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We show that the exact solution of Einstein’s equations describing a binary system of aligned identical
Kerr black holes separated by a massless strut follows straightforwardly from the extended 2-soliton
solution possessing equatorial symmetry. We give its concise analytic form in terms of physical parameters
and then compare with our old solution of that problem obtained in canonical parametrization,
demonstrating the equivalence of the two approaches. A surprising physical by-product of our analysis
is the discovery that up to three different configurations of two corotating Kerr sources can have equal
masses and equal angular momenta. We also introduce physical parametrization to the general
six-parameter asymmetric configuration which permits to treat analytically the case of two nonequal
corotating black holes.
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I. INTRODUCTION

In our recent paper [1] we have considered in detail a
vacuum specialization of the general 2-soliton electrovac
metric [2] (henceforth referred to as the MMR solution) in
application to the description of the exterior geometry of
neutron stars [3,4]. Although we gave in that paper three
different representations of the vacuumMMR solution, still
we had one more representation of the latter solution that
had been worked out by us some time ago for treating the
two-body configurations of spinning black holes of Kerr’s
type [5], but we left its consideration for the future because
of the specific objectives of the paper [1]. However, the
appearance of a preprint on corotating Kerr sources [6] that
follows the ideas of [7] has motivated us, for several
reasons, to make public our results on the vacuum MMR
solution not earlier included into the paper [1]. First,
because the problem of corotating identical Kerr particles
was already solved (but not published) by us long ago using
the usual canonical parametrization [8], it would certainly
be interesting and instructive to consider both approaches
to the same problem in one place and compare them.
Second, although the authors of the paper [6] solved
correctly the axis condition for the binary system described
by the solution [2], they still were unable to get a concise
form of the resulting metric, and they omitted some
important details of the derivation that might be interesting
to the reader. Therefore, it is likely to work out a simple
form of the three-parameter subfamily of the MMR
solution describing the system of two equal Kerr black
holes kept apart by a massless strut [9] that would improve
the representation obtained in [6]. Moreover, it would be
also desirable to consider possible extensions of the results
obtained for identical constituents to the case of nonequal

Kerr sources. To accomplish the first two goals, wewill first
rewrite, using the procedure we have developed in a series
of papers devoted to the binary black-hole configurations
[10–13], the vacuum MMR metric in terms of physical
parameters by taking as a starting point the axis data of the
extended equatorially symmetric 2-soliton solution in the
form [14]

eðzÞ ¼ z2 − b̄1zþ b̄2
z2 þ b1zþ b2

; ð1Þ

where b1 and b2 are two arbitrary complex constants, and a
bar over a symbol means complex conjugation. The
particular three-parameter case of two separated Kerr black
holes will arise by just imposing the axis condition in the
general four-parameter metric. We will then show how this
three-parameter solution is obtainable using the standard
parametrization of the extended double-Kerr (EDK) space-
time, and this will enable us to compare the two approaches
employed for the derivation of that solution. A remarkable
output of our analysis will be demonstration that the
configurations with equal masses and angular momenta
are not unique—something that has never been reported
before for the binary configurations. For treating the more
general case of nonequal Kerr black holes we shall
reparametrize the axis data in a manner similar to the case
of identical constituents, allowing for a concise represen-
tation of the corresponding metric functions.
The paper is organized as follows. In the next section we

perform a reparametrization of the data (1) in terms of the
quantitiesM, a, σ and R related, respectively, to the masses
of the sources, their angular momenta, the horizons’ half
lengths and the coordinate distance between the centers of
the sources. The reparametrized axis data is then used for
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writing out the MMR solution in a new concise represen-
tation with the aid of the general formulas of Ref. [15]. In
Sec. III we solve the axis condition for the MMR solution
and analyze the resulting three-parameter configuration of
corotating Kerr black holes. By expanding the expression
of the interaction force in inverse powers of R, we show in
particular that the leading spin-spin repulsion term has
precisely the same form as was given earlier by Dietz and
Hoenselaers [16] through the analysis of two limiting cases
of spinning particles. An alternative derivation of the three-
parameter metric for identical Kerr sources is performed in
Sec. IV, where we also compare the two approaches to this
problem and establish that two different configurations of
that type can be characterized by the same masses and
angular momenta. In Sec. V we give the reparametrized
form of the general asymmetric 2-soliton metric suitable for
treating the case of two nonequal Kerr black holes.
Section V contains concluding remarks.

II. YET ANOTHER REPRESENTATION OF
THE VACUUM MMR SOLUTION

We would like to recall that the extended vacuum soliton
solutions [15] constructed with the aid of Sibgatullin’s
integral method [17] are written in terms of the parameters
αn and βl, the former parameters taking real values or
forming complex conjugate pairs (these determine the
location of sources on the symmetry axis), and the latter
being roots of the denominator in the axis data, hence
taking arbitrary complex values.
In the 2-soliton case with the additional equatorial

symmetry we have α1 ¼ −α4, α2 ¼ −α3, so that the α’s
can be parametrized as

α1 ¼
1

2
Rþ σ; α2 ¼

1

2
R − σ;

α3 ¼ −
1

2
Rþ σ; α4 ¼ −

1

2
R − σ; ð2Þ

or, inversely,

R ¼ 1

2
ðα1 þ α2 − α3 − α4Þ;

