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We consider gedanken experiments to destroy an extremal or nearly extremal Kerr-Newman black hole
by causing it to absorb matter with sufficient charge and/or angular momentum as compared with energy
that it cannot remain a black hole. It was previously shown by one of us that such gedanken experiments
cannot succeed for test particle matter entering an extremal Kerr-Newman black hole. We generalize this
result here to arbitrary matter entering an extremal Kerr-Newman black hole, provided only that the
nonelectromagnetic contribution to the stress-energy tensor of the matter satisfies the null energy condition.
We then analyze the gedanken experiments proposed by Hubeny and others to overcharge and/or overspin
an initially slightly nonextremal Kerr-Newman black hole. Analysis of such gedanken experiments requires
that we calculate all effects on the final mass of the black hole that are second-order in the charge and
angular momentum carried into the black hole, including all self-force effects. We obtain a general formula
for the full second order correction to mass, 5> M, which allows us to prove that no gedanken experiments of
the generalized Hubeny type can ever succeed in overcharging and/or overspinning a Kerr-Newman black
hole, provided only that the nonelectromagnetic stress-energy tensor satisfies the null energy condition.
Our analysis is based upon Lagrangian methods, and our formula for the second-order correction to mass is
obtained by generalizing the canonical energy analysis of Hollands and Wald to the Einstein-Maxwell case.
Remarkably, we obtain our formula for §>M without having to explicitly compute self-force or finite size
effects. Indeed, in an appendix, we show explicitly that our formula incorporates both the self-force and
finite size effects for the special case of a charged body slowly lowered into an uncharged black hole.
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I. INTRODUCTION

The Kerr-Newman family of metrics are the unique
stationary, asymptotically flat black hole solutions of the
Einstein-Maxwell equations in 4 spacetime dimensions.
The Kerr-Newman metrics comprise a 3-parameter family
of solutions parametrized by mass M, charge Q, and
angular momentum J = Ma. However, these solutions
describe black holes only for a limited region of this
parameter space, characterized by the inequality

M? > (J/M)* + Q. (1)

When this inequality is not satisfied, the spacetime contains
a naked singularity, i.e., the singularity is visible from
infinity.

The above facts give rise to a possible means of testing
the weak cosmic censorship conjecture [1,2], which states
that all singularities arising from gravitational collapse
must be hidden within black holes, so that no physical
process can give rise to a naked singularity. Suppose that
we start with a Kerr-Newman black hole satistfying (1).
Now throw/drop matter into the black hole carrying energy
E, angular momentum, £, and charge ¢, so that the final
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state will have mass M + E, angular momentum J + ¢, and
charge Q + ¢. Then if £ and/or g can be made sufficiently
large compared with E, the inequality (1) will be violated,
resulting in a contradiction with the final state being a
black hole.

The most obvious case to consider for an attempt to
destroy a black hole in this manner would be to start with an
extremal black hole, satisfying M?> = (J/M)?> + Q?, and to
throw in particle matter. This case was analyzed in 1974 by
one of us in paper I of this series [3]. It was shown in paper |
that no violations of (1) can occur by throwing particle
matter into an extremal Kerr-Newman black hole. The
nature of this result is well illustrated by considering the
special case of attempting to “overcharge” an extremal
Reissner-Nordstrom (Q = M) black hole. Let £&* denote the
horizon Killing field, which, for a Reissner-Nordstrom
black hole, coincides with the static Killing field (9/01)“.
A test particle with mass m and charge ¢ in this spacetime
has energy given by

E= _(mua + qAa)faa (2)

where u, is the four-velocity of the particle and A, is the
vector potential of the black hole’s electromagnetic field.

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevD.96.104014
https://doi.org/10.1103/PhysRevD.96.104014
https://doi.org/10.1103/PhysRevD.96.104014
https://doi.org/10.1103/PhysRevD.96.104014

JONATHAN SORCE and ROBERT M. WALD

Since &4 is null on the horizon, the first term —mu & is
non-negative on the horizon, although it can be made
arbitrarily small. Thus, the energy of a particle that crosses
the horizon is bounded below by the electromagnetic
potential energy term

E > q®y, (3)

where @5 = (—A,E%)|y is the electromagnetic potential
evaluated on the horizon. However, ®y = 1 for an extremal
Reissner-Nordstrom black hole, so any particle that enters
the black hole must satisfy

E>q. (4)

Consequently, we have M + E > Q + g, so (1) holds. In
other words, any particle with sufficiently large charge ¢ as
compared with E to produce a violation of (1) for the final
state would be repelled by the electric field of the black hole
and thus cannot enter it. As shown in paper I [3], similar
results hold for attempting to overcharge and/or overspin a
general extremal Kerr-Newman black hole using particle
matter.

Nevertheless, in 1999 Hubeny [4] proposed that viola-
tions of (1) might still occur if one suitably added matter to
a slightly nonextremal black hole. To see this, consider a
slightly nonextremal Reissner-Nordstrom black hole. It is
useful to introduce the dimensionless parameter

(VM -0 (5)
VI L

so that ¢ — O in the extremal limit. For ¢ < 1, we have
Oy =Q/ryxl-e, (6)

where r, = M + \/M? — Q? is the horizon radius. In place
of (4) we now obtain

E>q(l-o). (7)

Consequently, for this lower bound for E, we have

2
(M+E)-(Q+q)n-eqg+5  (8)
Thus, it might appear that we can obtain a violation of (1)
by taking ¢ > eM /2 (but still keeping g < Q).
The main difficulty with Hubeny’s argument is that for
q ~ €M, the violation of (1) given by (8) is of order
€q ~ q*/M. Consequently, to determine if one truly can
obtain a violation of (1), the quantities appearing in (8)
must all be calculated consistently to the appropriate order.
Specifically, the energy, E, of the matter must be calculated
to order g*>. However, formula (2) applies only to “test
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matter” and is valid only to linear order in ¢; it does not take
into account the contributions of electromagnetic self-
energy (which require consideration of bodies of finite
size) or the energy contributed by self-force effects, both
of which enter at order ¢°. In particular, it is possible that
self-force effects could contribute to a repulsion of the
body from the black hole, requiring that the body be
given additional energy at order g* in order to enter the
black hole.

Similar potential violations of (1) have been found
for Reissner-Nordstrom black holes absorbing angular
momentum [5], Kerr black holes absorbing charge or
angular momentum [6-8], and for generic Kerr-Newman
black holes [9,10]. However, just as in Hubeny’s argument,
in order to determine whether these potential violations
actually occur, one needs to calculate all contributions to
energy that are quadratic order in the relevant parameters
of the particle. This would appear to require a complete
analysis of self-force effects as well as finite size effects and
any other effects that might enter at this order.

Unfortunately, the analytic computation of electromag-
netic and gravitational self-force effects on the motion of
bodies near a Kerr-Newman black hole is well beyond
present capabilities. Thus, the main results that have been
obtained thus far have come from numerical simulations.
Numerical work has indicated that the self-force on
particles falling into black holes may suffice to prevent
Hubeny-type violations from occurring in the specific cases
of overcharging a nearly extremal Reissner-Nordstrom
black hole [11] and overspinning a nearly extremal Kerr
black hole [12-15]. However, even for these special cases,
no general analysis has been given of the second order
corrections to energy. As such, there is no general proof that
the cosmic censorship inequality (1) holds at quadratic
order for processes involving matter that falls into nearly
extremal Kerr-Newman black holes.

The main purpose of this paper is to give a complete
analysis—valid to second order—of the contributions
to the mass of a black hole for arbitrary matter that
enters a black hole. At linear order, we derive a general
expression—first obtained in [16]—that expresses oM in
terms of the flux of charge and angular momentum carried
into the black hole together with the nonelectromagnetic
energy flux. Assuming only that the nonelectromagnetic
contribution to the stress energy tensor satisfies the null
energy condition, we will prove that for arbitrary processes
involving matter falling into an exactly extremal Kerr-
Newman black hole, no violation of (1) can occur at linear
order in the perturbation. This result, which was previously
obtained for charged scalar matter in [17] and generalized
in [18], generalizes the results derived for particle matter in
paper I [3] to completely general matter.

