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We study Born-Infeld gravity coupled to an anisotropic fluid in a static, spherically symmetric
background. The free function characterizing the fluid is selected on the following grounds: i) recovery of
the Reissner-Nordström solution of General Relativity at large distances, ii) fulfillment of classical energy
conditions, and iii) inclusion of models of nonlinear electrodynamics as particular examples. Four branches
of solutions are obtained, depending on the signs of two parameters on the gravity and matter sectors. On
each branch, we discuss in detail the modifications on the innermost region of the corresponding solutions,
which provides a plethora of configurations, including nonsingular black holes and naked objects,
wormholes, and de Sitter cores. The regular character of these configurations is discussed according to the
completeness of geodesics and the behavior of curvature scalars.
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I. INTRODUCTION

With the birth of gravitational wave astronomy following
the discovery made by LIGO [1], and interpreted as the
merging of two astrophysical-size black holes, the theo-
retical and numerical understanding of black holes has
acquired a renewed interested. Indeed, many proposals, in
which the Kerr solution of General Relativity (GR) is
replaced by more or less exotic compact objects, so as to
explore potential observational signatures able to discrimi-
nate one from another [2], have arisen. At the same time,
the field offers an excellent opportunity to put to exper-
imental test the many modifications of GR proposed in the
literature, such as fðRÞ [3], fðTÞ on its various formula-
tions [4], fðR; TÞ [5], Gauss-Bonnet [6], hybrid theories
[7], and many others [8]. See the work by Berti et al. [9] for
the current observational status and experimental bounds of
such proposals.
In addition to their interest for gravitational waves, many

of such compact objects are likely to have consequences for
the issue with spacetime singularities. According to the
theorems on singularities developed by Penrose [10],
Hawking [11], Carter [12], and others (see Ref. [13] for
a pedagogical discussion), based on physically reasonable
assumptions about the causal and geometrical structure of
spacetime and which make use of the concept of geodesic
completeness (i.e., whether null and timelike geodesics can
be extended to arbitrary large values of the affine parameter
or not), the development of a singularity during the last

stages of gravitational collapse is unavoidable within GR.
To overcome this result, the literature has been split into
two main schools. In the first of them, one sticks to GR and
tries to remove such singularities, usually paying the price
of violating the energy conditions (see, however, Ref. [14])
and then goes on to minimize it by suitably choosing the
geometry, like what is usually done in thin-shell wormholes
[15]. In the second, one extends the GR action in looking
for mechanisms able to produce a bounce during the
gravitational collapse [16]. A natural consequence of many
such mechanisms is the fact that a bound on curvature
scalars arises, which, consequently, has also triggered a
large amount of literature in building solutions with finite
curvature scalars [17].
In this work, we shall follow the second path and focus

on a class of extensions of General Relativity inspired by
the nonlinear electrodynamics of Born-Infeld [18] and
termed Born-Infeld theories of gravity (see Ref. [19] for
a recent review). On its most conventional and widely
employed version, dubbed Eddington-inspired Born-Infeld
(EiBI) gravity, originally introduced by Bañados and
Ferreira [20] and afterward studied by different authors
in astrophysics, black hole physics, and cosmology [21],
(null and timelike) geodesically complete spacetimes
sourced by standard electromagnetic (Maxwell) fields
can be found [22]. Such solutions replace the pointlike
singularity of the Reissner-Nordström solution of GR by a
wormhole structure [23], which provides the mechanism
for the natural extension of the geodesics without incurring
in violations of energy conditions. Moreover, despite the
generic presence of curvature divergences at the wormhole
throat, extended objects may cross this region without
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experiencing destructive effects [24], while the problem of
scattering of scalar waves off the wormhole turns out to be
well posed [25]. This good news seems to be tightly linked
to the metric-affine (or Palatini) formulation of EiBI
gravity, where the metric and connection are regarded as
independent entities [26]. Indeed, it has been shown that
Palatini theories of gravity generically yield second-order
equations that in vacuum reduce to the GR ones [27,28],
this way avoiding the generic presence of ghostlike
instabilities of the metric formulation of modified gravity.
Exploring further the structure of these geometries, in

this work, we shall refine the matter description and model
it using an anisotropic fluid (i.e., having different radial and
tangential pressures). Though the reliability of the isotropy
in the fluid description has been experimentally verified in
many contexts, there are physical arguments suggesting the
appearance of anisotropies both at high and low energy
densities, in particular, in realistic models of compact
objects (see Ref. [29] for a review). These fluids have
been recently employed in the study of realistic magnetized
accretion disks around Kerr black holes [30] (see Ref. [31]
for further studies on black holes/wormholes from aniso-
tropic fluids). In the context of EiBI gravity, recently,
Shaikh [32] (see also Ref. [33] for a slightly different
approach to this issue) considered a simplified model for an
anisotropic fluid, finding the existence of both wormholes
and nonsingular solutions with similar properties as those
supported by electromagnetic fields above.
In this work, we shall go beyond those results and

consider an anisotropic fluid with an ansatz mainly moti-
vated by three reasons: i) recovery of the Reissner-
Nordström solution of GR for far distances, ii) fulfillment
of classical energy conditions, and iii) inclusion of non-
linear electrodynamics as particular cases of that fluid. Our
analysis will be split into four branches, according to the
signs of two parameters on the gravitational and matter
sectors, respectively, and we will characterize in detail the
innermost region of each of the corresponding configura-
tions on each branch. In particular, we shall devote special
attention to the geodesic structure of those internal regions
and compare it to the behavior of curvature scalars there.
This analysis will reveal the existence of different kinds of
objects, including wormhole structures, nonsingular sol-
utions (both cloaked with horizons and naked), and de
Sitter cores.
The paper is organized as follows. In Sec. II, we shall

specify the gravitational and matter sectors and cast the
field equations in suitable form, which are subsequently
solved in Sec. III. In Sec. IV, we recall the main elements of
geodesic behavior in Palatini theories of gravity and
particularize them to the present case. A detailed analysis
of the geometric and geodesic features of the four branches
of solutions is carried out in Sec. V, and we conclude in
Sec. VI with a summary of the results obtained and some
perspectives for future research.

II. THEORY AND SETUP

A. Gravity sector

The action defining Eddington-inspired Born-Infeld
gravity is given by [19]

SEiBI ¼
1

κ2ϵ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ ϵRμνðΓÞj

q
− λ

ffiffiffiffiffiffiffiffiffi
jgμνj

q �
; ð1Þ

with the following definitions and conventions: κ2 ¼
8πG=c4 is Newton’s constant; vertical bars denote a
determinant; ϵ is the EiBI parameter with dimensions of
length squared; gμν is the spacetime metric, which is
independent of the affine connection Γ≡ Γλ

μν (Palatini
approach); the (symmetrized) Ricci tensor RμνðΓÞ is
entirely built out of the affine connection as
RμνðΓÞ≡ Rα

μανðΓÞ; and λ is a parameter related to the
effective cosmological constant Λeff ¼ λ−1

ϵ , which
follows from a series expansion in terms of ϵ ≪ 1 of the
action (1) as

SEiBIðϵ ≪ κ2Þ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

− 2Λeff

�

þ ϵ

Z
d4x

ffiffiffiffiffiffi
−g

p �
R2

2
− RμνRμν

�
þOðϵ2Þ;

ð2Þ

where in the first line we recognize the Einstein-Hilbert
Lagrangian of GR with a cosmological constant term, while
the second line encodes linear corrections in the EiBI
parameter ϵ (and quadratic in curvature scalars).
Performing independent variations of the action (1) with

respect to the metric and connection yields two sets of field
equations,

ffiffiffiffiffiffi−qp
ffiffiffiffiffiffi−gp qμν − λgμν ¼ −κ2ϵTμν ð3Þ

∇αð
ffiffiffiffiffiffi
−q

p
qμνÞ ¼ 0; ð4Þ

where Tμν ¼ 2ffiffiffiffi−gp δSM
δgμν [with SM ¼ SMðgμν;ψMÞ the action

for the matter fields ψM] is the energy-momentum tensor of
the matter, and we have defined the rank-2 tensor
qμν ≡ gμν þ ϵRμν.