σ ¼ 1

2
ðα1 − α2Þ ¼

1

2
ðα3 − α4Þ; ð3Þ

where R is the coordinate distance between the centers of
black holes, and σ is the half length of the horizon of each
black hole (see Fig. 1). Note that σ in the above formulas (2)
and (3), as well as throughout this paper, can also take on
pure imaginary values, in which case the solution would
describe a pair of equal hyperextreme objects. However,
except for some special occurrences, below we will restrict
our analysis to the black-hole configurations only.
To identify the complex parameters β1 and β2, one has to

introduce explicitly the axis data—the value of the Ernst

complex potential [18] on the upper part of the symmetry
axis. In our case such data is given by formula (1), and
obviously can be cast into the equivalent form

eðzÞ ¼ z2 − 2ðM þ iaÞzþ cþ id
z2 þ 2ðM − iaÞzþ c − id

; ð4Þ

involving four arbitrary real constants M, a, c and d. Since
β1 and β2 are roots of the denominator on the right-hand
side of (4), it is clear that these verify the relation β1 þ β2 ¼
−2ðM − iaÞ and β1β2 ¼ c − id, while the denominator
itself can be formally written as ðz − β1Þðz − β2Þ.
We must bear in mind that the parameters αn in

Sibgatullin’s method satisfy the equation

eðzÞ þ ēðzÞ ¼ 0; ð5Þ

which means that if we want to introduce these αn into the
2-soliton solution as arbitrary parameters in the form (2),
then we have to solve the equation

eðzÞ þ ēðzÞ ¼ 2ðz − α1Þðz − α2Þðz − α3Þðz − α4Þ
ðz − β1Þðz − β2Þðz − β̄1Þðz − β̄2Þ

ð6Þ

for the constants c and d by equating the coefficients at the
same powers of z on both sides of (6). A simple algebra
then yields

c ¼ −
1

4
R2 þ 2M2 − 2a2 − σ2;

d ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − 4M2 þ 4a2Þðσ2 −M2 þ a2Þ

q
; ϵ ¼ �1;

ð7Þ

FIG. 1. Location of two identical Kerr black holes on the
symmetry axis: α4 ¼ −α1, α3 ¼ −α2.
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with which the axis data (4) finally takes the form

eðzÞ ¼ z2 − 2ðM þ iaÞz − 1
4
R2 þ 2M2 − 2a2 − σ2 þ id

z2 þ 2ðM − iaÞz − 1
4
R2 þ 2M2 − 2a2 − σ2 − id

;

ð8Þ

where the constant quantity d has been defined in (7).
Therefore, we have rewritten the axis data (4) containing

the parameters M, a, c and d in the equivalent form (8)
involving the desired set of the parameters M, a, R and σ.
It is worth noting that while the physical meaning of the
constants R and σ is transparent, the interpretation of
the parameters M and a can be revealed by calculating
the solution’s total mass MT and total angular momentum
JT from (8) with the help of the Fodor et al. procedure [19]
for the evaluation of Geroch-Hansen multipole moments
[20,21]. Thus we get

MT ¼ 2M; JT ¼ 4Ma − d; ð9Þ

whence it follows immediately thatM is half the total mass
of the configuration, whereas a is the rotational parameter.
Observe that M does not coincide exactly with the mass of
each black-hole constituent because the intermediate region
fρ ¼ 0; jzj < α2g in Fig. 1 may in principle carry some
mass, positive or negative.
Once the axis data is worked out, the corresponding

potential E satisfying the Ernst equation [18],

ðE þ ĒÞΔE ¼ 2ð∇EÞ2; ð10Þ

can be obtained from the formula [15]

E ¼ Eþ
E−

; E� ¼

��������������

1 1 1 1 1

�1 r1
α1−β1

r2
α2−β1

r3
α3−β1

r4
α4−β1

�1 r1
α1−β2

r2
α2−β2

r3
α3−β2

r4
α4−β2

0 1
α1−β̄1

1
α2−β̄1

1
α3−β̄1

1
α4−β̄1

0 1
α1−β̄2

1
α2−β̄2

1
α3−β̄2

1
α4−β̄2

��������������
;

ð11Þ

by just substituting the expressions of α’s and β’s deter-
mined by (2) and (8) into (11), and taking into account that

the functions rn, which depend on the coordinates ρ and z,
have the form rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − αnÞ2

p
.

In the Ernst formalism [18], the knowledge of the
potential E is sufficient for the construction of the corre-
sponding metric functions f, γ and ω from the stationary
axisymmetric line element

ds2 ¼ f−1½e2γðdρ2 þ dz2Þ þ ρ2dφ2�
− fðdt − ωdφÞ2; ð12Þ

and the explicit expressions for these functions defined by
the potential (11) can be found in Ref. [15] both in the form
of determinants and in the expanded form most suitable for
concrete computations and presentation of the results. Our
own evaluation of E, f, γ and ω for the axis data (8) yields
the following final formulas:

E ¼ A − B
Aþ B

; f ¼ AĀ − BB̄
ðAþ BÞðĀþ B̄Þ ;

e2γ ¼ AĀ − BB̄
K2

0RþR−rþr−
; ω ¼ 4a −

2Im½GðĀþ B̄Þ�
AĀ − BB̄

;

A ¼ R2ðRþ − R−Þðrþ − r−Þ − 4σ2ðRþ − rþÞðR− − r−Þ;
B ¼ 2Rσ½ðRþ 2σÞðR− − rþÞ − ðR − 2σÞðRþ − r−Þ�;
G ¼ −zBþ Rσ½2RðR−r− − RþrþÞ þ 4σðRþR− − rþr−Þ

− ðR2 − 4σ2ÞðRþ − R− − rþ þ r−Þ�; ð13Þ

where

R� ¼ −Mð�2σ þ RÞ þ id
2M2 þ ðRþ 2iaÞð�σ þ iaÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ

�
zþ 1

2
R� σ

�
2

s
;

r� ¼ −Mð�2σ − RÞ þ id
2M2 − ðR − 2iaÞð�σ þ iaÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ

�
z −

1

2
R� σ

�
2

s
; ð14Þ

and

K0 ¼
4R2σ2ðR2 − 4σ2Þ½ðR2 þ 4a2Þðσ2 þ a2Þ − 4MðM3 þ adÞ�

½M2ðRþ 2σÞ2 þ d2�½M2ðR − 2σÞ2 þ d2� : ð15Þ

Equations (13)–(15) and (7) fully determine the
desired representation of the four-parameter vacuum
MMR solution which, as will be seen in the next
section, is very suitable for treating the case of two

separated Kerr black holes. One can check by direct
calculation that on the upper part of the symmetry axis
fρ ¼ 0; z > 1

2
Rþ σg the potential E in (13) reduces to the

axis data (8).
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III. TWO IDENTICAL KERR BLACK HOLES
SEPARATED BY A STRUT

The MMR solution discussed in the previous section can
be interpreted as describing a pair of corotating Kerr black
holes after subjecting its parameters to the constraint

ω ¼ 0 for ρ ¼ 0; jzj < 1

2
R − σ; ð16Þ

which is known as the axis condition; this being satisfied,
converts the region fρ ¼ 0; jzj < 1

2
R − σg into a massless

conical singularity, a strut [9], which separates the two
black-hole constituents and prevents them from falling onto
each other. In this special case, the parameter M becomes
equal to the Komar mass [22] of each constituent exactly,
while the individual angular momentum J of each black
hole becomes equal to JT=2 because the strut does not
make contribution into the mass and angular momentum of
the configuration.
On the symmetry axis, the metric function ω of the

2-soliton metric takes constant values generically [23], so
that from the condition (16) we get a (complicated)
algebraic equation for the parameters M, a, σ and R,
which nonetheless factorizes and eventually leads to the
quadratic equation for σ,

ðR2 þ 2MRþ 4a2Þ2σ2 −M2R2ðRþ 2MÞ2
þ a2ðR2 − 4M2 þ 4a2ÞðR2 þ 4MR − 4M2 þ 4a2Þ ¼ 0;

ð17Þ

with the positive root

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ 4M2a2ðR2 − 4M2 þ 4a2Þ

ðR2 þ 2MRþ 4a2Þ2

s
; ð18Þ

which coincides with the expression for σ obtained
in Ref. [6].
Taking into account (18), the constant quantity d from

(7) assumes the form

d ¼ 2MaðR2 − 4M2 þ 4a2Þ
R2 þ 2MRþ 4a2

; ð19Þ

and this is exactly the quantity δ from the paper [6]. The
constant K0 from (15) rewrites, with account of (18) and
(19), as

K0 ¼
4σ2½ðR2 þ 2MRþ 4a2Þ2 − 16M2a2�

M2½ðRþ 2MÞ2 þ 4a2� : ð20Þ

We mention that the above expression for d can be also
used for writing σ in a slightly simpler form

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ d2ðR2 − 4M2 þ 4a2Þ−1

q
: ð21Þ

Therefore, the three-parameter specialization of the
MMR solution describing two equal corotating Kerr black
holes separated by a strut is defined concisely by for-
mulas (13), (14) and (18)–(20). Apparently, our expressions
for the Ernst potential and for all metric functions defining
this subfamily are a good deal simpler than the ones
obtained in Ref. [6].
On the horizons (the null hypersurfaces ρ ¼ 0;−σ <

z − 1
2
R < σ and ρ ¼ 0;−σ < zþ 1

2
R < σ—two thick rods

in Fig. 1), the black-hole constituents of this binary
configuration are expected to verify the well-known
Smarr mass formula [24]

M ¼ 1

4π
κSþ 2ΩJ; ð22Þ

where κ is the surface gravity, S the area of the horizon, Ω
the horizon’s angular velocity and J the Komar angular
momentum of a black hole. Apparently, because of the
equatorial symmetry of the problem, the relation (22)
should be checked only for one of the constituents, say,
for the upper one. Since the black holes are corotating, their
Komar masses and angular momenta are both halves of the
respective total values, MT and JT , determined by (40);
hence, the mass of each black hole is M, while the
corresponding individual angular momentum J is given,
as it follows from (40) and (19), by the expression [6]

J ¼ Ma½ðRþ 2MÞ2 þ 4a2�
R2 þ 2MRþ 4a2

; ð23Þ

and one can see that the inverse dependence aðJÞ is defined
by a cubic equation.
For the calculation of the quantities κ, Ω and S, the

following formulas should be used [25]:

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω−2

H e−2γH
q

; Ω ¼ ω−1
H ; S ¼ 4πσκ−1; ð24Þ

where ωH and γH denote the values of the metric functions
ω and γ on the horizon. The straightforward calculations
carried out for the upper black hole yield the following
expression for the horizon’s angular velocity:

Ω ¼ ðM − σÞðR2 þ 2MRþ 4a2Þ
2Ma½ðRþ 2MÞ2 þ 4a2� ; ð25Þ

while the quantities S and κ are defined by the formula [6]

S ¼ 4πσ

κ

¼ 8πM½ðRþ 2MÞ2 þ 4a2�½ðRþ 2MÞðM þ σÞ − 4a2�
ðRþ 2σÞðR2 þ 2MRþ 4a2Þ :