We then consider the possible Hubeny-type violations
that might occur for slightly nonextremal black holes. Our
general formula for M shows that the linear order process
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obeys a generalization of (7), thus allowing the possibility
of a violation of (1) but requiring an analysis of the second
order effects on energy. We will perform this analysis by
expressing the second order change in mass, 5°M, of the
black hole in terms of the canonical energy of the first order
perturbation. We will then make the additional assumption
that the nonextremal black hole is stable under linear
perturbations, so that the first order perturbation decays to a
stationary final state. This will allow us to evaluate the
canonical energy in terms of a positive flux contribution
through the horizon and a contribution from the final
stationary perturbation. The resulting formula gives rise
to an inequality on 6>M, and we will see that this inequality
is just what is needed to prove that no violations of the
Hubeny type can ever occur. Remarkably, we are able to
derive this inequality—which automatically takes account
of all self-force and finite size effects—without having to
explicitly calculate these effects themselves. We will show
by explicit calculation in the Appendix that for the special
case of lowering a charged body into an uncharged black
hole, our general formula corresponds precisely to taking
these effects into account.

Our analysis differs from most previous analyses—
including that of paper I [3]—in the following three key
respects: (1) We consider completely general matter rather
than particle matter. Of course, “particle matter” makes
sense in general relativity only when considered to be a
limiting case of general matter as described in [19,20], so
the general results derived in this paper also automatically
hold for physically realizable particle matter. (2) Rather
than analyzing the motion of bodies to determine what
trajectories will or will not enter the black hole, we simply
restrict consideration to the case where all matter that is
initially present enters the black hole, and we compute the
second order variation of the mass for this case. This allows
us to derive the desired inequality without having to
calculate the motion of bodies. (3) Most importantly, we
obtain an exact expression for the full second order effects
on the mass of a black hole. This allows us to obtain the
above-mentioned inequality on &°M.

In Sec. II, we obtain the general variational formulas that
we will need, including the generalization of the notion of
canonical energy introduced in [21] for vacuum perturba-
tions of vacuum black holes to the Einstein-Maxwell case.
The gedanken experiments to destroy an extremal black
hole are analyzed in Sec. III. We consider a perturbation of
the black hole involving matter with charge and angular
momentum such that the black hole is initially unperturbed
in a neighborhood of the horizon and such that all of the
matter eventually falls into the black hole. We obtain a
general expression for oM that was first derived in [16]. We
show that this expression yields an inequality that is
sufficient to show that no violations can occur at linear
order for extremal black holes, as previously found in [18].
This generalizes the results of paper I to completely general
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matter whose nonelectromagnetic stress-energy satisfies
the null energy condition. The Hubeny-type gedanken
experiments to destroy a slightly nonextremal black hole
are considered in Sec. IV. We consider a process that is
optimal at first order so that the first order perturbation
saturates our lower bound on oM. We obtain an expression
for 8>M involving the canonical energy of the first order
perturbation. Assuming that the first order perturbation of
the nonextremal black hole becomes stationary at late times
(i.e., that the nonextremal black hole is linearly stable),
we obtain a lower bound on §°M that is sufficient to prove
that no violations of (1) can occur. A simple pictorial
representation of our results is presented in Sec. V. The
relationship between our results and the electromagnetic
self-force and self-energy is detailed in the Appendix for
the case of a charged body lowered into an uncharged
black hole.

Our metric signature, curvature, and abstract index
conventions follow [22]. In many instances, we will
suppress the indices on differential forms, in which case
they will be denoted with boldface letters.

II. VARIATIONAL IDENTITIES AND CANONICAL
ENERGY FOR EINSTEIN-MAXWELL THEORY

In this section, we generalize the canonical energy
results obtained in [21] for vacuum perturbations of
vacuum black holes to the Einstein-Maxwell case. It would
be most natural to treat the electromagnetic field A, as a
connection on a principal U(1)-bundle and use the frame-
work developed by Prabhu [23] for doing the Lagrangian
analysis in the principal bundle. However, since this would
require the introduction of considerable machinery and
formalism, we will bypass this here and simply treat A, as
the one-form that one obtains on spacetime by making a
choice of gauge. This leads to some awkwardness in that
we will work—as is conventional—in a gauge such that, in
the background black hole spacetime, A, is stationary,
£:A, =0, and A, — 0 at infinity, so the “horizon poten-
tial” ®y = —&A,|y, is nonvanishing, where & is the
horizon Killing field and H denotes the future event
horizon. Since £ =0 on the bifurcation surface, this
implies that, in our gauge, A, cannot be smooth at the
bifurcation surface as a one-form on spacetime, which
might be thought to cause difficulties. In fact, no such
difficulties occur, as can be seen by performing the
analysis in the principal bundle in the framework of
Prabhu [23]. Namely, the connection, A,, is smooth as a
one-form in the bundle and this is consistent with the
nonvanishing of ®; because the lift of £ to the bundle
has nonvanishing vertical part. Nevertheless, to keep our
discussion simple, we will perform our analysis on
spacetime and ignore the nonsmoothness of the back-
ground A,, relying on the fact that the analysis could
have been performed in the principal bundle, where all
fields are smooth.
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Although our interest is in 4-dimensional Kerr-
Newman black holes in Einstein-Maxwell theory, we will
consider general diffeomorphism covariant theories in
n-dimensional spacetimes in subsections II A and IIB.
In IT A, we review the derivation of a fundamental varia-
tional identity for theories derived from a diffeomorphism
covariant Lagrangian. We define canonical energy in II B.
The Einstein-Maxwell case in 4 spacetime dimensions is
explicitly considered in II C. Gauge invariance issues are
treated in II D.

A. The linear variational identity

The Lagrangian for a diffeomorphism-covariant theory
on an n-dimensional spacetime is given by an n-form L on
spacetime, which is a local function of the metric, g, its
curvature, and symmetrized covariant derivatives of the
curvature, and which may also depend on other tensor
fields, y, and their symmetrized covariant derivatives. We
refer to the full field configuration as ¢ = (g, w). We vary
the Lagrangian by considering a one-parameter family of
field configurations, ¢(1), and taking derivatives of L with
respect to A. Throughout this paper, the notation “6” will be
used to denote derivatives evaluated at A = 0, e.g.,

_dL
di

_d’L

dg
“Zl, "4

oL L =
=0 di

=0

©)

The first-order variation of the Lagrangian can be
written as

dL _
d,

dg dg

where E is locally constructed from the fields ¢ and their
derivatives, while @ is locally constructed from ¢, d¢p/dA,
and their derivatives; @ corresponds to the “boundary term”
one would obtain by putting the variation of L. under an
integral sign and integrating by parts to remove all
spacetime derivatives from d¢/dA. The Euler-Lagrange
equations of motion of the theory are simply

E(¢)

E($) = 0. (1)

The symplectic current (n — 1)-form @ is defined in
terms of a second variation of #. For a two-parameter
family of field configurations ¢ (4, 4,), we define

00BN _ 0 (00N 0 (0
“’<¢’aﬁ]’fuz> _m]”< ’%) aﬁf( ’%)‘
(12)

The symplectic current depends on the background field
configuration ¢, as well as on the perturbations d¢/ 94, and
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O¢p/ OA,. If both of these perturbations satisfy the linearized
equations of motion a%E(qb) = %E(gb) = 0, then it fol-
lows from Eq. (10) that

do =0, (13)
i.e., the symplectic current is conserved.

The Noether current associated with an arbitrary vector
field X“ is defined as

T x(¢) = 0(¢; Lxp) — 1xL(9). (14)
where 1y denotes contraction of X¢ into the first index of

the differential form L. A simple calculation [24] shows
that the first variation of Jy can be written as

dTx d¢ dg
o (E(¢) E) "‘(0(45’%75)(4’)

(529 s

On the other hand, it was shown in [25] that the Noether
current can be written in the form

Tx = Cx + dQy, (16)

where Qy is called the Noether charge and Cy = X“C, are
the constraints of the theory, so that C, =0 when the
equations of motion are satisfied. In particular, dJ = 0
when the equations of motion are satisfied, as can be shown
directly from the definition (14) of J.

By differentiating.' Eq. (16) with respect to A and
comparing it to Eq. (15), we obtain the fundamental
identity

dQy do - _d¢ dCy
d[ﬁ"’f”(%)] *"(ﬁ”’am) s

~w(E@-9)

This identity forms the basis for all calculations conducted
in the remainder of this paper.

