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The cosmological black holes are black holes living not in an asymptotically flat universe but in an
expanding spacetime. They have a rich dynamics especially for their mass and horizon. In this article, we
perform a natural step in investigating this new type of black hole: we consider the possibility of a charged
cosmological black hole. We derive the general equations of motion governing its dynamics and report a
new analytic solution for the special case of the charged Lematre-Tolman-Bondi equations of motion that
describe a charged cosmological black hole. We then study various relevant quantities for the
characterization of the black hole, such as the C-function, the effect of the charge on the black hole
flux, and the nature of the singularity. We also perform numerical investigations to strengthen our results.
Finally, we challenge a model of gamma ray burst within our framework.

DOI: 10.1103/PhysRevD.96.104007

I. INTRODUCTION

The theoretical tools to model black holes (BH) are
nowadays well known through uniqueness theorems [1] that
state that any collapsing structure or black hole merger will
reach, after enough time, a Kerr solution which was
described in the 1960s [2]. Having a Kerr solution, a lot
of energy has been dedicated to proposing generalizations of
those astrophysical black holes to higher spacetime dimen-
sions [3], with new matter fields included and/or with
different ways of modeling the gravitational processes than
Einstein general relativity (GR) [4].Much less has been done
to investigate the impact of the asymptotic state of the black
hole on its dynamics. Usually, black holes approach asymp-
totically a Minkowski flat spacetime, but it is legitimate to
question whether an asymptotically expanding universe
would change the status of the black hole. In addition, many
unknowns remain regarding collapsing structures and the
process of formation of a black hole. Constructing such
cosmological collapsing structures is not only useful to
explore nonlinear effect of GR but also to explore quasilocal
features of that structure such as masses and horizons [5],
black hole thermodynamics and Hawking radiation [6–9] or
the validity of the weak field approximation [10].
As we know our Universe is expanding and its back-

ground is the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric. Some research groups are starting to
implement this idea into various astrophysical and cosmo-
logical setups when the physical processes under scrutiny
are sensitive to this subtle difference. As a matter of
illustration, the production of gravitational waves are
usually defined with respect to an asymptotic

Minkowski spacetime but have a totally different inter-
pretation and pattern when one considers a de Sitter
background [11–14]. Here we adopt this point of view
for black holes and therefore consider a cosmological black
hole (CBH) defined as a structure collapsing within an
expanding universe after the radiation era [15]. The main
difference from an astrophysical black hole is that while
ABH are static or asymptotically stationary, CBH have a
dynamical horizon and a dynamical mass function. The
lensing properties (the deviation angle and the time delay)
of the CBH were shown to be different than the ABH thus
making a testable prediction for this modeling of black hole
[16]; with the data available, however, no significant
difference was reported.
The second motivation to consider CBH is that they also

describe the forming process of a collapsing structure
which, from numerical simulations, are known to have a
nonstatic horizon [17,18] before asymptotically reaching
the Kerr solution from the uniqueness theorems. When one
models a collapsing structure, one of the technicalities
appearing is that global concepts of black holes such as
event horizons cannot be defined in the nonstationary and
asymptotically FLRW model. The need for a local defi-
nition of black holes and their horizons has led to concepts
such as Hayward’s trapping horizon [19], isolated horizon
[20], Ashtekar and Krishnan’s dynamical horizon [21,22],
and Booth and Fairhurst’s slowly evolving horizon [23].
The explicit black hole solution that we will present in this
work can help to explore the differences and relations
between those different horizons.
Several attempts to model collapsing structures into an

