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We consider gedanken experiments to destroy an extremal or nearly extremal Kerr-Newman black hole
by causing it to absorb matter with sufficient charge and/or angular momentum as compared with energy
that it cannot remain a black hole. It was previously shown by one of us that such gedanken experiments
cannot succeed for test particle matter entering an extremal Kerr-Newman black hole. We generalize this
result here to arbitrary matter entering an extremal Kerr-Newman black hole, provided only that the
nonelectromagnetic contribution to the stress-energy tensor of the matter satisfies the null energy condition.
We then analyze the gedanken experiments proposed by Hubeny and others to overcharge and/or overspin
an initially slightly nonextremal Kerr-Newman black hole. Analysis of such gedanken experiments requires
that we calculate all effects on the final mass of the black hole that are second-order in the charge and
angular momentum carried into the black hole, including all self-force effects. We obtain a general formula
for the full second order correction to mass, δ2M, which allows us to prove that no gedanken experiments of
the generalized Hubeny type can ever succeed in overcharging and/or overspinning a Kerr-Newman black
hole, provided only that the nonelectromagnetic stress-energy tensor satisfies the null energy condition.
Our analysis is based upon Lagrangian methods, and our formula for the second-order correction to mass is
obtained by generalizing the canonical energy analysis of Hollands andWald to the Einstein-Maxwell case.
Remarkably, we obtain our formula for δ2M without having to explicitly compute self-force or finite size
effects. Indeed, in an appendix, we show explicitly that our formula incorporates both the self-force and
finite size effects for the special case of a charged body slowly lowered into an uncharged black hole.
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I. INTRODUCTION

The Kerr-Newman family of metrics are the unique
stationary, asymptotically flat black hole solutions of the
Einstein-Maxwell equations in 4 spacetime dimensions.
The Kerr-Newman metrics comprise a 3-parameter family
of solutions parametrized by mass M, charge Q, and
angular momentum J ¼ Ma. However, these solutions
describe black holes only for a limited region of this
parameter space, characterized by the inequality

M2 ≥ ðJ=MÞ2 þQ2: ð1Þ

When this inequality is not satisfied, the spacetime contains
a naked singularity, i.e., the singularity is visible from
infinity.
The above facts give rise to a possible means of testing

the weak cosmic censorship conjecture [1,2], which states
that all singularities arising from gravitational collapse
must be hidden within black holes, so that no physical
process can give rise to a naked singularity. Suppose that
we start with a Kerr-Newman black hole satisfying (1).
Now throw/drop matter into the black hole carrying energy
E, angular momentum, l, and charge q, so that the final

state will have massM þ E, angular momentum J þ l, and
charge Qþ q. Then if l and/or q can be made sufficiently
large compared with E, the inequality (1) will be violated,
resulting in a contradiction with the final state being a
black hole.
The most obvious case to consider for an attempt to

destroy a black hole in this manner would be to start with an
extremal black hole, satisfyingM2 ¼ ðJ=MÞ2 þQ2, and to
throw in particle matter. This case was analyzed in 1974 by
one of us in paper I of this series [3]. It was shown in paper I
that no violations of (1) can occur by throwing particle
matter into an extremal Kerr-Newman black hole. The
nature of this result is well illustrated by considering the
special case of attempting to “overcharge” an extremal
Reissner-Nordstrom (Q ¼ M) black hole. Let ξa denote the
horizon Killing field, which, for a Reissner-Nordstrom
black hole, coincides with the static Killing field ð∂=∂tÞa.
A test particle with mass m and charge q in this spacetime
has energy given by

E ¼ −ðmua þ qAaÞξa; ð2Þ

where ua is the four-velocity of the particle and Aa is the
vector potential of the black hole’s electromagnetic field.
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Since ξa is null on the horizon, the first term −muaξa is
non-negative on the horizon, although it can be made
arbitrarily small. Thus, the energy of a particle that crosses
the horizon is bounded below by the electromagnetic
potential energy term

E ≥ qΦH; ð3Þ

where ΦH ¼ ð−Aaξ
aÞjH is the electromagnetic potential

evaluated on the horizon. However,ΦH ¼ 1 for an extremal
Reissner-Nordstrom black hole, so any particle that enters
the black hole must satisfy

E ≥ q: ð4Þ

Consequently, we have M þ E ≥ Qþ q, so (1) holds. In
other words, any particle with sufficiently large charge q as
compared with E to produce a violation of (1) for the final
state would be repelled by the electric field of the black hole
and thus cannot enter it. As shown in paper I [3], similar
results hold for attempting to overcharge and/or overspin a
general extremal Kerr-Newman black hole using particle
matter.
Nevertheless, in 1999 Hubeny [4] proposed that viola-

tions of (1) might still occur if one suitably added matter to
a slightly nonextremal black hole. To see this, consider a
slightly nonextremal Reissner-Nordstrom black hole. It is
useful to introduce the dimensionless parameter

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
M

; ð5Þ

so that ϵ → 0 in the extremal limit. For ϵ ≪ 1, we have

ΦH ¼ Q=rþ ≈ 1 − ϵ; ð6Þ

where rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
is the horizon radius. In place

of (4) we now obtain

E ≥ qð1 − ϵÞ: ð7Þ

Consequently, for this lower bound for E, we have

ðM þ EÞ − ðQþ qÞ ≈ −ϵqþMϵ2

2
: ð8Þ

Thus, it might appear that we can obtain a violation of (1)
by taking q > ϵM=2 (but still keeping q ≪ Q).
The main difficulty with Hubeny’s argument is that for

q ∼ ϵM, the violation of (1) given by (8) is of order
ϵq ∼ q2=M. Consequently, to determine if one truly can
obtain a violation of (1), the quantities appearing in (8)
must all be calculated consistently to the appropriate order.
Specifically, the energy, E, of the matter must be calculated
to order q2. However, formula (2) applies only to “test

matter” and is valid only to linear order in q; it does not take
into account the contributions of electromagnetic self-
energy (which require consideration of bodies of finite
size) or the energy contributed by self-force effects, both
of which enter at order q2. In particular, it is possible that
self-force effects could contribute to a repulsion of the
body from the black hole, requiring that the body be
given additional energy at order q2 in order to enter the
black hole.
Similar potential violations of (1) have been found

for Reissner-Nordström black holes absorbing angular
momentum [5], Kerr black holes absorbing charge or
angular momentum [6–8], and for generic Kerr-Newman
black holes [9,10]. However, just as in Hubeny’s argument,
in order to determine whether these potential violations
actually occur, one needs to calculate all contributions to
energy that are quadratic order in the relevant parameters
of the particle. This would appear to require a complete
analysis of self-force effects as well as finite size effects and
any other effects that might enter at this order.
Unfortunately, the analytic computation of electromag-

netic and gravitational self-force effects on the motion of
bodies near a Kerr-Newman black hole is well beyond
present capabilities. Thus, the main results that have been
obtained thus far have come from numerical simulations.
Numerical work has indicated that the self-force on
particles falling into black holes may suffice to prevent
Hubeny-type violations from occurring in the specific cases
of overcharging a nearly extremal Reissner-Nordström
black hole [11] and overspinning a nearly extremal Kerr
black hole [12–15]. However, even for these special cases,
no general analysis has been given of the second order
corrections to energy. As such, there is no general proof that
the cosmic censorship inequality (1) holds at quadratic
order for processes involving matter that falls into nearly
extremal Kerr-Newman black holes.
The main purpose of this paper is to give a complete

analysis—valid to second order—of the contributions
to the mass of a black hole for arbitrary matter that
enters a black hole. At linear order, we derive a general
expression—first obtained in [16]—that expresses δM in
terms of the flux of charge and angular momentum carried
into the black hole together with the nonelectromagnetic
energy flux. Assuming only that the nonelectromagnetic
contribution to the stress energy tensor satisfies the null
energy condition, we will prove that for arbitrary processes
involving matter falling into an exactly extremal Kerr-
Newman black hole, no violation of (1) can occur at linear
order in the perturbation. This result, which was previously
obtained for charged scalar matter in [17] and generalized
in [18], generalizes the results derived for particle matter in
paper I [3] to completely general matter.
We then consider the possible Hubeny-type violations

that might occur for slightly nonextremal black holes. Our
general formula for δM shows that the linear order process
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obeys a generalization of (7), thus allowing the possibility
of a violation of (1) but requiring an analysis of the second
order effects on energy. We will perform this analysis by
expressing the second order change in mass, δ2M, of the
black hole in terms of the canonical energy of the first order
perturbation. We will then make the additional assumption
that the nonextremal black hole is stable under linear
perturbations, so that the first order perturbation decays to a
stationary final state. This will allow us to evaluate the
canonical energy in terms of a positive flux contribution
through the horizon and a contribution from the final
stationary perturbation. The resulting formula gives rise
to an inequality on δ2M, and we will see that this inequality
is just what is needed to prove that no violations of the
Hubeny type can ever occur. Remarkably, we are able to
derive this inequality—which automatically takes account
of all self-force and finite size effects—without having to
explicitly calculate these effects themselves. We will show
by explicit calculation in the Appendix that for the special
case of lowering a charged body into an uncharged black
hole, our general formula corresponds precisely to taking
these effects into account.
Our analysis differs from most previous analyses—

including that of paper I [3]—in the following three key
respects: (1) We consider completely general matter rather
than particle matter. Of course, “particle matter” makes
sense in general relativity only when considered to be a
limiting case of general matter as described in [19,20], so
the general results derived in this paper also automatically
hold for physically realizable particle matter. (2) Rather
than analyzing the motion of bodies to determine what
trajectories will or will not enter the black hole, we simply
restrict consideration to the case where all matter that is
initially present enters the black hole, and we compute the
second order variation of the mass for this case. This allows
us to derive the desired inequality without having to
calculate the motion of bodies. (3) Most importantly, we
obtain an exact expression for the full second order effects
on the mass of a black hole. This allows us to obtain the
above-mentioned inequality on δ2M.
In Sec. II, we obtain the general variational formulas that