1 Equation (4) implies that the indepen-
dent connection Γλ

μν can be solved as the Christoffel
symbols of the metric qμν, i.e.,

Γλ
μν ¼

qλβ

2
ð∂μqνβ þ ∂μqνβ − ∂βqμνÞ: ð5Þ

1It should be noted that the physical content of such a new
metric is related to the tensor perturbations (i.e., gravitational
waves) on these backgrounds; see e.g. Ref. [34].
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The relation between the spacetime metric gμν and the
auxiliary metric qμν follows from the metric field equa-
tions (3) as

qμν ¼ gμαΩα
ν; ð6Þ

where the object Ω̂ (in what follows, a hat denotes a matrix)
is defined as

jΩ̂j1=2ðΩ̂−1Þμν ¼ λδμν − ϵκ2Tμ
ν; ð7Þ

from which it is clear that the transformation (6) between
gμν and qμν depends only on the matter sources. Now,
contracting (3) with qμα and using the transformation (6),
one finds the result

Rμ
νðqÞ ¼

κ2

jΩ̂j1=2 ðLGδ
μ
ν þ Tμ

νÞ; ð8Þ

where the gravitational Lagrangian, LG, turns out to be

LG ¼ jΩ̂j1=2 − λ

ϵκ2
; ð9Þ

and Rμ
νðqÞ≡ Rμαqαν. Equations (8) represent a set of

second-order, Einstein-like field equations for the qμν
geometry, where all the contributions on the right-hand
side are just functions of the matter sources and, as
such, can be collectively read off as an effective energy-
momentum tensor. This also means that, in vacuum,
Tμ

ν ¼ 0, one has that gμν ¼ qμν (modulo a trivial rescaling)
and the solutions of the field equations (8) correspond to
those of General Relativity with an effective cosmological
constant term Λeff , consistently with the statement above
the expansion (2). This guarantees the absence of ghostlike
propagating degrees of freedom in this framework and, due
to the fact that the spacetime metric gμν is related to the
auxiliary metric qμν via the matter-mediated transforma-
tions (6), the field equations for gμν will be second order
and ghost free as well. This is a rather generic property of
metric-affine theories [19,27].

B. Matter sector

The general form of the energy-momentum tensor of an
anisotropic fluid (where we implicitly assume a spherically
symmetric spacetime) is given by [29]

Tμ
ν ¼ ðρþ p⊥Þuμuν þ p⊥δμν þ ðpr − p⊥Þχμχν; ð10Þ

where uμ and χμ represent normalized timelike and space-
like vectors, respectively, such that uμχμ ¼ 0. On the other
hand, ρðrÞ is the energy density of the fluid, prðrÞ is the
pressure in the direction of χμ, and p⊥ðrÞ is the tangential
pressure in the orthogonal direction to χμ. Note that in

comoving coordinates the energy-momentum tensor (10)
can be cast under the more familiar form

Tμ
ν ¼ diagð−ρ; pr; p⊥; p⊥Þ: ð11Þ

In general, it is not possible to solve the field equations (8)
for an arbitrary shape of the density and pressure profiles of
the fluid (not even in GR), so simplifying assumptions have
to be made. As stated in the Introduction, in this work, we
shall constrain these functions by demanding:

(i) the recovery of the Reissner-Nordström solution of
the Einstein-Maxwell field equations far from the
center,

(ii) the fulfillment of classical energy conditions,
(iii) correspondence with models of nonlinear electro-

dynamics.
Regarding the last constraint, nonlinear electrodynamics

have been frequently employed in gravitational scenarios in
order to solve the singularity problem, though such
attempts have been only partially successful; see e.g.
Ref. [35] and the criticism of Ref. [36]. The energy-
momentum tensor of the fluid (11) can actually be mapped
to that of nonlinear electrodynamics2 if one chooses

Tμ
ν ¼ diagð−ρ;−ρ; KðρÞ; KðρÞÞ; ð12Þ

where the function KðρÞ thus characterizes both the fluid
and nonlinear electrodynamics. To satisfy the other two
constraints above on the fluid, a natural ansatz for the
function KðρÞ is that of

KðρÞ ¼ αρþ βρ2: ð13Þ

When β ¼ 0, imposing equivalence of the energy-
momentum tensor of the fluid and that of nonlinear electro-
dynamics yields the Lagrangian density φðXÞ ¼ X

1þα
2α . It

should be stressed that this indeed was the case pursued in
Ref. [32], where Lorentzian wormholes were found and
characterized and which, in turn, is a generalization of the
α ¼ 1 case (corresponding to a standard Maxwell field
φðXÞ ¼ X) studied in Ref. [37]. As we want to recover the
Reissner-Nordström solution of GR at large distances for
our solutions, from now on, we set λ ¼ 1 for asymptotic
flatness and α ¼ 1 (but β ≠ 0) for a Maxwell behavior at
asymptotic infinity. This way, we shall let the new
corrections encoded in the βρ2 terms in Eq. (13) modify
the geometry, and we will study its properties.
To proceed further, we first note that a standard con-

servation law for the matter fields holds in our scenario,

2Such models are defined in terms of a Lagrangian density of
the form φðX; YÞ, where X ¼ 1

2
FμνFμν and Y ¼ 1

2
FμνF�μν are the

two field invariants that can be constructed from the field strength
tensor Fμν ¼ ∂μAν − ∂νAμ and its dual F�μν ¼ 1

2
εμναβFαβ. For

electrostatic solutions, one finds that Y ¼ 0.
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∇ðgÞ
μ Tμν ¼ 0.3 For a static, spherically symmetric line

element of the form ds2 ¼ −CðxÞdt2 þ B−1ðxÞdx2 þ
r2ðxÞdΩ2 (where dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2 is the line
element on the unit two-spheres) and for the ansatz (12),
this conservation law reads explicitly

ρx þ 2½ρþ KðρÞ� rx
r
¼ 0; ð14Þ

where ρx ≡ dρ=dx and rx ≡ dr=dx. Specifying the func-
tion KðρÞ of Eq. (13) allows one to integrate (14) as

ρðrÞ ¼ 2ρ0
ð rr0Þ4 − βρ0

; ð15Þ

where r0 and ρ0 are integration constants. To absorb these
constants and simplify calculations, it is useful to introduce
a new (dimensionless) radial function z ¼ r=r⋆, where
r⋆ ¼ r0ðjβjρ0Þ1=4. This way, the energy density of the fluid
can be written under the compact form

ρðzÞ ¼ ρm
z4 − sβ

; ð16Þ

where sβ ≡ β=jβj is the sign of β and we have defined
ρm ¼ 2=jβj. In these units, the asymptotic Maxwell limit is
naturally achieved by identifying the electric charge
as Q2 ¼ κ2ρmr4⋆.
From the expression above, it is clear that there are two

different classes of behaviors for the energy density:
(i) For sβ ¼ þ1, the energy density blows up at the

finite radius z ¼ 1.
(ii) For sβ ¼ −1, it reaches its maximum value ρ ¼ ρm

at the radius z ¼ 0.
It should be noted that both of these two branches of
solutions satisfy the weak energy condition. Indeed, the
first half of such a condition states that ρþ pr ≥ 0, which
for (12) is trivially fulfilled, while the second half,
ρþ pθ ≥ 0 and ρþ pφ ≥ 0, for the choice (13) implies
that ρm þ sβρ ≥ 0. Thus, for sβ ¼ þ1, this is trivially
satisfied, while for sβ ¼ −1, it is also satisfied due to
the presence of the bound ρ ≤ ρm.
With these constraints, now the field equations (8) can be

cast in amenable form for calculations. First, given that the
deformation matrix (7) is determined by the energy-
momentum tensor, the algebraic structure of the latter
defined in (12) in two 2 × 2 blocks allows one to con-
sistently introduce the ansatz for the matrix Ω̂ as

Ω̂ ¼
�Ω1I2×2 02×2

02×2 Ω2I2×2

�
; ð17Þ

where I2×2 and 02×2 are the 2 × 2 identity and zero
matrices, respectively, while consistency with Eq. (7) tells
us that

Ω1 ¼ 1 − κ2ϵKðρÞ; Ω2 ¼ 1þ κ2ϵρ: ð18Þ

Now, it is a matter of just a little algebra to show that the
field equations (8) become

Rμ
νðqÞ ¼

1

ϵ

0
B@

�
Ω1−1
Ω1

�
I2×2 02×2

02×2

�
Ω2−1
Ω2

�
I2×2

1
CA; ð19Þ

and they are now ready for their resolution.

