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We introduce three approaches to generate curvature invariants that transform covariantly under a
conformal transformation of a four-dimensional spacetime. For any black hole conformally related to
a stationary black hole, we show how a set of conformally covariant invariants can be combined to produce
a conformally covariant invariant that detects the event horizon of the conformally related black hole. As an
application we consider the rotating dynamical black holes conformally related to the Kerr-Newman-Unti-
Tamburino–(anti)-de Sitter spacetimes and construct an invariant that detects the conformal Killing horizon
along with a second invariant that detects the conformal stationary limit surface. In addition, we present
necessary conditions for a dynamical black hole to be conformally related to a stationary black hole and
apply these conditions to the ingoing Kerr-Vaidya and Vaidya black hole solutions to determine if they are
conformally related to stationary black holes for particular choices of the mass function. While two of the
three approaches cannot be generalized to higher dimensions, we discuss the existence of a conformally
covariant invariant that will detect the event horizon for any higher dimensional black hole conformally
related to a stationary black hole which admits at least two conformally covariant invariants, including all
vacuum spacetimes.

DOI: 10.1103/PhysRevD.96.104022

I. INTRODUCTION

It is possible to generate solutions of the Einstein
equation by applying a conformal transformation to a
known solution and solving the ensuing differential equa-
tions for a particular conformal factor (see references in
[1,2]). In particular, dynamical black hole solutions have
been produced using a conformal transformation from a
stationary black hole solution. An example of such a
solution is the Sultana-Dyer metric,

ds2 ¼ t4
�
−
�
1 −

2m
r

�
dt2 þ 4m

r
dtdr

þ
�
1 −

2m
r

�
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ

�
; ð1Þ

which is conformally related to the Schwarzschild solution
and models an expanding black hole in the asymptotic
background of the Einstein–de Sitter universe with a two-
fluid matter source consisting of a null fluid and pure dust
[3]. The event horizon of the Sultana-Dyer metric will be
the image of the Killing horizon of the Schwarzschild black
hole under a conformal transformation, and hence is a
conformal Killing horizon.
The Sultana-Dyer metric belongs to the nonrotating

(a ¼ 0) subclass of the Thakurta metrics [4], which are
generated from a conformal transformation of the Kerr
solution with a conformal factor dependent on the Boyer-
Lindquist time coordinate,

ds2 ¼ α2ðtÞ
�
−
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ
�
ðr2 þ a2Þ þ 2Mra2sin2θ

Σ

�
sin2θdϕ2

−
4Mrasin2θ

Σ
dϕdt

�
;

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 þ a2 − 2Mr: ð2Þ

Motivated by the Thakurta solution we will employ space-
times conformally related to the Kerr-Newman-Unti-
Tamburino (NUT)–(anti)-de Sitter solution [5–7] as an
illustrative example. We emphasize that the proposed con-
formally covariant horizon detecting invariants presented in
this paper will apply to any four-dimensional (4D) black hole
conformally related to a stationary black hole.
In general, locating the event horizon of a black hole is

difficult, as the horizon depends upon the future evolution
of the spacetime. However, for particular classes of black
hole spacetimes the event horizon can be identified locally.
For example, if the spacetime is stationary, then knowledge
of the hypersurface metric and extrinsic curvature at any
moment in time will be sufficient to determine the entire
spacetime and locate the horizon.
For a stationary spacetime, if we know the Killing vector

field which acts as the null generator on the event horizon,
then the horizon can be located by the vanishing of the
squared norm of this Killing vector field. If the related
Killing vector field is not known, we can determine the local
cohomogeneity, n, of the spacetime and compute the squared*david.d.mcnutt@uis.no
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norm of the wedge products of n linearly independent
gradients of scalar polynomial curvature invariants (SPIs),
which will vanish on the stationary horizon [8,9].
For nonstationary spacetimes, there is no general pro-

cedure to generate invariants that detect the event horizon.
However, as the location of the event horizon is a conformal
invariant, the horizon can be found for any black hole
metric that is conformal to a stationary metric, assuming the
conformal factor is known [9]. If the conformal factor is not
known, this approach will no longer locate the event
horizon of the conformally related black hole.
It is reasonable to assume that a SPI will be able to detect

the event horizon of a black hole metric that is conformal to
a stationary metric. Such a SPI must not only vanish on the
horizon of the stationary metric but also remain zero on the
horizon under a conformal transformation of the metric. To
be precise, we would like an invariant that vanishes on a
stationary horizon and under a conformal transformation
the invariant transforms as a power of the conformal factor
with no terms involving derivatives of the conformal factor
(which could be nonzero on the event horizon).
To construct a conformally covariant invariant that will