we will need, including the generalization of the notion of
canonical energy introduced in [21] for vacuum perturba-
tions of vacuum black holes to the Einstein-Maxwell case.
The gedanken experiments to destroy an extremal black
hole are analyzed in Sec. III. We consider a perturbation of
the black hole involving matter with charge and angular
momentum such that the black hole is initially unperturbed
in a neighborhood of the horizon and such that all of the
matter eventually falls into the black hole. We obtain a
general expression for δM that was first derived in [16]. We
show that this expression yields an inequality that is
sufficient to show that no violations can occur at linear
order for extremal black holes, as previously found in [18].
This generalizes the results of paper I to completely general

matter whose nonelectromagnetic stress-energy satisfies
the null energy condition. The Hubeny-type gedanken
experiments to destroy a slightly nonextremal black hole
are considered in Sec. IV. We consider a process that is
optimal at first order so that the first order perturbation
saturates our lower bound on δM. We obtain an expression
for δ2M involving the canonical energy of the first order
perturbation. Assuming that the first order perturbation of
the nonextremal black hole becomes stationary at late times
(i.e., that the nonextremal black hole is linearly stable),
we obtain a lower bound on δ2M that is sufficient to prove
that no violations of (1) can occur. A simple pictorial
representation of our results is presented in Sec. V. The
relationship between our results and the electromagnetic
self-force and self-energy is detailed in the Appendix for
the case of a charged body lowered into an uncharged
black hole.
Our metric signature, curvature, and abstract index

conventions follow [22]. In many instances, we will
suppress the indices on differential forms, in which case
they will be denoted with boldface letters.

II. VARIATIONAL IDENTITIES AND CANONICAL
ENERGY FOR EINSTEIN-MAXWELL THEORY

In this section, we generalize the canonical energy
results obtained in [21] for vacuum perturbations of
vacuum black holes to the Einstein-Maxwell case. It would
be most natural to treat the electromagnetic field Aa as a
connection on a principal Uð1Þ-bundle and use the frame-
work developed by Prabhu [23] for doing the Lagrangian
analysis in the principal bundle. However, since this would
require the introduction of considerable machinery and
formalism, we will bypass this here and simply treat Aa as
the one-form that one obtains on spacetime by making a
choice of gauge. This leads to some awkwardness in that
we will work—as is conventional—in a gauge such that, in
the background black hole spacetime, Aa is stationary,
£ξAa ¼ 0, and Aa → 0 at infinity, so the “horizon poten-
tial” ΦH ¼ −ξaAajH is nonvanishing, where ξa is the
horizon Killing field and H denotes the future event
horizon. Since ξa ¼ 0 on the bifurcation surface, this
implies that, in our gauge, Aa cannot be smooth at the
bifurcation surface as a one-form on spacetime, which
might be thought to cause difficulties. In fact, no such
difficulties occur, as can be seen by performing the
analysis in the principal bundle in the framework of
Prabhu [23]. Namely, the connection, Aa, is smooth as a
one-form in the bundle and this is consistent with the
nonvanishing of ΦH because the lift of ξa to the bundle
has nonvanishing vertical part. Nevertheless, to keep our
discussion simple, we will perform our analysis on
spacetime and ignore the nonsmoothness of the back-
ground Aa, relying on the fact that the analysis could
have been performed in the principal bundle, where all
fields are smooth.
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Although our interest is in 4-dimensional Kerr-
Newman black holes in Einstein-Maxwell theory, we will
consider general diffeomorphism covariant theories in
n-dimensional spacetimes in subsections II A and II B.
In II A, we review the derivation of a fundamental varia-
tional identity for theories derived from a diffeomorphism
covariant Lagrangian. We define canonical energy in II B.
The Einstein-Maxwell case in 4 spacetime dimensions is
explicitly considered in II C. Gauge invariance issues are
treated in II D.

A. The linear variational identity

The Lagrangian for a diffeomorphism-covariant theory
on an n-dimensional spacetime is given by an n-form L on
spacetime, which is a local function of the metric, gab, its
curvature, and symmetrized covariant derivatives of the
curvature, and which may also depend on other tensor
fields, ψ , and their symmetrized covariant derivatives. We
refer to the full field configuration as ϕ ¼ ðgab;ψÞ. We vary
the Lagrangian by considering a one-parameter family of
field configurations, ϕðλÞ, and taking derivatives of L with
respect to λ. Throughout this paper, the notation “δ” will be
used to denote derivatives evaluated at λ ¼ 0, e.g.,

δL ¼ dL
dλ

����
λ¼0

; δ2L ¼ d2L
dλ2

����
λ¼0

; δϕ ¼ dϕ
dλ

����
λ¼0

:

ð9Þ

The first-order variation of the Lagrangian can be
written as

dL
dλ

¼ EðϕÞ · dϕ
dλ

þ dθ

�
ϕ;

dϕ
dλ

�
; ð10Þ

where E is locally constructed from the fields ϕ and their
derivatives, while θ is locally constructed from ϕ, dϕ=dλ,
and their derivatives; θ corresponds to the “boundary term”
one would obtain by putting the variation of L under an
integral sign and integrating by parts to remove all
spacetime derivatives from dϕ=dλ. The Euler-Lagrange
equations of motion of the theory are simply

EðϕÞ ¼ 0: ð11Þ

The symplectic current (n − 1)-form ω is defined in
terms of a second variation of θ. For a two-parameter
family of field configurations ϕðλ1; λ2Þ, we define

ω

�
ϕ;

∂ϕ
∂λ1 ;

∂ϕ
∂λ2

�
¼ ∂

∂λ1 θ
�
ϕ;

∂ϕ
∂λ2

�
−

∂
∂λ2 θ

�
ϕ;

∂ϕ
∂λ1

�
:

ð12Þ

The symplectic current depends on the background field
configuration ϕ, as well as on the perturbations ∂ϕ=∂λ1 and

∂ϕ=∂λ2. If both of these perturbations satisfy the linearized
equations of motion ∂

∂λ1 EðϕÞ ¼ ∂
∂λ2 EðϕÞ ¼ 0, then it fol-

lows from Eq. (10) that

dω ¼ 0; ð13Þ

i.e., the symplectic current is conserved.
The Noether current associated with an arbitrary vector

field Xa is defined as

J XðϕÞ ¼ θðϕ;LXϕÞ − ιXLðϕÞ; ð14Þ

where ιXL denotes contraction of Xa into the first index of
the differential form L. A simple calculation [24] shows
that the first variation of J X can be written as

dJ X

dλ
¼ −ιX

�
EðϕÞ · dϕ

dλ

�
þω

�
ϕ;

dϕ
dλ

;LXϕ

�

þ d

�
ιXθ

�
ϕ;

dϕ
dλ

��
: ð15Þ

On the other hand, it was shown in [25] that the Noether
current can be written in the form

J X ¼ CX þ dQX; ð16Þ

whereQX is called the Noether charge andCX ≡ XaCa are
the constraints of the theory, so that Ca ¼ 0 when the
equations of motion are satisfied. In particular, dJ ¼ 0
when the equations of motion are satisfied, as can be shown
directly from the definition (14) of J .
By differentiating.1 Eq. (16) with respect to λ and

comparing it to Eq. (15), we obtain the fundamental
identity

d

�
dQX

dλ
− ιXθ

�
ϕ;

dϕ
dλ

��
¼ ω

�
ϕ;

dϕ
dλ

;LXϕ

�
−
dCX

dλ

− ιX

�
EðϕÞ · dϕ

dλ

�
: ð17Þ

This identity forms the basis for all calculations conducted
in the remainder of this paper.
Now, assume that ϕðλÞ is globally hyperbolic with

Cauchy surface Σ. Evaluating (17) at λ ¼ 0 and integrating
the resulting equation over Σ, we obtain

Z
∂Σ

½δQX − ιXθðϕ; δϕÞ� ¼
Z
Σ
ωðϕ; δϕ;LXϕÞ −

Z
Σ
δCX

−
Z
Σ
ιXðEðϕÞ · δϕÞ: ð18Þ

1Note that we take Xa to be λ-independent.
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A Hamiltonian hX associated with a vector field Xa is a
functional of ϕ such that if and only if ϕ satisfies the
equations of motion, then under all variations δϕ we have

δhX ¼
Z
Σ
ωðϕ; δϕ;LXϕÞ: ð19Þ

If the spacetime is asymptotically flat and there is no
“interior boundary” to Σ, then a Hamiltonian, hX, conjugate
to Xa must satisfy

δhX ¼
Z
∞
½δQX − ιXθðϕ; δϕÞ� þ

Z
Σ
δCX; ð20Þ

where “
R
∞” denotes the limit to spatial infinity of integra-

tion over a suitable family of spacelike (n − 2)-spheres.
This motivates the following definition2 of the ADM
conserved quantity HX conjugate to an asymptotic sym-
metry Xa for asymptotically flat solutions: HX (if it exists)
is the quantity such that, for all one-parameter families of
solutions, we have

δHX ¼
Z
∞
½δQX − ιXθðϕ; δϕÞ�: ð21Þ

Finally, let us restrict consideration to the case where
(i) ϕ0 ¼ ϕðλ ¼ 0Þ is a globally hyperbolic, asymptotically
flat solution of the equations of motion, E ¼ 0, and (ii) ϕ0

possesses a Killing field ξa that is also a symmetry of the
matter fields ψ , so that Lξϕ0 ¼ 0. Then (18) yields

Z
∂Σ

½δQξ − ιξθðϕ; δϕÞ� ¼ −
Z
Σ
δCξ: ð22Þ

The case of greatest interest for us is where ϕ0 represents
the exterior of a stationary black hole, and ξa is the horizon
Killing field

ξa ¼ ta þ ΩHφ
a; ð23Þ

where ta is the timelike Killing field of ϕ0, φa is the axial
Killing field of ϕ0, and ΩH is the angular velocity of the
horizon. The contribution to the boundary integral from
infinity is then just

Z
∞
½δQξ − ιξθðϕ; δϕÞ� ¼ δHξ ¼ δM − ΩHδJ; ð24Þ

where M is the ADM mass and J is the ADM angular
momentum. If the spacetime represents the exterior of a

black hole, then there will be a contribution from the
“internal boundary” as well. We will evaluate this internal
boundary contribution for Einstein-Maxwell theory in
subsection C below.