III. SOLUTION OF THE FIELD EQUATIONS

To solve the field equations (19), we first introduce a
static, spherically symmetric line element for the auxiliary
geometry qμν as

ds2q ¼ −e2ψðxÞAðxÞdt2 þ 1

AðxÞ dx
2 þ x2dΩ2: ð20Þ

Using the symmetry of the fluid energy-momentum tensor
(12), Tt

t ¼ Tx
x, from the computation of the components

of the Ricci tensor, it follows that the combination Rt
t ¼

Rx
x in the field equations (19) yields ψ ¼ constant, which

can be set to zero by a redefinition of the time coordinate,
without loss of generality. Now, introducing a standard
mass ansatz as

AðxÞ ¼ 1 −
2MðxÞ

x
; ð21Þ

the component Rθ
θ of the field equations (17) yields the

equation

Mx ¼
x2

2ϵ

Ω2 − 1

Ω2

: ð22Þ

For the next step, let us introduce a line element for the
spacetime metric gμν as

ds2

r2⋆
¼ gttdt2 þ gxxdx2 þ z2ðxÞdΩ2; ð23Þ

where the notation z ¼ r=r⋆ is the same as that introduced
for the fluid in Sec. II B. In order not to overload the
notation, from now on, we will bear in mind that the
coordinates t and x are also expressed in units of r⋆. From
the relation (6) with the structure (17), we obtain the

3Note that ∇ðgÞ
μ is the standard covariant derivative constructed

with the Christoffel symbols of the spacetime metric gμν. In

general, in Palatini theories of gravity, one has ∇ðqÞ
μ Tμν ≠ 0, with

qμν the auxiliary metric constructed with the independent con-
nection. As far as the connection does not enter into the matter
piece of the action (as is the present case), conservation of energy
and momentum in these theories is automatically guaranteed.
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relation between the radial functions in the spacetime (23)
and auxiliary (20) geometries as

x2 ¼ z2Ω2: ð24Þ

Taking a derivative in this expression and using the
continuity equation of the fluid (14) yields the result

dx
dz

¼ Ω1

Ω1=2
2

: ð25Þ

These last two relations will be very important later when
characterizing the different solutions. But before going into
that, let us keep solving the field equations, for which we
use Eq. (25) to write Eq. (22) as

dM
dz

¼ r3⋆
z2Ω1ðΩ2 − 1Þ

2ϵΩ1=2
2

: ð26Þ

Now, we formally write the integration of this function as
MðzÞ ¼ M0ð1þ δ1GðzÞÞ, where M0 is the Schwarzschild
mass, GðzÞ contains the fluid contribution, and all the
constants have been isolated in δ1. After playing all these
tricks, and taking the form of KðρÞ specified in (13), the
line element for the spacetime metric (23) can be conven-
iently written as

ds2

r2⋆
¼ −

AðxÞ
Ω1

dt2 þ dx2

AðxÞΩ1

þ z2ðxÞdΩ2; ð27Þ

with the compact expressions

AðzÞ ¼ 1 −
rSð1þ δ1GðzÞÞ

r⋆zΩ1=2
2

ð28Þ

δ1 ¼
r3⋆
rSl2m

ð29Þ

Ω1 ¼ 1 − sϵξ2
�

z4 þ sβ
ðz4 − sβÞ2

�
ð30Þ

Ω2 ¼ 1þ sϵξ2

z4 − sβ
ð31Þ

Gz ≡ dG
dz

¼ z2Ω1

ðz4 − sβÞΩ1=2
2

; ð32Þ

where sϵ ≡ ϵ=jϵj is the sign of ϵ, rS ¼ 2M0 is the
Schwarzschild radius, and we have introduced the new
scale ξ2 ≡ l2ϵ=l2m, with l2ϵ ¼ jϵj and l2m ¼ ðκ2ρmÞ−1. The line
element (27) together with the definitions above is the
master set of equations that we will use in Sec. V to study
the properties of the corresponding solutions. But before

going into that, let us have a look at the geodesic equations
in these theories.

IV. GEODESIC STRUCTURE

For the sake of the discussion below on the properties of
the different classes of configurations, let us introduce here
the main elements for the analysis of the geodesic behavior
in the corresponding theories. Given a geodesic curve
γμ ¼ xμðuÞ, where u is the affine parameter, in a coordinate
basis, the geodesic equation can be written as [38]

d2xμ

du2
þ Γμ

αβ

dxα

du
dxβ

du
¼ 0; ð33Þ

which is a second-order differential equation to be supplied
with initial conditions xμð0Þ and dxμ=duj0. The general
formalism for geodesic motion in Palatini theories of
gravity has been developed with certain detail in
Ref. [39]. The first thing to note is that the matter sector
of our theory, as described by the energy-momentum tensor
(12), is assumed to couple to the gravitational sector (2)
only via the metric and the matter fields (and not via the
connection). This implies that photons and free-falling
particles will follow geodesics of the spacetime metric gμν
in Eq. (33), in compliance with Einstein’s equivalence
principle.4 Second, due to the spherical symmetry of our
problem, we can rotate the plane of motion to make it
coincide with θ ¼ π=2, without loss of generality, and,
furthermore, we can introduce two conserved quantities of
motion, E ¼ Bdt=du and L ¼ r2dθ=du, where B ¼ A=Ω1.
For timelike observers, uμuμ ¼ −1, these quantities can be
interpreted as the particle’s energy and angular momentum
per unit mass, respectively. For null geodesics, uμuμ ¼ 0,
this interpretation cannot be sustained, but the quotient
L=E can be identified instead as an apparent impact
parameter as seen from asymptotic infinity.
After all these considerations, the geodesic equation for a

geometry of the form (27) can be written as [39]

1

Ω2
1

�
dx
du

�
2

¼ E2 − Veff ; ð34Þ

where the effective potential Veff takes the form

Veff ¼ B

�
L2

r2ðxÞ − k

�
; ð35Þ

with k ¼ 0 for null geodesics and k ¼ −1 for timelike
particles. Introducing the simple change of coordinates
dy ¼ dx=Ω1, then Eq. (34) becomes a single differential

4Should one allow a coupling of the matter sector with the
independent connection Γλ

μν, then one would need to regard
geodesics of the auxiliary metric qμν as physically meaningful.
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equation akin to the movement of a one-dimensional
particle in the effective potential Veff , which facilitates
its resolution, as we shall see in the different cases studied
in the next section.

V. ANALYSIS OF THE SOLUTIONS

A. Radial function

The relation (24) between the radial functions in the
auxiliary and spacetime geometries can be explicitly
written as

x2 ¼ z2
�
1þ sϵξ2

z4 − sβ

�
: ð36Þ

This can be expressed as a cubic equation for the variable
z2 as

ðz2Þ3 − x2ðz2Þ2 þ ðsϵξ2 − sβÞðz2Þ þ sβx2 ¼ 0: ð37Þ

Though this equation admits a (cumbersome) analytical
solution, we find it more convenient to discuss the
relevant cases by direct inspection of the relation (36).
This yields a natural classification in terms of four different
configurations:

(i) Case I: For fsϵ ¼ −1; sβ ¼ þ1g, the radial function
z reaches a minimum at zc ¼ ð1þ ξ2Þ1=4, where
x ¼ 0 and the density is finite [see Eq. (16)]. At this
point, the radial function zðxÞ bounces off and
expands again. This bouncing behavior signals the
existence of a wormhole, a topologically nontrivial
structure connecting two asymptotically flat regions
of the spacetime [40], with zc representing its
throat (further details will be provided in
Sec. V B below). Thus, in this case, one needs
two copies of the radial function z ∈ ðzc;∞Þ to
cover the whole manifold, or a single chart when
using x ∈ ð−∞;þ∞Þ.

(ii) Case II: For fsϵ ¼ −1; sβ ¼ −1g, there are two
classes of configurations separated by the threshold
ξ2 ¼ 1. In this sense, for ξ2 > 1, the value x ¼ 0 is
attained at a minimum radius z4c ¼ ξ2 − 1, while for
ξ2 < 1, one finds x ¼ 0 at z ¼ 0. The wormhole
interpretation is natural for the former (for which
ρ < ρm) but dubious for the latter.

(iii) Case III: For fsϵ ¼ þ1; sβ ¼ −1g, as x → 0, one
finds that z → 0, too. A bouncing behavior for zðxÞ
arises again, though now the transition between
the two regions x ∈ ð0;þ∞Þ and x ∈ ð−∞; 0Þ is
not smooth.

(iv) Case IV: For fsϵ ¼ þ1; sβ ¼ þ1g, as the radial
function z → 1 (its minimum value), one finds
x → ∞.

