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We investigated the regular multihorizon black holes in the Einstein gravity, FðRÞ gravity, and the 5
dimensional Gauss-Bonnet gravity, all of them coupled with nonlinear electrodynamics. We presented
several explicit examples of the actions which admit the solutions describing regular black hole space-time
with multihorizons. Thermodynamics of the obtained black hole solutions is studied. The explicit
expressions of the temperature, the entropy, the thermodynamical energy and the free energy are obtained.
Although the temperature vanishes in the extremal limit where the radii of the two horizons coincide with
each other as in the standard multihorizon black hole like the Reissner-Nordström black hole or the Kerr
black hole, the larger temperature corresponds to the larger horizon radius. This is different from the
standard black holes, where the larger temperature corresponds to the smaller horizon radius. We also found
that the specific heat becomes positive for the large temperature, which is also different from the standard
black holes, where the specific heat is negative. It should be also noted that the thermodynamical energy is
not identical with the ADM mass. Furthermore in case of the Gauss-Bonnet gravity,it is demonstrated that
the entropy can become negative.
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I. INTRODUCTION

Usually a black hole has both curvature singularity and
horizon(s). The singularity without horizon might be pro-
hibited by the cosmic censorship [1]. Conversely, before the
concept of the cosmic censorship, it has been found the
space-timewith horizon butwithout the curvature singularity
can be realized by using the nonlinear electromagnetism [2].
This fact initiated the study of the regular black hole (with
nonlinear electrodynamics): [3–21]. Recently in [20], the
construction of the nonsingular black holes by using the
nonlinear electrodynamics has been completely generalized.
The interest in gravity with nonlinear electrodynamics is
caused by several reasons. First of all, nonlinear electrody-
namics models with gravity are predicted by low-energy
string effective action. Second, such theories may appear as
the effective action from quantum gravity coupled with
matter. Third, such theories may be considered as simple
enough models mimicking much more complicated funda-
mental proposals for nonperturbative quantum gravity with
matter at the early universe. It is expected that nonlinear
character of the theory may be manifested in quite unusual

aspects of black hole thermodynamics. Specifically, we
consider multihorizon black holes where Nariai limit may
be easily accessed. This is caused by thewell-known fact that
such black holes are supposed to be the primordial black
holes which were created at the early universe. It is expected
that some of primordial black holes which may have the
unusual properties may survive at the current universe. If so,
they may give us the important information about the
properties of the early universe. For instance, as we discuss
later on, unlike to standard one-horizon black holes, the
multihorizon black holesmay show up not only the Hawking
evaporation but also anti-evaporation or related instability
phenomenon.
The purpose of this work is to study the nonsingular

black holes in modified gravity with nonlinear electrody-
namics. By using the formulation of Ref. [20] we consider
the problem of nonsingular black holes in FðRÞ gravity
which may be responsible for current acceleratingly
expanding universe (see [22–24] and for the review, see
[25–28]) and 5-dimensional Gauss-Bonnet gravity. We give
some examples of the nonsingular black hole space-time
with multihorizons and investigate their thermodynamical
properties. A motivation why we consider the 5-dimensional
gravity is related with the AdS/CFT correspondence [29,30],
where the gravity theory in the D dimensional anti-de
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Sitter (AdS) space-time is equivalent to the conformal field
theory (CFT) in the D − 1 dimensional flat space-time,
which can be identified with the boundary of the AdS space-
time. We show, however, that our model does not correspond
to any 4-dimensional relativistic field theory but the effective
3-dimensional theory or nonrelativistic theory. We also show
that there are some regions of the parameter space where the
entropy of 5-dimensional Einstein-Gauss-Bonnet gravity
becomes negative.
It is interesting to discuss the relation between the regular

black holes and the energy conditions [31,32]. In the
formulation of [20], one can construct any type of spheri-
cally symmetric regular black hole and one can check the
energy conditions explicitly. In this paper, we check the
conditions for some simple cases.
We often consider the Nariai limit where the radii of two

horizons coincide with each other. In some cases, such a
black hole is stable due to the phenomena called anti-
evaporation. It may have quite long life-time although with
the radius being small. This is to compare with small black
hole which evaporates in a short time. Therefore, the Nariai
black hole may be considered as primordial one and might
survive even in the present universe.
In the next section, we give a general formulation to

construct the regular black holes, especially with multi-
horizons, based on Ref. [20]. Some explicit examples of the
black hole space-time with multihorizons in the Einstein
gravity with nonlinear electrodynamics are constructed. In
Sec. III, we generalize the formulation of Ref. [20] for FðRÞ
gravity and give the explicit examples of the multi-horizon
regular black hole space-time in the R2 gravity. It is also
demonstrated that one cannot construct any spherically
symmetric regular black hole solutions only by FðRÞ
gravity. The thermodynamics is also investigated in
Sec. IV) and some expressions for the entropy S and the
energy E are found. It is shown that the obtained expression
for the energy E is often different from the ADMmass [33].
In Sec. V, we consider 5-dimensional Gauss-Bonnet gravity
with nonlinear electrodynamics. We develop a formulation
to construct the models which generate the general spheri-
cally symmetric space-time and give an example of the
regular black hole with two horizons. We also investigate
the thermodynamics and we find that the entropy can be
negative. In addition to the entropy S, the expression of the
free energy F is found. It indicates that the five-dimensional
gravity model could not correspond to any 4-dimensional
relativistic field theory but eventually it corresponds to the
effective 3 dimensional theory or nonrelativistic theory.
Some summary and outlook are given in the last section.

II. REGULAR BLACK HOLE WITH NONLINEAR
ELECTROMAGNETISM

In this section, we consider the regular black hole with
multihorizons in the Einstein gravity coupled with non-
linear electromagnetic field.

A. General formulation of reconstruction

In this subsection, we extend the formulation of the
reconstruction in [20] so that we could construct solutions
describing the black hole without curvature singularity but
with multi-horizons.
We start from the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
− LðIÞ

�
: ð1Þ

Here we have chosen the gravitational constant to be unity,
κ ¼ 1 and I ≡ 1

4
FμνFμν, with the field strength Fμν of the

electromagnetic field Aμ, Fμν ≡ ∂μAν − ∂νAμ. Then the
equations of motion have the following form,

Gν
μ ¼

dL
dI

FαμFαν þ Lδνμ; ð2Þ

0 ¼ ∇μ

�
Fμν

dL
dI

�
: ð3Þ

We now assume a spherically symmetric static background
as in the Schwarzschild space-time as follows,

ds2 ¼ −e2νðrÞdt2 þ e−2νðrÞdr2 þ r2
X2
i;j¼1

~gijdxidxj; ð4Þ

and Ai ¼ 0 (i ¼ 1, 2, 3) and A0 ¼ A0ðrÞ. Then Eq. (3) has
the following form,

0 ¼ d
dr

�
r2F0r dL

dI

�
: ð5Þ

By using I ¼ − 1
2
ðF0rÞ2, Eq. (5) can be solved as

r2
dL
dI

¼ Qffiffiffiffiffiffiffiffi
−2I

p : ð6Þ

We now define a new variable X by

X ≡Q
ffiffiffiffiffiffiffiffi
−2I

p
: ð7Þ

Then in [20], the following equations have been obtained,

d
dr

ðrðe2ν − 1ÞÞ ¼ −r2ρ; ð8Þ

L ¼ X
r2

− ρ; ð9Þ

X ¼ −
r3

2

dρ
dr

: ð10Þ

Here ρ is the energy-density of the nonlinear electromag-
netic field obtained from the Lagrangian density L. For the
geometry expressed by e2νðrÞ in (4), by using (8), we find
the explicit r-dependence of ρ. Then by using (10), one can
express X in terms of r, which can be solved with respect to
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r as r ¼ rðXÞ. Substituting the obtained expression r ¼
rðXÞ into (9), we obtain the explicit form of L, L ¼ LðXÞ.
In general, however, one cannot solve Eq. (10) explicitly
with respect to r as a function of X and also there might not
be the one-to-one correspondence between X and r. In this
case, one cannot obtain the Lagrangian density (9). In order
to avoid this problem, we may introduce the auxiliary fields
B and C. It is straightforward to obtain the r-dependence of
the energy-density ρ by using (8) for a given e2νðrÞ,
ρ ¼ ρðrÞ. Then by using the auxiliary fields B and C,
we may consider the following Lagrangian density LBCX
instead of L,

L→LBCX≡ X
C2

−ρðr¼CÞþB

�
XþC3

2

dρ
dr

����
r¼C

�
: ð11Þ

By the variation over B, we obtain (10) with r ¼ C. In case
that C can be solved with respect to X, by substituting the
obtained expression into (11), one gets the Lagrangian
density in (9).