Now, assume that ¢(4) is globally hyperbolic with
Cauchy surface X. Evaluating (17) at 4 = 0 and integrating
the resulting equation over X, we obtain

/8 10Qx — 1400 50) = /2 (350, Ly) - /2 5Cx
S CCOR I

'Note that we take X“ to be i-independent.
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A Hamiltonian hy associated with a vector field X¢ is a
functional of ¢ such that if and only if ¢ satisfies the
equations of motion, then under all variations d¢ we have

Shy = /X 0($:50. Lxdh). (19)

If the spacetime is asymptotically flat and there is no
“interior boundary” to X, then a Hamiltonian, /iy, conjugate
to X¢ must satisfy

Shy = / 6Qx — 1x0(.50)] + /E 5Cx. (20)

where “ foo” denotes the limit to spatial infinity of integra-
tion over a suitable family of spacelike (n — 2)-spheres.
This motivates the following definition” of the ADM
conserved quantity Hy conjugate to an asymptotic sym-
metry X¢ for asymptotically flat solutions: Hy (if it exists)
is the quantity such that, for all one-parameter families of
solutions, we have

SHy = / 5Qyx — 1x0(6h.59)]. 21)

Finally, let us restrict consideration to the case where
(i) po = ¢p(4 = 0) is a globally hyperbolic, asymptotically
flat solution of the equations of motion, E = 0, and (ii) ¢,
possesses a Killing field £ that is also a symmetry of the
matter fields y, so that L:¢py = 0. Then (18) yields

| 6= 0@ op) =~ [ac.  (2)
oz >

The case of greatest interest for us is where ¢, represents
the exterior of a stationary black hole, and &“ is the horizon
Killing field

ga =1 =+ QH(pa’ (23)

where ¢ is the timelike Killing field of ¢, ¢ is the axial
Killing field of ¢, and Q is the angular velocity of the
horizon. The contribution to the boundary integral from
infinity is then just

/ [6Q; — 1:0(¢.6¢)] = 6H; = 6M — Qyu6J,  (24)

where M is the ADM mass and J is the ADM angular
momentum. If the spacetime represents the exterior of a

*We assume here that the matter fields fall off at infinity
rapidly enough so as not to contribute to the surface integral on
the right side of (21). Otherwise, these matter fields may make
contributions of the form “potential times varied charge” that
would need to be subtracted to obtain the conventional definition
of ADM conserved quantities.
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black hole, then there will be a contribution from the
“internal boundary” as well. We will evaluate this internal
boundary contribution for Einstein-Maxwell theory in
subsection C below.

B. Second order variations and canonical energy

Let us now continue to restrict consideration to the case
where ¢y = ¢(4 = 0) is a globally hyperbolic solution of
the equations of motion that possesses a Killing field &4 that
is also a symmetry of the matter fields v, so that L.¢y = 0.
Again, we do not require that the perturbation d¢ =
(dp/dA)|,—o satisfy the linearized equations of motion.
Let X be a Cauchy surface. We define the canonical energy
of the perturbation 6¢ on X by

Es(d:o0) = /Z (150, L:50). (25)

We can obtain an extremely useful expression for
canonical energy by differentiating (17) with respect to 4
and evaluating the resulting expression at 1 = 0. We obtain

d[5*Q; = 1:00($. 5¢)] = w(¢; 60, L:5¢) - 5°C,
—1:(5E - 5¢), (26)
Here, the meaning of the “5’s” in the expression 60(¢, 6¢)

is that both derivatives in this term are to be evaluated
simultaneously, i.e.,

_ |4 d¢
80(¢.o¢) = b0<¢,a>} i (27)
Integrating (26) over X, we obtain
Ex(¢; 6¢) = /d § 6°Q; — 1:50(¢p, 5¢)] + /Z 8C:
+/Ez§(5E~5¢). (28)

The case we are most interested in here is one where ¢,
corresponds to a stationary black hole, & is the horizon
Killing field, and T is a Cauchy surface for the exterior of
the black hole. In that case, it follows from (21) that the
contribution to the boundary term in (28) from infinity is

/ [62Q; — 1:60(p, 6p)] = &*M — Qu62.  (29)

We will evaluate the interior boundary term at the end of the
next subsection.

*Note that in [21], the canonical energy was defined with
respect to the asymptotically timelike Killing field #* rather than
the horizon Killing field £“. These quantities are equal to each
other for axisymmetric perturbations, as considered in [21].
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C. Einstein-Maxwell theory

We now consider Einstein-Maxwell theory in 4 space-
time dimensions and provide explicit expressions for many
of the quantities appearing in the previous subsections. The
Einstein-Maxwell Lagrangian is given by

1

L :E(R—FabFab)e, (30)
where € is the volume element associated with the
metric. For this Lagrangian, the field configuration consists
of the metric and the vector potential, ¢ = (g,p,A,). As
explained in the introductory paragraph to this section, we
will treat A, as a one-form on spacetime. The symplectic
potential, Noether charge, equations of motion, and con-
straints for this Lagrangian were computed in [16]. The
symplectic potential can be written as

d¢
Ous (.58 ) = 05 + 052, 31)

where

dep 1 .
Gf,;;ﬁ (¢ —> = —edabcgdegfg

" dA 167
dgef dgf
\Y -V, 2L 2
% ( ax e da (32)
d¢ 1 dA
HEM A I Fde e .
abc(¢7 d/l) 4ﬂ€dabc dﬂ (33)

The Noether charge is given by

(O%)ap = (OFF)ap + (M) - (34)
where
1 .
(0FF)ap = —E%bcdv‘xd, (35)
1
(QE(M)ab = _geabchCdAeXe' (36)

The equations of motion and constraints are given by

d 1 dgy . dA

E R A, _Tab_d a a
@) =™ dﬂ}’ (37)
Cheda = €ebcd[Tae =+ Aaje]' (38)

Here we have written T, = G, — 82TEM—so0 that T,
corresponds to the nonelectromagnetic part of the stress-
energy tensor, and j* = (1/4x)V,F*—so that j¢ corre-
sponds to the electromagnetic charge-current. Note that in
the absence of sources, when both T, and j, are zero, the
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constraints (38) vanish and the Euler-Lagrange equations of
motion (37) are satisfied.

The symplectic current for the Einstein-Maxwell theory
can be written in the form

. ad) 8¢ _ ,,GR EM
Dybe <¢’ 8/11 ’ 8/12> = Wype + @ pe> (39)

where, from Eq. (31), we have

1

wféi = 1ox €dabcW” (40)
1[0 0A 0 0A
EM _ Fde [ Fde e ,
abc 4” |:6ﬂ.2 (edabc ) ai] 611 (edabc ) 612:|

(41)

where, in (40), we have

Wi — Pubcdef <agbc vd agef agbc vd agef) ’ (42)

o Yor  oa Yo
with
Pahcdef — gaegfhgcd _ %gadghegfc _ %gubgcdgef
_ lgbcgaegfd + lgbcgadgef. (43)

2 2

We now restrict attention to the case where ¢, =
¢(A=0) is a stationary black hole solution to the
Einstein-Maxwell equations (i.e., 7% = j* =0 at 1 = 0)
with horizon Killing field £, and we let £ be a Cauchy
surface for the exterior region. In fact, by the black hole
uniqueness theorems [22], ¢, must be a Kerr-Newman
solution, but we need not make use of this fact here. We
work in a gauge where £:A,(A=0)=0and A,(A=0) -0
at infinity. As already discussed in the first paragraph
of this section, in this gauge, A,(4 = 0) will, in general,
be singular at the horizon, but this does not cause any
difficulties. Furthermore, the variations §A, and &°A,
may be assumed to be smooth (as can be justified
by working in the principal bundle framework of
Prabhu [23]).

By definition, for a nonextremal black hole the horizon
will be of bifurcate type, and X will terminate at the
bifurcation surface B. For a nonextremal black hole, we
now evaluate the boundary contribution to (22) arising from
B. Since £&* = 0 on B, we have

K

A[&QgR —1.0°% (9, 5¢)] = L(SQ?R = 8ﬂ5AB, (44)

where Ap is the area of B and « is the surface gravity of
the event horizon. To evaluate the electromagnetic
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contribution to the boundary term® at B, we note that by
(33), M is smooth at B (since SA, is smooth), so
10" = 0. However, by (36), we have

SQ?M = _é [éeAeE(eabchCd> + ge (5Ae)€abchCd)]'
(45)

Again, the second term vanishes at B on account of the
smoothness of 6A, and the vanishing of £*. However, the
quantity

Oy = —[£°A,(2)] |3 (46)

is, in general, nonvanishing at B. Since ®y must be con-
stant on the horizon at 1 = 0 [26] (see theorem 1 of [23] for
a general proof for Yang-Mills fields), we find that the
electromagnetic contribution to the boundary term at B is

|

PHYSICAL REVIEW D 96, 104014 (2017)

1

[ 1608 =162 p0)] = @ [ et

= ©46Qp, (47)

where Qp is the electric charge flux integral over B.