detect the horizon, we introduce three approaches to
generate conformally covariant invariants and construct
invariants that are unaffected by conformal transformations
in 4D. As an application we show that the conformal
Killing horizon1 of a dynamical black hole conformally
related to the 4D Kerr-NUT–(anti)-de Sitter solution is
detected by the vanishing of a conformally covariant
invariant and that the conformal stationary limit surface
[10] is detected by a conformally covariant invariant
as well.
Assuming conformally covariant invariants can be con-

structed in any dimension, we establish necessary con-
ditions to determine if a dynamical black hole is
conformally related to a stationary black hole. We apply
these conditions to the ingoing Kerr-Vaidya and Vaidya
black holes to show when the choice of a particular mass
function allows for a conformal transformation to a sta-
tionary black hole. Unlike the 4D case, in higher dimen-
sions the existence of conformally covariant SPIs is no
longer guaranteed. In the class of spacetimes admitting two
conformally covariant SPIs, we show it is possible to
produce additional conformally covariant invariants and
construct a conformally covariant invariant that detects the
horizon of any dynamical black hole conformally related to
the D-dimensional Kerr-NUT–anti-de Sitter metric.

II. CONSTRUCTION OF CONFORMALLY
COVARIANT INVARIANTS

The invariants which are known to detect the stationary
horizon [8,9] will pick up derivative terms when a generic

conformal transformation is applied to the metric, implying
that they may not remain zero on the event horizon of a
black hole spacetime that is conformal to a stationary
metric. In this paper we consider the problem of construct-
ing a SPI that vanishes on the horizon of any black hole
metric that is conformal to a 4D stationary spacetime, with
the conformal factor being a smooth function over the
spacetime which does not vanish at the event horizon.
As this construction will rely on the approach given in

[9], we require at most three functionally independent
conformally covariant SPIs. To produce these invariants we
will use the following SPIs obtained from the Weyl tensor
and its first covariant derivative:

I1 ≡ CabcdCabcd; ð3Þ

I2 ≡ C�
abcdCabcd; ð4Þ

I3 ≡ Cabcd;eCabcd;e; ð5Þ

I3a ≡ Cabcd;eCebcd;a; ð6Þ

I4 ≡ C�
abcd;eCabcd;e; ð7Þ

I4a ≡ C�
abcd;eCebcd;a; ð8Þ

I5 ≡ I1;eI
;e
1 ; ð9Þ

I6 ≡ I2;eI
;e
2 ; ð10Þ

where Cabcd is the Weyl tensor and C�
abcd is its Hodge

dual. Applying a conformal transformation of the metric,
the transformation rules for I3, I3a, I4, I4a, I5, and I6 pick
up first derivatives of the conformal factor.
The terms involving the derivatives of the conformal

factor can be nonzero on the event horizon of a generic
metric conformal to a stationary black hole metric.
However, by combining the invariants in (3)–(10) an
invariant can be constructed that transforms by being
multiplied by a negative power of the conformal factor
under a conformal transformation of the metric [2],

J4 ≡ 6I1I3 − 16I1I3a þ I5: ð11Þ

While J4 was originally intended for spacetimes conformal
to static spherically symmetric metrics, as long as the
conformal factor does not vanish on the event horizon, J4 is
zero on the event horizon for any smooth 4D metric
conformal to a stationary black hole of cohomogeneity
n ¼ 1.
To see this, consider a generic nonvacuum metric gab

which is not conformal to a static spherically symmetric
metric or a Ricci flat metric and a conformally transformed
metric ĝab ¼ e2Ugab, and then the invariant Ĵ4 for the
metric ĝab is related to the invariant J4 for the metric gab by

1This surface corresponds to the event horizon when the
conformal factor goes to a constant at null infinity.
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Ĵ4 ¼ e−10UðJ4 þ AaU;aÞ; ð12Þ

where

Aa ¼ −4I1;a − 16We
ae þ 16Wa

e
e þ 64W̄e

ea; ð13Þ

and

Wa
bc ¼ Cbdef;cCadef; ð14Þ

W̄a
bc ¼ Cbdce;fCfdae: ð15Þ

Using the Newman-Penrose (NP) formalism [1] to express
the Weyl tensor and the covariant derivative of the Weyl
tensor in terms of the NP curvature scalars Ψi; i ∈ ½0; 4�,
their frame derivatives, and the spin coefficients, it can be
shown that Aa will vanish for all 4D spacetimes [2].
The vanishing of Aa in 4D is due to the trace free

condition for the Weyl tensor and the algebraic Bianchi
identity. This implies that any conformally covariant tensor
sharing the indicial symmetries of the Weyl tensor will
yield a first order invariant that will be conformally
covariant. We will call a tensor Weyl-like if it shares the
indicial symmetries of the Weyl tensor. In four dimensions,
the Hodge dual of the Weyl tensor is conformally covariant
and Weyl-like, and so we can compute a similar invariant
to J4,