In what follows, we shall split our analysis into the four
cases above to study separately their properties.

B. Case I: fsϵ = − 1;sβ = + 1g
For this case, the relevant functions characterizing the

matter and the geometry (27) take the form

ρ ¼ ρm
z4 − 1

ð38Þ

Ω1 ¼ 1þ ξ2ðz4 þ 1Þ
ðz4 − 1Þ2 ; Ω2 ¼ 1 −

ξ2

z4 − 1
ð39Þ

Gz ¼
z2Ω1

ðz4 − 1ÞΩ1=2
2

: ð40Þ

The function Gz admits an exact analytical integration
given by

GðzÞ ¼ 2ðz4cz4 F1ð54 ; 12 ; 12 ; 94 ; 1z4 ; z
4
c
z4Þ

15ξ2z

−
5ð2ξ2 þ 1ÞF1ð14 ; 12 ; 12 ; 54 ; 1z4 ; z

4
c
z4ÞÞ

15ξ2z

þ 5z3ðz4 − z4cÞ3=2ð−ξ2 þ 2
z4 − 2Þ

15ξ2ðz4 − 1Þ3=2 ; ð41Þ

where zc ¼ ðξ2 þ 1Þ1=4 is the minimum radius of the
radial function and F1½a; b1; b2; c; x; y� is the Appell hyper-
geometric function of two variables ðx; yÞ. The above
function reproduces the expected GR behavior at large
distances z → ∞, namely, GðzÞ≃ 1=z2 þOð1=z6Þ and
GðzÞ≃ −1=zþOð1=z5Þ. Note that Eq. (41) would allow
one to obtain closed expressions for the metric functions,
though in cumbersome and not too illuminating forms, sowe
shall not explicitly write them here. Nonetheless, we can
check that for large distances, z ≫ 1, these functions become

gtt ≈ −
�
1 −

rS
r⋆z

þ rSδ1
r⋆z2

�
þ ξ2

z4
þO

�
ξ2

z5

�
ð42Þ

grr ≈
�
1 −

rS
r⋆z

þ rSδ1
r⋆z2

þ ξ2

z4
þO

�
ξ2

z5

��−1
; ð43Þ

which, after restoring the notation, is nothing but the
Reissner-NordströmsolutionofGR,gtt ¼ g−1rr ¼ 1 − rS=rþ
Q2=r2 (plus ξ2-corrections), in agreement with the recovery
of Maxwell Lagrangian in the asymptotic limit of the matter
sector. This is a shared feature for all the solutions obtained in
this work (cases II, III, and IV below).
We are mostly interested in the modifications on the

structure of these solutions as compared to the Reissner-
Nordström one, which become significant only in the
innermost region. We already know that the minimum
value attained by the radial function corresponds to zc ¼
ðξ2 þ 1Þ1=4 where it bounces off, which allows us to infer
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the presence of a wormhole structure with zc representing
its throat. In Fig. 1, we have depicted this structure, and we
show the growth of the size of the throat as ξ2 is increased.
As zc > 1, this means that the energy density of the fluid

in this case, as given by Eq. (38), will always be bounded.
Now, expanding the relevant metric functions around
z ¼ zc, one finds

Ω1 ≈
2z4c

z4c − 1
−
4z3cðz4c þ 3Þ
ðz4c − 1Þ2 ðz − zcÞ þOðz − zcÞ2 ð44Þ

Ω2 ≈
4z3c

z4c − 1
ðz − zcÞ þOðz − zcÞ2 ð45Þ

z ≈ zc þ
�
z4c − 1

4z5c

�
x2 ð46Þ

GðzÞ ≈ −
1

δc
þ 2C1ðz − zcÞ1=2 þOðz − zcÞ3=2; ð47Þ

where for convenience we have introduced the constant

C1 ¼ ð z3c
z4c−1

Þ3=2, while we have another constant,

δc ¼ −
ξ2Γð− 1

4
ÞΓð7

4
Þffiffiffi

2
p

π3=2z3c2F1ð− 3
4
; 1
2
; 3
4
; 1z4c

Þ > 0 ð48Þ

(where Γ½a� is Euler’s gamma function) of which the
explicit value comes from requiring the matching of the
asymptotic and inner expansions of the metric functions.
This constant plays a key role in the characterization of the
solutions, as shall be shown below. Note that the expression
of the radial function around the wormhole throat in
Eq. (46) is consistent with the bouncing behavior depicted
in Fig. 1.
Now, expanding the metric components gtt and grr

around z ¼ zc yields the result

gtt ≈ −
rSðδ1=δc − 1Þ

4r⋆z2cC1
ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p −
1

2zcC
2=3
1

�
1 −

rSC
2=3
1 δ1

r⋆zc

�

þOð ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p Þ ð49Þ

grr ≈
r⋆z2c

rSC
1=3
1 ðδ1=δc − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi

z − zc
p þOð1Þ; ð50Þ

which shows that, in general, the metric component gtt is
divergent there, the sign being controlled by the ratio δ1=δc.
On the contrary, for δ1 ¼ δc, the first term in the expansion
vanishes, and, therefore, gtt becomes finite at the wormhole
throat. These expressions have a nontrivial impact on the
causal structure of the corresponding geometries. Indeed, as
depicted in Fig. 2, several classes of configurations may be
found. In this sense, for δ1=δc > 1, one finds the presence
of Reissner-Nordström-type solutions, with two horizons,
a single but degenerate one (corresponding to extreme
black holes), or no horizons, while for δ1=δc < 1, a
Schwarzschild-like black hole arises instead, characterized
by a single nondegenerate horizon (recall that the horizons
are located symmetrically on each side of the horizon). On
the other hand, for δ1 ¼ δc, one finds either black holes
with a single horizon or none, depending on the particular
values of the parameters characterizing the solutions. This
structure of horizons is generic for any value of the typical
scale of the theory (encoded in ξ2). Moreover, it exactly
matches the typical structure of Born-Infeld black holes in
GR [41] and, more generally, of those GR black holes

FIG. 1. Radial function zðxÞ for case I, as follows from the
integration of Eq. (37) in this case. From bottom to top, the solid
curves represent ξ ¼ 1 (blue), ξ ¼ 5 (orange), and ξ ¼ 10
(green), with the dashed red line corresponding to jxj. The
wormhole throat is located at zc ¼ ðξ2 þ 1Þ1=4.

FIG. 2. Metric component gttðzÞ of case I taking ξ ¼ 1, for
which the wormhole throat is located at zc ¼ 21=4 (represented by
the vertical dashed black line). We find i) Reissner-Nordström-
like solutions with two (blue solid, δ1 ¼ 1=10, r⋆=rS ¼ 1=6), a
single degenerate (blue dotted, δ1 ¼ 3, r⋆=rS ¼ 1=6), or zero
(blue dashed, δ1 ¼ 3=4, r⋆=rS ¼ 1=6) horizons; ii) Schwarzs-
child-like solutions with a single horizon (red solid, δ1 ¼ 9=6,
r⋆=rS ¼ 1=6); and iii) Minkowski-like solutions with a single
horizon (orange solid, δ1 ¼ δc ≈ 0.464, δ2 ¼ 5) or none (orange
dashed, δ1 ¼ δc ≈ 0.464, r⋆=rS ¼ 1=6). All solutions are asymp-
totically flat.
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supported by nonlinear electromagnetic fields of which the
electrostatic configurations attain a maximum value at the
center [42].
To further understand the innermost structure of these

solutions, let us consider the behavior of the Kretchsman
scalar, K ¼ Rα

βμνRα
βμν. For large distances, z ≫ zc, one

gets

K ≈
12

δ22z
6
−
48δ1
δ22z

7
þ 56δ21

δ22z
8
þ 72ξ2

δ2z9
þO

�
ξ2

z10

�
; ð51Þ

where the first three terms correspond to the expected
behavior of the Reissner-Nordström solution of GR, in
agreement with the recovery of that solution in the
asymptotic limit. On the other hand, at the wormhole
throat, z ¼ zc, one finds an expression that can be arranged
under the following form,