B. Second order variations and canonical energy

Let us now continue to restrict consideration to the case
where ϕ0 ¼ ϕðλ ¼ 0Þ is a globally hyperbolic solution of
the equations of motion that possesses a Killing field ξa that
is also a symmetry of the matter fields ψ , so that Lξϕ0 ¼ 0.
Again, we do not require that the perturbation δϕ ¼
ðdϕ=dλÞjλ¼0 satisfy the linearized equations of motion.
Let Σ be a Cauchy surface. We define the canonical energy
of the perturbation δϕ on Σ by

EΣðϕ; δϕÞ≡
Z
Σ
ωðϕ; δϕ;LξδϕÞ: ð25Þ

We can obtain an extremely useful expression for
canonical energy by differentiating (17) with respect to λ
and evaluating the resulting expression at λ ¼ 0. We obtain

d½δ2Qξ − ιξδθðϕ; δϕÞ� ¼ ωðϕ; δϕ;LξδϕÞ − δ2Cξ

− ιξðδE · δϕÞ; ð26Þ

Here, the meaning of the “δ’s” in the expression δθðϕ; δϕÞ
is that both derivatives in this term are to be evaluated
simultaneously, i.e.,

δθðϕ; δϕÞ≡
�
d
dλ

θ

�
ϕ;

dϕ
dλ

������
λ¼0

: ð27Þ

Integrating (26) over Σ, we obtain

EΣðϕ; δϕÞ ¼
Z
∂Σ

½δ2Qξ − ιξδθðϕ; δϕÞ� þ
Z
Σ
δ2Cξ

þ
Z
Σ
ιξðδE · δϕÞ: ð28Þ

The case we are most interested in here is one where ϕ0

corresponds to a stationary black hole, ξa is the horizon
Killing field,3 and Σ is a Cauchy surface for the exterior of
the black hole. In that case, it follows from (21) that the
contribution to the boundary term in (28) from infinity is

Z
∞
½δ2Qξ − ιξδθðϕ; δϕÞ� ¼ δ2M −ΩHδ

2J: ð29Þ

Wewill evaluate the interior boundary term at the end of the
next subsection.2We assume here that the matter fields fall off at infinity

rapidly enough so as not to contribute to the surface integral on
the right side of (21). Otherwise, these matter fields may make
contributions of the form “potential times varied charge” that
would need to be subtracted to obtain the conventional definition
of ADM conserved quantities.

3Note that in [21], the canonical energy was defined with
respect to the asymptotically timelike Killing field ta rather than
the horizon Killing field ξa. These quantities are equal to each
other for axisymmetric perturbations, as considered in [21].
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C. Einstein-Maxwell theory

We now consider Einstein-Maxwell theory in 4 space-
time dimensions and provide explicit expressions for many
of the quantities appearing in the previous subsections. The
Einstein-Maxwell Lagrangian is given by

L ¼ 1

16π
ðR − FabFabÞϵ; ð30Þ

where ϵ is the volume element associated with the
metric. For this Lagrangian, the field configuration consists
of the metric and the vector potential, ϕ ¼ ðgab; AaÞ. As
explained in the introductory paragraph to this section, we
will treat Aa as a one-form on spacetime. The symplectic
potential, Noether charge, equations of motion, and con-
straints for this Lagrangian were computed in [16]. The
symplectic potential can be written as

θabc

�
ϕ;

dϕ
dλ

�
¼ θGRabc þ θEMabc; ð31Þ

where

θGRabc

�
ϕ;

dϕ
dλ

�
¼ 1

16π
ϵdabcgdegfg

×

�
∇g

dgef
dλ

−∇e
dgfg
dλ

�
ð32Þ

θEMabc

�
ϕ;

dϕ
dλ

�
¼ −

1

4π
ϵdabcFde dAe

dλ
: ð33Þ

The Noether charge is given by

ðQXÞab ¼ ðQGR
X Þab þ ðQEM

X Þab; ð34Þ

where

ðQGR
X Þab ¼ −

1

16π
ϵabcd∇cXd; ð35Þ

ðQEM
X Þab ¼ −

1

8π
ϵabcdFcdAeXe: ð36Þ

The equations of motion and constraints are given by

EðϕÞ · dϕ
dλ

¼ −ϵ
�
1

2
Tab dgab

dλ
þ ja

dAa

dλ

�
; ð37Þ

Cbcda ¼ ϵebcd½Ta
e þ Aaje�: ð38Þ

Here we have written Tab ≡ Gab − 8πTEM
ab —so that Tab

corresponds to the nonelectromagnetic part of the stress-
energy tensor, and ja ¼ ð1=4πÞ∇bFab—so that ja corre-
sponds to the electromagnetic charge-current. Note that in
the absence of sources, when both Tab and ja are zero, the

constraints (38) vanish and the Euler-Lagrange equations of
motion (37) are satisfied.
The symplectic current for the Einstein-Maxwell theory

can be written in the form

ωabc

�
ϕ;

∂ϕ
∂λ1 ;

∂ϕ
∂λ2

�
¼ ωGR

abc þ ωEM
abc; ð39Þ

where, from Eq. (31), we have

ωGR
abc ¼

1

16π
ϵdabcwd; ð40Þ

ωEM
abc ¼

1

4π

� ∂
∂λ2 ðϵdabcF

deÞ ∂Ae

∂λ1 −
∂
∂λ1 ðϵdabcF

deÞ ∂Ae

∂λ2
�
;

ð41Þ

where, in (40), we have

wa ¼ Pabcdef

�∂gbc
∂λ2 ∇d

∂gef
∂λ1 −

∂gbc
∂λ1 ∇d

∂gef
∂λ2

�
; ð42Þ

with

Pabcdef ¼ gaegfbgcd −
1

2
gadgbegfc −

1

2
gabgcdgef

−
1

2
gbcgaegfd þ 1

2
gbcgadgef: ð43Þ

We now restrict attention to the case where ϕ0 ¼
ϕðλ ¼ 0Þ is a stationary black hole solution to the
Einstein-Maxwell equations (i.e., Tab ¼ ja ¼ 0 at λ ¼ 0)
with horizon Killing field ξa, and we let Σ be a Cauchy
surface for the exterior region. In fact, by the black hole
uniqueness theorems [22], ϕ0 must be a Kerr-Newman
solution, but we need not make use of this fact here. We
work in a gauge where LξAaðλ¼ 0Þ¼ 0 and Aaðλ¼ 0Þ→ 0

at infinity. As already discussed in the first paragraph
of this section, in this gauge, Aaðλ ¼ 0Þ will, in general,
be singular at the horizon, but this does not cause any
difficulties. Furthermore, the variations δAa and δ2Aa
may be assumed to be smooth (as can be justified
by working in the principal bundle framework of
Prabhu [23]).
By definition, for a nonextremal black hole the horizon

will be of bifurcate type, and Σ will terminate at the
bifurcation surface B. For a nonextremal black hole, we
now evaluate the boundary contribution to (22) arising from
B. Since ξa ¼ 0 on B, we have

Z
B
½δQGR

ξ − ιξθGRðϕ; δϕÞ� ¼
Z
B
δQGR

ξ ¼ κ

8π
δAB; ð44Þ

where AB is the area of B and κ is the surface gravity of
the event horizon. To evaluate the electromagnetic
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contribution to the boundary term4 at B, we note that by
(33), θEM is smooth at B (since δAa is smooth), so
ιξθEM ¼ 0. However, by (36), we have

δQEM
ξ ¼ −

1

8π
½ξeAeδðϵabcdFcdÞ þ ξeðδAeÞϵabcdFcdÞ�:

ð45Þ

Again, the second term vanishes at B on account of the
smoothness of δAa and the vanishing of ξa. However, the
quantity

ΦH ≡ −½ξeAeðλÞ�jH ð46Þ

is, in general, nonvanishing at B. Since ΦH must be con-
stant on the horizon at λ ¼ 0 [26] (see theorem 1 of [23] for
a general proof for Yang-Mills fields), we find that the
electromagnetic contribution to the boundary term at B is

Z
B
½δQEM

ξ − ιξθEMðϕ; δϕÞ� ¼
1

8π
ΦH

Z
B
δðϵabcdFcdÞ

¼ ΦHδQB; ð47Þ

where QB is the electric charge flux integral over B.
The ingredients are now in place to write out (22)

explicitly for a nonextremal black hole. We previously
evaluated the boundary term from infinity in (24), and, in
the previous paragraph, we have evaluated the boundary
term from B. Using (38) and the fact that Tab ¼ ja ¼ 0 in
the background spacetime (since ϕ0 is a solution), we see
that the remaining term δCξ takes the form

δCbcdaξ
a ¼ ϵebcd½δTa

e þ Aaδje�ξa ð48Þ

Thus, we see that (22) takes the explicit form

δM −ΩHδJ −
κ

8π
δAB −ΦHδQB ¼ −

Z
Σ
ϵebcd½δTa

e þ Aaδje�ξa: ð49Þ

For source free perturbations, δTab ¼ δja ¼ 0, this yields
the usual first law of black hole mechanics of Einstein-
Maxwell theory.
It should be emphasized that (49) holds only for

nonextremal black holes. In this paper, we will be
concerned with both non-extremal and extremal black
holes. However, it is clear from the derivation that (49)
(with δAB ¼ δQB ¼ 0) also holds for extremal black
holes in the special case where Σ is not a Cauchy
surface but rather an asymptotically flat hypersurface
with one boundary at spatial infinity and the other
boundary on the horizon at an early time such that
the perturbation vanishes in a neighborhood of this
internal boundary. In this case, there clearly will be no
boundary contribution from the internal boundary of Σ.
We will use (49) in this form for extremal black holes in
Sec. III.

