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We report on our independent investigations of the puzzle of cosmological perturbations in extended
quasidilaton. We confirm the claims of presence of the Boulware-Deser ghost. We use both the language of
cosmological perturbations with broken diffeomorphisms and the Stückelberg approach.
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I. INTRODUCTION

The history of massive gravity dates back to the classical
Fierz-Pauli model [1] in which it was shown that, out of
two possible quadratic mass term for a metric fluctuation
hμν ≡ gμν − ημν around Minkowski spacetime, only one
combination (hμνhμν − ðhμμÞ2) gives healthy number of five
degrees of freedom for a massive spin-two particle, whereas
other options feature an extra mode with negative kinetic
energy. Later it was realized that the problematic mode
generically reappears after nonlinear corrections have been
taken into account, and it acquired the name of Boulware-
Deser ghost after the work of Ref. [2].
In recent years we have witnessed great progress in the

theory of massive gravity. In particular, the healthy non-
linear extension of the classical Fierz-Pauli model [1] has
been found [3,4] and proven [5–7] to be free of the
Boulware-Deser ghost [2]. The theory is very peculiar in
its mathematical features: healthy potentials are elementary
symmetric polynomials of eigenvalues of a square root of
the matrix gαμfαν where fμν is a fiducial metric which is
often taken to be ημν. Of course, beside the formal interest,
there were natural hopes to explain the accelerated expan-
sion of the Universe via Yukawa attenuation of the
gravitational force at large distances. Unfortunately, not
only did it not work out properly, but even the very
existence and stability of cosmological regimes was rather
hard to achieve in massive gravity [8].
It sparkled some interest towards extensions of massive

gravity since what we have is a potentially healthy tensorial
extension of general relativity which is very nontrivial to
achieve and can have interesting implications for cosmol-
ogy. Popular options include bimetric gravity in which the
fiducial metric is made dynamical, and also scalar-tensor
extensions of two types: variable mass and quasidilaton [9].
The quasidilaton model features an additional dynamical
scalar field σ, and the elementary symmetric polynomials
are calculated for the matrix eσ=MPl ·

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
. Unfortunately,

the cosmological perturbations turned out problematic [10],

and an extended version of this extension has been
proposed [11] which also shifts the fiducial metric by term
proportional to e−2σ=MPl∂μσ∂νσ, see below.
The issue of stability in the full regime (as opposed to the

so called late time limit) of extended quasidilaton presents a
conundrum. In the first version of Shinji Mukohyama’s
preprint [12] the absence of the Boulware-Deser (BD)
ghost has been proven with a particular gauge choice,
which was however claimed to be not a good gauge [13]. In
the work of Lavinia Heisenberg [14] indications were given
for stability of cosmological perturbations, at least in the far
ultraviolet limit. Then, in the recent paper [15] it was
claimed that cosmological perturbations have the BD ghost
mode in the infrared limit contrary to previous believes.
And the second version of the Mukohyama’s preprint [16]
proves that the BD ghost is present in the model.
We also had independent calculations of cosmological

perturbations in quasidilaton which agree with the conclu-
sions of Refs. [15,16]. In Sec. II we briefly remind the
formulation of extended quasidilaton model and its cosmo-
logical solutions. In Sec. III we present perturbative calcu-
lations in the language of cosmological variables without
assuming infrared or ultraviolet limits. In Sec. IVwe arrive at
the same results using the Stückelberg fields. Finally, in
Sec. V we discuss and conclude.