ð26Þ
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Then it is easy to see that Smarr’s relation (22) is indeed
verified by virtue of (23), (25) and (26).
Let us briefly comment on the possibility of the

equilibrium without a strut between two corotating Kerr
sources. If we denote by γ0 the constant value of the metric
function γ on the strut, then the interaction force in our
binary system can be found by means of the formula
F ¼ ðe−γ0 − 1Þ=4 [9,26], thus yielding [6]

F ¼ M2½ðRþ 2MÞ2 − 4a2�
ðR2 − 4M2 þ 4a2Þ½ðRþ 2MÞ2 þ 4a2� : ð27Þ

This force becomes zero at infinite separation of the
constituents, and also when jaj ¼ ðRþ 2MÞ=2. In the
latter case, σ becomes a pure imaginary quantity, which
means that balance at finite separation is only possible
between two hyperextreme Kerr sources; the value of the
angular momentum leading to the equilibrium is
jJj ¼ MðRþ 2MÞ2=ðRþMÞ, being characteristic of the
Dietz-Hoenselaers equilibrium configuration [16].
In order to have a somewhat better idea about the

interaction force in the generic case, it seems plausible
to resort to some approximations in (27) for introducing the
angular momentum J explicitly. Then we readily get from
(23) and (27) the following approximate formula for F as
R → ∞:

F ≃M2

R2
þ 4M4 − 12J2

R4
þ 80MJ2

R5
þO

�
1

R6

�
: ð28Þ

The form of the leading term in (28) responsible for the
spin-spin interaction of corotating Kerr sources coincides
with the one already given by Dietz and Hoenselaers [16]
through the analysis of two limiting cases of spinning
particles in the double-Kerr solution [27].

IV. RESOLUTION OF THE PROBLEM OF
COROTATING IDENTICAL KERR SOURCES IN

CANONICAL PARAMETRIZATION

In this section we shall present our old solution of the
problem of identical Kerr sources separated by a massless
strut obtained by us already in 2009 using canonical
representation of the EDK solution, but not published to
date due to various circumstances. It will be shown that the
binary configurations obtainable in this way are fully
equivalent to the two-body systems considered in the
previous section.
We remind that the Ernst potential of the EDK solution,

after the expansion of the determinants in formula (11),
takes the form [15,28]

E ¼ Eþ=E−; E� ¼ Λ� Γ; Λ ¼
X

1≤i<j≤4
λijrirj; Γ ¼

X4
i¼1

γiri;

λij ¼ ð−1Þiþjðαi − αjÞðαi0 − αj0 ÞXiXj; ði0; j0 ≠ i; j; i0 < j0Þ
γi ¼ ð−1Þiðαi0 − αj0 Þðαi0 − αk0 Þðαj0 − αk0 ÞXi; ði0; j0; k0 ≠ i; i0 < j0 < k0Þ

Xn ¼
ðαn − β̄1Þðαn − β̄2Þ
ðαn − β1Þðαn − β2Þ

; ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − αiÞ2

q
; ð29Þ

while the corresponding metric functions are defined by the expressions

f ¼ EþĒ− þ ĒþE−

2E−Ē−
; e2γ ¼ EþĒ− þ ĒþE−

2λ0λ̄0r1r2r3r4
; ω ¼ 2iðGĒ− − ḠE−Þ

EþĒ− þ ĒþE−
;

G ¼ −σ0Λþ σ̄0Γþ zΓþ
X

1≤i<j≤4
ðαi þ αjÞλijrirj −

X4
i¼1

ðαi0 þ αj0 þ αk0 Þγiri; ði0; j0; k0 ≠ i; i0 < j0 < k0Þ

λ0 ¼
X

1≤i<j≤4
λij; σ0 ≡ β1 þ β2 ¼

1

λ0

�
γ0 þ

X
1≤i<j≤4

ðαi þ αjÞλij
�
; γ0 ¼

X4
i¼1

γi: ð30Þ

Here the parameters αn are the same as used in the
previous sections, i.e., they determine the location of
sources on the symmetry axis and can take on real values
or occur in complex conjugate pairs; βl are two arbitrary
complex constants, while the four constant objects Xn are
such that

XiX̄i ¼ 1 for real αi;

XiX̄j ¼ 1 for αi ¼ ᾱj; ð31Þ

and these Xn can be used as independent parameters instead
of the constants βl.
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Assuming the usual ordering of the parameters
αn, namely, Reðα1Þ ≥ Reðα2Þ > Reðα3Þ ≥ Reðα4Þ, in the
equatorially symmetric case [29,30] the above αn and Xn
must verify the relations [28]

α4 ¼ −α1; α3 ¼ −α2;

X4 ¼ −1=X1; X3 ¼ −1=X2 ð32Þ

independently of whether α’s are real or complex valued.
Therefore, we can choose α1, α2, X1 and X2 as arbitrary
parameters defining this equatorially symmetric subfamily
of the EDK solution. Note that Eqs. (29)–(32) are equiv-
alent to the vacuum MMR metric.
By construction, the metric functions γ and ω of the four-

parameter solution (29)–(32) take zero values on the upper
and lower parts of the symmetry z-axis defined, respec-
tively, by z > Reðα1Þ and z < −Reðα1Þ. Hence, in order to
interpret this configuration as a system of two separated
identical Kerr black holes or hyperextreme objects it is only
necessary to solve the axis condition on the part −Reðα2Þ ≤
z ≤ Reðα2Þ of the symmetry axis separating the two
constituents:

ωðρ ¼ 0; zÞ ¼ ωð0Þ ¼ 0; ð33Þ

where ωð0Þ denotes the constant value taken by the function
ω in the intermediate region (see Fig. 1). The latter constant
value ωð0Þ was calculated for the general EDK solution in
the paper [28], where it was found to have the form