The ingredients are now in place to write out (22)
explicitly for a nonextremal black hole. We previously
evaluated the boundary term from infinity in (24), and, in
the previous paragraph, we have evaluated the boundary
term from B. Using (38) and the fact that T, = j* = 0 in
the background spacetime (since ¢, is a solution), we see
that the remaining term 6C; takes the form

5Cbcda§a = €ebcd[5Tae =+ Aaéje}ga (48)

Thus, we see that (22) takes the explicit form

oM — QpéJ — 8£5AB - ®460p = — / €epeal0T ¢ + A 6j¢]E". (49)
b2 p)

For source free perturbations, 67, = dj, = 0, this yields
the usual first law of black hole mechanics of Einstein-
Maxwell theory.

It should be emphasized that (49) holds only for
nonextremal black holes. In this paper, we will be
concerned with both non-extremal and extremal black
holes. However, it is clear from the derivation that (49)
(with 0Ap = 6Qp = 0) also holds for extremal black
holes in the special case where X is not a Cauchy
surface but rather an asymptotically flat hypersurface
with one boundary at spatial infinity and the other
boundary on the horizon at an early time such that
the perturbation vanishes in a neighborhood of this
internal boundary. In this case, there clearly will be no
boundary contribution from the internal boundary of X.
We will use (49) in this form for extremal black holes in
Sec. I

The canonical energy may also be split into gravitational
and electromagnetic contributions

Ex(g:op) = ELF + E2M. (50)

Explicit formulas for these parts can be obtained from the
definition (25), substituting from (40) and (41). These
formulas are quite complicated and will not be written
out explicitly here. Fortunately, we will need to evaluate
the canonical energy integral only over (a portion of) the
horizon (where its form simplifies considerably) and
for stationary perturbations (where it can be evaluated
straightforwardly).

We may now explicitly evaluate the terms appearing in
(28) for Einstein-Maxwell theory, in exact parallel with our
above evaluation of the terms apg)earing in (22). For a
nonextremal black hole, we obtain

M — QT -y Qy — %52/&3 = Es(¢p:60p) — L 1:(SE () - 56) — /2 5Cs. (51)

Again, this equation (with 6°Az = 6>Qp = 0) will hold
for an extremal black hole if we restrict consideration to the
case where both the first and second order perturbations
vanish in a neighborhood of the horizon at the internal

*We assume that A, and A, fall off as 1/r and F,, falls off
as 1/r? at infinity, so there is no electromagnetic contribution to
the boundary term at infinity.

|
boundary of X. In Sec. IV, we will evaluate the right side of
(51) in the context relevant to our calculations.

It should be noted that since we take &% to be fixed, the
quantities Qy and x do not vary. This means that if we perturb
toward another stationary black with different values of Qg or «,
then &£ cannot be the horizon Killing field of the perturbed black
hole. See [21] for further discussion.
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D. Gauge invariance of canonical energy

In this subsection, we show that the canonical energy is
gauge invariant when evaluated on linearized solutions
to the Einstein-Maxwell equations, subject to the restric-
tions of Proposition 1 below. It should be noted that the
symplectic form (i.e., the integral of @ (¢, 5,¢, 5,¢) over a
Cauchy surface) is not gauge invariant, either in the sense
of the Maxwell gauge transformations 6A, — 64, + V x
or the infinitesimal diffeomorphisms é¢ — d¢p + Lx¢, on
account of boundary terms arising from the horizon.

For the purposes of analyzing gauge invariance, it is
convenient to view the canonical energy as a bilinear form
on the space of perturbations to a black hole background
given by

PHYSICAL REVIEW D 96, 104014 (2017)
Es(¢; 61, 6,0) = /2(0(4’;5145, 555247)- (52)

The canonical energy will be gauge invariant if and only if it
vanishes whenever §; ¢ or §,¢ is a pure gauge transformation.

If 6,¢ and 6,¢ are solutions, then, as shown in [21], &5 is
symmetric. Namely, by the antisymmetry and bilinearity of
the symplectic current, we have

E5(h:5:. 52p) — Ex(b: 526p.5160) = /Z Loar(¢h:51. 52b).

(53)
Applying the Lie derivative identity L@ = 1:dw + d(1:0)
and applying Stokes’ theorem to the second term yields

Ex(th:5:. 520) — Ex(: 5260, 5160) = /Z e (5,0, 5,0) + / 10 (¢h:516b. 526p) — L o (:510.50).  (54)

The first term vanishes for solutions® by (13). The
boundary term at infinity vanishes under the assumption
that §,¢ and 0,¢ are asymptotically flat perturbations with
appropriate falloff conditions and the boundary term at the
bifurcation surface vanishes since &% vanishes on B, thus
establishing that & is symmetric. This is convenient
because it implies that to show gauge invariance of &y,
we need only show that & vanishes when 6,¢ is pure
gauge in (52).

First let us consider a pure Maxwell gauge transforma-
tion given by &g, =0, 6A, = V,y for some smooth
function y. In analogy with (14), which defined the
Noether current associated with a local diffeomorphism,
we may define the Noether current associated with a
Maxwell gauge transformation by

Ty =0(0.Vay). (55)

Just as in (16), this Noether current can also be written in
terms of a constraint and a charge as

T, = Cll +dQlyl. (56)

A simple calculation shows that for the Einstein-Maxwell
theory, the constraint and Noether charge are given by

(Cb(])abc = edabc)(jdv (57)

®The perturbations considered in Secs. III and IV do not satisfy
the linearized equations of motion, since they have sources in the
form of charged matter that is added to the black hole. However,
the quantity [;i:de still vanishes for the particular surface
chosen in those sections (cf. Figs. 1 and 2), and so the gauge
invariance established in this subsection still holds for that
particular case.

I
1
(QM)ab = _gecdab)(FCd' (58)

A calculation similar to that used to obtain (18) yields the
identity

A;SQM —/Ew(¢;5¢,vm_/>:5a (59)

1.e.,

W00,V = [ 5@~ [ Qb+ [ac. (o0

where Wy (48,4, 6,4) = [z @(¢;61¢.6,4) is the sym-
plectic form. The constraint term vanishes under the
assumption that 8¢ satisfies the linearized equations of
motion, so, using (58), we obtain,

1

WZ(¢3 6¢vva)() = _g/ Xé(ecdubFCd)

1
+5- Xé(ecdabFCd)' (61)
87 B

This expression is nonvanishing for generic perturbations
and gauge transformations, since y may be nonvanishing at
infinity and at B. Thus, the symplectic form is not invariant
under Maxwell gauge transformations. However, the gauge
invariance of the canonical energy for Maxwell gauge
transformation can be seen by replacing y by Lzy = £V .y
in (61). The resulting expression vanishes, since £V y
goes to zero at infinity and vanishes at B. Thus, the
Einstein-Maxwell canonical energy is indeed invariant
under Maxwell gauge transformations, as we desired
to show.
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We now analyze the gauge dependence of the canonical
energy under smooth infinitesimal diffeomorphisms,
o¢p = Ly, for which X* is an asymptotic symmetry.
The canonical energy of an infinitesimal diffeomorphism
is given by

Ex(; 60, Lxgp) = W(p; 6, L:Lxp)

where Y = [£, X]* and we have used the fact that L:¢p = 0
at A = 0. From (18) and (21), we have

52(47;5457 £X¢) = WZ(¢§5¢’ £Y¢>
—tty [ 150y = 16(.50)). (63
B

where we have used the assumptions that ¢»(4 = 0) and ¢
satisfy the equations of motion and the linearized equations
of motion, respectively.

It is easily seen that the right side of (63) cannot
vanish unless some restrictions are placed on the allowed
perturbations at the horizon and at infinity. These con-
ditions are purely gauge conditions on the perturbations
that do not restrict the physical perturbations we consider.
First, following [21], we impose the gauge condition
that the perturbed expansion of the horizon generators
vanishes,

50),, = 0. (64)

As shown in [21], this condition may always be imposed
for nonextremal black holes. The infinitesimal diffeo-
morphisms X¢ that preserve this condition are the ones
that are tangent to the future horizon. This implies that
Y¢ = L;X is normal to the horizon at B.

Second, we impose the condition

kaSA, |y = 0, (65)

where k“ denotes an affinely parametrized tangent to the
generators of the horizon. This condition always can be
imposed by a Maxwell gauge transformation 54, — A, =
SA, — V y with y satisfying k*V y = k“6A, on H.