II. COSMOLOGICAL SOLUTIONS WITH
EXTENDED QUASIDILATON

Let us briefly set the stage for perturbative analysis of
extended quasidilaton cosmologies. The action of extended
quasidilaton model is given by

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R½g� − ω

M2
Pl

∂μσ∂μσ

þ 2m2ðU2 þ α3U3 þ α4U4Þ
�

ð1Þ

where we have the usual massive gravity potential with
elementary symmetric polynomials
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U2½K� ¼ 1

2
ð½K�2 − ½K2�Þ; ð2aÞ

U3½K� ¼ 1

6
ð½K�3 − 3½K�½K2� þ 2½K3�Þ; ð2bÞ

U4½K� ¼ 1

24
ð½K�4−6½K�2½K2�þ3½K2�2þ8½K�½K3�−6½K4�Þ

ð2cÞ
of the eigenvalues of the matrix

Kμ
ν ¼ δμν − eσ=MPl

� ffiffiffiffiffiffiffiffiffiffi
g−1 ~f

q �
μ

ν
ð3Þ

with the new fiducial metric given by

~fμν ¼ fμν −
aσ

M2
Plm

2
e−2σ=MPl∂μσ∂νσ: ð4Þ

Setting the quasidilaton field to 0 gives the usual massive
gravity. Vanishing of the new coupling constant aσ while
keeping the σ field arbitrary brings back the simple
quasidilaton. Note that we neglect possible cosmological
constant term in this action because it does not change our
analysis, and anyway, one of the basic aims of those models
is to obtain accelerated expansion without explicitly intro-
ducing a cosmological constant.
The fiducial metric is usually taken to be Minkowski:

fμν ¼ ημν. Note though that one can restore the diffeo-
morphism invariance by introducing the Stückelberg
fields ϕa

fμν ¼ ηab∂μϕ
a∂νϕ

b ð5Þ

which describe the change of coordinates from those in
which the fiducial metric is Minkowski to arbitrary ones.
We are interested in the spatially flat Friedmann–

Lemaitre–Robertson–Walker solutions

ds2g ¼ −N2ðtÞdt2 þ a2ðtÞδijdxidxj; ð6Þ

ds2~f ¼ −n2ðtÞdt2 þ δijdxidxj; ð7Þ

with σ ¼ σðtÞ. They correspond to

ϕ0 ¼ ϕ0ðtÞ; ϕi ¼ xi; ð8Þ

n2 ¼ _ϕ2
0 þ

aσ
M2

Plm
2
e−2σ=MPl _σ2: ð9Þ

in the Stückelberg language.
Background equations are easily found to be (see,

e.g. [14])

3H2 ¼ ΛA þ ω _σ2

2M2
PlN

2
; ð10Þ

2 _H
N

¼ ð1 − rÞ _ΛA

3HN − 3_σ=MPl
−

ω _σ2

M2
PlN

2
; ð11Þ

∂t

�
1

n
m2M2

Pla
4JðA − 1ÞA _ϕ0

�
¼ 0; ð12Þ

m2MPlN3Að3ðr − 1ÞAð−2þ α3ðA − 1ÞÞ
þ Jð−3þ rð−1þ 4AÞÞÞ ¼ ωð3HN2 _σ þ Nσ̈ − _N _σÞ

ð13Þ

where we have introduced the following standard notations

AðtÞ≡ eσ=MPl

a
; ð14aÞ

HðtÞ≡ _a
aN

; ð14bÞ

rðtÞ≡ na
N

; ð14cÞ

JðtÞ≡ 3þ 3ð1 − AÞα3 þ ð1 − AÞ2α4; ð14dÞ

ΛA ≡m2ðA − 1Þ½J þ ðA − 1Þðα3ðA − 1Þ − 3Þ�: ð14eÞ

III. THE GHOST MODE IN COSMOLOGICAL
PERTURBATIONS

Let us now study the cosmological perturbations. Since
the BD ghost affects the scalar sector, we ignore vector and
tensor perturbations. We use the following parametrization
of the scalar metric perturbations

δg00 ¼ −2N2
Φ
MPl

; ð15aÞ

δg0i ¼ Na∂i
B
MPl

; ð15bÞ

δgij ¼ a2
�
2δij

ψ

MPl
þ
�
∂i∂j −

δij
3
∂k∂k

�
E
MPl

�
: ð15cÞ

We consider quadratic expansion of the action around a
cosmological solution. Then we go to the Fourier space
with spatial momentum k, and get the quadratic action with
the following relevant parts (for calculating the Hessian of
the kinetic term):
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Lð2Þ ¼ −
k2a3AB2Q