K ≈
ðδ1 − δcÞ
ðz − zcÞ3

�
r2sðδ1 − δcÞ
4r2⋆δ2cz4cC2=3

1

þOðz − zcÞ
�

þ aþOðz − zcÞ; ð52Þ

where a ¼ aðrS; zc; r⋆; δc; δ1Þ is a constant with an
involved dependence on the model and solution parame-
ters. Let us note that the leading-order divergence in this
expression has been softened down to ∼1=ðz − zcÞ3 as
compared to the GR result. Moreover, when δ1 ¼ δc,
replacing first this choice in the metric function and
expanding next the Kretchsman scalar around the worm-
hole throat yields the finite result K ¼ aðrS; zc; r⋆; δcÞ þ
Oðz − zcÞ (and similarly for other curvature invariants such
as the Ricci scalar gμνRμν or the Ricci-squared RμνRμν),
which means that the Minkowskian solutions are free of
curvature divergences everywhere.5 This is in contrast to
the results found in the case of GR coupled to nonlinear
electrodynamics. In those cases, despite the existence of
electrostatic solutions with finite curvature scalars [35], this
cannot be achieved via models defined as a single-branch
function satisfying standard energy conditions; seeRef. [36].
Let us now consider the implications of the above results

for the (in)completeness of geodesics, using the elements
introduced in Sec. IV. The geodesic equation (34), for null
(k ¼ 0) radial (L ¼ 0) geodesics, can be conveniently
rewritten, using Eq. (25), as

�E · d ~uðxÞ ¼ dz

Ω1=2
2

; ð53Þ

where we have rescaled ~uðxÞ≡ uðxÞ=r⋆ and the sign �
corresponds to outgoing/ingoing geodesics, respectively

(as seen from the x > 0 side of the wormhole). This
equation admits an analytic integration of the form

�E · ~uðxÞ ¼
�
ζðz; ξÞ if x ≥ 0

2x0ðξÞ − ζðz; ξÞ if x ≤ 0
; ð54Þ

where we have introduced the function

ζðz; ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz4 − z4cÞðz4 − 1Þ

p
z3

þ 1

21z3

�
7ð3þ ξ2ÞF1

�
3

4
;
1

2
;
1

2
;
7

4
;
1

z4
;
z4c
z4

�

−
9z4c
z4

F1

�
7

4
;
1

2
;
1

2
;
11

4
;
1

z4
;
z4c
z4

�	
ð55Þ

and the set of constants

x0ðξÞ ¼
5π3=2ξ2ð22F1ð34 ; 32 ; 54 ; 1

z4c
Þ − 2F1ð12 ; 34 ; 54 ; 1z4cÞÞ

32
ffiffiffi
2

p
z3cΓ½54�Γ½94�

; ð56Þ

where 2F1½a; b; c; z� is a hypergeometric function. The
behavior of these geodesics is depicted in Fig. 3 for
several values of the scale ξ2. For z ≫ zc, one finds
�E ~uðxÞ ≈ zþOðz−3Þ ≈ x, and one recovers the standard
GR behavior there. However, as one approaches the worm-
hole throat, x ¼ 0, one finds instead �Eð ~uðxÞ − ~uð0ÞÞ≈
2ðz4c−1Þ1=2

z3=2c

ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p ¼ ðz4c−1z4c
Þx. This behavior allows each geo-

desic to be smoothly extended across the wormhole throat
to reach arbitrarily large values of its affine parameter. This
is in sharp contrast with the GR behavior, in which the
geodesic equation in that case, dr=du ¼ �E2, has the
solution (for outgoing/ingoing geodesics) �EuðrÞ ¼ r.
Thus, in the GR case, as the function rðuÞ is positive
definite, the affine parameter is only defined on the
positive/negative axis, and these geodesics are incomplete.

FIG. 3. The affine parameter ~uðxÞ for null radial geodesics of
case I, as given by Eq. (54). Here, we take values ξ ¼ 1 (blue),
ξ ¼ 5 (orange), and ξ ¼ 10 (green), with the dashed red curve
representing ~uðxÞ ¼ x and corresponding to the GR behavior. As
it is obvious from this plot, null radial geodesics in this case are
complete.

5Let us recall that, from the discussion of the horizons above,
these finite-curvature solutions may be cloaked by an event
horizon or be naked instead.
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This shows that the presence of a wormhole structure in our
case makes it possible to obtain complete null radial
geodesics no matter the value of the scale ξ2. Moreover,
this result holds true despite the generic presence of
curvature divergences at the wormhole throat. This follows
from the fact that only the case δ1 ¼ δc is free of
divergences, but the structure of the geodesics is insensitive
to the value of δ1.
For timelike and null geodesics with L ≠ 0, we need to

turn our attention to the behavior of the effective potential
(35) in the geodesic equation (34). From the expansions
above of the metric functions, it follows that for large
distances, x → ∞, from Eq. (42) the potential behaves as
Veff ≈ ðL2=x2 − kÞ, which is nothing but the standard
(positive, and negligible for our purposes) potential barrier
of the Reissner-Nordström solution of GR. As we approach
the wormhole throat, x ¼ 0, using (46), this barrier is
replaced there by

Veff ≈ −
a
jxj − bþOðxÞ; ð57Þ

where we have introduced the constants

a ¼ ξ4

2z6c

ðδc − δ1Þ
δcδ2

�
L2

r2⋆z2c
− k

�
ð58Þ

b ¼ ξ2

2z4c

ðδ2 − δ1Þ
δ2

�
L2

r2⋆z2c
− k

�
ð59Þ

and defined δ2 ¼ ξ2r⋆
rSz2c

. This way, we have reduced the

problem for these geodesics to inspect the nature of the
effective potential around the wormhole throat. There are
three cases to be considered separately:

(i) δ1 > δc (Reissner-Nordstöm-like solutions): In this
case, one finds an infinite potential barrier as the
wormhole throat is approached, and, consequently,
all geodesics bounce at some z > zc and remain in
the x > 0 region. Thus, in much the same way as all
timelike and null geodesics with L ≠ 0 of the
Reissner-Nordström solution of GR, these geodesics
are not able to reach the wormhole throat, being
complete.

(ii) δ1 < δc (Schwarzschild-like solutions): Now, the
potential changes from infinitely repulsive to infi-
nitely attractive, and, consequently, all these geo-
desics are unavoidably dragged toward the
wormhole throat (depending on the combination
of constants, the effective potential could have a
maximum, and, in such cases, only geodesics of
which the energy E is larger than it will get to the
wormhole throat). With the approximate form of the
effective potential as x → 0, Eq. (57), one finds that
the geodesic equation (34) behaves in this region as

d ~u
dx

¼ ξ2

2a1=2ð1þ ξ2Þ jxj
1=2

−
ξ2ðbþ E2Þ

4a3=2ð1þ ξ2Þ jxj
3=2 þOðx5=2Þ; ð60Þ

the integration of which yields the result

~uðxÞ ¼ ξ2

3ð1þ ξ2Þ x




 xa






1=2

�
1 −

3ðbþ E2Þ
10





 xa





�

þOðx7=2Þ: ð61Þ

As the coordinate x extends over the whole real axis,
it is clear that these geodesics are complete for all
values of the parameter ξ2 and the other constants
characterizing the solutions. This is so despite the
divergence of both the effective potential and the
curvature scalars as the wormhole throat is ap-
proached. Like in the null radial case, such geodesics
in GR (for Schwarzschild black holes) are incom-
plete due to the fact that r ¼ 0 is reached in finite
affine time, with no possibility of further extension,
a result avoided in this case thanks to the presence of
the wormhole structure.

(iii) δ1 ¼ δc (Minkowski-like solutions): In this case, the
effective potential has a shape at the wormhole throat
of the form Veff ≈ −bþ cðξÞx2 (with c some con-
stant with an involved dependence on ξ2), which is
finite there. Moreover, depending on ξ2 and on the
model parameters, there may be both minima and
maxima, thus allowing for the existence of bounded
orbits below the maximum. On the other hand, those
particles with energies above the maximum of the
potential will be able to reach the wormhole throat,
with their affine parameter behaving there as

~uðxÞ ¼ ξ2

2ð1þ ξ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ E2

p x

�
1þ ðξ2 þ 4Þ

6ð1þ ξ2Þ3=2 x
2

�

þOðx5Þ: ð62Þ

Again, due to the definition of the coordinate x over
the whole real axis, these geodesics can be naturally
extended beyond the x ¼ 0 region, which implies
their completeness.