ωð0Þ ¼ Cð0Þ
ω =Cð0Þ

f , the constant objects Cð0Þ
ω and Cð0Þ

f being
defined by formula (7) of [28]. In our particular equato-
rially symmetric case the use of the latter formulas leads,
after a convenient parametrization of α1 and α2 as

α1 ¼ s

�
1

2
þ σ

�
; α2 ¼ s

�
1

2
− σ

�
; ð34Þ

where s is the separation distance fully analogous to R in
(2), and σ is the dimensionless analog of σ in (2), to the
following explicit form of the axis condition (33):

8iσsN
D

¼ 0;

N ¼ 2σ2ðX1X2 þ 1Þ½X1 þ X2 þ X1X2ðX1 þ X2 þ 4Þ�
− σðX1 − X2ÞðX1 þ 1ÞðX2 þ 1ÞðX1X2 − 1Þ

þ 1

2
ðX1 − X2Þ2ðX1X2 þ 1Þ;

D ¼ ½2σðX1X2 − 1Þ þ X1 − X2�½4σ2ðX1X2 þ 1Þ2
þ ðX1 − X2Þ2�: ð35Þ

It is easy to see that after the redefinition σ ¼
ðX1 − X2Þκ, the factor ðX1 − X2Þ cancels out in (35),
and both the numerator and denominator of (35) become
functions of the product X1X2 and the sum X1 þ X2 only.
The product X1X2 is a complex unitary number, so it can be
defined as X1X2 ¼ ϕ2, ϕϕ̄ ¼ 1, and the sum can be chosen
in the form X1 þ X2 ¼ 2ϕμ, where μ, as is not difficult to
show, is some real function, so that X1 and X2 are roots of
the quadratic equation X2 − 2ϕμX þ ϕ2 ¼ 0 whose solu-
tion is

X1 ¼ ϕ
�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 1

q 	
; X2 ¼ ϕ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 1

q 	
:

ð36Þ
Expressions (36) yield for X1 and X2 the unitary complex
values when jμj < 1, in which case α1 and α2 are real
valued, thus determining a pair of subextreme constituents;
but if jμj > 1, then X1X̄2 ¼ 1 and we have the case of
hyperextreme constituents. Accounting for (36), the rede-
fined σ assumes the form σ ¼ 2ϕκ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 1

p
, and, observing

that the product ϕκ is a pure imaginary quantity for any
choice of α1 and α2, it is advantageous to further redefine κ
as κ ¼ −i=ð2ϕνÞ, ν being a real quantity, with which σ
assumes the new form

σ ¼ −
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 1

p
ν

; ð37Þ

whence it follows in particular that ν > 0.
After the substitution of (36) and (37) into (35), the axis

condition finally rewrites as

2sϕf2μ½νϕðϕ2 − 1Þ þ iðϕ2 þ 1Þ2� þ ðϕ2 þ 1Þ½νðϕ2 − iνϕ − 1Þ þ 4iϕ�g
ðϕ2 þ iνϕ − 1Þ½ϕ4 þ ϕ2ðν2 − 2Þ − 1� ¼ 0; ð38Þ

with the apparent solution

μ ¼ ðϕ2 þ 1Þ½ϕðν2 − 4Þ þ iνðϕ2 − 1Þ�
2½ðϕ2 þ 1Þ2 − iνϕðϕ2 − 1Þ� : ð39Þ

Therefore, we have solved the axis condition and arrived at the following important conclusion: formulas (36), (37) and
(39) define completely the subfamily of the EDK solution for two identical corotating Kerr sources. The three parameters it
involves are ϕ, ν and s.
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To answer the question of whether in this particular
solution it is possible to use the mass and angular
momentum as arbitrary parameters instead of ϕ and ν,
we shall use the dimensionless quantities m and a in terms
of which the total massM and total angular momentum J of
the system have the form

M ¼ 2ms; J ¼ 2mas2; ð40Þ
so that m and a represent the individual mass and
angular momentum per unit mass of each constituent.
The procedure [19] then readily gives in our case the
expressions of M and J, and consequently of m and a, in
terms of ϕ and ν:

m ¼ −
2ϕ2

ðϕ2 þ 1Þ2 − iνϕðϕ2 − 1Þ ;

a ¼ ðϕ2 þ 1Þðϕ2 − 1 − iνϕÞ2
2νϕ½ðϕ2 þ 1Þ2 − iνϕðϕ2 − 1Þ� ; ð41Þ

and despite the aspect of m and a in (41), these are the real
quantities because of the unitarity of ϕ and reality of ν.
Solving now the first equation in (41) for ν and substituting
the result into the expression of a, we get

ν ¼ −
i½mðϕ2 þ 1Þ2 þ 2ϕ2�

mϕðϕ2 − 1Þ ;

a ¼ −
iϕ2ð2mþ 1Þ2ðϕ2 þ 1Þ

ðϕ2 − 1Þ½mðϕ2 þ 1Þ2 þ 2ϕ2� ; ð42Þ

while the expression (39) for μ rewrites as

μ ¼ ðϕ2 þ 1Þ½4m2ðϕ4 þ 1Þ þmðϕ4 þ 6ϕ2 þ 1Þ þ 2ϕ2�
2mϕðϕ2 − 1Þ2 :