We now evaluate the terms appearing on the right side of
(63), where Y = L:X“. First, we evaluate the contribution
to the boundary term at B arising from the symplectic
potential. We split the symplectic potential into a gravita-
tional and an electromagnetic part as in (31). As shown in
[21], the gravitational part of the symplectic potential
contribution yields

1
[ o @.on) =g [ ro0e. (66)

PHYSICAL REVIEW D 96, 104014 (2017)

where we have written Y = fk“ on B with k normal to the
horizon, since Y? is normal to the horizon at B. This term
vanishes as a consequence of our gauge condition (64).

As for the electromagnetic part of the symplectic
potential, we have

1
[ 00060 == [ canr o, (67
B T JB

However, the assumption that the background spacetime is
stationary restricts the form of F?, since the flux of
electromagnetic stress-energy

1 1 ,
o' = i [FacFlf - 4gabFLchd:| (68)

through the horizon must vanish. For this flux to vanish, we
must have TEMk?k? =0 on the horizon. The dominant
energy condition (which is automatically satisfied by the
electromagnetic field) then implies that TEMk® must be
proportional to k. This implies that on H, F¢’ must take
the form

Fab = plaghl 4 yab, (69)

where w is purely tangential to the horizon. From this,
and from the assumption that X¢ is tangent to the horizon
generators on B, we find that the electromagnetic part of the
symplectic potential can be written as

[ 89600 =~ [ cawnrriicon.. (0
B 7 JB

where we have used the fact that the pullback to H
of e,,.4 contracted into any vector tangent to 7 vanishes.
The right side of (70) vanishes on account of our gauge
condition (65).

Next, we consider the term 6Hy in (63). Since X is an
asymptotic symmetry and &% = t* 4+ Qpe® for a Kerr-
Newman background, Y* is a linear combination of an
asymptotic space translation and an asymptotic rotation or
boost in a direction orthogonal to the black hole’s axis of
rotation. So long as we restrict ourselves to perturbations
with vanishing ADM linear momenta, 6P; = 0, and van-
ishing ADM angular momentum and center of mass in
directions orthogonal to the axis of rotation, we have
O0Hy = 0 for all suitable choices of infinitesimal diffeo-
morphism X“. These conditions do not restrict the physical
perturbation.

We are left with

Es(: . L) = - [9 5Qy. (71)

We split Qy into gravitational and electromagnetic parts
as in (34). It was shown in the Appendix of [21] that since
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Y4 is normal to the horizon, the pullback to B of SQ$R is
given by

1

SOGR = —
oy 167

(5€abcd)vc Yd' (72)
The right side will be nonvanishing if and only if the
quantity

U=n,Vey? (73)

is nonvanishing on B in the background spacetime, where
Mgy = N is the binormal to B. We substitute Y =
L:X* = 'V, X* — XPV,& in this equation and expand
using the Leibniz rule to get

U = neqg"VeV, X+ (VEr)V, X4
_XPVET,El — (VeXP)V,ed). (74)

The first term vanishes since £ vanishes on B. Since £ is a
Killing field, we have V,V,& = R¢,,,&Y = 0 on B, so the
third term also vanishes on B. Finally, using the fact that
V&, « n,, on B, the second and fourth terms can be seen
to cancel. Thus, U = 0 on B and the contribution from
SQGR vanishes.

Remark.—In [21], the vanishing of the contribution from
SQGR was obtained by imposing the gauge condition
Seqap = (6A/A)e,, on the area element on B together with
the restriction 0A =0 on the perturbation. The above
calculation shows that it was not necessary to impose
either this gauge condition or this restriction. In particular,
the hypothesis that A =0 may be dropped from
Proposition 3 of [21].

Finally, we evaluate the contribution from SQ%¥M. We
obtain

1
/5Q115/M = _/ 5<€abchCd)AeYe' (75)
B B 3n

However, a diffeomorphism X“ will preserve our gauge
condition (65) only if £&4LyA, = 0 on the horizon,” which
implies that A,Y“ vanishes at B. Thus, the contribution
from Q%M also vanishes.

We summarize the results of this subsection in the
following proposition:

Proposition 1.—Consider the subspace of perturbations,
o¢, that (i) satisfy the linearized equations of motion,
SE(¢) = 0, (ii) satisfy the gauge conditions (64) and (65) at

"Rather than restricting X“ so as to preserve the gauge
condition (65), it would be more sensible to require that any
X? that violates (65) be accompanied by a Maxwell gauge
transformation that restores (65). One would then get a non-
vanishing contribution from (75) that would then be canceled by
the contribution from the Maxwell gauge transformation.

PHYSICAL REVIEW D 96, 104014 (2017)

the horizon, and (iii) have vanishing ADM linear momenta,
O0P; =0, and vanishing ADM angular momentum and
center of mass in directions orthogonal to the axis of
rotation of the unperturbed black hole. Then the Einstein-
Maxwell canonical energy Es(¢;8,¢,5,¢) on this sub-
space is invariant under all infinitesimal diffeomorphisms
8¢ = Lx¢ and Maxwell gauge transformations 64, = V .y
(where it is understood that these transformations must
preserve conditions (ii) and (iii)).

III. GEDANKEN EXPERIMENTS TO DESTROY
AN EXTREMAL BLACK HOLE

Consider an extremal Kerr-Newman black hole,
M* = (J/M)* + Q°. (76)

We wish to see if we can cause the inequality (1) to be
violated by throwing/dropping charged and/or rotating
matter into the black hole. Specifically, (1) will be
violated—and a contradiction with cosmic censorship
obtained—if we can perturb the black hole so that

2MSM < 2(J/M)(M&J — JSM)/M? +2056Q.  (77)

Writing a = J/M, we see that a violation will occur if the
perturbation satisfies

a oM
< sJ 5Q. 78
w2 T2 (78)

oM

To analyze whether it is possible to produce such a
perturbation, let X, be an asymptotically flat hypersurface
that terminates on the future horizon and extends to spatial
infinity. We consider a perturbation d¢ whose initial data on
%, for the fields 6g,, and A, vanishes in a neighborhood
of Xy N H, as shown in Fig. 1. We assume that the matter
sources 67T ,;, and Jj¢ are nonvanishing only in a compact

31

i
\ d EO

FIG. 1. Charged matter, occupying the shaded region, falls
through the event horizon of an extremal black hole. The
perturbed initial data on X, vanishes in a neighborhood of
the horizon.
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region of X,, as shown. Physically, this corresponds to
considering a perturbation that is induced by bringing
matter in from infinity in such a way that the disturbance
to the black hole at very early advanced times is negligibly
small. If we evolve the perturbation, in general, some of
the matter will go into the black hole and some will go out to
infinity or remain in orbit around the black hole. The matter
that does not fall into the black hole is of no interest to us.
Therefore, we can greatly simplify our analysis by restrict-
ing to the case where all of the matter goes into the black
hole. Note that this also saves us the trouble of analyzing the
motion of bodies outside of the black hole; we do not care
about the details of how the matter managed to get into the
black hole as long as it does get in.

Thus, we wish to consider a one-parameter family where
0T, and 6j¢ are nonvanishing only in a region like the
shaded region of Fig. 1. Let £ be a hypersurface like that
shown in Fig. 1 with the following characteristics: (a) It
starts on the future event horizon in a region where the
perturbation vanishes. (b) It continues up the future horizon
until past the region where the matter sources are non-
vanishing. (c¢) It then becomes spacelike and continues out
towards infinity in an asymptotically flat manner. Let H
denote the horizon portion of X, and let ¥; denote the
spacelike portion (see Fig. 1) so that

s = HUS,. (79)

We now use (49) (with Az = 6Qp = 0) for this choice of
2. The integrand on the right side of (49) is nonvanishing
only on H. Thus, we obtain,

5M—QH5J = _/ eebcdéaéTae _/ gaAaé(eebcdje)'
H H
(80)

Since @y = —&“A,, is constant on H, we may pull it out of
the integral. The integral [, 8(€.5c4j¢) 18 just the total flux
of electromagnetic charge through the horizon, 6Qg,y.
Since all of the charge added to the spacetime falls through
the horizon, this flux is just equal to the total perturbed
charge of the black hole, 6Qp,, = Q. Combining these
observations yields the following formula relating the
perturbed parameters of the black hole spacetime:

SM — QudJ — @30 = — / CopealadT.  (81)
H

This result was first derived in [16]. On the horizon, we
may write

€ebed = _4k[eébcd]7 (82)
where k¢ is the future-directed normal to the horizon and

€pcq 18 the corresponding volume element on the horizon.
The right side of (81) can be written as

PHYSICAL REVIEW D 96, 104014 (2017)
_/ €ebcd§a5Tae = / g‘bca’(sTae‘{’:ake- (83)
H H

Since &* « k“, the right side is non-negative provided only
that the nonelectromagnetic stress energy tensor 67,
satisfies the null energy condition, so that 6T ,,k?k” > 0.
Thus, (81) yields the inequality

SM — Q6] — ®y50 > 0, (84)

which holds for all perturbations of an extremal Kerr-
Newman black hole resulting from charged-matter entering
the black hole.