K4 ≡ 6I2I4 − 16I2I4a þ I6; ð16Þ

which will transform in a covariant manner under a
conformal transformation for any 4D spacetime,

K̂4 ¼ e−10UK4: ð17Þ

Assuming I1 ≠ I2, I2 ≠ 0, and I1, J4, and K4 are
functionally independent, we can construct the following
rational invariants which are conformal invariants, in
the sense that they are invariant under conformal trans-
formations:

I01 ≡ I1
I2
; J04 ¼

J4

I
5
2

2

; K0
4 ≡ K4

I
5
2

2

: ð18Þ

The conformal invariants I01, J
0
4, andK

0
4 will be functionally

independent, and so we can compute the norm of the wedge
product of the exterior derivatives of these invariants to
produce an invariant that will detect the horizon for any
black hole conformal to a stationary black hole [9].
In the case that I2 vanishes or one of the invariants is

functionally dependent on the others, an additional invari-
ant of higher degree can be constructed by taking the square
of the Weyl tensor,

C2
abcd ¼

1ffiffiffiffi
I1

p Cab
efCefcd; ð19Þ

and then subtracting by C2
a½bcd� and the appropriate tensor

products of the trace two-tensor with the metric to produce
a new conformally covariant tensor Wabcd satisfying
Wa

bac ¼ 0 and Wa½bcd� ¼ 0. Since Wabcd is conformally
covariant and Weyl-like, we can compute the following
invariants:

WI1 ≡WabcdWabcd; ð20Þ
WI3 ≡Wabcd;eWabcd;e; ð21Þ

WI3a ≡Wabcd;eWebcd;a; ð22Þ

WI5 ≡ WI1;aWI;a; ð23Þ

and these can be combined to produce an invariant,

WJ4 ≡ 6WI1WI3a − 16WI1WI3 þ WI5: ð24Þ

The invariant WJ4 transforms under a conformal trans-
formation in the following manner:

WĴ4 ¼ e−10U½WJ4�: ð25Þ

We note that WĴ4 is a SPI of higher degree than J4 and
will not, in general, be divisible by J4. Of course, in 4D this
procedure can be applied to any conformally covariant
Weyl-like tensor to generate new conformally covariant
invariants of higher degree. We may also combine any two
conformally covariant Weyl-like tensors to produce SPIs
similar to I2, I4, I4a, I6, and K4.
For a black hole spacetime of cohomogeneity n ≤ 3, the

first order invariants may not provide a full set of func-
tionally independent invariants, and so must continue to
higher order derivatives to acquire n functionally indepen-
dent invariants. In particular, for the type D spacetimes we
may have to compute up to the fifth covariant derivative of
the Weyl tensor to acquire n functionally independent
invariants [1,11,12]. Taking the norm of the gradient of any
curvature invariant which is unchanged by a conformal
transformation produces a new conformally covariant
invariant. For example, given two conformal invariants
Î ¼ I and Ĵ ¼ J of order p and p0, respectively, then we
may produce the following conformally covariant invari-
ants of higher order:

j∇Ij2 ≡ I;aI;a;

j∇Jj2 ≡ J;aJ;a;

∇I:∇J ≡ I;aJ;a: ð26Þ
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Dividing by appropriate powers of
ffiffiffiffi
I1

p
yields conformal

invariants of higher order. The differential Bianchi
identities and the Ricci identities ensure that new func-
tionally independent invariants are introduced by express-
ing the gradients of the invariants in terms of frame
derivatives.

III. ROTATING BLACK HOLES CONFORMALLY
RELATED TO THE KERR-NUT–(ANTI)-DE

SITTER SPACETIME IN
FOUR DIMENSIONS

We will employ the NP formalism to work with three
conformally covariant SPIs in order to construct a simple
conformally covariant SPI that will detect the conformal
Killing horizon. For a black hole conformally related to a
stationary spacetime, this surface is defined as a null
surface for which a conformal Killing vector field, corre-
sponding to a Killing vector field in the stationary black
hole spacetime, has a vanishing norm and does not
identically vanish. If the conformal factor goes to a constant
at null infinity, the conformal Killing horizon will corre-
spond to the event horizon of the black hole [10].
The horizon Killing vector field, K, in the original

stationary black hole spacetime either coincides with the
stationary Killing vector field, or the spacetime admits at
least one axial Killing vector field M for which
½K;M� ¼ 0. This second case implies that the black hole
is asymptotically flat, rotating and that the horizon Killing
vector field, ~K is a linear combination of the Killing vector
fieldsK andM. For stationary rotating black holes there is
an additional non-null surface on which the norm of a
nonvanishing Killing vector field, K, is zero, called the
stationary limit surface. Under a conformal transformation
this surface is mapped to a conformal stationary limit
surface which is defined as a surface on which a non-
vanishing conformal Killing vector field K̂ has zero norm.
As the horizon detecting invariant relies on the existence