B. General regular black hole with multihorizons

We now consider the general regular multihorizon black
hole, where there is no curvature singularity. In the back-
ground (4), the scalar curvature is given by

R ¼ e2ν
�
−2ν00 − 4ν02 −

8ν0

r
þ 2e−2ν − 2

r2

	
: ð12Þ

Therefore in order to avoid the curvature singularity, we
find e2ν → 1 in the limit of r → 0. Furthermore because
∂μe2ν is a single-valued function, we also require e2ν ¼
1þOðr2Þ ar r → 0. We also require ν00 does not diverge
at r ¼ 0.
If the background is the Minkowski space-time or the

anti-de Sitter space-time, one may express e2νðrÞ as follows,

e2νðrÞ ¼ ðr − r1Þðr − r2Þ � � � ðr − r2NÞ
hðrÞ : ð13Þ

Here N is a positive integer, hðrÞ does not vanish and
hðrÞ → r1r2 � � � r2Nð1 − ðP2N

i¼1
1
ri
ÞrþOðr2ÞÞ in the limit of

r → 0. Therefore e2νðrÞ behaves as e2νðrÞ → 1þOðr2Þ and
therefore the space-time is regular at r ¼ 0. On the other
hand, in the limit of r → ∞, hðrÞ behaves as hðrÞ → r2N

for the Minkowski background or hðrÞ → r2Nþ2

l2 with a
length parameter l for the anti-de Sitter background. In
(13), there are 2N horizons at r ¼ r1, r2, …, and r2N . We
may assume r1 ≤ r2 ≤ � � � ≤ r2N . On the other hand, in the
de Sitter background, hðrÞ could be given by

e2νðrÞ ¼ ðr − r1Þðr − r2Þ � � � ðr − r2N−1Þ
hðrÞ : ð14Þ

Here, again, N is a positive integer, hðrÞ does not
vanish. In the limit of r → 0, we require hðrÞ →
−r1r2 � � � r2N−1ð1 − ðP2N−1

i¼1
1
ri
ÞrþOðr2ÞÞ and therefore

e2νðrÞ behaves as e2νðrÞ → 1þOðr2Þ, again and the
space-time is regular at r ¼ 0. On the other hand, in the
limit of r → ∞, we also require hðrÞ behaves as hðrÞ →
− r2Nþ1

l2 with a length parameter l. In (14), there are 2N − 1

horizons at r ¼ r1, r2, …, and r2N−1 and if we assume
r1 ≤ r2 ≤ � � � ≤ r2N−1, r ¼ r2N−1 corresponds to the cos-
mological horizon. This may show that the regular black
hole in the anti-de Sitter space-time or the Minkowski
space-time has even-number of horizons. On the other
hand, the regular black hole in de Sitter space-time has odd
number of horizons, in which the largest horizon corre-
sponds to the cosmological horizon.

C. Example in the Minkowski background

We consider the model

e2ν ¼ 1−
αr2

βþ r3
¼ðrþ r0Þðr−r1Þðr− r2Þ

βþ r3
;

α¼ r21þ r22þ r1r2
r1þ r2

; β¼ r21r
2
2

r1þ r2
; r0 ¼

r1r2
r1þ r2

:

ð15Þ

Then we find

ρ ¼ 3αβ

ðβ þ r3Þ2 > 0;

X ¼ 9αβr5

ðβ þ r3Þ3 ; L ¼ 3αβð2rðXÞ3 − βÞ
ðβ þ rðXÞ3Þ3 : ð16Þ

By using the auxiliary field B and C, one gets

LBCX ¼ 3αβð2C3 − βÞ
ðβ þ C3Þ3 þ B

�
X −

9αβC5

ðβ þ C3Þ3
�
: ð17Þ

Then redefining C → β
1
3C, Aμ → Q−1β

8
3Aμ ðX → β

8
3XÞ,

B → β−
8
3, and α → β ~α, we can rewrite the Lagrangian

density (17) as follows,

LBCX ¼ 3~αð2C3 − 1Þ
ð1þ C3Þ3 þ B

�
X −

9~αC5

ð1þ C3Þ3
�
: ð18Þ

Therefore the only parameter in the theory is

~α ¼ α

β
¼ r21 þ r22 þ r1r2

r21r
2
2

: ð19Þ

Then we can choose the extremal limit where
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r1; r2 →

ffiffiffi
3

~α

r
: ð20Þ

One may consider the energy conditions,
(i) Null Energy Condition (NEC): ρþ pr ≥ 0 and

ρþ pT ≥ 0
(ii) Weak Energy Condition (WEC): ρ ≥ 0, ρþ pr ≥ 0,

ρþ pT ≥ 0
(iii) Strong Energy Condition (SEC): ρþ pr þ 2pT ≥ 0,

ρþ pr ≥ 0, and ρþ pT ≥ 0
(iv) Dominant Energy Condition (DEC): ρ ≥ 0,

ρ� pr ≥ 0, and ρ� pT ≥ 0.
Here pr is that the pressure for the radial direction and pT is
the pressure for the angle direction.

ρ ¼ X
r2

− L ¼ 3αβ

ðβ þ r3Þ2 > 0; pr ¼
X
r2

þ L;

pT ¼ L ¼ 3αβð2r3 − βÞ
ðβ þ r3Þ3 ; X ¼ 9αβr5

ðβ þ r3Þ3 > 0: ð21Þ

Then we find,

ρþ pr ¼
2X
r2

> 0; ρþ pT ¼ X
r2

> 0: ð22Þ

Therefore the null energy condition and the weak energy
condition are satisfied. On the other hand, because

ρþ pr þ 2pT ¼ 2X
r2

þ 2L ¼ 6αβð5r3 − βÞ
ðβ þ r3Þ3 ; ð23Þ

the strong energy condition is not satisfied in the region

r <

�
β

5

�1
3 ¼

�
r21r

2
2

5ðr1 þ r2Þ
�1

3

: ð24Þ

We also find

ρ − pr ¼ −2L ¼ 6αβð−2r3 þ βÞ
ðβ þ r3Þ3 ;

ρ − pT ¼ 3αβð−r3 þ 2βÞ
ðβ þ r3Þ3 : ð25Þ

Therefore the dominant energy condition is broken in the
region

r < ð2βÞ13 ¼
�

2r21r
2
2

r1 þ r2

�1
3

: ð26Þ

Thus, we demonstrated that black hole configuration
under consideration may fulfil the energy conditions.