For a general (not necessarily extremal) Kerr-Newman
black hole, we have

a
Qy=—_ 85
H ”i I az ( )
and
Or,
Oy =5, 86
H r%r + az ( )
where r, is the horizon radius
re= M4\ M? - (/M) - Q2 (87)

For an extremal black hole, we have r, = M, so (84) yields

oM

oM
M? + &2

oJ +

2w 0. (88)
Thus, (78) cannot be satisfied, and an extremal black hole
cannot be destroyed by dropping/throwing matter into it.
This generalizes the results of paper I [3] to arbitrary matter,
provided only that the nonelectromagnetic contribution to
the stress-energy tensor satisfies the null energy condition.
This argument that (81) implies that one cannot overcharge

or overspin an extremal black hole was previously given
in [18].

IV. GEDANKEN EXPERIMENTS
TO DESTROY A SLIGHTLY
NON-EXTREMAL BLACK HOLE

In the spirit of Hubeny [4], let us now repeat the
gedanken experiment of the previous section starting with
a slightly nonextremal Kerr-Newman black hole. The
relevant spacetime diagram for this case is shown in
Fig. 2, where the only significant difference is that X,
and X are now taken to terminate at the bifurcation surface,
B. This does not affect the analysis of the first order
perturbation given in the previous section, since the pertur-
bation is assumed to vanish on the horizon at sufficiently
early advanced times. Since we will need to calculate second
order effects in this section, we further assume that the
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FIG. 2. A spacetime diagram showing charged matter falling
into a black hole as in Fig. 1, but now shown for a nonextremal
black hole. The surface X is taken to pass through the bifurcation
surface.

second order perturbation also vanishes in a neighborhood
of B, and that all of the matter sources go into the black hole
at second order, so that 5°T,, = 6°j* =0 on X,.

An exact repetition of the analysis of the previous section
yields

SM = Q6] + ©y60 — / €opealadT
H

> Qo] + ©,50

a r
) 50 + 2Q+2
ry+a ry+a

50. (89)

As already noted in the Introduction for the special case
of a nearly extremal Reissner-Nordstrom black hole, this
equation admits the possibility of violating (1). However, as
discussed in the Introduction, in order to determine whether
violations of (1) really occur, it is necessary to calculate
the second order corrections, 6*M, to the mass of the
black hole.

In order to proceed further with our analysis of the
second order corrections to mass, we will make the
following additional assumption:

Additional Assumption: The (slightly) nonextremal,

unperturbed Kerr-Newman black hole we are consider-

ing is linearly stable to perturbations, i.e., any source-
free® solution to the linearized Einstein-Maxwell
equations approaches a perturbation towards another

Kerr-Newman black hole at sufficiently late times.

It should be emphasized that this linear stability
assumption is entirely compatible with having an instability
associated with overcharging or overspinning the black
hole, i.e., we are not assuming what we wish to show. Since

8our perturbations are, in general, not source-free. However,
we will only need to apply this assumption on the late-time
surface Z; sketched in Fig. 2, long after all sources have fallen
into the black hole.

PHYSICAL REVIEW D 96, 104014 (2017)

we are considering a nonextremal black hole (i.e.,
M? > (J/M)? + Q?), a finite perturbation is required to
overcharge or overspin it. A linear perturbation of a
nonextremal black hole always can be scaled down so
as to not violate (1). Thus, the presence of a linear
instability of a nonextremal black hole would represent
an instability that is independent of overcharging or over-
spinning. If a nonextremal black hole were linearly unsta-
ble, there would be no need to attempt to overcharge or
overspin it in order to destroy it.

In view of this assumption, we may choose X in Fig. 2 so
the horizon portion, H, extends to sufficiently late times
that it enters the late time stationary era of the perturbation.
We may then take ¥, so that it extends far’ from the black
hole while remaining in the stationary region. The quan-
tities 6>M and &%/ arising in the boundary term (91) on X
will then have the interpretation of being the second order
corrections to the mass and angular momentum of the
perturbed black hole."’

We now consider our gedanken experiment to destroy
the slightly non-extremal black hole. We assume that our
first order perturbation has been done optimally [see (89)],
so that

M = Quo] + DydQ = 57+ -2 50, (90)
ry+a

ri + a?
As can be seen from (89), this requires vanishing non-
electromagnetic energy flux through the horizon, i.e.,
6T ,,k?k? = 0, as should be (nearly) achievable if the matter
is lowered (nearly) to the horizon or is (nearly) at a turning
point of its orbit just before entering the black hole.

The second order change in mass is given by (51) with
8 Qp = 6*Ap =0 (since the second order perturbation
has been assumed to vanish in a neighborhood of B).
We have

M — QT = Ex(: 60) — /H (SE($) - 5¢) - /H 5C;.
(91)

Here, the integrals in the last two terms extend only over H
rather than over all of £ = HUZX,; because 6E and 52C5
vanish on X; by the assumption that there are no sources
outside the black hole at late times.

We now evaluate the last two terms appearing on the
right side of (91). From (37), we have

°If we wish to take 2, to extend infinitely far from the black
hole, we would have to take it to null infinity rather than spatial
infinity.

Note that since mass and angular momentum cannot be
radiated away at linear order, we did not need to be careful in our
specification of Z; in our first order analysis in order for SM and
oJ to represent the perturbed mass and angular momentum of the
final black hole.
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1 ,
(lf(éE( ) 6¢))abc = edabc 25Tefégef+5J65Ae

(92)

Since £“ is tangent to the horizon, the pullback to H of this
term vanishes, so it does not contribute to (91). From (38),
we have

(52(:5),1}; = 52(€eabche§d) + 52(€eabcAdje§d)‘ (93)

Using our gauge condition £“6A, = 0 on H [see (65) and
the discussion of subsection II D], we see that on H, the
second term is

52 (eeabcAdjegd) = _CDHéz(eeabcje)’ (94)

and therefore
52 |:/ gaAaeebcdje:| = _q)HézQﬂux = _(I’H52Q’ (95)
H

where 5°Q is the second-order change in charge of the
black hole. On the other hand, using our assumption that
the first order process was done optimally and thus there
was vanishing nonelectromagnetic stress-energy flux
through the horizon at first order, we have

8 (€cane T €?) = €oancl?0°T 4" (96)
Putting this together, we obtain
&M = Qud*J — ©y6°Q = Ex(d;6¢) - A %€epcadTy"-
(97)

The last term in this equation is positive provided that the
nonelectromagnetic stress-energy tensor satisfies the null
energy condition.

1
( EM)ahc (¢ 5¢ £§¢) €dab¢ [514 Eé:éFde

The last two terms on the right side of this equation
involve the background electromagnetic field strength F¢°.
However, by (69) together with our gauge condition
£°6A, =0 on H, it can be seen that the last two terms
in (102) vanish. The first term in (102) can be written as

edabcéAeﬁféFde = £§[€dab05Ae($Fde] — Ed(lhcéFdeEé&Ae.

(103)

When pulled back to H, €;,,.04,6F% is a 3-form #, on a
3-dimensional surface, so when pulled back to H, we have

SFUL.5A,]
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It remains to compute the canonical energy Es(¢;5¢).
Since X = HUZX;, we have

ex(tio0) = [ 0.00.L00) + | 0lp.00.L50)
(98)

Let us calculate first calculate the horizon contribution.

We have
/w:/wGR+/wEM, (99)
H H H

where the gravitational and electromagnetic parts, @°* and

@™, are given, respectively, by (40) and (41) above. The
integral over H of the gravitational part of the canonical
energy density was computed in [21], and is given by''

[ 0% w0, £:00) = 5 | €V )d000
H

(f“V u)dg><so,.€  (100)

16
where 6o, denotes the perturbed shear of the horizon
generators, u is an affine parameter along the future
horizon, and § = 'H N X, is the 2-surface formed by the
intersection of H and XZ;. By our additional assumption
above, the perturbation is physically stationary at S, so
06,, = 0 on S. Thus, we obtain

/ @R (; 6, L:5¢p) = ! / (7Y ,u)8,,.66"€ > 0.
H

(101)

We may interpret this horizon flux contribution from w%®

as representing the total flux of gravitational wave energy
into the black hole.

