length H1 and 2 km arm-length H2) and the
Livingston detector (4 km arm-length L1) are used for
demonstration of results. Data streams have been injected
with the signal waveforms. The signals are introduced in
the data streams starting at 20 seconds after start. After this,
data conditioning is applied to the data containing the
signal. The data conditioning consists of the following
steps. (i) Extraction of raw GW channel data with SN
signals injected; let this time series be noted by T0;
(ii) Whitening T0 [42] and dynamically removing

[43,44] the narrowband noise present in T0; The resulting
time series is denoted by T 0

0; (iii) Filtering T 0
0 with a

bandwidth of 50 Hz and 2048 Hz; The resulting time series
is denoted by filtT 0

0
; (iv) Re-sampling filtT 0

0
to represent

the appropriate band width.
The conditioned data sets are then applied to the input of

the TSNRþ HRNR denoising stage. The denoised output
from the TSNRþ HRNR module is then used as the input
to a network analysis based on regularized maximum
likelihood [11–13,45].

B. Detection statistics

It is known that the detector response to GW signal is a
linear combination of the unknown polarization waveforms

FIG. 7. The figure shows the radial statistics as a function of distance for four waveforms from the catalog. The x-axis represents the
distance in kpc. The y-axis represents the detection snr defined from Eq. (59). The detection snr is equal to the average value of the radial
distance Rrad subtracted from the maximum value of the same that corresponds to the event detected. The lower curve (in blue) is the
operating characteristic for the original pipeline without the implementation of the proposed TSNRþ HRNR denoising module. The
upper curve (in red) represents the same with the incorporation of the TSNRþ HRNR denoising.
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hþðtÞ and h×ðtÞ arriving from a direction with polar angle
θ0 and azimuthal angle ϕ0 in an earth-centered, ecliptic
reference frame [45].
The network analysis performed is based on using a

regulator (Tikhonov regularization [12]) to address the ill-
posed problem of a network of gravitational wave detectors
as first shown in [11,46]. The output of the network
algorithm for a given sky location θ0 and azimuthal angle
ϕ0, is the value of the likelihood of the data maximized over
all possible hþðtÞ and h×ðtÞ waveforms. A skymap
[11,12,45] is said to be constructed with the maximum
likelihood values obtained as a function of θ0 and azimuthal
angle ϕ0. The detection statistic is constructed from the
skymap as follows.

Rrad ¼
��

maxθ0;ϕ0
Sðθ0;ϕ0Þ

maxθ0;ϕ0
S0ðθ0;ϕ0Þ

− 1

�
2

þ
�
Rmm ×

minθ0;ϕ0
S0ðθ0;ϕ0Þ

maxθ0;ϕ0
S0ðθ0;ϕ0Þ

− 1

�
2
�1

2

; ð58Þ

where Rmm is given by

Rmm ¼ maxθ0;ϕ0
Sðθ0;ϕ0Þ

minθ0;ϕ0
Sðθ0;ϕ0Þ

; ð59Þ

and S0 is the expectation value of S when no signal is
present in the data. Rrad is known as the radial statistics. It
denotes the radial distance of the observed values in the

FIG. 8. The figure shows the radial statistics as a function of distance for four waveforms from the catalog. The x-axis represents the
distance in kpc. The y-axis represents the detection snr defined from Eq. (59). The detection snr is equal to the average value of the radial
distance Rrad subtracted from the maximum value of the same that corresponds to the event detected. The lower curve (in blue) is the
operating characteristic for the original pipeline without the implementation of the proposed TSNRþ HRNR denoising module. The
upper curve (in red) represents the same with the incorporation of the TSNRþ HRNR denoising.
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ðRmm;maxθ0;ϕ0
Sðθ0;ϕ0Þ plane from the mean location in

absence of the signal. The larger the radial distance, the
higher is the detection probability.

VIII. RESULTS

Figures 4 and 5 show the analysis results for one of the
catalog waveforms (grw_12_2; progenitor mass 12, elec-
tron neutrino luminosity 2.2) injected into the data stream
with a scale factor of 30, i.e. the original signal was
multiplied by a factor of 30. Figure 4 shows the signal
injected into the detector noise. For reference, a scale factor
of 30 corresponds to the snr threshold below which the
signal is not discerned in the network analysis radial
distance statistics without the application of the TSNRþ
HRNR denoising module. Figure 5 top row shows the

spectrograms of the signalþ noise data after being con-
ditioned without the TSNRþ HRNR denoising effect (left
panel) and the same with the inclusion of the TSNRþ
HRNR denoising (right panel.) It is clear even visually that
the TSNRþ HRNR denoising effectively has enhanced the
snr of the embedded signal. The bottom row shows the
radial statistics (as given in equation [59]) for the analysis
performed without the proposed denoising (left panel) and
with the TSNRþ HRNR denoising (right panel.) In the
first case, the max value of Rrad is around 0.4, while in the
second case, it is about 5.5, an improvement of a factor of
14. It may be noted that the noise scatter is much less in the
second case than the first one. This significant reduction
of the range of variability of the detection statistics for the
noise events with respect to the injected signals is