D. Example in the anti-de Sitter background

As an example of the regular black hole where there
appear two horizons in the anti-de Sitter background, we
consider the following one,

e2νðrÞ ¼ ðr2 − r21Þðr2 − r22Þ
r1r2ðr2 þ r1r2Þ

¼ ðr − r1Þðr − r2Þ
hðrÞ ;

hðrÞ ¼ r1r2ðr2 þ r1r2Þ
ðrþ r1Þðrþ r2Þ

: ð27Þ

Then the length parameter in the anti-de Sitter space-time
is given by l2 ¼ r1r2. By using Eqs. (8) and (10),
we find

ρ¼−
2f3r4þð4r1r2− r21− r22Þr2−3r21r

2
2−3r31r2−3r1r32g

r1r2ðr2þ r1r2Þ2
;

ð28Þ

X ¼ −
2r4f−8r6 þ ð−4r1r2 þ r21 þ r22Þr4 þ ð6r21r22 þ 5r31r2 þ 5r1r32Þr2 þ 10r31r

3
2 þ 5r41r

2
2 þ 5r21r

4
2g

r1r2ðr2 þ r1r2Þ3
: ð29Þ

Because we cannot solve Eq. (29) with respect to r, we use the Lagrangian density in (11),

LBCX ¼ X
C2

−
2f3C4 þ ð4r1r2 − r21 − r22ÞC2 − 3r21r

2
2 − 3r31r2 − 3r1r32g

r1r2ðC2 þ r1r2Þ2

þ B
�
X þ 2C4f−8C6 þ ð−4r1r2 þ r21 þ r22ÞC4 þ ð6r21r22 þ 5r31r2 þ 5r1r32ÞC2 þ 10r31r

3
2 þ 5r41r

2
2 þ 5r21r

4
2g

r1r2ðC2 þ r1r2Þ3
	
: ð30Þ

We now redefine,

C2 → r1r2C2; X → r1r2X; B →
B

r1r2
; α≡ r21 þ r22

r1r2
; l2 ¼ r1r2: ð31Þ

Then the Lagrangian density (30) can be rewritten as

LBCX ¼ X
C2

−
2f3C4 þ ð4 − αÞC2 − 3 − 3αg

l2ðC2 þ 1Þ2 þ B

�
X þ 2C4f−8C6 þ ð−4þ αÞC4 þ ð6þ 5αÞC2 þ 10þ 5αg

ðC2 þ 1Þ3
	
: ð32Þ
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The Lagrangian density (32) still includes a parameter Q,
which appears as a solution in (6) but as clear in (7), the
parameterQ can be always absorbed into the redefinition of
Aμ as Aμ → Q2Aμ. Therefore we can find that this model
given by the Lagrangian density (32) has only two coupling
constants α and l2. In terms of α and l2, the horizon radii r1
and r2 are given by

r1 ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 4

p

2

s
; r2 ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 4

p

2

s
: ð33Þ

This tells that by keeping the coupling constant α and l2 to
be constant, we cannot consider the Nariai limit, where
r1 → r2, or, α → 2. In order to solve this problem, we make
the parameter α a dynamical field and we add the following
Lagrangian density,

LBα ¼ Hμ∂μα: ð34Þ

Then by the variation of Hμ, we obtain the equation,

0 ¼ ∂μα; ð35Þ

and therefore α becomes a constant, whose value could be
dynamically determined. Due to Eq. (35), the energy
momentum tensor coming from the Lagrangian (34)
vanishes and therefore the Lagrangian does not contribute
to the geometry. Then we can consider the Nariai limit by
making α → 2,

r1 ¼ l− ϵ; r2¼ lþ ϵ; r¼ lþ ϵsinθ; t¼ τ

ϵ
; ð36Þ

and taking the limit of ϵ → 0. By the definition of (36),
e2νðrÞ in (27) behaves as

e2νðrÞ → −
2ϵ2

l2
cos2 θ; ð37Þ

and therefore the metric is given by

ds2 ¼ 2 cos2 θ
l2

dτ2 −
l2

2
dθ2 þ l2

X2
i;j¼1

~gijdxidxj: ð38Þ

Further redefining

cos θ ¼ 1

cosh 2ρ
l2
; that is dθ ¼ 2

l2 cosh 2ρ
l2
dρ; ð39Þ

we obtain the following metric

ds2 ¼ 2

l2cosh2 ρ
l2
ðdτ2 − dρ2Þ þ l2

X2
i;j¼1

~gijdxidxj; ð40Þ

which is similar to the metric in the Nariai space-time.
The energy density (28) includes the contribution from

the cosmological constant because we are considering the
asymptotically anti-de Sitter space-time. By subtracting the
contribution from the cosmological constant, we find

ρEM ¼ ρþ 6

r1r2
¼ 2fð2r1r2þ r21þ r22Þr2−3ðr31r2þ r1r32Þg

r1r2ðr2þ r1r2Þ2
:

ð41Þ

Therefore in the region

r <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðr31r2 þ r1r32Þ
2r1r2 þ r21 þ r22

s
; ð42Þ

the energy density ρEM becomes negative and therefore the
weak and dominant energy conditions are not satisfied
although the null energy condition is always satisfied, what
is clear from (22). Although we need to subtract the
contributions from the cosmological constant, there could
be a region where the strong energy condition is not
satisfied.

E. Regular black hole with three horizons

We may also consider another example,

e2νðrÞ ¼ −
ðr2 − r21Þðr2 − r22Þðr2 − r23Þ

l2ðr2 þ r1r2r3
l Þ2 : ð43Þ

In the limit r → ∞, we find e2νðrÞ → − r2

l2 . Therefore the
space-time is the de Sitter space-time. Then by using (8),
we find

ρ ¼ −
2

l2r2ðr2 þ r1r2r3
l Þ3

�
−3r8 þ

�
r21 þ r22 þ r23 þ l2 −

7r1r2r3
l

�
r6

þ
�
r22r

2
3 þ r23r

2
1 þ r21r

2
2 þ 3lr1r2r3 þ

5r1r2r3
l

ðr21 þ r22 þ r33Þ
�
r4

−
3r1r2r3

l
ðr22r23 þ r23r

2
1 þ r21r

2
2Þr2 þ

2r31r
3
2r

3
3

l

	
: ð44Þ

Now Eq. (10) has the following form,
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X ¼ 2

l2r2ðr2 þ r1r2r3
l Þ4

��
−l2 − r21 − r22 − r23 −

2r1r2r3
l

�
r8

þ
�
−2ðr22r23 þ r23r

2
1 þ r21r

2
2Þ −

8r1r2r3
l

ðr21 þ r22 þ r23Þ − 4r1r2r3l −
14r31r

3
2r

3
3

l2

�
r6

þ
�
5r21r

2
2r

2
3

l2
ðr21 þ r22 þ r23Þ þ

10r1r2r3
l

ðr22r23 þ r23r
2
1 þ r21r

2
2Þ þ 3r21r

2
2r

2
3

�
r4 −

8r31r
3
2r

3
3

l
r2 −

2r41r
4
2r

4
3

l2

	
: ð45Þ

In order to obtain the Lagrangian density L, we need to solve Eq. (45) with respect to r but the equation is the 5th order
algebraic equation with respect to r, which cannot be solved algebraically. Furthermore the one-to-one correspondence
between X and r is not satisfied in general and therefore we cannot construct the Lagrangian density (9) in an explicit form.
Then one may use the Lagrangian density in (11), and obtain

LBCX ¼ X
C2

þ 2

l2C2ðC2 þ r1r2r3
l Þ3

�
−3C8 þ

�
r21 þ r22 þ r23 þ l2 −

7r1r2r3
l

�
C6

þ
�
r22r

2
3 þ r23r

2
1 þ r21r

2
2 þ 3lr1r2r3 þ

5r1r2r3
l

ðr21 þ r22 þ r33Þ
�
C4−

3r1r2r3
l

ðr22r23 þ r23r
2
1 þ r21r

2
2ÞC2 þ 2r31r

3
2r

3
3

l

	