Next, we calculate the horizon flux contribution from
o™ . From (41), we have

1
+ [(Eééedabc)FdeéAe - (5€dabc)Fde£§5Ae]' (102)
T

Len = 1zdn + d(1zn) = d(1en), (104)
where the pullback of z:dn vanishes since £ is tangent to
‘H. Thus, the integral over H of the first term on the right
side of (103) will merely contribute a boundary term at
S ="H N Z;. However, since the perturbation is assumed to

be stationary at S, the electromagnetic energy flux must

llEq. (100) assumes that 6@ =0 on H (see [21]). This
condition can be imposed in the present case because we assumed
that the first order process was done optimally [see (90)], so
8T o kkP = 0.
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vanish there, so 0F,, must be of the form (69). Using this
fact together with our gauge condition 64, = 0 on H, it
can be seen that this boundary term vanishes. Finally, the
second term on the right side of (103) combines with the
second term of (102). This term can be further simplified by
noting that

L:6A = 1:d6A + d(1:0A). (105)
Under our gauge condition £6A4,|, = 0, the second term
of (105) is normal to the horizon, and hence proportional to
the horizon normal k. By the antisymmetry of 6F,,,
6Fk,, is orthogonal to k% and hence tangent to the
horizon. As this term only appears in (102) when con-
tracted into the volume element on the horizon, it makes no
contribution to the canonical energy integral. Putting
everything together, we find that

/wEM(¢;5¢v£§5¢)__i/edahcé:eéFdf‘SFef' (106)
M 27 Jn

The right side of this equation is nonnegative and can be
interpreted as the total flux of electromagnetic energy into
the black hole.

All that remains now is to calculate the contribution to
canonical energy from X;

Es (:50) = /E o(p.50.L50).  (107)

Since we have assumed that the perturbation is stationary
on X, it might be thought that £:6¢p = 0 on Z; and thus
this contribution to the canonical energy vanishes. How-
ever, this is not the case because our conditions 6 = 0 as
well as our gauge condition £6A, = 0 on H preclude our
writing the perturbation in a gauge where £:6g,, = 0 and
L:0A, = 0; see [21] for further discussion. Nevertheless,
|

8
M3

SARN = —

[(6M)*(J* + (2 + )P M
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we can calculate & (¢;0¢) as follows. First, since, by
assumption, 8¢ is equal to a perturbation 6¢%" to another
Kerr-Newman black hole on X;, we obviously may replace
8¢ by 5¢XN (written in our gauge) on the right side of (107)

Es, (:50) = Es, (h:5¢5V) = / (. 55N, L5¢5N).

2

(108)

However, as can be seen from our analysis above, 5¢%" has
no flux of canonical energy through H, i.e., there is no flux
of gravitational or electromagnetic energy through the
horizon for a Kerr-Newman perturbation. Thus, we may
replace ¥; by X in (108). Finally, we may evaluate
Es (¢p; 5¢%N) using (51). Consider the one-parameter fam-
ily, XN (a), where each field configuration in the family is
a Kerr-Newman black hole with parameters given by

MXN (@) = M + asM, (109)
0(a) = 0 + asQ, (110)
JEN(a) = J + adl, (111)

where 6M, 60, and 6J are chosen to agree with the
corresponding values for our first-order perturbation ¢(4).
Then, for this family, we have M = §*J = 5°Qp = 0, as
well as SE = 5*C; = 0. Thus, we obtain

Exop ™) =g FARY.  (12)
where 52A&N denotes the second order change in the area of
the horizon for the one-parameter family (109)—(111). This
quantity can be evaluated by taking two variations of the
area formula Az = 4z(r2 + (J/M)?), and is given explic-
itly as follows:

—M3(1 +€)(=1+ e+ 2€))

+ (8Q)*(M°Q* + MP(1 + €)€?) + (8J)*(J*M? + MP¢?)
+ SMSJ(=2J3M = 2JM3(1 + €)) + 6J5Q(2JM* Q)

+ MSQ(-2°M3Q + 2M7Q(—1 + €?))].

Here we have introduced the parameter

VMZ = 0% — (J/M)?

e=r,/M—-1= i

(114)

[thereby generalizing (5) to the case where the black hole is
rotating as well as charged] in order that we can keep better

(113)

[
track of the extremal limit, ¢ — 0. However, we have not

assumed that ¢ is small in (113).
We have now computed all of the terms appearing in (91).

Using the positivity of the gravitational, electromagnetic, and
nonelectromagnetic stress-energy fluxes through the horizon,
we have thereby derived the following inequality involving
the second order change of the mass of the black hole
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SM — Q62 — 0ps20 > — éazAgN. (115)
The surface gravity of a Kerr-Newman black hole is given by
M3
AT (16)
Expanding the right side of (115) to lowest order in ¢, we obtain
M
M — Qp&* — 20 > ARG [M*(8J) + (M® + J?Q? + M?J?)(8Q)* — 2JM?Q5J5Q] + Oe), (117)

where we have used oM = QyoJ + ©56Q [see (90)] to
eliminate 0M from the expression.

We now show that this inequality is precisely what is
needed to show that gedanken experiments of the Hubeny
type can never succeed in overcharging or overspinning the
black hole. Consider a one-parameter family, ¢(4), of the

|

f() = <M2—Q2—AJ/I—22) +2,1<

J?+ M
+/12K + >52M—

M3

—aonr+ () om - 07

We wish to know if, for small, 4, we can make f < 0. If
we took into account only effects linear in 4, the inequality
(89) would constrain f by

() > M2 + ((J2 = M*)Q5Q — 2IM>8])Ae

2
M*+J?
+0(22, 6%, €%2). (120)
If the O(4%) term and the higher order terms are neglected,
then it is easy to see that it is possible to make f(1) < 0,
suggesting that the black hole could be over-charged or
over-spun. However, when our calculation of the O(4?)
term given by inequality (117) is taken into account, we
have shown that for an optimal first-order process with
oM = QpoJ + ©y0Q, we have

f(A) > M?*e® + ((J?> = M*)Q8Q — 2JM?5]) Je

M* + J?
P

M*(M* + J?)
+ 01, e, €21, e2%).

((J? = M*)Q6Q — 2IM?567)*A?
(121)

This expression can be rewritten as a perfect square,

type we have been considering, where ¢(0) is a nearly
extremal Kerr-Newman black hole, ¢ < 1. Define

f(A) =MQ)? = Q) =J(A)?*/M(2)*.  (118)
Then, to second order in A, we have
M* + J? J
]\; oM _WM - Q5Q>
Wézj - 080 + %5]5M
(119)
|
(12 - M4)Q5Q —2JIM38] 2
f(ﬂ)2< MM 1 7 /1+M€>
+0(/13,...). (122)

Thus, f > 0, and no violations of (1) can occur.

V. DISCUSSION

The Kerr-Newman parameter space (M, Q,a = J/M) is
shown in Fig. 3. In this parameter space, black holes lie
within the “future light cone” M > 0, M> — Q* — a* > 0.
Kerr-Newman solutions outside this cone correspond to

black holes

naked singularities

FIG. 3. The parameter space of Kerr-Newman black holes.
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FIG. 4. A surface of constant area for Kerr-Newman black
holes.

naked singularities. Extremal black holes live on the

boundary of the cone, M = \/Q? + a*>. The gedanken
experiments to destroy an extremal black hole discussed
in Sec. III correspond to analyzing whether, starting at the
boundary, one can perturb the spacetime so as to move
outside the cone. The gedanken experiments to destroy a
slightly non-extremal black hole discussed in Sec. IV
correspond to analyzing whether one can move out of
the cone starting near (but not on) the boundary of the cone.

Within this cone, one can draw surfaces of constant area
for the Kerr-Newman black holes. One such surface is
shown in Fig. 4. It is important to note that the surfaces of
constant area meet the boundary tangentially.