Thus, we conclude that these geometries are null and
timelike geodesically complete for all the spectrum of
parameters characterizing the solutions. Since, in particular,
the parameter δ1 contains the information about the number
and type of horizons, this implies the existence of naked
geodesically complete configurations, of which the impli-
cations regarding the issue of regular black hole remnants
are still to be investigated. On the other hand, the existence
of curvature divergences at the wormhole throat, absent
only when δ1 ¼ δc, does not prevent in any way the
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extension of geodesics across the wormhole throat, as the
affine parameter can be indefinitely continued. Since geo-
desics represent idealized pointlike observers, there is still
the question about the meaning and implications of such
curvature divergences acting upon extended observers
crossing the x ¼ 0 region. This has been explored in the
case of EiBI gravity coupled to an electromagnetic
(Maxwell) field in Ref. [24], where an analysis upon
wormhole structures similar to those found here supports
the view that no destructive effects would take place on
observers crossing the throat.

C. Case II: fsϵ = − 1;sβ = − 1g
In this case, we have the expressions

ρ ¼ ρm
z4 þ 1

ð63Þ

Ω1 ¼ 1þ ξ2ðz4 − 1Þ
ðz4 þ 1Þ2 ; Ω2 ¼ 1 −

ξ2

z4 þ 1
ð64Þ

Gz ¼
z4Ω1

ðz4 þ 1ÞΩ1=2
2

: ð65Þ

Now, the function Ω2 vanishes at zc ¼ ðξ2 − 1Þ1=4, which
sets a critical value for ξ2 ¼ 1, while the energy density of
the matter fields (63) is always finite. The analysis now
needs to be split into three subcases.

1. ξ2 > 1

Let us first study those configurations with ξ2 > 1, for
which zc has real solutions. In this case, the radial function
zðxÞ has a minimum at zc, and expanding the relation (24)
around that minimum yields

zðxÞ ≈ zc þ
z4c þ 1

4z5c
x2: ð66Þ

This expansion is consistent with the bouncing behavior
depicted in full range in Fig. 4, where we observe the
transition between two very different behaviors for ξ2 > 1

and ξ2 < 1. Those with ξ2 > 1 can be naturally interpreted
as wormholes, of which the radius of the throat increases as
ξ2 takes larger values.
To understand better the geometry at the throat z ¼ zc,

we expand the relevant functions there as

Ω1 ≈
2z4c

z4c þ 1
−
4z3cðz4c − 3Þ
ðz4c þ 1Þ2 ðz − zcÞ þOðz − zcÞ2 ð67Þ

Ω2 ≈
4z3c

z4c þ 1
ðz − zcÞ þOðz − zcÞ2 ð68Þ

Gz ≈
C2

ðz − zcÞ1=2
þOðz − zcÞ1=2 → ð69Þ

GðzÞ ≈ −
1

δc
þ 2C2ðz − zcÞ1=2 þOðz − zcÞ3=2; ð70Þ

where now the constant C2 ¼ ð z3c
z4cþ1

Þ3=2 and

δc ¼ −
ξ2Γð− 1

4
ÞΓð7

4
Þffiffiffi

2
p

π3=2z3c2F1ð− 3
4
; 1
2
; 3
4
;− 1

z4c
Þ > 0: ð71Þ

It should be stressed that these expressions are quite similar
to those found in Eqs. (44), (45), (47), and (48) of case I
above. Moreover, the metric components take now the form

gtt ≈ −
rSðδ1=δc − 1Þ

4r⋆z2cC2
ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p

−
1

zcC
2=3
2

�
1 −

rSC
2=3
2 δ1

r⋆zc

�
þOð ffiffiffiffiffiffiffiffiffiffiffiffi

z − zc
p Þ ð72Þ

grr ≈
r⋆z2c

rSC
1=3
2 ðδ1=δc − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi

z − zc
p þOð1Þ: ð73Þ

This is basically the same result as obtained in Eqs. (49)
and (50), which, in turn, yields a similar structure in terms
of horizons and causal regions. Moreover, curvature scalars
behave in the same way, being divergent for δ1 ≠ δc and
finite otherwise.
Regarding the behavior of geodesics in these back-

grounds, for the null (k ¼ 0) radial (L ¼ 0) case, we can
analytically integrate the geodesic equation (34) near the
wormhole throat z ¼ zc, using Eqs. (64) and (66), as

FIG. 4. Radial function zðxÞ for case II. From bottom to top, the
curves represent ξ ¼ 3=4 (solid blue), ξ ¼ 1 (dotted black), ξ ¼
3=2 (solid orange), ξ ¼ 4 (solid green), and ξ ¼ 10 (solid brown),
with the two dashed straight red lines corresponding to jxj. The
wormhole throat is located at zc ¼ ðξ2 − 1Þ1=4, provided that
ξ2 > 1; otherwise, the radial function extends to z ¼ 0 (dashed
black, ξ ¼ 1, and solid blue, ξ ¼ 3=4).
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�Eð ~uðxÞ − ~uð0ÞÞ ≈ ðz4c þ 1Þ1=2
z3=2c

ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p ¼
�
z4c þ 1

2z4c

�
x;

ð74Þ

which is qualitatively identical to the result obtained in
case I of Sec. V B. As depicted in Fig. 5, where we
numerically integrate the geodesic equation in all the range
of definition of the radial coordinate x, null radial geodesics
are able to cross the wormhole throat [satisfying Eq. (74)
there] and can be extended to arbitrarily large values of
their affine parameter, thus being complete.
For null geodesics with L ≠ 0 and timelike (k ¼ −1)

geodesics, the fact that the expansion of the metric
component gtt in Eq. (73) is formally the same as that
of case I, see Eq. (49), makes the discussion of the effective
potential in the present case as equally valid as in that case.
Consequently, all configurations with ξ2 > 1 are null and
timelike geodesically complete, again despite the generic
existence of curvature divergences at the wormhole throat
for the cases with δ1 ≠ δc.

2. ξ2 < 1

Let us now consider the case with 0 < ξ2 < 1. Now,
there is no minimum zc in the radial function zðxÞ, which,
consequently, runs from ð0;þ∞Þ, and no wormhole is
found. Expanding near the center z ¼ 0, one gets

Ω1 ≈Ω2 ≈ ð1 − ξ2Þ þOðz4Þ ð75Þ

x ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
zþOðz5Þ ð76Þ

Gz ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
z2 þOðz6Þ → ð77Þ

GðzÞ ≈ −
1

δc
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p z3

3
þOðz7Þ; ð78Þ

where the constant δc is now given by

δc ¼ −
ξ2Γð− 1

4
ÞΓð7

4
Þffiffiffi

2
p

π3=2ð1 − ξ2Þ3=42F1ð− 3
4
; 1
2
; 3
4
;− 1

1−ξ2Þ
> 0: ð79Þ

The corresponding expansion of the metric components
around the center z ¼ 0 yields the result (provided that
δ1 ≠ δc)

gtt ≈ −
1

1 − ξ2
þ rSð1 − δ1=δcÞ

r⋆ð1 − ξ2Þ3=2
1

z
þOðz2Þ ð80Þ

grr ≈
r⋆

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
rSðδ1=δc − 1Þ zþOðz2Þ; ð81Þ

and we see again that the ratio δ1=δc controls both the
number of horizons and the structure of the innermost
region via a similar description as in the previous
case, namely, Reissner-Nordström-like configurations for
δ1 > δc and Schwarzschild-like solutions for δ1 < δc.
In both cases, curvature divergences of leading order
K ∼ ðδ1 − δcÞ2=z6 arise at z ¼ 0. The absence of a worm-
hole implies the existence of incomplete geodesics, in
much the same way as it happens in models of nonlinear
electrodynamics in GR.
For the case δ1 ¼ δc, one must first replace this value

before expanding the metric components, which yields the
expressions

gtt ≈
1

1 − ξ2

�
−1þ rSδc

3r⋆
z2
�
þOðz4Þ ð82Þ

grr ≈ 1þ rSδc
3r⋆

z2 þOðz4Þ; ð83Þ

and, besides the finiteness of these components, one also
achieves finiteness of the Kretchsman scalar, namely,