of a Killing horizon [9], it cannot be guaranteed to detect
the stationary limit surface (also known as an ergosurface)
of the original Kerr-NUT–(anti)-de Sitter solution since it is
not a Killing horizon. While the invariantQ1 will detect the
stationary limit surface [8] for the Kerr-NUT–(anti)-de
Sitter solution [13], we note that this invariant will not
transform covariantly under a conformal transformation
and hence will not detect the conformal stationary limit
surface [10]. We introduce a new invariant, Jergo that
transforms covariantly under a conformal transformation
and vanishes on the conformal stationary limit of any
rotating black hole conformally related to the Kerr-NUT–
(anti)-de Sitter solution.
We consider a conformal transformation applied to the

4D Kerr-NUT–(anti)-de Sitter metric defined in [13], with
arbitrary conformal factor Uðt; r; θ;ϕÞ,

dŝ2 ¼ e2U
�
−
Q
R2

�
dt −

�
asin2θ þ 4lsin2

θ

2

�
dϕ

�
2

þ P
R2

½adt − ðr2 þ ðaþ lÞ2Þdϕ�2

þ R2

Q
dr2 þ R2

P
sin2θdθ2

�
; ð27Þ

where R≡ Rðr; θÞ, P≡ PðθÞ, and Q≡QðrÞ are functions
of cos θ and r, containing the parameters m, a, l, and Λ
which are, respectively, mass, a rotation parameter, a NUT
parameter in a de Sitter or anti–de Sitter background, and
the cosmological constant,

R2 ¼ r2 þ ðlþ a cos θÞ2; ð28Þ

P ¼ sin2 θð1þ ð3lþ a cos θÞðlþ a cos θÞΛ=3Þ; ð29Þ

Q¼ða2− l2Þ−2mrþ r2−Λ½ð3l2þa2Þr2þ r4�=3: ð30Þ

The location of the event horizons are given by the roots
of QðrÞ.
Following [13], we define the orthonormal frame

t0 ¼
ffiffiffiffi
Q

p
R

�
dt −

�
asin2θ þ 4lsin2

θ

2

�
dϕ

�
; t1 ¼ Rffiffiffiffi

Q
p dr;

t2 ¼
ffiffiffiffi
P

p

R
½adt − ðr2 þ ðaþ lÞ2Þdϕ�; t3 ¼ Rffiffiffiffi

P
p sin θdθ;

ð31Þ

and the null frame we will work in is then

l̂ ¼ eUl ¼ eUðt0 − t1Þffiffiffi
2

p ; n̂ ¼ eUn ¼ eUðt0 þ t1Þffiffiffi
2

p ;

m̂ ¼ eUm ¼ eUðt2 − it3Þffiffiffi
2

p ; ¯̂m ¼ eUm̄ ¼ eUðt2 þ it3Þffiffiffi
2

p :

ð32Þ

We will assume that the Lorentz frame transformations
have been entirely fixed in order to express the SPIs J4 and
K4 in a concise form with respect to the Cartan invariants.
Since the metric is of Petrov type D, we can use Ψ2

2 and
its complex conjugate to construct the zeroth order con-
formally covariant SPIs [8,13],

Î1 þ iÎ2 ¼ 48Ψ̂2
2 ¼ 48e−4UΨ2

2; ð33Þ

where

Ψ2 ¼ −ðmþ iLÞ
�

1

rþ iðlþ a cos θÞ
�

3

;

and the constant, L, is defined as
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L ¼ l

�
1þ 1

3
ða2 − l2ÞΛ

�
:

Therefore, the simplest zeroth order real valued conformal
invariant is

I01 ¼ −2i½ln Ψ̂2 − ln ¯̂Ψ2�:

At first order, denoting the SPIs

Ĵþ ¼ 3 × 27

5
Ĵ4; Ĵ− ¼ K̂4

3 × 26
;

and defining the vector,

v̂a ¼ −π̂m̂a þ τ̂ ¯̂ma − ρ̂n̂a þ μ̂l̂a;

the conformally covariant SPIs J� may be expressed in
terms of the gradient of Ψ̂2 and v̂,

J� ¼ −6R½� ¯̂Ψ2
2Ψ̂2

2jv̂j2 þ Ψ̂4
2jv̂j2� ∓ 2

¯̂Ψ2Ψ̂2∇̂Ψ̂2:∇̂ ¯̂Ψ2

þR½�Ψ̂2
2∇̂ ¯̂Ψ2:∇̂ ¯̂Ψ2 − 3Ψ2

2∇̂ ¯̂Ψ2:∇̂Ψ̂2�
þ 6R½�Ψ̂3

2v̂:∇̂Ψ̂2 þ Ψ̂2
¯̂Ψ2
2v̂:∇̂Ψ̂2�:

Since the SPIs J� transform covariantly under a conformal
transformation, we can express the invariants relative to the
original coframe for the Kerr-NUT–(anti)-de Sitter metric,
where the spin coefficients satisfy π ¼ τ and μ ¼ ρ,
implying that the coframe is an invariant coframe in the
context of the Cartan-Karlhede algorithm. Applying the
Bianchi identities, the SPIs may be expressed as

e10UĴ� ¼ J� ¼ −½Ψ̄4
2ðρ̄2 − τ̄2Þ þ Ψ4

2ðρ2 − τ2Þ
∓ 5Ψ̄2

2Ψ2
2ðρ̄2 − τ̄2 þ ρ2 − τ2Þ

� 12Ψ̄2
2Ψ2

2ðρ̄ρþ τ̄τÞ�; ð34Þ

where ρ and τ are

ρ ¼ 1ffiffiffi
2

p
ffiffiffiffi
Q

p ½r − iða cos θ þ lÞ�
R3

;

τ ¼ 1ffiffiffi
2

p a
ffiffiffiffi
P

p ½r − iða cos θ þ lÞ�
R3

: ð35Þ

While we have chosen to work with a coframe for which the
spin coefficients and Weyl tensor take a particular form,
due to the SPIs’ insensitivity to Lorentz frame trans-
formations, the results presented in this section will be
valid relative to any coframe basis.
Since the Kerr-NUT–(anti)-de Sitter solution has

cohomogeneity n ¼ 2 [13], we may take the conformal
invariants,

I01 and J04 ¼ J4ðΨ2Ψ̄2Þ−5
2;

to produce the following invariant2:

jjWjj2 ≡ 1

2!
δa1a2b1b2g

b1c1gb2c2I01;a1J
0
4;a2

¼ e−2UjρjF;

where F is a rational function in terms of Ψ2, its complex
conjugate, the spin coefficients, and their frame derivatives.
The conformally covariant invariant jjWjj2 detects the event
horizons of the Kerr-NUT–(anti)-de Sitter solution [9] and
transforms by being multiplied by a negative power of the
conformal factor.
Taking the sum of the two first order SPIs produces a

smaller invariant

Jergo ¼ Jþ þ J− ¼ −4R½Ψ4
2ðρ2 − τ2Þ�: ð36Þ

It was noted in [13] that the Cartan invariant ρ2 − τ2

vanishes on the stationary limit surface. Since the image
of the nonvanishing Killing vector field which becomes
null on the stationary limit surface is mapped to a non-
vanishing conformal Killing vector field which will be null
on the image of this surface, we conclude that the SPI, Jergo,
will vanish on the conformal stationary limit surface.

IV. NECESSARY CONDITIONS FOR A
DYNAMICAL BLACK HOLE TO BE
CONFORMALLY RELATED TO A

STATIONARY BLACK HOLE

While we have considered conformal transformations of
stationary black holes to generate dynamical black holes.
The problem of determining whether a dynamical black
hole is conformally related to a stationary black hole may
be hidden by the choice of coordinates. Using the con-
formal invariants we can introduce a test to determine if a
spacetime is conformally related to a spacetime admitting
larger maximal dimensional orbits of the isometry group of
the local metric and in the case of dynamical black holes
introduce a necessary condition for the subcase of dynami-
cal black holes conformally related to a stationary
black hole.
To determine if a spacetime is conformally related to

another spacetime which admits larger maximal dimen-
sional orbits of the isometry group of the local metric, we
will exploit the cohomogeneity, which was shown to be
equivalent to the number of functionally independent
Cartan invariants produced at the final iteration, q, of
the Cartan-Karlhede algorithm [13]. Setting p ¼ q − 1, we
have the following statement involving the number of
functionally independent Cartan invariants of the

2The permutation tensor δα1;…;αn
β1;…;βn

is þ1 or −1 if α1;…; αn is an
even or odd permutation of β1;…; βn, respectively, and is zero
otherwise.
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spacetime, tp, and the number of functionally independent
conformal invariants, t̂p:
Proposition III.1 Given a D-dimensional spacetime,