To linear order, the change in the parameters (M, Q, a)
resulting from dropping matter into a Kerr-Newman black
hole corresponds to a tangent vector in parameter space.
Equation (89) shows precisely that for an arbitrary Kerr-
Newman black hole, to linear order, any perturbation
resulting from matter entering a black hole cannot decrease
the area of the black hole> T hus, the tangent to the surface
of constant area provides a lower bound to the slope of any
tangent vector representing a physically achievable pertur-
bation. In particular, for an extremal black hole, the best
one can do is move tangentially to the cone. Thus, as we
found in Sec. III, to first order it is impossible to escape
from the cone into the naked singularity region of param-
eter space starting at the boundary of the cone.

The Hubeny argument for possibly escaping from the
cone is illustrated in Fig. 5. For simplicity in the drawing,
we have set J = 0 and thus show only the parameter space
of Reissner-Nordstrom solutions. As is illustrated in this
figure, except at the boundary, the tangent to the curve of

"This result was first obtained for particle matter by
Christodoulou [27].
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Q

FIG. 5. The tangent to a curve of constant area for a slightly
non-extremal Reissner-Nordstrom black hole.

constant area has a slope strictly less than one. Thus, a
straight line tangent to such a curve will exit the cone. This
means that if the linear approximation were valid for a finite
perturbation, it would be possible to add charged matter to a
slightly nonextremal Reissner-Nordstrom black hole so as
to overcharge the black hole, as originally argued by
Hubeny.

However, our work shows that at second order, there are
corrections to the straight line, as illustrated in Fig. 6.
Consider a one-parameter family of solutions correspond-
ing to adding charged matter to the black hole. As we have
noted above, the curve representing the final state param-
eters has a tangent whose slope is bounded below by the
tangent to the curve of constant area. In addition, however,
if its slope is the minimum possible, we have proven in
Sec. IV that the second derivative of the curve must be
greater than the second derivative of the curve of constant
area. The quadratic approximation to this curve thus
coincides with the curve of constant area and does not
exit the cone. The linear approximation is simply not an
adequate approximation. Second order effects do not allow
one to exit from the cone.

Finally, it is worth noting that there is a discontinuity in
our lower bound on 6*M in the extremal limit. Consider, for
simplicity, the case of adding charged matter with no
angular momentum to a Reissner-Nordstrom black hole,
so J = 8J = 8°J = 0. Without loss of generality, we also
may take 6°Q = 0. Then, for e >0, for an optimal
perturbation with M = ®y60, it follows from (117) that

Q

FIG. 6. The quadratic approximation to the curve of final state
parameters obtained by adding charged matter to a slightly non-
extremal Reissner-Nordstrom black hole.
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M > % + O(e).

(123)
Thus, as € — 0, the right side approaches (5§Q)*/M. Now
consider adding charged matter to an exactly extremal
black hole, € = 0. As shown in Sec. III, the optimal per-
turbation satisfies M = ®y6Q = 5Q, so optimally, the
perturbation moves one tangent to the cone. However, the
derivation of (117) does not apply to this case—even if we
assume that the linearized perturbation becomes stationary
at late times—because our evaluation of &y, is valid only
for nonextremal black holes. Nevertheless, if the perturba-
tion decreases the charge of the black hole (i.e., if §Q has
sign opposite that of Q) then one would expect that
M > (6Q)?/M, so that, optimally, at second order the
area of the black hole will remain constant. On the other
hand, if 6Q increases the charge, then there is no reason
why this bound need be satisfied since the area of the black
hole will increase in any case. Our expectation is that

&M >0, (124)

so that, optimally, the black hole will remain extremal at
second order. Indeed, the explicit example of adding a
charged shell of matter shows that the lower bound (124)
can, in fact, be achieved. Thus, there is a discontinuity
between (123) and (124) when € — 0. It would be
interesting to derive (124) from first principles and to
see if it is related to other discontinuous behavior as ¢ — 0,
such as the Aretakis instability [28].
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APPENDIX: SELF-FORCE ENERGY
AND FINITE SIZE EFFECTS

The second-order correction to the mass of a black hole
given by Eq. (117) gives a lower bound on the energy of
any matter that enters a black hole that is valid to quadratic
order in the charge and angular momentum of the body.
Since particlelike matter in general relativity must be
described as a limiting case of general continuum matter
(see [19,20]), this formula applies to particle matter as well.
At second order, self-force effects contribute to the energy
of a particle. In addition, at second order, a charged body
will have an electromagnetic self-energy that diverges
when the size of the body is taken to zero, so the size
of the body must be finite. However, the finite size of the
body may prevent one from lowering the body all the way
to the horizon. Our bound (115) must implicitly take into
account all of these effects. The purpose of this Appendix is

PHYSICAL REVIEW D 96, 104014 (2017)

to show explicitly that this is the case for the special case of
a charged, particle-like body that enters an uncharged, non-
extremal Kerr black hole along the black hole’s symmetry
axis. The self-force effects in this case were previously
calculated by Leaute and Linet [29], while self-energy and
finite size effects in this case were previously obtained by
Hod [6].

It is particularly easy to evaluate our lower bound on
8”M for the case of a charged body entering a Kerr black
hole along the symmetry axis, since Q =0 and
8J = 6*J = 0. An optimal process therefore has M = 0
at first order. Thus, (113) reduces to"?

8
SAEN = (1 4 )(50) (A1)
€
Hence, (115) yields
1 r
FPM > ——k8AKN — T (50)? A2
= 87TK B ri + Cl2< Q) ( )

where we have used the expression (116) for x and have
used (114) to replace € by r . Since Q =0, we have
r2 +a?>=2Mr,, and so (A2) may be written as

M > S (50)>%.

Z 50 (A3)

Taking into account the Taylor coefficient of 1/2, this
means that any charged matter with no angular momentum
that enters an uncharged black hole must carry an energy

1 2

E> RV (60)".

into the black hole. This bound holds for any Kerr black
hole with a < M.

On the other hand, Leaute and Linet’s expression [29] for
the (proper, locally measured) self-force on a charged
particle on the symmetry axis of Kerr is repulsive and
has magnitude

(A4)

M
L5 (50).

f(r) Pt ar (AS)

The force exerted at infinity when lowering the charged
body is reduced from this by the redshift factor (—g,,)'/?
(see, e.g., [30]). However, the infinitesimal proper distance
traversed when lowering is given by dI = (g,,)"/?dr. The
factors (—g,)"/? and (g,,)'/? cancel on the symmetry axis
of Kerr. Thus, we find that the work done at infinity in
overcoming the self-force when lowering the charge from
infinity to the horizon is

BNote that this is an exact expression, i.e., we have not
assumed that € is small.
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M

E¢ = Km f(r)dr = m(gQ)Z.

(A6)
Note that Egr < E;, for a nonextremal black hole, with
Ein given by the right side of (A4).

However, the self-force expression is only valid for a
small body that is roughly spherical in shape. For such a
body, there will be potentially important self-energy and
finite size effects, which can be calculated as follows. For a
charged spherical body of radius R and charge 6Q, the
electromagnetic contribution to the rest mass of the body is
minimized for a thin shell and is given by

1(50)?

= A7
mEMzR ()

If the body is dropped into the black hole from a proper
distance / from the horizon, its electromagnetic self-energy

will contribute an energy
Egr = mEMV(l> (A8)

to the black hole, where V(/) is the redshift factor at the
dropping point. However, near the black hole, we have

V(l) = xl, (A9)

where « is the surface gravity of the black hole. Since we
must have [ > R, we obtain

Eself = g (5Q)2 (AIO)
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Substituting for x from (116) and adding these two
contributions yields a minimal total added energy of

(60)* ,

Egir + Esp = M

(Al1)

in exact agreement14 with (A4). Thus, we see explicitly in
this example how our general bound (A4) incorporates both
self-force effects and self-energy/finite size effects.

One could attempt to evade our bound by making E
smaller by choosing, instead of a small spherical shell, a
body that has radial extent much smaller than its angular
extent. Such a body could be lowered arbitrarily close to
the black hole without making its self-energy arbitrarily
large. However, choosing such a shape for the body would
result in other second-order corrections to the energy
(such as self-repulsion effects) that would inevitably have
to reproduce our bound (A4). As an extreme example of
this, one can consider a thin spherical shell of charge
collapsing around a Schwarzchild black hole, which
experiences a large self-repulsion but for which the
(redshifted) electromagnetic self-energy can be made
exactly zero. Using the methods of Boulware [31], it is
straightforward to show that such a shell still adds a
minimal energy of (§Q)%>/4M to the black hole. This
illustrates, again, that our bound automatically takes all
effects on energy into account.

YFor a nearly extremal Kerr black hole, this is sufficient to
prevent overextremizing the black hole, as previously found by
Hod [6].
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