þ B

�
X −

2

l2C2ðC2 þ r1r2r3
l Þ4

��
−l2 − r21 − r22 − r23 −

2r1r2r3
l

�
C8

þ
�
−2ðr22r23 þ r23r

2
1 þ r21r

2
2Þ −

8r1r2r3
l

ðr21 þ r22 þ r23Þ − 4r1r2r3l −
14r31r

3
2r

3
3

l2

�
C6

þ
�
5r21r

2
2r

2
3

l2
ðr21 þ r22 þ r23Þ þ

10r1r2r3
l

ðr22r23 þ r23r
2
1 þ r21r

2
2Þ þ 3r21r

2
2r

2
3

�
C4−

8r31r
3
2r

3
3

l
C2 −

2r41r
4
2r

4
3

l2

�	
: ð46Þ

We now define parameters α, β, and γ as follows,

C2 →
r1r2r3

l
C2; X →

r1r2r3
l

X; B →
l

r1r2r3
B;

α≡ lðr21 þ r22 þ r23 þ l2Þ
r1r2r3

; β≡ l2ðr22r23 þ r23r
2
1 þ r21r

2
2Þ

r21r
2
2r

2
3

; γ ≡ l3

r1r2r3
: ð47Þ

Then the Lagrangian density (46) has the following form

LBCX ¼ X
C2

þ 2f−3C8 þ ðα − 7ÞC6 þ ð5αþ β − 2γÞC4 − 3βC2 þ 2g
l2C2ðC2 þ 1Þ3

þ B
�
X −

2fð−β − 2ÞC8 þ ð−8α − 2β þ 4γ − 14ÞC6 þ ð5αþ 10β − 2γÞC4 − 8C2 − 2g
l2C2ðC2 þ 1Þ4

	
: ð48Þ

This tells us that this model has four independent parameters l, α, β, and γ besides the gravitational constant. Therefore
when we consider the Nariai limit, we need to keep these parameters constant. By assuming r2, r3 → r0, we find

α ¼ lðr21 þ 2r20 þ l2Þ
r1r20

; β ¼ l2ðr20 þ 2r21Þ
r21r

2
0

; γ ¼ l3

r1r20
: ð49Þ

Then by deleting r1, we obtain the following equations,

α ¼ γ

l2

�
l6

γ2r40
þ 2r20 þ l2

�
; β ¼ γ2

l4
r40 þ

2l2

r20
: ð50Þ

Because the above two equations are independent from each other, there is no solution for r0 in general. Therefore one
cannot get the Nariai limit in general. Then we may use the formulation as in (34). Instead of using the formulation, we may
consider a special case,

α ¼ γ þ 3γ
1
3; β ¼ 3γ

2
3: ð51Þ

Then one has a solution,

SHIN’ICHI NOJIRI and S. D. ODINTSOV PHYSICAL REVIEW D 96, 104008 (2017)

104008-6



r0 ¼ r1 ¼ γ−
1
3l; ð52Þ

that is, the radii of three horizons coincide with each other.
We may also consider the case that the parameters α, β, and
γ in (49) are given by two parameters ξ0 and ξ1 as follows,

α¼ ξ20
ξ1
þ2ξ1þξ20ξ1; β¼ ξ21þ2ξ20; γ¼ ξ20ξ1: ð53Þ

Then the solution for r0 and r1 is given by

r0 ¼
l
ξ0

; r1 ¼
l
ξ1

: ð54Þ

Hence even if we consider the infinitesimal shift from
r2 ¼ r3 ¼ r0,

r2 ¼ r0 − ϵ; r3 ¼ r0 þ ϵ; ð55Þ
the parameters α, β, and γ do not change or more exactly the
variations of the parameters are Oðϵ2Þ. Then as in (36), by
redefining

r ¼ r0 þ ϵ sin θ; t ¼ τ

ϵ
; ð56Þ

we obtain the Nariai limit,

e2νðrÞ →
4r20ðr20 − r21Þϵ2 cos2 θ

l2ð1þ r1
l Þ2

; ð57Þ

and the metric is given by

ds2 ¼ −
4r20ðr20 − r21Þcos2θ

l2ð1þ r1
l Þ2

dτ2 þ l2ð1þ r1
l Þ2

4r20ðr20 − r21Þ
dθ2

þ r20
X2
i;j¼1

~gijdxidxj: ð58Þ

III. FðRÞ GRAVITY WITH NONLINEAR
ELECTROMAGNETISM

In this section, we consider FðRÞ theory instead of the
Einstein gravity. We show that the extension of above
formulation is rather straightforward. Note that the black
holes in FðRÞ gravity have been well-studied [34–40]
including the solution of the black hole with multihorizons
in FðRÞ-gravity, (see [41]). It is interesting that for such
FðRÞ black holes as was shown in Refs. [41–43], the anti-
evaporation phenomena in the Nariai space-time [44–46]
may occur. In this section, we also prove that within only
FðRÞ gravity, we cannot construct the regular black hole
solution of the Schwarzschild type (4).

A. Regular black hole in FðRÞ gravity with nonlinear
electromagnetism

We start with the action of FðRÞ gravity coupled with
matter:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fFðRÞ þ Lmg: ð59Þ

Here FðRÞ is a function of the scalar curvature and Lm is a
matter Lagrangian. The equation of the motion is given by

0 ¼ −
1

2
e2νFðRÞ − e4ν

�
ν00 þ 2ν02 þ 2ν0

r

�
F0ðRÞ − e4νν0

dF0ðRÞ
dr

þ e2ν

r2
d
dr

�
e2νr2

dF0ðRÞ
dr

�
−
1

2
ρe2ν; ð60Þ

0 ¼ 1

2
e−2νFðRÞ þ

�
ν00 þ 2ν02 þ 2ν0

r

�
F0ðRÞ þ d2F0ðRÞ

dr2
þ ν0

dF0ðRÞ
dr

−
e−2ν

r2
d
dr

�
e2νr2

dF0ðRÞ
dr

�
þ 1

2
pe−2ν; ð61Þ

0 ¼ r2

2
FðRÞ − f1þ ð−1 − 2rν0Þe2νgF0ðRÞ þ e2νr

dF0ðRÞ
dr

−
d
dr

�
e2νr2

dF0ðRÞ
dr

�
þ r2

2
pT: ð62Þ

Even in FðRÞ gravity theory, we have Eqs. (9) and (10), again but Eq. (8) is replaced by (60). For the geometry given by
e2νðrÞ in (4), Eq. (60) determines the r-dependence of ρ, ρ ¼ ρðrÞ. By solving (10), we find the r-dependence of X, which
can be solved with respect to r, X ¼ XðrÞ. Substituting the expression XðrÞ into (9), we obtain the Lagrangian density L.
Even if one cannot solve (10), we can use the Lagrangian density (11) by using the auxiliary fields B and C.
For the example (27), one finds

R ¼ 2f−6r6 þ ðr21 þ r22 − 16r1r2Þr4 þ ð3r31r2 þ 3r1r32 − 12r21r
2
2Þr2 þ 6r41r

2
2 þ 6r21r

4
2 þ 6r31r

3
2g

r1r2ðr2 þ r1r2Þ3
: ð63Þ

Let us consider the following FðRÞ gravity,

FðRÞ ¼ R
2
þ c
2
R2; ð64Þ
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with a constant c. Using (60), we find