ðM;gÞ, if t̂p < tp, then it is conformal to a spacetime
admitting larger maximal dimensional orbits of the isom-
etry group of the local metric.
Noting that the cohomogeneity of a spacetime is given

by the formula

n ¼ D − rþ dimðHpÞ ¼ tp;

where dimðHpÞ is the dimension of the isotropy group of
the spacetime and r is the dimension of the isometry group.
If t̂p < tp, then the spacetime is conformally related to a
spacetime, ðM0;g0Þ, with t0p ¼ t̂p functionally independent
Cartan invariants. This implies that the dimension of the
maximal orbits of the isometry group of the new spacetime,
r0 − dimðH0

pÞ, must be larger than the dimension of the
maximal orbit of the isometry group of the original
spacetime, r − dimðHpÞ.
In the case of dynamical black holes with t̂p < tp, if the

conformally related solution admits a nonvanishing Killing
vector field which is stationary and becomes null on some
null surface (i.e., contains a Killing horizon), then the norm
of the wedge product of the exterior derivatives of the
conformal invariants will vanish on a surface.
Proposition III.2 If a dynamical black hole is confor-

mally related to a stationary black hole, then t̂p < tp and
the norm of the wedge product of the exterior derivatives of
the conformal invariants will vanish on a surface.
This condition is not sufficient as the SPIs formed by the

norm of the wedge products of the exterior derivatives of
the conformal invariants may vanish on surfaces that do not
correspond to a Killing horizon.

A. The ingoing Kerr-Vaidya black hole

We examine the Kerr-Vaidya solution [14–16],

ds2 ¼ −
�
1 −

2mðvÞr
R2

�
dv2 þ 2dvdrþ R2dθ2

−
4amðvÞrsin2θ

R2
dϕdv − 2asin2θdϕdr

þ ðr2 þ a2Þ2 − a2Δsin2θ
R2

sin2θdϕ2; ð37Þ

where R2 ¼ r2 þ a2 cos2 θ and Δ ¼ r2 þ a2 − 2mðvÞr. In
general, the cohomogeneity of this solution is n ¼ 3. By
constructing three functionally independent conformal
invariants we can determine if this metric is conformally
related to a stationary black hole for particular choices of
the mass function.
While the Kerr-Vaidya solution is not of type D, it is still

of type II and so the SPIs I1 and I2 satisfy

I1 þ I2 ¼ 48Ψ2
2;

for any frame basis in which the Weyl tensor is of type II
form.3 Therefore we can construct three functionally
independent conformal invariants:

I01 ¼ −2i½lnΨ2 − ln Ψ̄2�; ð∇I1Þ0 ¼ ∇I01
I
1
2

1

; J0 ¼ J4

I
5
2

1

:

ð38Þ

Because of the large size of the coordinate expressions of
the conformal invariants we will not display them.
Computing the wedge product of the exterior derivatives

of the three invariants yields

jdI01 ∧ dð∇I1Þ0 ∧ dð∇JÞ0j2 ¼ a3mF0;

where F0 is a polynomial in terms of r, cos θ, m, m;v, m;vv,
and m;vvv. Rewriting this as a polynomial in r, setting the
coefficients to zero, and solving the ensuing differential
equation for mðvÞ lead to the solution mðvÞ≡ const or the
requirement that a ¼ 0. Therefore the generic Kerr-Vaidya
black hole with a ≠ 0 and m;v ≠ 0 is never conformally
related to a black hole of lower cohomogeneity. It is
possible that the subcase a ¼ 0 corresponding to the
ingoing Vaidya black hole will admit solutions that are
conformally related to a stationary black hole.

B. The ingoing Vaidya black hole

We now consider the ingoing Vaidya solution,

ds2 ¼ −
�
1 −

2mðvÞ
r

�
dv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdϕ2Þ; ð39Þ

where the mass function mðvÞ is a function of the ingoing
null coordinate v. In general, this metric has two function-
ally independent conformal invariants:

J0 ¼ J4

I
5
2

1

¼ 2m;vr2

m2
þ 2 −

r
m
; ð40Þ

ð∇JÞ0 ¼ j∇J0j2
I
1
2

1

¼ 2r2ð4m;vr −mÞ
m6

ðð8m2
;v − 4mm;vvÞr3

− 6m;vmr2 þ ð8m;vm2 þm2Þr − 2m3Þ: ð41Þ

Assuming m;v ≠ 0 these invariants are functionally
independent as the wedge product of their exterior deriv-
atives is nonzero,

3In particular we employ a similar frame to the null frame used
in the appendix of [15].
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jdJ0 ∧ dð∇JÞ0j2 ¼ m;vvF1ðr;m;m;vÞ þm;vvvF2ðr;m;m;vÞ;

where F1 and F2 are polynomials. In order for the
conformal invariants to be functionally dependent, we
must impose m;vv ¼ 0, and so the mass function is now
linear,

mðvÞ ¼ M0 þ μðv − v0Þ:

The ingoing Vaidya black hole solution has two func-
tionally independent Cartan invariants at zeroth and first
order. Since there is at most one functionally independent
conformal invariant, we conclude the ingoing Vaidya
metric is conformal to a spacetime admitting an additional
Killing vector field. To determine when this Killing vector
field is potentially null we examine when J0 vanishes. The
conformal invariant J0 vanishes on the surfaces,

r ¼ mð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16m;v

p Þ
4m;v

¼ mð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16μ

p Þ
4μ

: ð42Þ

Therefore, this can occur only when μ ≤ 2−4. This result
agrees with [17], where it was shown that the linear ingoing
Vaidya black hole is conformally related to a spherically
symmetric static black hole when μ ≤ 2−4.