ð43Þ
It follows from (42) that finding ϕ as a function ofm and

a reduces to the solution of the cubic equation

Z3 − pZ2 þ p̄Z − 1 ¼ 0;

p ¼ −
mþ 2

m
−
ið2mþ 1Þ2

ma
; Z≡ ϕ2; ð44Þ

which to some extent is analogous to the cubic Eq. (23) of
the previous section. The need to solve the above equation
for introducing explicitly the genuine angular momentum
explicitly into the solution under consideration indicates
first of all that, like in the case of the parametrization used
in the previous section, such introduction would only
highly complicate the form of the solution and hence does
not look to be a practical goal to pursue. On the other hand,
the cubic Eq. (44), unlike Eq. (23), turns out to be very
suitable for the analysis of such an important issue as the
uniqueness of the configurations with equal masses and
equal angular momenta, and below we shall demonstrate

that, quite unexpectedly, the latter two physical character-
istics do not always define a two-Kerr system uniquely.
The demonstration is not sophisticated and is based on

the assertion that Eq. (44) admits at least one unitary
solution for any p, and that there are values of p for which
all three solutions of (44) are unitary. Indeed, if
fZ1; Z2; Z3g are solutions of the above equation, then
obviously fZ̄1; Z̄2; Z̄3g are solutions of the complex con-
jugate equation Z3 − p̄Z2 þ pZ − 1 ¼ 0 whose solutions,
as can be easily verified, are also f1=Z1; 1=Z2; 1=Z3g. The
correspondence between the latter two sets of solutions
naturally leads to the following two possibilities:

Z̄1 ¼ 1=Z1; Z̄2 ¼ 1=Z2; Z̄3 ¼ 1=Z3; ð45Þ
with three unitary solutions, and

Z̄1 ¼ 1=Z1; Z̄2 ¼ 1=Z3; Z̄3 ¼ 1=Z2; ð46Þ
where only one of the solutions (the first one) is unitary, and
this completes the argument.
To answer the question about the conditions under which

Eq. (44) has one or three unitary roots, we note that when
all three solutions are unitary they can be written in the
form

Z1 ¼ eiψ1 ; Z2 ¼ eiψ2 ; Z3 ¼ eiψ3 ; ð47Þ
where ψ1, ψ2 and ψ3 are arbitrary real constants, while in
the case of only one unitary solution, the roots of Eq. (44)
can be written as

Z1 ¼ eiψ1 ; Z2 ¼ qeiψ2 ; Z3 ¼ eiψ2=q; ð48Þ
where q is a real constant. Moreover, assuming that the
dependence of the solutions on p in (44) is reasonably
continuous, the passage from the set (47) to the set (48) of
solutions occurs when there appears a double unitary root
corresponding to q ¼ 1 in (48):

Z1 ¼ eiψ1 ; Z2 ¼ Z3 ¼ eiψ2 : ð49Þ
In any of the three cases (47), (48) and (49) the symmetric
functions associated with the cubic Eq. (44) permit to
express p in terms of the roots of this equation by means of
the relations

Z1Z2Z3 ¼ 1; p̄ ¼ Z1Z2 þ Z1Z3 þ Z2Z3;

p ¼ Z1 þ Z2 þ Z3; ð50Þ
but the result is especially interesting in the boundary case
(49) for which the system (50) takes the form

eiðψ1þ2ψ2Þ ¼ 1; p̄ ¼ 2eiðψ1þψ2Þ þ e2iψ2 ;

p ¼ eiψ1 þ 2eiψ2 : ð51Þ

From (51) we get
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ψ1 ¼ −2ψ2 þ 2πn; ðn ¼ 0;�1;�2;…Þ
p ¼ 2 cosψ2 þ cos 2ψ2 þ ið2 sinψ2 − sin 2ψ2Þ; ð52Þ

and the plot of this p defining the case of two unitary roots
of Eq. (44) has a curious form shown in Fig. 2 which we
dub a “tanga” curve. Apparently, this curved triangle
represents a boundary which separates the cubic equations
with one unitary solution from those having three such
solutions. Note that the latter case is determined by the
values of p lying inside the tanga curve.
As can be seen from (44), each value of p determines

uniquely a pair of physical parameters m and a via the
formulas

m ¼ −
2

px þ 1
; a ¼ ðpx − 3Þ2

2pyðpx þ 1Þ ð53Þ

(px and py denote, respectively, the real and imaginary
parts of p) whence it follows that the sign of m depends
exclusively on the value of px, being positive for px < −1.
Taking into account that there exist values of p giving rise
to three possible values of Z, which in turn define six values
of ϕ ¼ � ffiffiffiffi

Z
p

, reducible to only three acceptable values
after a correct choice of sign ensuring ν > 0, we finally
arrive at the conclusion that each particular value of p from
the tanga zone defines three possible values of ϕ for the
same values of m and a, or in other words, there exist three

different solutions for corotating Kerr sources with the
same values of mass and angular momentum.

A. Example: Two solutions with the same mass
and angular momentum

To illustrate the above analysis of nonuniqueness, let us
take for simplicity some value of p belonging to the curved
triangle, in which case we will have two different solutions
with the same m and a. If we choose for instance ψ2 ¼
5π=6 in (52), then we get from (52) and (53) that

p ¼ 1

2
þ i −

�
1 −

i
2

� ffiffiffi
3

p
; ψ1 ¼ 2π − 2ψ2 ¼

π

3
;

m ¼ 4þ 8ffiffiffi
3

p ; a ¼ −10 −
37

2
ffiffiffi
3

p ; ð54Þ

the roots of the cubic Eq. (44) being

Z1 ¼
1

2
þ i

ffiffiffi
3

p

2
; Z2 ¼ Z3 ¼ −

ffiffiffi
3

p

2
þ i
2
: ð55Þ

The two values of ϕ corresponding to Z1 are�ð ffiffiffi
3

p þ iÞ=2,
and we have to choose the minus sign in order to have
positive ν in (42):