2ð−1þ AÞ2ð1þ rÞ − 2k2a2BHΦ − a3ΛAΦ2

þ 1

2
a3
�
ωþ a2ð−1þ AÞJaσ _ϕ2

0

Ar3

�
δ _σ2 −

1

3
k4a2B _Eþ 1

12
k4a3 _E2

− ωa3Φδ _σ _σþð2k2a2Bþ 6a3HΦÞ _ψ − 3a3 _ψ2 þ � � � ð16Þ

where

Q ¼ −m2JðA − 1Þ þ ðΛA þm2ðA − 1Þ2ÞA; ð17Þ

and, for the sake of simplicity, we have set the lapse to
unity, N ¼ 1, and omitted the Planck mass MPl. Ellipsis at
the end of Eq. (16) shows that only those terms are written
here which either are quadratic in velocities of dynamical
variables or contain Φ or B fields.
The fields Φ and B can be eliminated by solving

algebraic equations since their derivatives do not enter
the Lagrangian [we have included all Φ- and B-terms in
(16)]. After that we find

detH ≡

									

∂2Lð2Þ
∂ _ψ2

∂2Lð2Þ
∂ _ψ∂ _E

∂2Lð2Þ
∂ _ψ∂ðδ _σÞ

∂2Lð2Þ
∂ _E∂ _ψ

∂2Lð2Þ
∂ _E2

∂2Lð2Þ
∂ _E∂ðδ _σÞ

∂2Lð2Þ
∂ðδ _σÞ∂ _ψ

∂2Lð2Þ
∂ðδ _σÞ∂ _E

∂2Lð2Þ
∂ðδ _σÞ2

									
¼ −

k4ωa13ð−1þ AÞJ _σ2Qaσ _ϕ
2
0

2r3ð2k2ð−1þ AÞ2H2ð1þ rÞ − a2AQΛAÞ
:

ð18Þ

It is easy to see that generically detH ≠ 0 unless aσ ¼ 0
(simple quasidilaton), or in the late time limit (the J ¼ 0
branch, [11]). Therefore, there is the Boulware-Deser mode
in the theory.
It should also be noted that _ϕ0 ¼ 0 is a singular case

which does not correspond to the model with fixed fiducial
metric. Indeed, the Stückelberg fields describe the change
of coordinates, and as such they must satisfy det ∂ϕa

∂xμ ≠ 0.

Therefore, the _ϕ0 ¼ 0 case from the Ref. [15] belongs to an
unrestricted Stückelberg model but not to the initial theory
which has been covariantized by Stückelbergs.
Our ghost result is in accordance with the claims made in

[15]. Moreover, their expressions can be easily obtained in
the k → 0 limit of our quadratic action. In most parts our
formulas are also similar to those from Ref. [14] which had
the opposite conclusion. However, expressions from
Ref. [14] do lack terms with aσ, presumably due to
considerations of deep UV limit,1 and setting this coupling
to zero reduces the model to simple quasidilaton which is
indeed BD-ghost-free. Note that taking a deep UV limit is a

shaky ground for calculating the number of degrees of
freedom since the Hessian might be nondegenerate at any
finite wave number, but its different eigenvalues can have
different k → ∞ asymptotics which could lead to degen-
eracy in a simplified UV analysis.

IV. TREATMENT WITH STÜCKELBERG FIELDS

We have also checked the conclusion by calculations in
the Stückelberg picture. In this case we worked with
slightly different formulation. In terms of β coefficients
instead of α-s the theory takes the form

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
R½g� − ω

M2
Pl

∂μσ∂μσ þ 2m2
X4
n¼0

βnUn½X�
�

ð19Þ

with

Xμ
ν ¼ eσ=MPl

� ffiffiffiffiffiffiffiffiffiffi
g−1 ~f

q �
μ

ν
ð20Þ

where U0½X� ¼ 1 and U1½X� ¼ ½X�.
This is an equivalent formulation since matrices −X

and K differ only by addition of the unit matrix, and
therefore their elementary symmetric polynomials are
related to each other. In particular, the βn coefficients
should be taken as