K ¼ 8r2Sδ
2
c

3r2⋆
þOðz2Þ. In addition, it can be verified that the

geometry in this case around z ¼ 0 satisfies

Rμν ¼ Λeffgμν; ð84Þ

FIG. 5. The affine parameter ~uðxÞ for null radial geodesics of
case II, where we verify the reliability of the approximation (74)
around the wormhole throat z ¼ zc ¼ ðξ2 − 1Þ1=2 (corresponding
to x ¼ 0 in this plot). Here, we take values ξ ¼ 3=2 (orange),
ξ ¼ 3 (green), and ξ ¼ 10 (brown), with the dashed red curve
representing ~uðxÞ ¼ x and corresponding to the GR behavior.
These (non-GR) geodesics are complete. Moreover, we also
depict the limit configuration with ξ2 ¼ 1, for which the worm-
hole throat lies at z ¼ x ¼ 0, which cannot be reached in finite
affine time by null radial geodesics (see Sec. V C 3 for details). In
the GR region (z → ∞), all curves converge to the GR behavior,
~uðxÞ ≈ x.
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which is of the de Sitter type, with effective cosmological
constant Λeff ¼ rSδc

r3⋆
.6 In addition, a simple rescaling of the

time coordinate of the form t →
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
t brings the cor-

responding line element into a locally Minkowskian form.
The de Sitter core puts forward that the geometry is

smooth in the central region. In fact, null radial geodesics
around z ¼ 0 behave as

�E
d ~uðxÞ
dz

≈
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p þOðz4Þ; ð85Þ

the integration of which yields �Eð ~uðxÞ − ~uð0ÞÞ ≈ zffiffiffiffiffiffiffi
1−ξ2

p
(the � sign denotes outgoing/ingoing trajectories). This
result implies that an ingoing ray can reach z ¼ 0 in a finite
affine time. At that point, the ingoing ray turns into
outgoing, flipping the sign of ð ~uðxÞ − ~uð0ÞÞ and allowing
for its extension to arbitrarily large values, thus confirming
the completeness of these geodesics. Given the timelike
character of the surface z ¼ 0, similar conclusions follow
for the other geodesics (nonradial and timelike).

3. ξ2 = 1

Let us finally analyze the limiting case ξ2 ¼ 1. Now, the
expansion of the relevant functions around z ¼ 0 yields

Ω1 ≈ 3z4 − 5z8 þOðz12Þ ð86Þ

Ω2 ≈ z4 − z8 þOðz12Þ ð87Þ

Gz ≈ 3z4 −
13

2
z8 þOðz12Þ ð88Þ

GðzÞ ≈ −
1

δc
þ 3

5
z5 þOðz9Þ ð89Þ

gtt ≈
rSð1 − δ1=δcÞ

3r⋆z7
−

1

3z4
þOðz−3Þ ð90Þ

grr ≈
3r⋆

rSðδ1=δc − 1Þ z
3 þOðz6Þ; ð91Þ

where now the constant δc ¼ 3Γ½3=4�2=π3=2 ≃ 0.80902.
Should we try in this case to sustain the wormhole
interpretation of the cases with ξ2 > 1, then the expansion
of the radial function would yield

x ≈ z3 −
z7

2
þOðz−11Þ: ð92Þ

This implies that the wormhole throat in this case would
have vanishing area; see Fig. 4 (dashed black curve).
Moreover, curvature divergences always arise at z ¼ 0,
being of order ∼ðδ1 − δcÞ2=z10 in general and softened to
∼1=z4 when δ1 ¼ δc.
Regarding geodesic behavior, for any δ1, null radial

geodesics integrate the equation (34) near the center z ≈
x ≈ 0 as

�Eð ~uðxÞ − ~uð0ÞÞ ≈ −
1

z
þOðz3Þ: ð93Þ

As depicted in Fig. 5 (solid blue), this result implies that the
throat cannot be reached in finite affine time by null radial
geodesics. This result is similar to that found in the case of
certain Palatini fðRÞ theories coupled to electromagnetic
fields [44] or to anisotropic fluids [45].
The analysis of the effective potential around

z ≈ x ≈ 0 in this case, Veff≈− ~a
jxj7−

~b
jxj4 [with ~a¼

rS
3r⋆ð1−δ1=δ2ÞðL2=x2−kÞ and ~b ¼ −1=3ðL2=x2 − kÞ] for
null (with L ≠ 0) and timelike geodesics reveals a similar
fate for them as for those of case I: those with δ1 > δc
(Reissner-Nordström-like configurations) will find an
infinitely repulsive potential barrier and be scattered
off to asymptotic infinity, while those with δ1 < δc
(Schwarzschild-like configurations) will be dragged toward
the wormhole throat x ¼ 0. In the latter case, a curious
effect occurs, since the integration of the geodesic equation
yields the result that the region x ¼ 0 can be reached in
finite affine time both for null (with angular momentum)
and timelike geodesics [for example, timelike radial geo-
desics behave there as �ð ~uðxÞ − ~uð0ÞÞ ≈ ξjxj5=6, with ξ
some constant], despite the infinite time required by null
radial geodesics to get there. The vanishing area of the
wormhole suggests that extended objects would be com-
pressed to zero volume as the throat is reached, indicating
that such solutions are pathological.

D. Case III: fsϵ = + 1;sβ = − 1g
Now, we have the expressions

ρ ¼ ρm
z4 þ 1

ð94Þ

Ω1 ¼ 1 −
ξ2ðz4 − 1Þ
ðz4 þ 1Þ2 ; Ω2 ¼ 1þ ξ2

z4 þ 1
ð95Þ

Gz ¼
z2Ω1

ðz4 þ 1ÞΩ1=2
2

: ð96Þ

In this case, inspecting the relation (24) it turns out that, for

ξ2 ≥ 8, the function xðzÞ has a minimum at γ ¼ ðz4minþ1Þ2
z4min−1

, in

such a way that the function Gz has two zeros, located at

6It should be pointed out that the development of a de Sitter
core has been known for quite some time to be a mechanism able
to get rid of curvature divergences, which has shaped many
approaches to this issue in the context of GR [43].
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0 < zmax ≤ 1 ≤ zmin, corresponding to a local maximum
and minimum, respectively (see Fig. 6). However, the
presence of such a minimum in xðzÞ cannot be interpreted
as representing a wormhole throat in the auxiliary metric
qμν, since it does not correspond to an absolute minimum.
Indeed, the function xðzÞ can be extended in a monotonic
way below xmax all the way down to x ¼ 0. In that region,
the relation (24) becomes

x ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
z

�
1 −

ξ2

ð1þ ξ2Þ z
4 þOðz8Þ

�
; ð97Þ

so zðxÞ≃ x=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
Þ there, which amounts just to a

rescaling of the radial coordinate. This result is consistent
with the numerical integration depicted in Fig. 6, which
does not correspond to the expected smooth bouncing
behavior of a wormhole structure, as follows from the fact
that no zeros can be found for Ω2 in this case.
The lack of a wormhole structure suggests that one

should focus on the parametrization of the solutions in
terms of z. To further understand the geometry at z ¼ 0, we
follow a similar strategy as in the previous sections, where
we expand the relevant functions there, which in this case
yields the metric components

gtt ≈ −
1

1þ ξ2
þ rSð1 − δ1=δcÞ

r⋆ð1þ ξ2Þ3=2
1

z
þOðz2Þ ð98Þ

grr ≈ −
r⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
rSð1 − δ1=δcÞ

zþOðz2Þ; ð99Þ

which is the same result as in case 0 < ξ2 < 1 of Sec. V C
with the replacement ξ2 → −ξ2. Therefore, similar

comments regarding the features of the corresponding
solutions apply (such as the number and type of horizons),
and, in particular, solutions with δ1 ¼ δc represent de Sitter
cores at the center, Rμν ¼ rSδc

r3⋆
gμν, with all curvature scalars

being finite [while divergences of order ∼ðδ1 − δcÞ2=z6
arise for δ1 ≠ δc].
In this case, the integration of the geodesic equation (34)

around z ¼ 0 in the null radial case yields the result
�Eð ~uðxÞ − ~uð0ÞÞ ≈ zffiffiffiffiffiffiffiffi

ξ2þ1
p , which implies that z ¼ 0 can

be reached in finite affine time. As a result, in the
Schwarzschild-like solutions, there is no possibility of
extending those geodesics, implying that these geometries
are geodesically incomplete.

E. Case IV: fsϵ = + 1;sβ = + 1g
In this case, we have the expressions

ρ ¼ ρm
z4 − 1

ð100Þ

Ω1 ¼ 1 −
ξ2ðz4 þ 1Þ
ðz4 − 1Þ2 ; Ω2 ¼ 1þ ξ2

z4 − 1
ð101Þ

Gz ¼
z2Ω1

ðz4 − 1ÞΩ1=2
2

: ð102Þ

Here, we see some differences as compared to the previous
cases: for ξ2 ≤ 1, one finds that Ω2 vanishes at a value
zc ¼ ð1 − ξ2Þ1=4 < 1, which lies beyond the point at which
the energy density of the fluid blows up, z ¼ 1 (note that
Ω1, Ω2, and Gz blow up there, too), while for ξ2 > 1, no
real value for zc can be found. In all cases, at the limiting
radius z ¼ 1, one can see that the relation (24) between
radial coordinates blows up, leading to the behavior
depicted in Fig. 7.