The canonical energy may also be split into gravitational
and electromagnetic contributions

EΣðϕ; δϕÞ ¼ EGR
Σ þ EEM

Σ : ð50Þ

Explicit formulas for these parts can be obtained from the
definition (25), substituting from (40) and (41). These
formulas are quite complicated and will not be written
out explicitly here. Fortunately, we will need to evaluate
the canonical energy integral only over (a portion of) the
horizon (where its form simplifies considerably) and
for stationary perturbations (where it can be evaluated
straightforwardly).
We may now explicitly evaluate the terms appearing in

(28) for Einstein-Maxwell theory, in exact parallel with our
above evaluation of the terms appearing in (22). For a
nonextremal black hole, we obtain5

δ2M −ΩHδ
2J −ΦHδ

2QB −
κ

8π
δ2AB ¼ EΣðϕ; δϕÞ −

Z
Σ
ιξðδEðϕÞ · δϕÞ −

Z
Σ
δ2Cξ: ð51Þ

Again, this equation (with δ2AB ¼ δ2QB ¼ 0) will hold
for an extremal black hole if we restrict consideration to the
case where both the first and second order perturbations
vanish in a neighborhood of the horizon at the internal

boundary of Σ. In Sec. IV, we will evaluate the right side of
(51) in the context relevant to our calculations.

4We assume that Aata and Aaφ
a fall off as 1=r and Fab falls off

as 1=r2 at infinity, so there is no electromagnetic contribution to
the boundary term at infinity.

5It should be noted that since we take ξa to be fixed, the
quantities ΩH and κ do not vary. This means that if we perturb
toward another stationary black with different values of ΩH or κ,
then ξa cannot be the horizon Killing field of the perturbed black
hole. See [21] for further discussion.

GEDANKEN …. II. KERR-NEWMAN BLACK … PHYSICAL REVIEW D 96, 104014 (2017)

104014-7



D. Gauge invariance of canonical energy

In this subsection, we show that the canonical energy is
gauge invariant when evaluated on linearized solutions
to the Einstein-Maxwell equations, subject to the restric-
tions of Proposition 1 below. It should be noted that the
symplectic form (i.e., the integral of ωðϕ; δ1ϕ; δ2ϕÞ over a
Cauchy surface) is not gauge invariant, either in the sense
of the Maxwell gauge transformations δAa ↦ δAa þ∇aχ
or the infinitesimal diffeomorphisms δϕ ↦ δϕþ LXϕ, on
account of boundary terms arising from the horizon.
For the purposes of analyzing gauge invariance, it is

convenient to view the canonical energy as a bilinear form
on the space of perturbations to a black hole background
given by

EΣðϕ; δ1ϕ; δ2ϕÞ≡
Z
Σ
ωðϕ; δ1ϕ;Lξδ2ϕÞ: ð52Þ

The canonical energy will be gauge invariant if and only if it
vanisheswhenever δ1ϕ or δ2ϕ is a pure gauge transformation.
If δ1ϕ and δ2ϕ are solutions, then, as shown in [21], EΣ is

symmetric. Namely, by the antisymmetry and bilinearity of
the symplectic current, we have

EΣðϕ; δ1ϕ; δ2ϕÞ − EΣðϕ; δ2ϕ; δ1ϕÞ ¼
Z
Σ
Lξωðϕ; δ1ϕ; δ2ϕÞ:

ð53Þ
Applying the Lie derivative identity Lξω ¼ ιξdωþ dðιξωÞ
and applying Stokes’ theorem to the second term yields

EΣðϕ; δ1ϕ; δ2ϕÞ − EΣðϕ; δ2ϕ; δ1ϕÞ ¼
Z
Σ
ιξdωðϕ; δ1ϕ; δ2ϕÞ þ

Z
∞
ιξωðϕ; δ1ϕ; δ2ϕÞ −

Z
B
ιξωðϕ; δ1ϕ; δ2ϕÞ: ð54Þ

The first term vanishes for solutions6 by (13). The
boundary term at infinity vanishes under the assumption
that δ1ϕ and δ2ϕ are asymptotically flat perturbations with
appropriate falloff conditions and the boundary term at the
bifurcation surface vanishes since ξa vanishes on B, thus
establishing that EΣ is symmetric. This is convenient
because it implies that to show gauge invariance of EΣ,
we need only show that EΣ vanishes when δ2ϕ is pure
gauge in (52).
First let us consider a pure Maxwell gauge transforma-

tion given by δgab ¼ 0, δAa ¼ ∇aχ for some smooth
function χ. In analogy with (14), which defined the
Noether current associated with a local diffeomorphism,
we may define the Noether current associated with a
Maxwell gauge transformation by

J χ ¼ θðϕ;∇aχÞ: ð55Þ

Just as in (16), this Noether current can also be written in
terms of a constraint and a charge as

J χ ¼ C½χ� þ dQ½χ�: ð56Þ

A simple calculation shows that for the Einstein-Maxwell
theory, the constraint and Noether charge are given by

ðC½χ�Þabc ¼ ϵdabcχjd; ð57Þ

ðQ½χ�Þab ¼ −
1

8π
ϵcdabχFcd: ð58Þ

A calculation similar to that used to obtain (18) yields the
identity

Z
∂Σ

δQ½χ� ¼
Z
Σ
ωðϕ; δϕ;∇aχÞ −

Z
Σ
δC; ð59Þ

i.e.,

WΣðϕ; δϕ;∇aχÞ ¼
Z
∞
δQ½χ� −

Z
B
δQ½χ� þ

Z
Σ
δC; ð60Þ

where WΣðϕ; δ1ϕ; δ2ϕÞ≡ R
Σ ωðϕ; δ1ϕ; δ2ϕÞ is the sym-

plectic form. The constraint term vanishes under the
assumption that δϕ satisfies the linearized equations of
motion, so, using (58), we obtain,

WΣðϕ; δϕ;∇aχÞ ¼ −
1

8π

Z
∞
χδðϵcdabFcdÞ

þ 1

8π

Z
B
χδðϵcdabFcdÞ: ð61Þ

This expression is nonvanishing for generic perturbations
and gauge transformations, since χ may be nonvanishing at
infinity and at B. Thus, the symplectic form is not invariant
under Maxwell gauge transformations. However, the gauge
invariance of the canonical energy for Maxwell gauge
transformation can be seen by replacing χ by Lξχ ¼ ξa∇aχ
in (61). The resulting expression vanishes, since ξa∇aχ
goes to zero at infinity and vanishes at B. Thus, the
Einstein-Maxwell canonical energy is indeed invariant
under Maxwell gauge transformations, as we desired
to show.

6The perturbations considered in Secs. III and IV do not satisfy
the linearized equations of motion, since they have sources in the
form of charged matter that is added to the black hole. However,
the quantity

R
Σ ιξdω still vanishes for the particular surface Σ

chosen in those sections (cf. Figs. 1 and 2), and so the gauge
invariance established in this subsection still holds for that
particular case.
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We now analyze the gauge dependence of the canonical
energy under smooth infinitesimal diffeomorphisms,
δϕ ¼ LXϕ, for which Xa is an asymptotic symmetry.
The canonical energy of an infinitesimal diffeomorphism
is given by

EΣðϕ; δϕ;LXϕÞ ¼ WΣðϕ; δϕ;LξLXϕÞ
¼ WΣðϕ; δϕ;LYϕÞ; ð62Þ

where Ya ¼ ½ξ; X�a and we have used the fact that Lξϕ ¼ 0

at λ ¼ 0. From (18) and (21), we have

EΣðϕ; δϕ;LXϕÞ ¼ WΣðϕ; δϕ;LYϕÞ

¼ δHY −
Z
B
½δQY − ιYθðϕ; δϕÞ�; ð63Þ

where we have used the assumptions that ϕðλ ¼ 0Þ and δϕ
satisfy the equations of motion and the linearized equations
of motion, respectively.
It is easily seen that the right side of (63) cannot

vanish unless some restrictions are placed on the allowed
perturbations at the horizon and at infinity. These con-
ditions are purely gauge conditions on the perturbations
that do not restrict the physical perturbations we consider.
First, following [21], we impose the gauge condition
that the perturbed expansion of the horizon generators
vanishes,

δΘjH ¼ 0: ð64Þ

As shown in [21], this condition may always be imposed
for nonextremal black holes. The infinitesimal diffeo-
morphisms Xa that preserve this condition are the ones
that are tangent to the future horizon. This implies that
Ya ¼ LξXa is normal to the horizon at B.
Second, we impose the condition

kaδAajH ¼ 0; ð65Þ

where ka denotes an affinely parametrized tangent to the
generators of the horizon. This condition always can be
imposed by a Maxwell gauge transformation δAa → δA0

a ¼
δAa −∇aχ with χ satisfying ka∇aχ ¼ kaδAa on H.
We now evaluate the terms appearing on the right side of