ϕ ¼ −
ffiffiffi
3

p

2
−
i
2
; ν ¼ 3

2
þ

ffiffiffi
3

p
: ð56Þ

Similarly, in the case of the second rootZ2 we get forϕ and ν

ϕ ¼ −
ð ffiffiffi

3
p þ iÞð1þ iÞ

2
ffiffiffi
2

p ; ν ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
3

pq
: ð57Þ

Furthermore, calculation of μ and σ by means of
formulas (37) and (43) reveals that both solutions describe
the hyperextreme objects, giving in the first case

μ ¼ 1

4
ð70þ 43

ffiffiffi
3

p
Þ; σ ¼ −

i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
259þ 416ffiffiffi

3
p

s
; ð58Þ

and in the second case yielding

μ ¼ −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122þ 65

ffiffiffi
3

pq
; σ ¼ −

i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
407þ 236

ffiffiffi
3

pq
:

ð59Þ

For the quantities X1 and X2, formula (36) gives us

X1;2 ¼ −
1

8
ð

ffiffiffi
3

p
þ iÞ

�
70þ 43

ffiffiffi
3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10431þ 6020

ffiffiffi
3

pq 	
ð60Þ

(the first solution), and

FIG. 2. Plot of boundary values of p ¼ px þ ipy separating
the case of unique configurations with particular m and a
from the case of three different configurations with the same
m and a. The vertices of the curved triangle correspond to
p ¼ 3; 3

2
ð−1� i

ffiffiffi
3

p Þ.
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X1;2 ¼
1

8
ffiffiffi
2

p ð
ffiffiffi
3

p
þ iÞð1þ iÞ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122þ 65

ffiffiffi
3

pq
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
106þ 65

ffiffiffi
3

pq �
ð61Þ

(the second solution).
Therefore, we have identified two different configura-

tions of corotating Kerr sources possessing the same
masses and angular momenta. An additional check that
the solutions are intrinsically different provides the values
of their nondimensional quadrupole moments k ¼ Q=ms3

which have been found to be

kð1Þ ¼ −
1297

3
− 244

ffiffiffi
3

p ≃ −854.954;

kð2Þ ¼ −
1325

3
−
764ffiffiffi
3

p ≃ −882.762: ð62Þ

It would be instructive to conclude this section by
showing that the parametrization introduced in the previous
two sections is congruent with the canonical approach
discussed in the present section. For this purpose we rewrite
formulas (18) and (23) in the dimensionless form via the
substitutions R → s, σ → σ=s, M → ms, J → js2, a → qs
(the latter a should not be confused with the a introduced in
this section for the angular momentum per unit mass),
resulting in

σ2 ¼ m2 − q2 −
4m2q2ð4m2 − 4q2 − 1Þ

ð2mþ 4q2 þ 1Þ2 ;

j ¼ 2mq½ð2mþ 1Þ2 þ 4q2�
2mþ 4q2 þ 1

: ð63Þ

Since j in the second equation from (63) is equal to the
product ma of dimensionless mass and angular momentum
per unit mass, we can substitute the particular values of m
and a from (54) into that cubic equation and solve it for q,
thus getting

qð1Þ ¼ −8 −
9

ffiffiffi
3

p

2
; qð2Þ ¼ qð3Þ ¼ −1 −

5
ffiffiffi
3

p

6
; ð64Þ

and the subsequent substitution of the above values of q
into the first formula from (63) [with the particular m from
(54)] then leads to the following two values of σ2:

−
259

4
−
104ffiffiffi
3

p and −
407

4
− 59

ffiffiffi
3

p
; ð65Þ

which coincide exactly with the squared σ’s from (58) and
(59). This means that both parametrizations are appropriate
for treating the systems of two equal Kerr particles, though
it seems that the cubic Eq. (44) still permits a more

consistent analysis and classification of particular configu-
rations than its counterpart (23).

V. TOWARDS THE DESCRIPTION OF TWO
NONEQUAL KERR BLACK HOLES

We will now outline a possible approach to treating the
general case of interacting nonequal Kerr black holes which
is likely to provide new information in the future about the
spin-spin repulsion force in binary systems of rotating
bodies. This approach consists in reparametrizing the
general extended 2-soliton solution in the manner similar
to the one already applied to the equatorially symmetric
case in the previous sections. The starting point of such a
procedure is the axis data of the form

eðzÞ ¼ z2 þ a1zþ a2
z2 þ b1zþ b2

; ð66Þ

where a1, a2, b1 and b2 are four arbitrary complex
constants, together with the choice of the parameters αn
of the extended soliton solution in the form slightly
different from (2) (see Fig. 3),

α1 ¼
1

2
Rþ σ1; α2 ¼

1

2
R − σ1;

α3 ¼ −
1

2
Rþ σ2; α4 ¼ −

1

2
R − σ2; ð67Þ

σ1 and σ2 taking real or pure imaginary values (real σ’s,
as usual, define black holes, while pure imaginary σ’s—
the hyperextreme objects). The elimination of the angular
momentum monopole parameter in (66) with the aid
of the Fodor et al. method [19] and fixing the origin of
coordinates by means of (67) reduces the number of