V. HIGHER DIMENSIONS

In higher dimensions the invariants I1, I3, I3a, and I5
transform in the following manner:

~I1 ¼ e−4UI1; ð43Þ

~I3 ¼ e−6U½I3 − ð2I1;a þ 8We
ae − 8Wa

e
eÞU;a þ 8U;aU;aI1

þ ð4D − 8ÞU;aU;eCabcdCebcd�; ð44Þ

~I3a ¼ e−6U½I3a − ð2We
ae þ I1;a − 2Wa

e
e þ 4W̄e

eaÞU;a

þ 4U;aU;aI1 þ ðD − 1ÞU;aU;eCabcdCebcd�; ð45Þ

~I5 ¼ e−10U½I3 − 8I1;aU;a þ 16U;aU;aI1�; ð46Þ

where Wa
bc and W̄a

bc are defined in Eqs. (14) and (15).
With some modification to the coefficients of I1I3, I1I3a,
and I5 we can produce a higher dimensional analogue
to J4,

JD ≡ 2ðD − 1ÞI1I3 − 8ðD − 2ÞI1I3a þ ðD − 3ÞI5; ð47Þ

which will vanish on the event horizon of any black hole
that is conformal to the D dimensional static spherically
symmetric metric [2].
For the conformally transformed metric ĝab ¼ e2Ugab of

a generic nonvacuum metric gab, which is not conformal to
a static spherically symmetric metric or a Ricci flat metric,

the invariant ĴD of the metric ĝab is related to the invariant
JD for the metric gab by

ĴD ¼ e−10UðJD þ AaU;aÞ; ð48Þ

where

Aa ¼ −4ðD − 3ÞI1;a − 16ðWe
ae −Wa

e
eÞ

þ 32ðD − 2ÞW̄e
ea: ð49Þ

Because of the structure of the Weyl tensor in higher
dimensions [18] the vector Aa will not vanish for all higher
dimensional spacetimes. For example, the vector Aa will be
nonzero for a generic five-dimensional (5D) nonvacuum
spacetime of Weyl type D. In [2] it was shown that Aa will
vanish for other stationary spacetimes, such as the Kerr-
NUT–anti-de Sitter black hole solution [19], the rotating
black ring solution [20], and the supersymmetric black ring
solution [21].
The Kerr-NUT–anti-de Sitter spacetime is of typeD, and

both of the black ring spacetimes are of algebraic type Ii
according to the alignment classification [18,22,23]. For
any vacuum spacetime, the vanishing of Aa is guaranteed
by the differential Bianchi identities [2], and so Aa will
vanish for the Kerr-NUT–anti-de Sitter and the rotating
black ring spacetimes. The vanishing of Aa for the super-
symmetric black ring metric is notable since it is not Ricci
flat. This suggests that the vanishing of Aa is dependent on
the form of the Weyl tensor in higher dimensions, and that
the differential Bianchi identities for the vacuum space-
times may give insight into the class of nonvacuum
spacetimes for which JD is conformally covariant.
Unfortunately, these spacetimes have cohomogeneity

n ≥ 1 [24,25] and the invariant JD will no longer detect
the horizon. While we would like to construct additional
conformally covariant invariants, there are two complica-
tions arising from the difference in dimension. First, the
Hodge dual no longer maps bivectors to bivectors, and so
the Hodge dual of the Weyl tensor is no longer a rank four
tensor. Second, the structure of the Weyl tensor in higher
dimensions no longer ensures that a Weyl-like tensor will
yield a conformally covariant first order invariant; therefore
for spacetimes where JD is conformally covariant a Weyl-
like tensor may be produced from the square of the Weyl
tensor that does not yield a conformally covariant invariant.
However, for any spacetime where JD is conformally

covariant, it is possible to generate higher order invariants
by combining I1 and JD to produce the conformal invariant,
J0D, and calculating the norm of its gradient. The differential
Bianchi identities and the Ricci identities ensure that the
norm of the gradient of J0D will be functionally indepen-
dent. Repeating this process we can produce n functionally
independent invariants. For example, the cohomogeneity of
the 5D Kerr-NUT–anti-de Sitter metric is n ¼ ⌊5=2⌋ ¼ 2.
Therefore, the conformal invariants
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J0D ≡ JD