(63), where Ya ¼ LξXa. First, we evaluate the contribution
to the boundary term at B arising from the symplectic
potential. We split the symplectic potential into a gravita-
tional and an electromagnetic part as in (31). As shown in
[21], the gravitational part of the symplectic potential
contribution yields

Z
B
ιYθGRðϕ; δϕÞ ¼ −

1

8π

Z
B
fδΘϵ; ð66Þ

where we have written Ya ¼ fka on Bwith ka normal to the
horizon, since Ya is normal to the horizon at B. This term
vanishes as a consequence of our gauge condition (64).
As for the electromagnetic part of the symplectic

potential, we have

Z
B
ιXθEMðϕ; δϕÞ ¼ −

1

4π

Z
B
ϵdcabYcFdeδAe: ð67Þ

However, the assumption that the background spacetime is
stationary restricts the form of Fde, since the flux of
electromagnetic stress-energy

TEM
ab ¼ 1

4π

�
FacFb

c −
1

4
gabFcdFcd

�
ð68Þ

through the horizon must vanish. For this flux to vanish, we
must have TEM

ab k
akb ¼ 0 on the horizon. The dominant

energy condition (which is automatically satisfied by the
electromagnetic field) then implies that TEM

ab k
a must be

proportional to kb. This implies that on H, Fab must take
the form

Fab ¼ v½akb� þ wab; ð69Þ

where wab is purely tangential to the horizon. From this,
and from the assumption that Xa is tangent to the horizon
generators on B, we find that the electromagnetic part of the
symplectic potential can be written as

Z
B
ιYθEMðϕ; δϕÞ ¼ −

1

8π

Z
B
ϵdcabYcvdkeδAe; ð70Þ

where we have used the fact that the pullback to H
of ϵabcd contracted into any vector tangent to H vanishes.
The right side of (70) vanishes on account of our gauge
condition (65).
Next, we consider the term δHY in (63). Since Xa is an

asymptotic symmetry and ξa ¼ ta þ ΩHφ
a for a Kerr-

Newman background, Ya is a linear combination of an
asymptotic space translation and an asymptotic rotation or
boost in a direction orthogonal to the black hole’s axis of
rotation. So long as we restrict ourselves to perturbations
with vanishing ADM linear momenta, δPi ¼ 0, and van-
ishing ADM angular momentum and center of mass in
directions orthogonal to the axis of rotation, we have
δHY ¼ 0 for all suitable choices of infinitesimal diffeo-
morphism Xa. These conditions do not restrict the physical
perturbation.
We are left with

EΣðϕ; δϕ;LXϕÞ ¼ −
Z
B
δQY: ð71Þ

We split QY into gravitational and electromagnetic parts
as in (34). It was shown in the Appendix of [21] that since
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Ya is normal to the horizon, the pullback to B of δQGR
Y is

given by

δQGR
Y ¼ −

1

16π
ðδϵabcdÞ∇cYd: ð72Þ

The right side will be nonvanishing if and only if the
quantity

U≡ ncd∇cYd ð73Þ

is nonvanishing on B in the background spacetime, where
nab ¼ n½ab� is the binormal to B. We substitute Ya ¼
LξXa ¼ ξb∇bXa − Xb∇bξ

a in this equation and expand
using the Leibniz rule to get

U ¼ ncd½ξb∇c∇bXd þ ð∇cξbÞ∇bXd

−Xb∇c∇bξ
d − ð∇cXbÞ∇bξ

d�: ð74Þ

The first term vanishes since ξa vanishes on B. Since ξa is a
Killing field, we have ∇a∇bξ

c ¼ Rc
badξ

d ¼ 0 on B, so the
third term also vanishes on B. Finally, using the fact that
∇aξb ∝ nab on B, the second and fourth terms can be seen
to cancel. Thus, U ¼ 0 on B and the contribution from
δQGR

Y vanishes.
Remark.—In [21], the vanishing of the contribution from

δQGR
Y was obtained by imposing the gauge condition

δϵab ¼ ðδA=AÞϵab on the area element on B together with
the restriction δA ¼ 0 on the perturbation. The above
calculation shows that it was not necessary to impose
either this gauge condition or this restriction. In particular,
the hypothesis that δA ¼ 0 may be dropped from
Proposition 3 of [21].
Finally, we evaluate the contribution from δQEM

Y . We
obtain

Z
B
δQEM

Y ¼ −
Z
B

1

8π
δðϵabcdFcdÞAeYe: ð75Þ

However, a diffeomorphism Xa will preserve our gauge
condition (65) only if ξaLXAa ¼ 0 on the horizon,7 which
implies that AaYa vanishes at B. Thus, the contribution
from δQEM

Y also vanishes.
We summarize the results of this subsection in the

following proposition:
Proposition 1.—Consider the subspace of perturbations,

δϕ, that (i) satisfy the linearized equations of motion,
δEðϕÞ ¼ 0, (ii) satisfy the gauge conditions (64) and (65) at

the horizon, and (iii) have vanishing ADM linear momenta,
δPi ¼ 0, and vanishing ADM angular momentum and
center of mass in directions orthogonal to the axis of
rotation of the unperturbed black hole. Then the Einstein-
Maxwell canonical energy EΣðϕ; δ1ϕ; δ2ϕÞ on this sub-
space is invariant under all infinitesimal diffeomorphisms
δϕ ¼ LXϕ and Maxwell gauge transformations δAa ¼ ∇aχ
(where it is understood that these transformations must
preserve conditions (ii) and (iii)).

III. GEDANKEN EXPERIMENTS TO DESTROY
AN EXTREMAL BLACK HOLE

Consider an extremal Kerr-Newman black hole,

M2 ¼ ðJ=MÞ2 þQ2: ð76Þ

We wish to see if we can cause the inequality (1) to be
violated by throwing/dropping charged and/or rotating
matter into the black hole. Specifically, (1) will be
violated—and a contradiction with cosmic censorship
obtained—if we can perturb the black hole so that

2MδM < 2ðJ=MÞðMδJ − JδMÞ=M2 þ 2QδQ: ð77Þ

Writing a ¼ J=M, we see that a violation will occur if the
perturbation satisfies

δM <
a

M2 þ a2
δJ þ QM

M2 þ a2
δQ: ð78Þ

To analyze whether it is possible to produce such a
perturbation, let Σ0 be an asymptotically flat hypersurface
that terminates on the future horizon and extends to spatial
infinity. We consider a perturbation δϕwhose initial data on
Σ0 for the fields δgab and δAa vanishes in a neighborhood
of Σ0 ∩ H, as shown in Fig. 1. We assume that the matter
sources δTab and δja are nonvanishing only in a compact

FIG. 1. Charged matter, occupying the shaded region, falls
through the event horizon of an extremal black hole. The
perturbed initial data on Σ0 vanishes in a neighborhood of
the horizon.

7Rather than restricting Xa so as to preserve the gauge
condition (65), it would be more sensible to require that any
Xa that violates (65) be accompanied by a Maxwell gauge
transformation that restores (65). One would then get a non-
vanishing contribution from (75) that would then be canceled by
the contribution from the Maxwell gauge transformation.
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region of Σ0, as shown. Physically, this corresponds to
considering a perturbation that is induced by bringing
matter in from infinity in such a way that the disturbance
to the black hole at very early advanced times is negligibly
small. If we evolve the perturbation, in general, some of
the matter will go into the black hole and somewill go out to
infinity or remain in orbit around the black hole. The matter
that does not fall into the black hole is of no interest to us.
Therefore, we can greatly simplify our analysis by restrict-
ing to the case where all of the matter goes into the black
hole. Note that this also saves us the trouble of analyzing the
motion of bodies outside of the black hole; we do not care
about the details of how the matter managed to get into the
black hole as long as it does get in.
Thus, we wish to consider a one-parameter family where

δTab and δja are nonvanishing only in a region like the
shaded region of Fig. 1. Let Σ be a hypersurface like that
shown in Fig. 1 with the following characteristics: (a) It
starts on the future event horizon in a region where the
perturbation vanishes. (b) It continues up the future horizon
until past the region where the matter sources are non-
vanishing. (c) It then becomes spacelike and continues out
towards infinity in an asymptotically flat manner. Let H
denote the horizon portion of Σ, and let Σ1 denote the
spacelike portion (see Fig. 1) so that

Σ ¼ H∪Σ1: ð79Þ

We now use (49) (with δAB ¼ δQB ¼ 0) for this choice of
Σ. The integrand on the right side of (49) is nonvanishing
only on H. Thus, we obtain,

δM −ΩHδJ ¼ −
Z
H
ϵebcdξaδTae −

Z
H
ξaAaδðϵebcdjeÞ:

ð80Þ
Since ΦH ¼ −ξaAa is constant onH, we may pull it out of
the integral. The integral

R
H δðϵebcdjeÞ is just the total flux

of electromagnetic charge through the horizon, δQflux.
Since all of the charge added to the spacetime falls through
the horizon, this flux is just equal to the total perturbed
charge of the black hole, δQflux ¼ δQ. Combining these
observations yields the following formula relating the
perturbed parameters of the black hole spacetime:

δM −ΩHδJ −ΦHδQ ¼ −
Z
H
ϵebcdξaδTae: ð81Þ

This result was first derived in [16]. On the horizon, we
may write

ϵebcd ¼ −4k½e ~ϵbcd�; ð82Þ

where ka is the future-directed normal to the horizon and
~ϵbcd is the corresponding volume element on the horizon.
The right side of (81) can be written as

−
Z
H
ϵebcdξaδTae ¼

Z
H
~ϵbcdδTaeξake: ð83Þ

Since ξa ∝ ka, the right side is non-negative provided only
that the nonelectromagnetic stress energy tensor δTab

satisfies the null energy condition, so that δTabkakb ≥ 0.
Thus, (81) yields the inequality

δM −ΩHδJ −ΦHδQ ≥ 0; ð84Þ

which holds for all perturbations of an extremal Kerr-
Newman black hole resulting from charged-matter entering
the black hole.
For a general (not necessarily extremal) Kerr-Newman

black hole, we have

ΩH ¼ a
r2þ þ a2

ð85Þ

and

ΦH ¼ Qrþ
r2þ þ a2

; ð86Þ

where rþ is the horizon radius

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ðJ=MÞ2 −Q2

q
: ð87Þ

For an extremal black hole, we have rþ ¼ M, so (84) yields

δM ≥
a

M2 þ a2
δJ þ QM

M2 þ a2
δQ: ð88Þ

Thus, (78) cannot be satisfied, and an extremal black hole
cannot be destroyed by dropping/throwing matter into it.
This generalizes the results of paper I [3] to arbitrary matter,
provided only that the nonelectromagnetic contribution to
the stress-energy tensor satisfies the null energy condition.
This argument that (81) implies that one cannot overcharge
or overspin an extremal black hole was previously given
in [18].