FIG. 3. Location of two nonequal Kerr black holes on the
symmetry axis.
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arbitrary real parameters in the data (66) to six overall,
and the procedure of introducing the parameters αn into the
axis data described in Sec. I then leads to the following
expression for the reparametrized data (66):

eðzÞ ¼ z2 − ðM þ iaÞzþ cþ id
z2 þ ðM − iaÞzþ gþ ih

; ð68Þ

where M is the total mass, a is the rotational parameter,
while the constant quantities c, d, g and h are defined as
follows:

c ¼ s − μ; g ¼ sþ μ;

d ¼ 1

4a
ðτ þ δÞ; h ¼ 1

4a
ðτ − δÞ; ð69Þ

with

s ¼ −
1

4
½R2 þ 2ðσ21 þ σ22 −M2 þ a2Þ�;

δ ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − κ

p
; ϵ ¼ �1;

τ ¼ 2Rðσ21 − σ22Þ − 4Mμ;

κ ¼ a2½16ðμ2 − s2Þ þ ðR2 − 4σ21ÞðR2 − 4σ22Þ�: ð70Þ

The six arbitrary real parameters involved in the axis data
(68) are henceM, a, R, σ1, σ2, μ, and one can see that in the
particular case μ ¼ 0, σ1 ¼ σ2 ¼ σ the data (68) reduces to
the equatorially symmetric data (8), albeit a formal redefi-
nition M → 2M, a → 2a.
Using the general formulas of the paper [15], we have

worked out the Ernst potential and the whole metric deter-
mined by the axis data (68) in the following concise form:

E ¼ A − B
Aþ B

; f ¼ AĀ − BB̄
ðAþ BÞðĀþ B̄Þ ; e2γ ¼ AĀ − BB̄

K0RþR−rþr−
; ω ¼ 2a −

2Im½GðĀþ B̄Þ�
AĀ − BB̄

;

A ¼ ½R2 − ðσ1 þ σ2Þ2�ðRþ − R−Þðrþ − r−Þ − 4σ1σ2ðRþ − r−ÞðR− − rþÞ;
B ¼ 2σ1ðR2 − σ21 þ σ22ÞðR− − RþÞ þ 2σ2ðR2 þ σ21 − σ22Þðr− − rþÞ þ 4Rσ1σ2ðRþ þ R− − rþ − r−Þ;
G ¼ −zBþ σ1ðR2 − σ21 þ σ22ÞðR− − RþÞðrþ þ r− þ RÞ þ σ2ðR2 þ σ21 − σ22Þðr− − rþÞðRþ þ R− − RÞ

− 2σ1σ2f2R½rþr− − RþR− − σ1ðr− − rþÞ þ σ2ðR− − RþÞ� þ ðσ21 − σ22Þðrþ þ r− − Rþ − R−Þg; ð71Þ

where the functions R� and r� are given by the expressions

R� ¼ δþ 2ia½Mð�2σ2 þ RÞ − 2μ�
τ − ia½ð�2σ2 þ RÞð�2σ2 þ Rþ 2iaÞ þ 4s�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ

�
zþ 1

2
R� σ2

�
2

s
;

r� ¼ δþ 2ia½Mð�2σ1 − RÞ − 2μ�
τ − ia½ð�2σ1 − RÞð�2σ1 − Rþ 2iaÞ þ 4s�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ

�
z −

1

2
R� σ1

�
2

s
; ð72Þ

and the choice of the constant K0 in the formula for γ must
preserve the asymptotic flatness of the solution.
In order to interpret the metric (71) as describing two

unequal Kerr black holes, it is necessary to solve the
condition ω ¼ 0 on the part fρ ¼ 0;− 1

2
Rþ σ2 < z <

1
2
R − σ1g of the z-axis. However, the bad thing is that,

compared to the equatorially symmetric case, the resulting
explicit form of the axis condition in the general case is
extremely cumbersome, so that really very powerful com-
puters are needed to be able to perform the required
calculations in the analytical form. In spite of that, the
numerical analysis of the axis condition suggests that the

analytical treatment of the general case is still possible in
principle because this condition leads to the quartic
algebraic equation for the parameter μ. A particular
configuration of two nonequal black holes obtainable in
this way is the following:

M ¼ 2; a ¼ 1; R ¼ 6; σ1 ¼ 1=2;

σ2 ¼ 1=4; μ≃ −2.1876: ð73Þ

We do not exclude that some clever redefinitions of the
parameters or fortunate substitutions might cause the
factorization of the axis condition and the eventual reso-
lution of the problem in a relatively compact form on the
basis of the metric (71). But the accomplishment of this
technically very complicated mission still remains an
interesting task for the future.

VI. CONCLUSION

Therefore, we have shown that the vacuum MMR
solution is very fit for the analytical description and study
of the binary configuration of corotating identical Kerr
black holes, for which we have worked out a concise
representation that improves the one obtained in Ref. [6].
We have also presented our old solution of the problem of
corotating Kerr particles in the canonical parametrization
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and demonstrated that configurations with the same masses
and angular momenta can be not unique. We have restricted
our consideration exclusively to the case of nonextreme
constituents because the extreme case of two equal or
nonequal Kerr black holes is described by a subclass of the
well-known Kinnersley-Chitre solution [31] which was
already identified and discussed in our earlier work [32].
We are convinced that in order to get a better insight into

the nature of the spin-spin interaction, future research
should be more concentrated on the configurations of
nonequal spinning bodies because, apparently, the cases
of identical constituents can be considered as degenerations
of the respective generic cases and hence could in principle

hide some important information about the real strength of
the spin-spin repulsion or attraction. In this respect, a good
understanding of the systems of identical spinning bodies is
certainly necessary and brings us closer to the description
of more sophisticated binary configurations that arise, for
instance, within the framework of the general 2-soliton
spacetime (71).
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