ρ¼ 2f3r4þð4r1r2− r21−r22Þr2−3r31r
3
2−3r31r2−3r1r32g

r1r2ðr2þ r1r2Þ2
þ 4c
r21r

2
2ðr2þ r1r2Þ6

½72r12þð408r1r2−12r21−12r22Þr10

þð−68r31r2−68r1r32−3r41−3r42−950r21r
2
2Þr8þð−18r51r2−18r1r52þ1308r31r

3
2−84r41r

2
2−84r21r

4
2Þr6

þð−207r61r22−207r21r
4
2−1056r51r

3
2−1056r31r

5
2−618r41r

4
2Þr4þð192r71r32þ192r31r

7
2þ184r61r

4
2þ184r41r

6
2þ506r51r

5
2Þr2

þ72r81r
4
2þ72r41r

8
2−36r71r

5
2−36r51r

7
2−144r61r

6
2�: ð65Þ

Then by using (10), one gets

X¼−
2r4f−8r6þð−4r1r2þ r21þ r22Þr4þð6r21r22þ5r31r2þ5r1r32Þr2þ10r31r

3
2þ5r41r

2
2þ5r21r

4
2g

r1r2ðr2þ r1r2Þ3

þ 8cðr1þ r2Þ2r4
r21r

2
2ðr2þ r1r2Þ

½−6r10þð−3r21−3r22−32r1r2Þr8þð−21r31r2−21r1r32þ52r21r
2
2Þr6

þð−387r41r22−387r21r
4
2−1212r31r

3
2Þr4þð687r51r32þ687r31r

5
2þ142r41r

4
2Þr2þ120r61r

4
2þ120r41r

6
2−440r51r

5
2�: ð66Þ

By using the Lagrangian density in (11), we find

LBCX¼
X
C2

−
2f3C4þð4r1r2−r21−r22ÞC2−3r31r

3
2−3r31r2−3r1r32g

r1r2ðC2þr1r2Þ2

−
4c

r21r
2
2ðC2þr1r2Þ6

½72C12þð408r1r2−12r21−12r22ÞC10þð−68r31r2−68r1r32−3r41−3r42−950r21r
2
2ÞC8

þð−18r51r2−18r1r52þ1308r31r
3
2−84r41r

2
2−84r21r

4
2ÞC6þð−207r61r22−207r21r

4
2−1056r51r

3
2−1056r31r

5
2−618r41r

4
2ÞC4

þð192r71r32þ192r31r
7
2þ184r61r

4
2þ184r41r

6
2þ506r51r

5
2ÞC2þ72r81r

4
2þ72r41r

8
2−36r71r

5
2−36r51r

7
2−144r61r

6
2�

þB

�
Xþ2C4f−8C6þð−4r1r2þr21þr22ÞC4þð6r21r22þ5r31r2þ5r1r32ÞC2þ10r31r

3
2þ5r41r

2
2þ5r21r

4
2g

r1r2ðC2þr1r2Þ3

−
8cðr1þr2Þ2C4

r21r
2
2ðC2þr1r2Þ

½−6r10þð−3r21−3r22−32r1r2ÞC8þð−21r31r2−21r1r32þ52r21r
2
2ÞC6

þð−387r41r22−387r21r
4
2−1212r31r

3
2ÞC4þð687r51r32þ687r31r

5
2þ142r41r

4
2ÞC2þ120r61r

4
2þ120r41r

6
2−440r51r

5
2�
	
: ð67Þ

Similarly, we can calculate the Lagrange density corre-
sponding to the geometry (43) although the corresponding
expression is very complicated.
With several horizons, one can consider the limit where

the radius of one horizon coincides with that of another
horizon, which is called the Nariai limit and the obtained
space-time is the Nariai space-time. Usually by the
Hawking radiation, the radius of the horizon decreases
but in case of the Nariai space-time, the radius can increase
by including the quantum effects, which is called as the
anti-evaporation [44–46]. In [41–43], the anti-evaporation
in FðRÞ gravity was investigated and it was shown that the
anti-evaporation can occur even at the classical level. The
corresponding study for the above regular black hole will
be done elsewhere.

B. A no-go theorem in FðRÞ gravity
It is found above that the solutions describing the

nonsingular black hole with multihorizons can be obtained
in FðRÞ gravity coupled with the nonlinear electromagnetic
field. It is interesting to understand if we can realize the
nonsingular black holes only by FðRÞ gravity without the
account of nonlinear electrodynamics. For this purpose, we
consider the case of vacuum, where ρ ¼ p ¼ pT ¼ 0.
Combining Eqs. (60) and (61) we find

0¼d2F0ðRÞ
dr2

; ð68Þ

that is,
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F0ðRÞ ¼ f0 þ f1r; ð69Þ
with constants f0 and f1. Hence, one can rewrite the equations in (60) as follows,

0 ¼ 1

2
FðRÞ þ

�
ν00 þ 2ν02 þ 2ν0

r

�
e2νðf0 þ f1rÞ − f1ν0e2ν −

2f1e2ν

r
;

0 ¼ 1

2
FðRÞ − 1

r2
f1þ ð−1 − 2rν0Þe2νgðf0 þ f1rÞ −

f1e2ν

r
− 2f1ν0e2ν: ð70Þ

Deleting FðRÞ in (70), we obtain,

0 ¼
��

ν00 þ 2ν02 −
1

r2

�
e2ν þ 1

r2

�
ðf0 þ f1rÞ þ f1ν0e2ν −

f1e2ν

r
; ð71Þ

which is a differential equation for ν. By defining N ≡ e2ν, we rewrite Eq. (71) as follows,

0 ¼ f0 þ f1r
2

N00 þ f1
2
N0 −

�
f0
r2

þ 2f1
r

�
N þ f0 þ f1r

r2
: ð72Þ

As a special case that f1 ¼ 0, the solution of (72) is given by

N ¼ Nð0ÞðrÞ≡ 1þ Ar2 þ B
r
; ð73Þ

with constants A and B. This is nothing but the (A)dS-Schwarzschild solution. On the other hand, in case that f0 ¼ 0, we
find

N ¼ Nð1ÞðrÞ≡ 1

2
þ Cþr2 þ C−

r2
: ð74Þ

For (74), we get the following scalar curvature

R ¼ e2ν
�
−
d2e2ν

dr2
−
4

r
de2ν

dr
þ 2e−2ν − 2

r2

	
¼

�
1

2
þ Cþr2 þ C−

r2

��
−8Cþ −

4C−

r4
−

1

r2

�
; ð75Þ

which is singular at r ¼ 0. In order to solve Eq. (72) for general case, we first consider the following homogeneous
differential equation,

0 ¼ f0 þ f1r
2

~N00 þ f1
2

~N0 −
�
f0
r2

þ 2f1
r

�
~N; ð76Þ

whose trivial solution is ~N ¼ r2. Then by assuming ~N ¼ AðrÞr2, one finds the following equation,

0 ¼ A00 þ
�
2

r
þ 2f1
f0 þ f1r

�
A0; ð77Þ

whose solution is given by

A0 ¼ C1

r2ðf0f1 þ rÞ2 ¼
C1f21
f20

�
1

r
−

1
f0
f1
þ r

�
2

¼ C1f21
f20

�
1

r2
−

1

ðf0f1 þ rÞ2 −
2f1
f0

�
1

r
−

1
f0
f1
þ r

��
; ð78Þ

with a constant C1 of integration. The general solution of ~N is given by

~N ¼ C1

�
−
f1
f0

þ 1
f0
f1
þ r

þ 2f31r
2

f30
ln

�
f0
f1r

þ 1

��
þ C2r2; ð79Þ

with another constant C2 of the integration. This tells the expression of the general solution of N as follows,

REGULAR MULTIHORIZON BLACK HOLES IN MODIFIED … PHYSICAL REVIEW D 96, 104008 (2017)

104008-9



N¼C1

�
−
f1
f0

þ 1
f0
f1
þ r

þ2f31r
2

f30
ln

�
f0
f1r

þ1

��
þC2r2

−
1

2
þ2f1r

f0
þ2f21r

2

f20
ln

�
f0
f1

þ r

�
þ2f1r

f0
lnr

þ2f1r
f0

−
2f1r

f0ðf0f1þ rÞ lnr−
2f21r

2

f20

�
lnr− ln

�
f0
f1

þ r

��

þ4f21r
2

f20

Z
r
dr0 lnr0

�
1

r0
−

1
f0
f1
þ r0

�
: ð80Þ

In order to avoid the singularity at r ¼ 0, we require N ¼
e2ν ¼ 1þOðr2Þ but the expression in (80) is singular if
C1 ≠ 0. Even if C1 ¼ 0, we findN ¼ e2ν → 1

2
in the limit of

r → 0 and therefore there remains a singularity. Therefore,
we cannot realize the nonsingular black hole ifwe assume the
metric is given in the form of the Schwarzschild type (4).