IV. GEDANKEN EXPERIMENTS
TO DESTROY A SLIGHTLY

NON-EXTREMAL BLACK HOLE

In the spirit of Hubeny [4], let us now repeat the
gedanken experiment of the previous section starting with
a slightly nonextremal Kerr-Newman black hole. The
relevant spacetime diagram for this case is shown in
Fig. 2, where the only significant difference is that Σ0

and Σ are now taken to terminate at the bifurcation surface,
B. This does not affect the analysis of the first order
perturbation given in the previous section, since the pertur-
bation is assumed to vanish on the horizon at sufficiently
early advanced times. Sincewewill need to calculate second
order effects in this section, we further assume that the
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second order perturbation also vanishes in a neighborhood
of B, and that all of the matter sources go into the black hole
at second order, so that δ2Tab¼ δ2ja ¼ 0 on Σ1.
An exact repetition of the analysis of the previous section

yields

δM ¼ ΩHδJ þΦHδQ −
Z
H
ϵebcdξaδTae

≥ ΩHδJ þΦHδQ

¼ a
r2þ þ a2

δJ þ Qrþ
r2þ þ a2

δQ: ð89Þ

As already noted in the Introduction for the special case
of a nearly extremal Reissner-Nordstrom black hole, this
equation admits the possibility of violating (1). However, as
discussed in the Introduction, in order to determine whether
violations of (1) really occur, it is necessary to calculate
the second order corrections, δ2M, to the mass of the
black hole.
In order to proceed further with our analysis of the

second order corrections to mass, we will make the
following additional assumption:
Additional Assumption: The (slightly) nonextremal,
unperturbed Kerr-Newman black hole we are consider-
ing is linearly stable to perturbations, i.e., any source-
free8 solution to the linearized Einstein-Maxwell
equations approaches a perturbation towards another
Kerr-Newman black hole at sufficiently late times.
It should be emphasized that this linear stability

assumption is entirely compatible with having an instability
associated with overcharging or overspinning the black
hole, i.e., we are not assuming what we wish to show. Since

we are considering a nonextremal black hole (i.e.,
M2 > ðJ=MÞ2 þQ2), a finite perturbation is required to
overcharge or overspin it. A linear perturbation of a
nonextremal black hole always can be scaled down so
as to not violate (1). Thus, the presence of a linear
instability of a nonextremal black hole would represent
an instability that is independent of overcharging or over-
spinning. If a nonextremal black hole were linearly unsta-
ble, there would be no need to attempt to overcharge or
overspin it in order to destroy it.
In view of this assumption, we may choose Σ in Fig. 2 so

the horizon portion, H, extends to sufficiently late times
that it enters the late time stationary era of the perturbation.
We may then take Σ1 so that it extends far9 from the black
hole while remaining in the stationary region. The quan-
tities δ2M and δ2J arising in the boundary term (91) on Σ
will then have the interpretation of being the second order
corrections to the mass and angular momentum of the
perturbed black hole.10

We now consider our gedanken experiment to destroy
the slightly non-extremal black hole. We assume that our
first order perturbation has been done optimally [see (89)],
so that

δM ¼ ΩHδJ þΦHδQ ¼ a
r2þ þ a2

δJ þ Qrþ
r2þ þ a2

δQ: ð90Þ

As can be seen from (89), this requires vanishing non-
electromagnetic energy flux through the horizon, i.e.,
δTabkakb ¼ 0, as should be (nearly) achievable if the matter
is lowered (nearly) to the horizon or is (nearly) at a turning
point of its orbit just before entering the black hole.
The second order change in mass is given by (51) with

δ2QB ¼ δ2AB ¼ 0 (since the second order perturbation
has been assumed to vanish in a neighborhood of B).
We have

δ2M −ΩHδ
2J ¼ EΣðϕ; δϕÞ −

Z
H
ιξðδEðϕÞ · δϕÞ −

Z
H
δ2Cξ:

ð91Þ

Here, the integrals in the last two terms extend only overH
rather than over all of Σ ¼ H∪Σ1 because δE and δ2Cξ

vanish on Σ1 by the assumption that there are no sources
outside the black hole at late times.
We now evaluate the last two terms appearing on the

right side of (91). From (37), we have

FIG. 2. A spacetime diagram showing charged matter falling
into a black hole as in Fig. 1, but now shown for a nonextremal
black hole. The surface Σ0 is taken to pass through the bifurcation
surface.

8Our perturbations are, in general, not source-free. However,
we will only need to apply this assumption on the late-time
surface Σ1 sketched in Fig. 2, long after all sources have fallen
into the black hole.

9If we wish to take Σ1 to extend infinitely far from the black
hole, we would have to take it to null infinity rather than spatial
infinity.

10Note that since mass and angular momentum cannot be
radiated away at linear order, we did not need to be careful in our
specification of Σ1 in our first order analysis in order for δM and
δJ to represent the perturbed mass and angular momentum of the
final black hole.
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ðιξðδEðϕÞ · δϕÞÞabc ¼ −ξdϵdabc
�
1

2
δTefδgef þ δjeδAe

�
:

ð92Þ

Since ξa is tangent to the horizon, the pullback toH of this
term vanishes, so it does not contribute to (91). From (38),
we have

ðδ2CξÞabc ¼ δ2ðϵeabcTd
eξdÞ þ δ2ðϵeabcAdjeξdÞ: ð93Þ

Using our gauge condition ξaδAa ¼ 0 on H [see (65) and
the discussion of subsection II D], we see that on H, the
second term is

δ2ðϵeabcAdjeξdÞ ¼ −ΦHδ
2ðϵeabcjeÞ; ð94Þ

and therefore

δ2
�Z

H
ξaAaϵebcdje

�
¼ −ΦHδ

2Qflux ¼ −ΦHδ
2Q; ð95Þ

where δ2Q is the second-order change in charge of the
black hole. On the other hand, using our assumption that
the first order process was done optimally and thus there
was vanishing nonelectromagnetic stress-energy flux
through the horizon at first order, we have

δ2ðϵeabcTd
eξdÞ ¼ ϵeabcξ

dδ2Td
e: ð96Þ

Putting this together, we obtain

δ2M −ΩHδ
2J −ΦHδ

2Q ¼ EΣðϕ; δϕÞ −
Z
H
ξaϵebcdδ

2Ta
e:

ð97Þ
The last term in this equation is positive provided that the
nonelectromagnetic stress-energy tensor satisfies the null
energy condition.

It remains to compute the canonical energy EΣðϕ; δϕÞ.
Since Σ ¼ H∪Σ1, we have

EΣðϕ; δϕÞ ¼
Z
H
ωðϕ; δϕ;LξδϕÞ þ

Z
Σ1

ωðϕ; δϕ;LξδϕÞ:

ð98Þ

Let us calculate first calculate the horizon contribution.
We have Z

H
ω ¼

Z
H
ωGR þ

Z
H
ωEM; ð99Þ

where the gravitational and electromagnetic parts, ωGR and
ωEM, are given, respectively, by (40) and (41) above. The
integral over H of the gravitational part of the canonical
energy density was computed in [21], and is given by11Z
H
ωGRðg; δg;LξδgÞ ¼

1

4π

Z
H
ðξa∇auÞδσbcδσbcϵ

þ 1

16π

Z
S
ðξa∇auÞδgbcδσbcϵ ð100Þ

where δσab denotes the perturbed shear of the horizon
generators, u is an affine parameter along the future
horizon, and S ¼ H ∩ Σ1 is the 2-surface formed by the
intersection of H and Σ1. By our additional assumption
above, the perturbation is physically stationary at S, so
δσab ¼ 0 on S. Thus, we obtainZ
H
ωGRðϕ; δϕ;LξδϕÞ ¼

1

4π

Z
H
ðξa∇auÞδσbcδσbcϵ ≥ 0:

ð101Þ
We may interpret this horizon flux contribution from ωGR

as representing the total flux of gravitational wave energy
into the black hole.
Next, we calculate the horizon flux contribution from

ωEM. From (41), we have

ðωEMÞabcðϕ; δϕ;LξϕÞ ¼
1

4π
ϵdabc½δAeLξδFde − δFdeLξδAe� þ

1

4π
½ðLξδϵdabcÞFdeδAe − ðδϵdabcÞFdeLξδAe�: ð102Þ

The last two terms on the right side of this equation
involve the background electromagnetic field strength Fab.
However, by (69) together with our gauge condition
ξaδAa ¼ 0 on H, it can be seen that the last two terms
in (102) vanish. The first term in (102) can be written as

ϵdabcδAeLξδFde ¼ Lξ½ϵdabcδAeδFde� − ϵdabcδFdeLξδAe:

ð103Þ

When pulled back to H, ϵdabcδAeδFde is a 3-form η, on a
3-dimensional surface, so when pulled back to H, we have

Lξη ¼ ιξdηþ dðιξηÞ ¼ dðιξηÞ; ð104Þ

where the pullback of ιξdη vanishes since ξa is tangent to
H. Thus, the integral over H of the first term on the right
side of (103) will merely contribute a boundary term at
S ¼ H ∩ Σ1. However, since the perturbation is assumed to
be stationary at S, the electromagnetic energy flux must

11Eq. (100) assumes that δΘ ¼ 0 on H (see [21]). This
condition can be imposed in the present case because we assumed
that the first order process was done optimally [see (90)], so
δTabkakb ¼ 0.