FIG. 9. The figure shows the radial statistics as a function of distance for four waveforms from the catalog. The x-axis represents the
distance in kpc. The y-axis represents the detection snr defined from Eq. (59). The detection snr is equal to the average value of the radial
distance Rrad subtracted from the maximum value of the same that corresponds to the event detected. The lower curve (in blue) is the
operating characteristic for the original pipeline without the implementation of the proposed TSNRþ HRNR denoising module. The
upper curve (in red) represents the same with the incorporation of the TSNRþ HRNR denoising.
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important. In the left panel, a reduction of the detection
statistics by 30% makes the GW less significant than a
noise event. In the right panel, even a reduction by a factor
of 5 leaves the GW as the loudest event. This is important
because recent GW detection schemes in LIGO strongly
rely on the loudest event in the data.
Figures 6–9 show the core of analysis results. These

plots correspond to the 16 Murphys waveforms that have
been analyzed. The progenitor masses varied from 12 to 40
with various luminosity values between 1.8 and 13.0. The
x-axis represents distance in kpc and the y-axis reprsents
the detection snr defined from Eq. (59). The detection snr is
equal to the average value of the radial distance Rrad
subtracted from the maximum value of the same that
corresponds to the event detected. The lower curve (in
blue) is the operating characteristic for the original pipeline
without the implementation of the proposed TSNRþ
HRNR denoising module. The upper curve (in red)
represents the same with the incorporation of the TSNRþ
HRNR denoising. As can be seen, for all the 16 waveforms,
the detection snr is higher across the distances for the
combined HRNRþ TSNR pipeline. It must be noted that at
this stage, the actual values of the distances are not of any
physical significance because we have used data from S4
just for demonstration of the method’s efficiency.
A companion paper has been prepared with results from

more recent science runs. More extensive testing has been
performed with sine-Gaussian, Murphy, long-bar, rotating
core collapse (Dimmermeier [47]) waveforms by integrat-
ing this method to existing coherent wave burst (cWB)-
based [13,48] supernova search pipeline. More supernova
signals will be incorporated in the study. Receiver operating
characteristics (ROC) will be generated for a comparative
performance analysis. It will indeed be interesting to note if
the improvement in detection statistics noted in this study
also remains persistent in the future studies as the advanced
LIGO [7] comes into operation.

IX. CONCLUSION

The result shows improvement in detection statistics (as
defined and described in detail in Sec. VI B) by a factor of
up to 10 even for very weak snr. The improvement in the
detection statistics grows steadily with increasing signal
strengths. HRNR works robustly even with non-stationary,

non-gaussian noise. A major advantage of the proposed
method is that it is a stand-alone MATLAB [38] code module
that can be easily plugged in to existing search pipelines
without having to make alterations. HRNR contains adjust-
able parameters that can in principle improve the results
even more.
It is worth mentioning here the work of Oppermann et al.

[49]. In a study to reconstruct Gaussian signals from linear
measurements with Gaussian noise with uncertainties in the
signal covariance, the authors have formulated and applied
a critical filter [50] in the context of image reconstruction.
The study makes a comparison of this method with that of
the Wiener filter. If the correct power spectrum is known
and noise is homogeneous, the reconstruction is known to
be optimal. In the cases with inhomogeneous noise, the
Wiener filter fails to completely clean out the noise, as is
expected. However, if the noise is not estimated correctly,
problems similar to that see in the case of Wiener filter
applications are noticed. An amplifying effect appears in
the estimated power spectrum especially where the noise is
underestimated. In the present study, the effects of incorrect
estimation of noise have been discussed in Sec. V. The
reason a two-step approach has been adopted in this case is
to avoid some of the shortcomings associated with the
overestimation and underestimation of noise.
A more extensive testing with the sixth science run (S6)

data has been performed with five different families of
supernova waveforms by integrating this method to
existing coherent waveburst supernova search pipeline.
Receiver operating characteristics (ROC) and Coherent
event displays (CED) are being generated for comparison.
It will indeed be interesting to note if the improvement in
detection statistics noted in this study also remains persis-
tent in the future studies as the advanced LIGO [7]. With
the direct observation of the first gravitational waves [51],
this scenario presents an exciting possibility.
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