IV. THERMODYNAMICS OF REGULAR
MULTIHORIZON BLACK HOLES

Let us study the thermodynamics of the obtained regular
black hole. The Hawking temperature T is now defined by

T ¼ 1

4π

de2ν

dr

����
r¼rH

: ð81Þ

Here rH is the radius of the horizon.
First we consider the metric (15). Then when rH ¼ r2 >

r1 ðrH ¼ r1Þ, we find the temperature T ¼ T2 (T1),

4πT2¼
ðr2þ r0Þðr2−r1Þ

βþ r32

�
4πT1¼

ðr1þ r0Þðr1− r2Þ
βþ r31

< 0

�
:

ð82Þ

By solving (19) with respect to r1, one gets

r1 ¼
ð−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p
Þr2

2ð1 − ~αr22Þ
: ð83Þ

As given in (20), we are assuming ~αr22 > 3 and therefore the
expression (83) is real and because r1 > 0, we find

r1 ¼
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p
Þr2

2ð ~αr22 − 1Þ : ð84Þ

Therefore Eq. (16) shows

r0 ¼
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p
Þr2

2~αr22 − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p ;

β ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p
Þ2r32

2ð ~αr22 − 1Þð2~αr22 − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p
Þ ; ð85Þ

and

4πT2 ¼
2ð ~αr22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p
Þð2~αr22 − 3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p
Þ

ð4~α2r42 − 1þ 2~αr22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~αr22 − 3

p
Þr2

:

ð86Þ
In the extremal limit (20), the temperature T2 vanishes. On
the other hand, for large r2, T2 behaves as

4πT2 ∼
1

r2
: ð87Þ

As in the usual black hole, the large black hole has low
temperature. For the large black hole, the entropy S is given
by

S ¼ A
4
¼ πr22 ∼

1

16πT2
2

: ð88Þ

By using the thermodynamical relation, dE ¼ TdS, wemay
estimate the thermodynamical energy.

E ∼
1

8πT2

¼ r2
2
þ E0; ð89Þ

which coincideswith theADMmassM ¼ r2
2
if we choose the

constant E0 of the integration to vanish.
Then for the metric (27), the temperature is given by

T ¼ T2 ¼
r2 − r1
2πr1r2

¼
r2 − l2

r2

2πl2
: ð90Þ

Here we have evaluated the temperature at the outer horizon
r ¼ r2 > r1. The temperature T vanishes in the extremal
limit where r2 → r1 > 0 as for the standard singular black
holes with multihorizons like the Reissner-Nordström
black hole. At the inner horizon at r ¼ r1, we obtain the
expression by exchanging r1 and r2 although the obtained
expression is negative,

T ¼ T1 ¼ −
r2 − r1
2πr1r2

: ð91Þ

The negativity could be understood if the temperature
measured in the region r < r1 could be given by replacing
d
dr with − d

dr in the definition of (81), which is positive
T ¼ −T1 ¼ T2 > 0. In case of Einstein gravity, the entropy
S on the outer horizon is given by

S ¼ A
4
¼ πr22: ð92Þ

In case of FðRÞ gravity (64), there is a correction,

S¼A
4
F0ðRÞjr¼r2

¼πr22

�
1þ4c

−5r42−13r1r32−5r21r
2
2þ9r31r2þ6r41r2

r1ðr1þr2Þ
�
:

ð93Þ
Here r1 is given by
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r1 ¼
l2

r2
: ð94Þ

By definition in (92) or (93), the entropy S is always
positive for FðRÞ gravity as long as we do not consider the
anti-gravity region, where F0ðRÞ < 0 and therefore this
region is unphysical.
We now consider the thermodynamics by fixing the

parameter l2 but varying the parameter α. Equation (90) can
be solved with respect to r2 as follows,

r2 ¼ πl2T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2 þ l2

p
; ð95Þ

Because r2 > 0, we choose the plus sign in (95),

r2 ¼ πl2T þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2 þ l2

p
; ð96Þ

We should note that when the temperature becomes large
T → ∞, the radius of the outer horizon becomes also large,
whose situation is different from that in the standard black
hole, where the large temperature corresponds to the small
horizon radius. Then the entropy (92) is expressed as

S ¼ π

4
ð2π2l4T2 þ l2 þ 2πl2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2 þ l2

p
Þ: ð97Þ

We should note that the entropy does not vanish even if we
consider the limit of T → 0, which corresponds to the
Nariai limit r2 → r1,

S →
πl2

4
; ð98Þ

which is different from the standard thermodynamics. This
may indicate that there remain some information in the
regular part at the origin. In case of FðRÞ gravity (93), the
expression is rather complicated. By using the thermody-
namical relation, dE ¼ TdS, we may estimate the thermo-
dynamical energy.

E ¼ π3

3
l4T3 þ 1

l2
ðπ2l4T2 þ l2Þ32 − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2 þ l2

p
þ E0:

ð99Þ
Here E0 is a constant of the integration. In case of the
AdS-Schwarzschild black hole, we find

e2ν ¼ r2

l2
þ 1 −

2M
r

; ð100Þ
Here M corresponds to the ADM mass of the black hole
[33]. In case of Einstein gravity, the mass coincides with the
thermodynamical energy E. On the other hand, in case of
(27), in the limit of r → ∞, we find

e2ν →
r2

r1r2
−
r21 þ r22 þ r1r2

r1r2
þOðr−2Þ: ð101Þ

Then there is no parameter corresponding to the mass. The
discrepancy may occur due to the energy coming from the
non-linear electromagnetic field. For large T, the thermo-
dynamical energy E in (99) behaves as

E ∼
4

3
π3l4T3: ð102Þ

Therefore the specific heat C ¼ dE
dT is positive, which is

different from the case of the standard black hole, where the
specific heat is negative. This could be related with the
observation in (96), where the large temperature corre-
sponds to the large horizon radius.

V. EINSTEIN-GAUSS-BONNET GRAVITY
IN FIVE DIMENSIONS

Let us now consider the Einstein-Gauss-Bonnet gravity
in five-dimensions. It is known that such theory is very
useful in the study of the AdS/CFT correspondence.