GEDANKEN …. II. KERR-NEWMAN BLACK … PHYSICAL REVIEW D 96, 104014 (2017)

104014-13



vanish there, so δFab must be of the form (69). Using this
fact together with our gauge condition ξaδAa ¼ 0 on H, it
can be seen that this boundary term vanishes. Finally, the
second term on the right side of (103) combines with the
second term of (102). This term can be further simplified by
noting that

LξδA ¼ ιξdδAþ dðιξδAÞ: ð105Þ

Under our gauge condition ξaδAajH ¼ 0, the second term
of (105) is normal to the horizon, and hence proportional to
the horizon normal ka. By the antisymmetry of δFab,
δFabkb is orthogonal to ka and hence tangent to the
horizon. As this term only appears in (102) when con-
tracted into the volume element on the horizon, it makes no
contribution to the canonical energy integral. Putting
everything together, we find that

Z
H
ωEMðϕ; δϕ;LξδϕÞ ¼ −

1

2π

Z
H
ϵdabcξ

eδFdfδFef: ð106Þ

The right side of this equation is nonnegative and can be
interpreted as the total flux of electromagnetic energy into
the black hole.
All that remains now is to calculate the contribution to

canonical energy from Σ1

EΣ1
ðϕ; δϕÞ ¼

Z
Σ1

ωðϕ; δϕ;LξδϕÞ: ð107Þ

Since we have assumed that the perturbation is stationary
on Σ1, it might be thought that Lξδϕ ¼ 0 on Σ1 and thus
this contribution to the canonical energy vanishes. How-
ever, this is not the case because our conditions δξa ¼ 0 as
well as our gauge condition ξaδAa ¼ 0 on H preclude our
writing the perturbation in a gauge where Lξδgab ¼ 0 and
LξδAa ¼ 0; see [21] for further discussion. Nevertheless,

we can calculate EΣ1
ðϕ; δϕÞ as follows. First, since, by

assumption, δϕ is equal to a perturbation δϕKN to another
Kerr-Newman black hole on Σ1, we obviously may replace
δϕ by δϕKN (written in our gauge) on the right side of (107)

EΣ1
ðϕ; δϕÞ ¼ EΣ1

ðϕ; δϕKNÞ ¼
Z
Σ1

ωðϕ; δϕKN;Lξδϕ
KNÞ:

ð108Þ

However, as can be seen from our analysis above, δϕKN has
no flux of canonical energy throughH, i.e., there is no flux
of gravitational or electromagnetic energy through the
horizon for a Kerr-Newman perturbation. Thus, we may
replace Σ1 by Σ in (108). Finally, we may evaluate
EΣðϕ; δϕKNÞ using (51). Consider the one-parameter fam-
ily, ϕKNðαÞ, where each field configuration in the family is
a Kerr-Newman black hole with parameters given by

MKNðαÞ ¼ M þ αδM; ð109Þ

QKNðαÞ ¼ Qþ αδQ; ð110Þ

JKNðαÞ ¼ J þ αδJ; ð111Þ
where δM, δQ, and δJ are chosen to agree with the
corresponding values for our first-order perturbation ϕðλÞ.
Then, for this family, we have δ2M ¼ δ2J ¼ δ2QB ¼ 0, as
well as δE ¼ δ2Cξ ¼ 0. Thus, we obtain

EΣðϕ; δϕKNÞ ¼ −
κ

8π
δ2AKN

B ; ð112Þ

where δ2AKN
B denotes the second order change in the area of

the horizon for the one-parameter family (109)–(111). This
quantity can be evaluated by taking two variations of the
area formula AB ¼ 4πðr2þ þ ðJ=MÞ2Þ, and is given explic-
itly as follows:

δ2AKN
B ¼ −

8π

M8ϵ3
½ðδMÞ2ðJ4 þ ð2þ ϵ2ÞJ2M4 −M8ð1þ ϵÞð−1þ ϵþ 2ϵ2ÞÞ

þ ðδQÞ2ðM6Q2 þM8ð1þ ϵÞϵ2Þ þ ðδJÞ2ðJ2M2 þM6ϵ2Þ
þ δMδJð−2J3M − 2JM5ð1þ ϵ2ÞÞ þ δJδQð2JM4QÞ
þ δMδQð−2J2M3Qþ 2M7Qð−1þ ϵ2ÞÞ�: ð113Þ

Here we have introduced the parameter

ϵ ¼ rþ=M − 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − ðJ=MÞ2

p
M

ð114Þ

[thereby generalizing (5) to the case where the black hole is
rotating as well as charged] in order that we can keep better

track of the extremal limit, ϵ → 0. However, we have not
assumed that ϵ is small in (113).
We have now computed all of the terms appearing in (91).

Using the positivity of the gravitational, electromagnetic, and
nonelectromagnetic stress-energy fluxes through the horizon,
we have thereby derived the following inequality involving
the second order change of the mass of the black hole
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δ2M − ΩHδ
2J −ΦHδ

2Q ≥ −
κ

8π
δ2AKN

B : ð115Þ

The surface gravity of a Kerr-Newman black hole is given by

κ ¼ M3

M4ð1þ ϵÞ2 þ J2
ϵ: ð116Þ

Expanding the right side of (115) to lowest order in ϵ, we obtain

δ2M − ΩHδ
2J −ΦHδ

2Q ≥
M

ðM4 þ J2Þ2 ½M
4ðδJÞ2 þ ðM6 þ J2Q2 þM2J2ÞðδQÞ2 − 2JM2QδJδQ� þOðϵÞ; ð117Þ

where we have used δM ¼ ΩHδJ þΦHδQ [see (90)] to
eliminate δM from the expression.
We now show that this inequality is precisely what is

needed to show that gedanken experiments of the Hubeny
type can never succeed in overcharging or overspinning the
black hole. Consider a one-parameter family, ϕðλÞ, of the

type we have been considering, where ϕð0Þ is a nearly
extremal Kerr-Newman black hole, ϵ ≪ 1. Define

fðλÞ ¼ MðλÞ2 −QðλÞ2 − JðλÞ2=MðλÞ2: ð118Þ

Then, to second order in λ, we have

fðλÞ ¼
�
M2 −Q2 −

J2

M2

�
þ 2λ

�
M4 þ J2

M3
δM −

J
M2

δJ −QδQ

�

þ λ2
��

J2 þM4

M3

�
δ2M −

J
M2

δ2J −Qδ2Qþ 4J
M3

δJδM

−
1

M2
ðδJÞ2 þ

�
M4 − 3J2

M4

�
ðδMÞ2 − ðδQÞ2

�
: ð119Þ

We wish to know if, for small, λ, we can make f < 0. If
we took into account only effects linear in λ, the inequality
(89) would constrain f by

fðλÞ ≥ M2ϵ2 þ 2

M4 þ J2
ððJ2 −M4ÞQδQ − 2JM2δJÞλϵ

þOðλ2; ϵ3; ϵ2λÞ: ð120Þ

If the Oðλ2Þ term and the higher order terms are neglected,
then it is easy to see that it is possible to make fðλÞ < 0,
suggesting that the black hole could be over-charged or
over-spun. However, when our calculation of the Oðλ2Þ
term given by inequality (117) is taken into account, we
have shown that for an optimal first-order process with
δM ¼ ΩHδJ þΦHδQ, we have

fðλÞ ≥ M2ϵ2 þ 2

M4 þ J2
ððJ2 −M4ÞQδQ − 2JM2δJÞλϵ

þ 1

M2ðM4 þ J2Þ2 ððJ
2 −M4ÞQδQ − 2JM2δJÞ2λ2

þOðλ3; ϵ3; ϵ2λ; ϵλ2Þ: ð121Þ

This expression can be rewritten as a perfect square,

fðλÞ ≥
�ðJ2 −M4ÞQδQ − 2JM2δJ

MðM4 þ J2Þ λþMϵ

�
2

þOðλ3;…Þ: ð122Þ

Thus, f ≥ 0, and no violations of (1) can occur.

V. DISCUSSION

The Kerr-Newman parameter space ðM;Q; a ¼ J=MÞ is
shown in Fig. 3. In this parameter space, black holes lie
within the “future light cone” M > 0, M2 −Q2 − a2 ≥ 0.
Kerr-Newman solutions outside this cone correspond to

FIG. 3. The parameter space of Kerr-Newman black holes.