FIG. 6. Representation of xðzÞ of case III (corresponding to
fsϵ ¼ þ1; sβ ¼ −1g) for ξ ¼ 0 (solid black), ξ ¼ 1 (dotted red),
ξ ¼ 2 (dashed blue), and ξ ¼ 4 (solid orange).

FIG. 7. Representation of xðzÞ of case IV for ξ ¼ 1 (solid blue),
ξ ¼ 3 (solid red), and ξ ¼ 5 (solid orange), as compared to jxj ¼
z (dashed black). The vertical dotted lines set the minimum radius
available for the radial function, z ¼ 1, where the energy density
diverges.
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Exploring further the nature of the surface z ¼ 1, we
expand the metric functions there to find

GðzÞ ≈ ξ

24ðz − 1Þ5=2 þOðz − 1Þ−3=2 ð103Þ

gtt ≈ −
2rSδ1
3r⋆ξ2

ðz − 1Þ þOðz − 1Þ2 ð104Þ

grr ≈
6r⋆
rSδ1

þOðz − 1Þ2: ð105Þ

Despite the finiteness of gtt and grr at the surface z ¼ 1,
curvature divergences with strength ∼1=ðz − 1Þ4 arise
there, which cannot be avoided for any choice of δ1, unlike
cases I and II above. When null radial geodesics are
considered, the geodesic equations can be integrated near
the surface z ¼ 1 as

�Eð ~uðxÞ − ~uð0ÞÞ ≈ 4ðz − 1Þ3=2
3ξ

þOðz − 1Þ5=2; ð106Þ

which implies that these geodesics can reach z ¼ 1 in finite
affine time. Although, in principle, it should be possible to
construct an analytical extension to the inner region z < 1,
the fact that the energy density of the fluid blows up at
z ¼ 1 suggests the breakdown of the matter description
there and, consequently, the nonphysical character of such
an extension. We shall thus leave it here and just mention
that an extension of this kind was recently constructed in
the context of Palatini fðRÞ gravity [45].

VI. CONCLUSIONS

In this work, we have considered an extension of GR
known as Eddington-inspired Born-Infeld gravity coupled
to an anisotropic fluid constrained to satisfy reasonable
physical conditions and incorporating a number of inter-
esting scenarios, such as those of nonlinear electrodynam-
ics. Focusing on static, spherically symmetric solutions, we
have solved the field equations in closed form. The
combination of the signs of two parameters in the gravity
sector, ϵ, and the fluid description, β, led us to split the
analysis into four cases, where a variety of different
configurations are found. All of them recover the
Reissner-Nordström solution of the Einstein-Maxwell field
equations at large distances, but important departures with
respect to that solution are found as we approach the
innermost region. On each branch, the modifications with
respect to GR due to the interplay between gravity and
matter are encoded on a single scale, ξ2.
The most physically appealing results are found in the

ϵ < 0 branch. For both β > 0 (case I) and β < 0 (case II),
the energy density of the fluid is finite everywhere, and the
pointlike GR singularity is replaced by a wormhole
structure with its throat located at z ¼ zc ¼ ð1þ ξ2Þ1=4
(in case I) and at z ¼ zc ¼ ðξ2 − 1Þ1=2 (in case II, provided

that ξ2 > 1). In these cases, the ratio δ1=δc, where δ1
encodes the relevant parameters of the solutions and δc is a
constant, plays a key role in the number and type and
horizons and, consequently, in the causal structure of the
solutions. Indeed, if δ1 > δc, the configurations have the
typical structure of the Reissner-Nordström solution of GR,
namely, either black holes with two horizons, extreme
black holes (a single degenerate horizon), or no horizons,
while for δ1 < δc, a Schwarzschild-like configuration is
found, always characterized by the presence of a single
(nondegenerate) horizon. Finally, those configurations with
δ1 ¼ δc may have an event horizon or none, but the metric
component gtt is always finite at the center of the solutions.
This description of horizons mimics that found in certain
models of nonlinear electrodynamics in the context of GR
(see Ref. [42] for a detailed discussion on that issue).
The presence of a wormhole structure in all the con-

figurations of case I and in those of case II with ξ2 > 1 has
also a non-negligible impact on the regularity of the
solutions. Indeed, in case I, the strength of the curvature
divergences at the wormhole throat softens from the ∼1=z8
behavior of the (charged) black hole of the GR case, to a
leading-order divergence ∼ðδ1 − δcÞ=ðz − zcÞ3. Moreover,
due to the dependence on the ratio δ1=δc, it also follows that
when δ1 ¼ δc we get rid of any divergences on curvature
scalars. To delve deeper into the implications of this result,
we have studied the geodesic motion on these geometries,
making use of the standard approach for this problem
suitably adapted to Palatini theories of gravity. This way,
we have found that radial null geodesics are able to reach
the wormhole throat in finite affine time but they are
naturally extended beyond that point, which contrasts with
the termination of the geodesics there in the GR case. In
addition, we have considered null (with L ≠ 0) and time-
like geodesics, formulating the problem in a way akin to the
motion of a one-dimensional particle in an effective
potential. For δ1 > δc, this potential prevents any such
geodesic from reaching the wormhole throat, in much the
same way as in the Reissner-Nordström case of GR.
However, for δ1 ≤ δc, these geodesics may reach the
wormhole throat in finite affine time (depending on their
energy E) but, like the radial null ones, can be smoothly
extended beyond that point. Therefore, these solutions are
null and timelike geodesically complete. The regularity of
many of the solutions of this ϵ < 0 branch is consistent
with previous analyses of geodesic completeness of this
branch in the context of electrovacuum solutions with
Maxwell fields [22,25].
For case II with ξ2 < 1, there is no wormhole, and the

radial function extends all the way down to z ¼ 0, which
can be reached in finite affine time by null radial geodesics
with no possibility of further extension. Hence, these
solutions are geodesically incomplete in general. For an
exception to the general case, we find that a de Sitter core
arises when δ1 ¼ δc, which regularizes all curvature scalars
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and guarantees the extendibility of geodesics. More striking
results are found when ξ2 ¼ 1, since in such a case null
radial geodesics take an infinite affine time to get to z ¼ 0
(this result being very similar to those found in some fðRÞ
models in Palatini formulation [44,45]), but null (with
L ≠ 0) and timelike geodesics in the Schwarzschild-like
configurations (δ1 < δc) may get there in finite affine time,
though its extendibility beyond that point is unclear due to
the vanishing area of the wormhole throat in this case.
For ϵ > 0 and β < 0 (case III), the energy density is

finite, and no wormhole structure is found, though we still
have the description of horizons parametrized by the ratio
δ1=δc. Due to the lack of a wormhole, the fact that z ¼ 0
can be reached in finite affine time by null radial geodesics
implies the incompleteness of geodesics. Finally, for ϵ > 0
and β > 0 (case IV), the energy density of the fluid blows
up at the surface z ¼ 1, where curvature divergences arise
and which is reached in finite affine time by null radial
geodesics. In this case, the breakdown in the description of
the fluid suggests the nonphysical character of the z < 1
region, despite the fact that, in principle, analytical exten-
sions of the metric to this region could be possible.
In summary, we have found several physically appealing

structures that include nonsingular black holes and non-
singular naked compact objects, wormholes, and de Sitter
cores. Such objects are the result of the nontrivial inter-
action between gravity and matter ascribed to Palatini
theories of gravity, where the energy density of the matter
fields introduces additional effects on how these fields
gravitate as compared to GR. Our findings are added to the
growing set of results within this kind of theories, where the

GR pointlike singularity may be replaced by a geodesically
complete spacetime using matter sources that satisfy the
standard classical energy conditions. Moreover, these
geometries break the correlation between geodesic com-
pleteness and curvature divergences, since the latter do not
prevent the former. In this sense, we note that in the context
of EiBI gravity with electromagnetic fields, it has been
found that extended bodies and waves crossing the worm-
hole throat do not experience any kind of pathological or
destructive effects [24]. Further research on the behavior of
classical and quantum fields, as well as the propagation of
gravitational waves on these backgrounds, is necessary, and
we hope to report on these topics soon.
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