A. General formulation

The action of Einstein-Gauss-Bonnet gravity coupled
with matter is expressed by

S¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
R
2
þcðR2−4RμνRμνþRμνξσRμνξσÞþLm

�
:

ð103Þ

The equations of motion have the form

0 ¼ 1

2
gμν

�
R
2
þ cðR2 − 4RρσRρσ þ RρτξσRρτξσÞ

�

−
1

2
Rμν þ cð−2RRμν þ 4RμρRν

ρ þ 4Rρ
μ
σ
νRρσ

− 2Rμ
ρστRνρστÞ þ Tμν: ð104Þ

By assuming a spherically-symmetric static background as
(4) but in 5 dimensions

ds2 ¼ −e2νðrÞdt2 þ e−2νðrÞdr2 þ r2
X3
i;j¼1

~gijdxidxj; ð105Þ

the ðμ; νÞ ¼ ðt; tÞ, ðr; rÞ and ði; jÞ components of Eq. (104)
have the following expressions,

0 ¼ −
e−2ν

2

�
−
24ce2νð1 − e2νÞν0

r3
þ 3e2ν

2

�
−
2ν0

r
þ 2ð1 − e2νÞe−2ν

r2

�	
− ρe−2ν; ð106Þ

0 ¼ e2ν

2

�
−
24ce2νð1 − e2νÞν0

r3
þ 3e2ν

2

�
−
2ν0

r
þ 2ð1 − e2νÞe−2ν

r2

�	
þ pe2ν; ð107Þ
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0¼ 1

2r2

�
−ce2ν

�
2ð1− e2νÞ

�
4ðν00 þ2ν02Þ

r2
þ16ν0

r3

�
−
16ν02

r2

�

þe2ν

2

�
−2ν00−4ν02−

12ν0

r
þ12ð1− e2νÞe−2ν

r2

�	
þpT

r2
:

ð108Þ

We now consider the nonlinear electromagnetic field as a
matter as in (1). Then in five dimensions, instead of (5), we
find

0 ¼ d
dr

�
r3F0r dL

dI

�
: ð109Þ

Using I ¼ − 1
2
ðF0rÞ2 as in (6), we find X ≡Q

ffiffiffiffiffiffiffiffi
−2I

p

r3
dL
dI

¼ Qffiffiffiffiffiffiffiffi
−2I

p : ð110Þ

Furthermore one may define a variable X by (7) and rewrite
Eq. (110),

−2I
dL
dI

¼ X
r3
: ð111Þ

Because

ρ ¼ −2I
dL
dI

− L; ð112Þ

instead of (9), we obtain

L ¼ X
r3

− ρ: ð113Þ

Furthermore due to

I
d
dI

¼ X
2

d
dX

; ð114Þ

Eq. (111) gives

−
dL
dX

¼ 1

r3
; ð115Þ

and therefore Eq. (9) gives

dρ
dr

¼ 1

r3
dX
dr

−
3X
r4

−
dX
dr

dL
dX

¼ −
3X
r4

; ð116Þ
that is,

X ¼ −
r4

3

dρ
dr

: ð117Þ
Therefore as in case of four dimensions, for the geometry
expressed by e2νðrÞ in (4), by using (106), we find the explicit
r-dependence of ρ. Then Eq. (117) makes to express X in
terms of r, which could be solved with respect to r as
r ¼ rðXÞ. Substituting the obtained expression r ¼ rðXÞ
into (113), we obtain the explicit form of L, L ¼ LðXÞ. In
case that one cannot solve Eq. (117) explicitly and/or there
couldnot be theone-to-one correspondencebetweenX and r,
we can use the Lagrangian density corresponding to (11),

LBCX ≡ X
C3

− ρðr ¼ CÞ þ B

�
X þ C4

3

dρ
dr

����
r¼C

�
: ð118Þ

B. An example

As in the case of four dimensions, in the background of
the Minkowski space-time or the anti-de Sitter space-time,
we may express e2νðrÞ as in (13) and we require hðrÞ →
r1r2…r2Nð1 − ðP2N

i¼1
1
ri
ÞrþOðr2ÞÞ in the limit of r → 0

and in the limit of r → ∞, hðrÞ behaves as hðrÞ → r2N for
the Minkowski background or hðrÞ → r2Nþ2

l2 with a length
parameter l for the anti-de Sitter background. In the de
Sitter background, hðrÞ is expressed as in (14) and we
require hðrÞ → −r1r2…r2N−1ð1 − ðP2N−1

i¼1
1
ri
ÞrþOðr2ÞÞ

in the limit of r → 0 and hðrÞ → − r2Nþ1

l2 with a length
parameter l in the limit of r → ∞. The regular black hole in
the anti-de Sitter space-time or the Minkowski space-time
has an even number of horizons. On the other hand, the
regular black hole in the de Sitter space-time has an odd
number of horizons, in which the largest horizon corre-
sponds to the cosmological horizon.
As an example, we consider the regular black hole in

(27), where there appear two horizons in the anti-de Sitter
background. Then by using (106) and (117), we find

ρ ¼ 3f−2r4 þ ðr2 − r1Þ2r2 þ 2r1r2ðr21 þ r22 þ r1r2Þg
2r1r2ðr2 þ r1r2Þ2

−
12cfr6 þ ð−r21 − r22 þ r1r2Þr4 − 3r1r2ðr21 þ r22 þ r1r2Þr2 þ r1r2ðr21 þ r22 þ r1r2Þ2g

r21r
2
2ðr2 þ r1r2Þ3

; ð119Þ

X ¼ −r5
�ðr1 þ r2Þ2ðr2 þ 3r1r2Þ

r1r2ðr2 þ r1r2Þ3
þ 8cðr1 þ r2Þ2f−r4 − 4r1r2r2 þ 3r1r2ðr21 þ r22 þ r1r2Þg

r21r
2
2ðr2 þ r1r2Þ4

	
: ð120Þ

Then the Lagrangian density in (118) has the following form,
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LBCX ¼ X
C3

−
3f−2C4 þ ðr2 − r1Þ2C2 þ 2r1r2ðr21 þ r22 þ r1r2Þg

2r1r2ðC2 þ r1r2Þ2

−
12cfC6 þ ð−r21 − r22 þ r1r2ÞC4 − 3r1r2ðr21 þ r22 þ r1r2ÞC2 þ r1r2ðr21 þ r22 þ r1r2Þ2g

r21r
2
2ðC2 þ r1r2Þ3

þ B

�
X þ C5

�ðr1 þ r2Þ2ðC2 þ 3r1r2Þ
r1r2ðC2 þ r1r2Þ3

þ 8cðr1 þ r2Þ2f−C4 − 4r1r2C2 þ 3r1r2ðr21 þ r22 þ r1r2Þg
r21r

2
2ðC2 þ r1r2Þ4

�	
: ð121Þ

By using the redefinitions in (31), we rewrite the Lagrangian density (121) as follows,

LBCX ¼ X
C3

−
3f−2C4 þ ðα − 2ÞC2 þ 2ðαþ 1Þg

2l2ðC2 þ 1Þ2 −
12cfC6 þ ð−αþ 1ÞC4 − 3ðαþ 1ÞC2 þ ðαþ 1Þ2g

l4ðC2 þ 1Þ3

þ B

�
X þ lC5

�ðαþ 2ÞðC2 þ 3Þ
ðC2 þ 1Þ3 þ 8cðαþ 2Þf−C4 − 4C2 þ 3ðαþ 1Þg

ðC2 þ 1Þ4
�	

: ð122Þ

Then we find again that this model given by the Lagrangian
density (122) has only two coupling constants α and l2. In
terms of α and l2, the horizon radii r1 and r2 are given by
(33). Therefore in order to consider the Nariai limit, where
r1 → r2, or, α → 2, we need to add the Lagrangian density
in (34). The Nariai limit is given by making α → 2 and
redefining (56) and taking the limit of ϵ → 0. By using the
further redefinitions in (39), we obtain the metric corre-
sponding to (40),

ds2 ¼ 2

l2 cosh2 ρ
l2
ðdτ2 − dρ2Þ þ l2

X3
i;j¼1

~gijdxidxj: ð123Þ

C. Thermodynamics

Let us investigate the thermodynamical properties of the
obtained black hole solution (27). In order to estimate the
entropy, we use the Wald formula [47–49]. In general D
dimensional space-time, the formula is given by