GEDANKEN …. II. KERR-NEWMAN BLACK … PHYSICAL REVIEW D 96, 104014 (2017)

104014-15



naked singularities. Extremal black holes live on the
boundary of the cone, M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
. The gedanken

experiments to destroy an extremal black hole discussed
in Sec. III correspond to analyzing whether, starting at the
boundary, one can perturb the spacetime so as to move
outside the cone. The gedanken experiments to destroy a
slightly non-extremal black hole discussed in Sec. IV
correspond to analyzing whether one can move out of
the cone starting near (but not on) the boundary of the cone.
Within this cone, one can draw surfaces of constant area

for the Kerr-Newman black holes. One such surface is
shown in Fig. 4. It is important to note that the surfaces of
constant area meet the boundary tangentially.
To linear order, the change in the parameters ðM;Q; aÞ

resulting from dropping matter into a Kerr-Newman black
hole corresponds to a tangent vector in parameter space.
Equation (89) shows precisely that for an arbitrary Kerr-
Newman black hole, to linear order, any perturbation
resulting from matter entering a black hole cannot decrease
the area of the black hole12 Thus, the tangent to the surface
of constant area provides a lower bound to the slope of any
tangent vector representing a physically achievable pertur-
bation. In particular, for an extremal black hole, the best
one can do is move tangentially to the cone. Thus, as we
found in Sec. III, to first order it is impossible to escape
from the cone into the naked singularity region of param-
eter space starting at the boundary of the cone.
The Hubeny argument for possibly escaping from the

cone is illustrated in Fig. 5. For simplicity in the drawing,
we have set J ¼ 0 and thus show only the parameter space
of Reissner-Nordstrom solutions. As is illustrated in this
figure, except at the boundary, the tangent to the curve of

constant area has a slope strictly less than one. Thus, a
straight line tangent to such a curve will exit the cone. This
means that if the linear approximation were valid for a finite
perturbation, it would be possible to add charged matter to a
slightly nonextremal Reissner-Nordstrom black hole so as
to overcharge the black hole, as originally argued by
Hubeny.
However, our work shows that at second order, there are

corrections to the straight line, as illustrated in Fig. 6.
Consider a one-parameter family of solutions correspond-
ing to adding charged matter to the black hole. As we have
noted above, the curve representing the final state param-
eters has a tangent whose slope is bounded below by the
tangent to the curve of constant area. In addition, however,
if its slope is the minimum possible, we have proven in
Sec. IV that the second derivative of the curve must be
greater than the second derivative of the curve of constant
area. The quadratic approximation to this curve thus
coincides with the curve of constant area and does not
exit the cone. The linear approximation is simply not an
adequate approximation. Second order effects do not allow
one to exit from the cone.
Finally, it is worth noting that there is a discontinuity in

our lower bound on δ2M in the extremal limit. Consider, for
simplicity, the case of adding charged matter with no
angular momentum to a Reissner-Nordstrom black hole,
so J ¼ δJ ¼ δ2J ¼ 0. Without loss of generality, we also
may take δ2Q ¼ 0. Then, for ϵ > 0, for an optimal
perturbation with δM ¼ ΦHδQ, it follows from (117) that

FIG. 5. The tangent to a curve of constant area for a slightly
non-extremal Reissner-Nordstrom black hole.

FIG. 6. The quadratic approximation to the curve of final state
parameters obtained by adding charged matter to a slightly non-
extremal Reissner-Nordstrom black hole.

FIG. 4. A surface of constant area for Kerr-Newman black
holes.

12This result was first obtained for particle matter by
Christodoulou [27].
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δ2M ≥
ðδQÞ2
M

þOðϵÞ: ð123Þ

Thus, as ϵ → 0, the right side approaches ðδQÞ2=M. Now
consider adding charged matter to an exactly extremal
black hole, ϵ ¼ 0. As shown in Sec. III, the optimal per-
turbation satisfies δM ¼ ΦHδQ ¼ δQ, so optimally, the
perturbation moves one tangent to the cone. However, the
derivation of (117) does not apply to this case—even if we
assume that the linearized perturbation becomes stationary
at late times—because our evaluation of EΣ1

is valid only
for nonextremal black holes. Nevertheless, if the perturba-
tion decreases the charge of the black hole (i.e., if δQ has
sign opposite that of Q) then one would expect that
δ2M ≥ ðδQÞ2=M, so that, optimally, at second order the
area of the black hole will remain constant. On the other
hand, if δQ increases the charge, then there is no reason
why this bound need be satisfied since the area of the black
hole will increase in any case. Our expectation is that

δ2M ≥ 0; ð124Þ
so that, optimally, the black hole will remain extremal at
second order. Indeed, the explicit example of adding a
charged shell of matter shows that the lower bound (124)
can, in fact, be achieved. Thus, there is a discontinuity
between (123) and (124) when ϵ → 0. It would be
interesting to derive (124) from first principles and to
see if it is related to other discontinuous behavior as ϵ → 0,
such as the Aretakis instability [28].
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APPENDIX: SELF-FORCE ENERGY
AND FINITE SIZE EFFECTS

The second-order correction to the mass of a black hole
given by Eq. (117) gives a lower bound on the energy of
any matter that enters a black hole that is valid to quadratic
order in the charge and angular momentum of the body.
Since particlelike matter in general relativity must be
described as a limiting case of general continuum matter
(see [19,20]), this formula applies to particle matter as well.
At second order, self-force effects contribute to the energy
of a particle. In addition, at second order, a charged body
will have an electromagnetic self-energy that diverges
when the size of the body is taken to zero, so the size
of the body must be finite. However, the finite size of the
body may prevent one from lowering the body all the way
to the horizon. Our bound (115) must implicitly take into
account all of these effects. The purpose of this Appendix is

to show explicitly that this is the case for the special case of
a charged, particle-like body that enters an uncharged, non-
extremal Kerr black hole along the black hole’s symmetry
axis. The self-force effects in this case were previously
calculated by Leaute and Linet [29], while self-energy and
finite size effects in this case were previously obtained by
Hod [6].
It is particularly easy to evaluate our lower bound on

δ2M for the case of a charged body entering a Kerr black
hole along the symmetry axis, since Q ¼ 0 and
δJ ¼ δ2J ¼ 0. An optimal process therefore has δM ¼ 0
at first order. Thus, (113) reduces to13

δ2AKN
B ¼ −

8π

ϵ
ð1þ ϵÞðδQÞ2 ðA1Þ

Hence, (115) yields

δ2M ≥ −
1

8π
κδ2AKN

B ¼ rþ
r2þ þ a2

ðδQÞ2 ðA2Þ

where we have used the expression (116) for κ and have
used (114) to replace ϵ by rþ. Since Q ¼ 0, we have
r2þ þ a2 ¼ 2Mrþ, and so (A2) may be written as

δ2M ≥
1

2M
ðδQÞ2: ðA3Þ

Taking into account the Taylor coefficient of 1=2, this
means that any charged matter with no angular momentum
that enters an uncharged black hole must carry an energy

E ≥
1

4M
ðδQÞ2: ðA4Þ

into the black hole. This bound holds for any Kerr black
hole with a < M.
On the other hand, Leaute and Linet’s expression [29] for

the (proper, locally measured) self-force on a charged
particle on the symmetry axis of Kerr is repulsive and
has magnitude

fðrÞ ¼ Mr
ðr2 þ a2Þ2 ðδQÞ2: ðA5Þ

The force exerted at infinity when lowering the charged
body is reduced from this by the redshift factor ð−gttÞ1=2
(see, e.g., [30]). However, the infinitesimal proper distance
traversed when lowering is given by dl ¼ ðgrrÞ1=2dr. The
factors ð−gttÞ1=2 and ðgrrÞ1=2 cancel on the symmetry axis
of Kerr. Thus, we find that the work done at infinity in
overcoming the self-force when lowering the charge from
infinity to the horizon is

13Note that this is an exact expression, i.e., we have not
assumed that ϵ is small.
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ESF ¼
Z

∞

rþ
fðrÞdr ¼ M

2ðr2þ þ a2Þ ðδQÞ2: ðA6Þ

Note that ESF < Emin for a nonextremal black hole, with
Emin given by the right side of (A4).
However, the self-force expression is only valid for a

small body that is roughly spherical in shape. For such a
body, there will be potentially important self-energy and
finite size effects, which can be calculated as follows. For a
charged spherical body of radius R and charge δQ, the
electromagnetic contribution to the rest mass of the body is
minimized for a thin shell and is given by

mEM ¼ 1

2

ðδQÞ2
R

: ðA7Þ

If the body is dropped into the black hole from a proper
distance l from the horizon, its electromagnetic self-energy
will contribute an energy

Eself ¼ mEMVðlÞ ðA8Þ
to the black hole, where VðlÞ is the redshift factor at the
dropping point. However, near the black hole, we have

VðlÞ ¼ κl; ðA9Þ

where κ is the surface gravity of the black hole. Since we
must have l ≥ R, we obtain

Eself ≥
κ

2
ðδQÞ2: ðA10Þ

Substituting for κ from (116) and adding these two
contributions yields a minimal total added energy of

Eself þ ESF ¼ ðδQÞ2
4M

; ðA11Þ

in exact agreement14 with (A4). Thus, we see explicitly in
this example how our general bound (A4) incorporates both
self-force effects and self-energy/finite size effects.
One could attempt to evade our bound by making Eself

smaller by choosing, instead of a small spherical shell, a
body that has radial extent much smaller than its angular
extent. Such a body could be lowered arbitrarily close to
the black hole without making its self-energy arbitrarily
large. However, choosing such a shape for the body would
result in other second-order corrections to the energy
(such as self-repulsion effects) that would inevitably have
to reproduce our bound (A4). As an extreme example of
this, one can consider a thin spherical shell of charge
collapsing around a Schwarzchild black hole, which
experiences a large self-repulsion but for which the
(redshifted) electromagnetic self-energy can be made
exactly zero. Using the methods of Boulware [31], it is
straightforward to show that such a shell still adds a
minimal energy of ðδQÞ2=4M to the black hole. This
illustrates, again, that our bound automatically takes all
effects on energy into account.
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