I
5
2

1

; K0
D ≡ jð∇JDÞ0jffiffiffiffi

I1
p

can be used to compute the norm of the wedge product of
their exterior derivatives,

jj ~Wjj2 ≡ 1

2!
δa1a2b1b2g

b1c1gb2c2J0D;a1
K0

D;a2
:

The invariant jj ~Wjj2 will be nonzero, except on the horizon
where it will vanish, and it transforms in a covariant manner
under a conformal transformation, implying that this
invariant will detect the event horizon of any dynamical
black hole conformally related to the 5D Kerr-NUT–anti-
de Sitter black hole.

VI. CONCLUSIONS

Motivated by the existence of dynamical black holes
conformally related to the Schwarzschild metric [3,26,27],
we have considered dynamical black holes conformally
related to stationary black hole solutions of higher coho-
mogeneity. In particular, we have examined a generaliza-
tion of the rotating cosmological black holes described by
the Thakurta metric [4] by applying a conformal trans-
formation to the Kerr-NUT–(anti)-de Sitter solution. A
dynamical black hole generated in this manner has the
unusual property that the event horizon could be identified
by locating the Killing horizon of the original stationary
black hole, assuming the conformal factor was known.
This implies that the event horizon of the dynamical

conformal black holemust be a quasilocal surface. Using the
fact that the SPI JD transforms covariantly under a con-
formal transformation for a larger class of spacetimes than
originally intended [2], we have introduced a procedure to
generate additional conformally covariant invariants for
these spacetimes. This allows for an invariant that can detect
the event horizon in a similar manner to stationary black
holes [9], without knowledge of the conformal factor.
In 4D, the trace free condition and algebraic Bianchi

identity ensure that any conformally covariant Weyl-like
tensor will yield a conformally covariant first order
invariant similar to J4. This dimensionally dependent
property allows for new functionally independent confor-
mally covariant invariants of higher degree and order to be
generated. With a functionally independent set of confor-
mally covariant invariants we can construct a conformally
covariant invariant that detects the horizon of any black
hole conformally related to a stationary black hole of
cohomogeneity n ≤ 3 [9]. In addition for the dynamical
black holes conformally related to the Kerr-NUT–(anti)-de
Sitter solutions, we have shown that the image of the
stationary limit surface, the conformal stationary limit
surface, can be detected by a conformally covariant SPI.
We have also presented necessary conditions to deter-

mine if a D-dimensional dynamical black hole is not

conformally related to a stationary black hole. The first
condition relies on the difference between the number of
functionally independent Cartan invariants and conformal
invariants for a given spacetime to determine necessary and
sufficient conditions for a spacetime to be conformally
related to a spacetime of lower cohomogeneity. The second
condition relies on the vanishing of the norm of the exterior
derivatives of the conformal invariants which is a necessary
condition for a stationary horizon. While we have dem-
onstrated the necessary conditions for the 4D ingoing Kerr-
Vaidya and Vaidya black hole solutions, these conditions
are applicable in higher dimensions, assuming conformal
invariants can be constructed.
In higher dimensions, it is no longer possible to ensure

JD or any invariant constructed in a similar manner will be
conformally covariant. However, if a given spacetime has at
least two conformally covariant invariants (for example, all
vacuum spacetimes), then it is still possible to construct
new invariants of higher order that are functionally inde-
pendent and can be combined to form a conformally
covariant invariant that detects the stationary horizon.
While we have only discussed this construction for the
5D Kerr-NUT–anti-de Sitter solution, we have verified that
this approach is applicable to the 5D rotating black ring and
the supersymmetric black ring solutions.
Because of the structure of the Weyl tensor in higher

dimensions, it is of interest to determine if there are other
conformally covariant invariants of order p ≥ 1 besides JD
and its derived invariants. In the case of stationary black
holes, the Cartan invariants have been shown to detect the
event horizon [13,25], thereby providing an alternative set
of invariants which are easier to compute than the related
SPIs. We believe that by exploring the relationship between
JD and the Cartan invariants, additional conformally
covariant invariants may be produced, and this will give
insight into the equivalence of spacetimes under the
conformal group [28–30].
As a final point, the dynamical black holes conformally

related to stationary black holes present an opportunity to
investigate the geometric horizon conjectures [31]; since the
event horizon is detected by aSPI,wewould like to determine
if theWeyl tensor becomes more algebraically special on this
surface [18]. This property can be determined in an invariant
manner using the discriminant SPIs as necessary conditions
[23] or by applying theCartan-Karlhede algorithm to identify
the appropriate coframe [1,24].
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