S ¼ −
1

8G

Z
horizon

dD−2x
ffiffiffi
h

p δLgravity

δRμνρσ
ϵμνϵρσ: ð124Þ

Here G is the Newton constant, which we now define as
8πG ¼ 1. ϵμν is the antisymmetric tensor in the two
dimensional space-time perpendicular to the horizon, that
is, the space-time is given by μ; ν ¼ t, r and we choose
ϵtr ¼ 1. Furthermore Lgravity is the Lagrangian density of
the gravity theory, which is now given by

Lgravity ¼
R
2
þ cðR2 − 4RμνRμν þ RμνξσRμνξσÞ

¼ 1

2
gμρgνσRμνρσ þ cðgμρgνσgμ0ρ0gν0σ0

− 4gμμ
0
gρρ

0
gνσgν

0σ0 þ gμμ
0
gνν

0
gρρ

0
gσσ

0 ÞRμνρσRμ0ν0ρ0σ0 :

ð125Þ
As the area of three-dimensional sphere is given by 2π2r3,
we find,

S ¼ 2π3r32f1þ 2cð2R − 4e−2νRtt þ 4e2νRrr þ 4RtrtrÞgjr¼r2 : ð126Þ

Then by using

Rtrtr ¼ e2νðν00 þ 2ν02Þ ¼ r6 þ 3r1r2r2 þ r1r2ð3r21 þ 3r22 þ 9r1r2Þr2 − r21r
2
2ðr21 þ r22 þ r1r2Þ

r1r2ðr2 þ r1r2Þ3
;

Rtt ¼ e4ν
�
ν00 þ 2ν02 þ 3ν0

r

�
¼ 4e2ν

�
r6 þ 3r1r2r4 þ 3r21r

2
2r

2 − r21r
2
2ðr21 þ r22 þ r1r2Þ

r1r2ðr2 þ r1r2Þ3
�
;

Rrr ¼ −
�
ν00 þ 2ν02 þ 3ν0

r

�
¼ −4e−2ν

�
r6 þ 3r1r2r4 þ 3r21r

2
2r

2 − r21r
2
2ðr21 þ r22 þ r1r2Þ

r1r2ðr2 þ r1r2Þ3
�
;

R ¼ e2ν
�
−2ν00 − 4ν02 −

12ν0

r
þ 6e−2ν − 6

r2

�

¼ 2f−10r6 þ 3ðr21 þ r22 − 8r1r2Þr4 þ 3r1r2ð3r21 þ 3r22 − 4r1r2Þr2 þ 10r21r
2
2ðr21 þ r22 þ r1r2Þg

r1r2ðr2 þ r1r2Þ3
; ð127Þ
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one gets

S ¼ 2π3r32

�
1þ 8cð17r21 − 5r1r2 − 14r22Þ

r1r22ðr1 þ r2Þ
	
: ð128Þ

With the help of (94) and (95),

S ¼ 2π3


2π2l4T2 þ l2 þ 2πl2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2 þ l2

p �

×

�
1 −

8cðl2 − 3π2l4T2 þ 31πl2T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2 þ l2

p
Þ

l2ðπl2T þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2 þ l2

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2 þ l2

p
�
:

ð129Þ

Then if T2 < ð3πl2Þ−1 and c is positive and large enough,
or even if T2 > ð3πl2Þ−1, if c is negative and large enough,
the entropy becomes negative. The negative entropy in the
5-dimensional Gauss-Bonnet gravity was first observed in
Ref. [50] (for the study of black hole thermodynamics in
this case, see [51–56]. When the negative entropy appears,
the corresponding black hole solution becomes unstable or
there is an ambiguity in the definition of the entropy in
general [51,52] related with possible AdS/dS transition
[52]. Because the internal energy E is given by dE ¼ TdS
and the free energy is also defined by F ¼ E − TS, we find

dF
dT

¼ −S; ð130Þ

and therefore

F¼−
Z

dTS

¼−2π3
�
l2Tþ2

3
π2l4T3þ2

3

�
1

π
þπl2T2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2þ l2

p

−8c

�
Tþ28

3
π2l2T3þ2

3

�
20

πl2
þ14πT2

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l4T2þ l2

p
g
	
: ð131Þ

From the viewpoint of AdS/CFT correspondence, the free
energy should correspond to that of the field theory on the
boundary of the anti-de Sitter space-time. In the standard
AdS/CFT correspondence [29,30], the conformal field
theory (CFT) is super Yang-Mills (SYM) theory. In the
conformal field theory, all the particles are massless and
also for the SYM theory, we are usually assuming that all
the particles are massless and therefore the free energy F
should be proportional to the 4th power of the temperature
T, that is F ∝ T4. For example, in case of N ¼ 4 UðNÞ
SYM model, the free energy is given by [57]

F ¼ −
�
3

4
þOðN−3

2Þ
�
π2

6
N2V0T4: ð132Þ

On the other hand, the free energy in (131) is not propor-
tional to T4. In the high energy limit, the usual particles
behave as massless particles but for the large T, the free
energy F in (131) behaves as

F ∼ −2π3
�
4

3
π2l4 −

448

3
cπ2l2

�
T3; ð133Þ

that is, F is proportional to the 3d power of T, which may
suggest the effectively 3 dimensional field theory or non-
relativistic theory on the AdS boundary.
Therefore one may conjecture the correspondence of our

5d nonsingular black hole with some system of the
condensed matter, for example. For large T, the entropy
in (129) behaves as

S ∼ 8π5l4
�
1 −

224c
l2

�
T2; ð134Þ

and therefore the thermodynamical energy E ¼ F þ TS
behaves as

E ∼
16π5l4

3

�
1 −

280c
l2

�
T3: ð135Þ

Therefore if 1 − 280c
l2 > 0, the specific heat C ¼ dE

dT becomes
positive again, which is different from the case of the
standard black hole. This requests further deep investiga-
tion of nonsingular black holes thermodynamics in non-
linear theories.

VI. DISCUSSION

In summary, we investigated the regular black holes with
multihorizons in modified gravity with nonlinear electro-
magnetism. We presented several explicit examples of the
actions which give the solutions describing the nonsingular
black hole space-time with multihorizons in the Einstein
gravity, the FðRÞ gravity, and the 5 dimensional Gauss-
Bonnet gravity when coupling with nonlinear electromag-
netism is present. We also studied the thermodynamics of
the obtained nonsingular black hole solutions and found the
explicit expressions for the temperature, the entropy, the
thermodynamical energy, and the free energy. Although
the temperature vanishes in the extremal limit where the
radii of the two horizons coincide as for the standard black
hole with multihorizons, the larger temperature corresponds
to the larger horizon radius at least, for some examples. This
is different from the standard black holes thermodynamics,
where the larger temperature corresponds to the smaller
horizon radius. In relation with the above observation, we
also found that the specific heat often becomes positive for
the large temperature, which is also different from the
standard black holes, where the specific heat is negative.
We should also note that the thermodynamical energy is not
identical with the ADMmass. Furthermore in the case of the
Gauss-Bonnet gravity, the entropy can become negativewhat
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may indicate to the instability of the corresponding param-
eters region.
Note that there is big interest to the study of black holes

thermodynamics in FðRÞ gravity and five-dimensional
Einstein-Gauss-Bonnet gravity coupled with (non)linear
electromagnetism (see Refs. [49,51,58–74]). It is clear that
these works may be generalized and more complicated
nonsingular black holes may be obtained in this case too.
One can also investigate the anti-evaporation phenomena
for such black holes. This will be done elsewhere.
Also, there exists some interest in the study of

relation between the regular black holes and the energy

conditions [31,32]. As one can construct general type of
regular black holes by using the formulation in [20], it
could be interesting to clarify this relation in most
general case.
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