β0 ¼ 6þ 4α3 þ α4; ð21aÞ

β1 ¼ −3 − 3α3 − α4; ð21bÞ

β2 ¼ 1þ 2α3 þ α4; ð21cÞ

β3 ¼ −α3 − α4; ð21dÞ

β4 ¼ α4 ð21eÞ

in terms of α3, α4 parameters from the previous section.
In the Stückelberg picture we consider only perturbations

of the quasidilton and of the Stückelberg fields. The
relevant terms in the quadratic action are those that include
_δσ, δ _ϕa combinations (they do not kinetically mix with the
physical metric)1Lavinia Heisenberg, private communication.

GHOSTS IN EXTENDED QUASIDILATON THEORIES PHYSICAL REVIEW D 96, 104032 (2017)

104032-3



Lð2Þ ¼ e−3σ=MPl

2a3m2M2
Pln

3N2ðanþ NÞ ½−2e
2σ
MPlm2MPlNðanþ NÞΘδ _σ _σ δ _ϕ0

_ϕ0 aσ

þðanþ NÞδ _σ2ða3e 3σ
MPlm2M2

Pln
3ωþ e

2σ
MPlm2M2

Pln
2NΘaσ − NΘ _σ2a2σÞ

þe
4σ
MPlm4M2

PlNððanþ NÞδ _ϕ0
2ðn2 − _ϕ0

2ÞΘ − an3δ _ϕi
2ΞÞ� ð22Þ

with

Θ ¼ a3β1 þ 3a2e
σ

MPlβ2 þ 3ae
2σ
MPlβ3 þ e

3σ
MPlβ4; ð23aÞ

Ξ ¼ a3β1 þ 2a2e
σ

MPlβ2 þ ae
2σ
MPlβ3 ð23bÞ

where we have switched off the physical metric perturbations since now we are in the framework with restored
diffeomorphism invariance, and the danger comes from the “matter” sector represented by Stückelberg fields.
In the previous notations (14), (17) the final expression for Lð2Þ is

Lð2Þ ¼ 1

2N2

�
ωδ _σ2 þ m2N

a3A3

�
a5A4Qδ _ϕi

2

m2ðA − 1Þ2ðanþ NÞ þ
a4ð−1þ AÞA4Jδ _ϕ0

2ðn2 − _ϕ0
2Þ

n3

−
2a2ð−1þ AÞA2Jδ _σ _σ δ _ϕ0

_ϕ0 aσ
m2MPln3

þ ð−1þ AÞJðδ _σÞ2aσða2A2m2M2
Pln

2 − _σ2aσÞ
m4M2

Pln
3

��
ð24Þ

The corresponding Hessian is

det
∂Lð2Þ

∂fδ _σ; δ _ϕag
¼ ωaσa5A2JQ3 _σ2

ð−1þ AÞ5M2
Pln

3N6ðanþ NÞ3 ≠ 0;

ð25Þ
from which the presence of the B-D ghost is apparent.

V. DISCUSSION AND CONCLUSIONS

We confirm the presence of BD ghost in extended
quasidilaton massive gravity which has been observed in
Refs. [15,16]. A comment on the ghost-freedom “proof” of
the paper [12] is in order. There the gauge choice of ϕ0 ¼
−e−σ has been used. It was noted in Refs. [13,16] that it is
not a correct gauge choice. We do not find a proper
explanation there which is however quite simple. A gauge
choice would amount to a condition which can be ensured
by a coordinate transformation without restricting the
physical variables. Obviously, with two arbitrary fields

ϕ0ðt; xÞ and σðt; xÞ which can have different constant value
surfaces in the spacetime, it is not possible to make one field
a function of the other with simply a coordinate choice.
Now it seems firmly established that the model with

extended quasidilaton is not ghost-free, and therefore it is
not a viable option for massive cosmology. Though
extremely compelling from the theoretical viewpoint,
massive gravity is not doing as good for phenomenology
(if not to play with bimetric regimes close to GR [17]). The
quest for solving fundamental cosmological puzzles is as
open as ever before.
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