asymptotically expanding background exist in the literature
[24–28], for instance the McVittie solution [29] is still an*Rahim.Moradi@icranet.org
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active field of research [30,31] even if some concerns have
been raised [32,33]. In the McVittie model, the way the
dynamic collapsing structure is tailored implies that the
matter field in this solution of GR is restricted. Conversely,
the Lemaitre-Tolman-Bondi (LTB) solution [34–36],
describes an isotropic but inhomogeneous spacetime filled
with a dust fluid. Because of the freedom of the free
functions of the metric, the model can describe a collapsing
structure without the restriction on the matter field present
in the McVittie solutions. Furthermore, it is possible to
(asymptotically) recover the FLRW metric from the LTB
one for a suitable choice of the free functions of the LTB
metric. The LTB metric has been applied to various
physical systems, ranging from modeling radial inhomo-
geneities [37] or fractal patterns [38] on cosmological
scales to investigating singularity theorems or nuclei in
nuclear physics [39]. It is shown in [5,40] that the LTB
metric admits a cosmological black hole solution.
In this article, we complete the literature on cosmological

black holes by making a natural step forward: in the same
way the Schwarzschild solution generalizes to the Reissner-
Nordström (RN) solution by considering the coupled
Einstein-Maxwell system, we will generalize the neutral
CBH to its charged counterpart: the charged cosmological
black hole (CCBH). A similar step has been performed for
the McVittie solution [41].
A traditional belief in many astrophysical systems is that

the electric charge can be neglected: in the classical works of
Wald [42] and Blandford-Znjek [43], it is believed that black
holes with large charge-mass ratio don’t exist in nature.Wald
[42] has shown that the charge-mass ratio for a Kerr black
hole rotating in the small uniform magnetic field of a galaxy
(10−4–10−5 Gauss) is ≃10−24. However, if a highly mag-
netized plasma accretes onto the black hole, the charge-to-
mass ratio can bemuch larger. In particular, in themerging of
a binary system of neutron stars, it is expected at the final
steps of a gravitational collapse to a black hole to obtain
electromagnetic fields larger than the critical value for
vacuum polarization [44]. In this case, the charge-to-mass
ratio could be near to 1. This would produce the most
energetic known objects in the Universe: the gamma-ray
bursts (GRB) with an energy around 1054 ergs (≃1 M⊙c2Þ
released in few seconds. Beside, we also motivate the
investigation of charged collapsing structures from a theo-
retical perspective as the term due to the charges are
interesting in order to constrain the different scenarios of
collapse.
The outline of the article is the following: in Sec. II, we

present the general equations of motion that govern the
dynamics of the charged cosmological black hole, they are
the generalization of the equations considered for instance
in [45]. In Sec. III, we solve numerically the equation of
motion for the time evolution of the collapsing structure. In
Sec. IV, we apply them to special cases of interest to model
the cosmological black hole. We report there a new analytic

solution and calculate various typical quantities to charac-
terize the properties of the black hole. Our results are
applied to a model of gamma ray burst in Sec. V. In Sec. VI,
we sum up our conclusions and propose some perspectives.

II. GENERAL SPHERICALLY
SYMMETRIC SOLUTION

Consider a general inhomogeneous spherically symmet-
ric spacetime [46] constructed with a charged perfect fluid
and a metric expressed in the comoving coordinates,
xμ ¼ ðt; r; θ;ϕÞ:

ds2 ¼ −e2σdt2 þ eλdr2 þ R2dΩ2; ð1Þ

where σ ¼ σðt; rÞ, λ ¼ λðt; rÞ are functions to be deter-
mined, R ¼ Rðt; rÞ is the physical radius, and dΩ2 ¼
dθ2 þ sin2 θdϕ2 is the metric of the unit 2-sphere. The
energy momentum tensor of the perfect fluid is

Tμν
M ¼ ðρþ pÞuμuν þ gμνp; ð2Þ

and the electromagnetic tensor is

Tμν
EM ¼ 1

4π

�
FμαFν

α −
1

4
gμνFαβFαβ

�
; ð3Þ

where ρ ¼ ρðt; rÞ is the mass-energy density, p ¼ pðt; rÞ is
the pressure, and uμ ¼ ðe−σ; 0; 0; 0Þ is the charged perfect
fluid four-velocity. Choosing a perfect fluid implies that
there is no heat flow, radiation, or viscosity.
The electromagnetic field Fμν satisfies Maxwell’s equa-

tions:

∇μFμν ¼ 4πJν ð4Þ

and

F½αβ;γ� ¼ 0; ð5Þ

where Jν is the 4-current. To describe the charged black hole,
we choose to consider an electric charge at rest in the
comoving coordinates of the fluid; in this case, the potential
and the current are given by

Aμðt; rÞ ¼ Aðt; rÞδ0μ Jν ¼ ρEMðt; rÞuν: ð6Þ

The covariant form of the electric field Eμ is

Eμ ¼ Fμνuν: ð7Þ

From here, we assume that the magnetic field is vanishing,

Bρ ≡ 1

2
ϵρμνσuμFνσ ¼ 0; ð8Þ
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where ϵμναβ is the four-dimensional totally antisymmetric
volume element. We choose the convention ϵ0123 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
with det g the determinant of the metric. It is,

however, possible to derive more general equations by
using the electromagnetic invariants. Along the comoving
observer with the fluid, Tμν

EM can be written as [47]

Tμν
EM ¼ 1

2
E2uμuν þ 1

6
E2hμν þ πμν: ð9Þ

hμν ¼ gμν þ uμuν is the observer hypersurface metric,
E2 ¼ EμEμ is the magnitude of the electric field. πμν is
a traceless and space-like symmetric tensor given by

πμνEM ¼ 1

3
E2hμν − EμEν: ð10Þ

Equation (9) can be compared with the energy momentum
tensor for a generic imperfect fluid with

ρEMðt; rÞ ¼
1

2
E2; ð11Þ

pEMðt; rÞ ¼
1

6
E2; ð12Þ

πμν ¼ πμνEM: ð13Þ

Because of the spherical symmetry, the only nonvanish-
ing component of the electromagnetic field is F01 ¼ −F10,
so from Eq. (4) we have

F01 ¼ e−ðσþλ
2
Þ Q
R2

: ð14Þ

In this article, we consider that the only nonvanishing
current density is J0, soQ is not an explicit function of time
[48]:

QðrÞ ¼
Z

R

0

4πe−ðσþλ
2
ÞR2J0dr: ð15Þ

A. Field equations

The Einstein field equations Gμν ¼ κTμν − gμνΛ can be
reduced to the following set of equations:

e2σGtt ¼ −
�
2R00

R
þ R02

R2
−
R0

R
λ0
�
e−λ

þ
�
_R2

R2
þ

_R
R
_λ

�
e−2σ þ 1

R2
¼ κρþQ2

R4
þ Λ; ð16Þ

eλGtr ¼
�
2 _R0

R
−
2 _R
R

σ0 −
R0

R
_λ

�
e−2σ ¼ 0; ð17Þ

eλGrr¼
�
R02

R2
þ2R0

R
σ0
�
e−λ−

�
2R̈
R

þ
_R2

R2
−
2 _R
R

_σ

�
e−2σ −

1

R2

¼ κp−
Q2

R4
−Λ; ð18Þ

R2Gθθ ¼
�
R00

R
þ R0

R
σ0 þ σ00 þ σ02 −

R0

2R
λ0 −

1

2
σ0λ0
�
e−λ

þ
�
_R
R
_σ −

R̈
R
−
1

2
̈λþ 1

2
_λ _σ −

_R
2R

_λ −
1

4
_λ2
�
e−2σ

¼ κpþQ2

R4
− Λ: ð19Þ

The conservation equations are

2e2σ

ðρþ pÞ∇μTtμ ¼ _λþ 2_ρ

ðρþ pÞ þ
4 _R
R

¼ 0; ð20Þ

eλ

ðρþ pÞ∇μTrμ ¼ σ0 þ p0

pþ ρ
−

QQ0

4πðρþ pÞR4
¼ 0; ð21Þ

where the dot denotes a partial derivative with respect to t,
and the prime denotes a partial derivative with respect to r.
Using _Q ¼ 0, Eq. (18) leads to the following equation

∂
∂t
�
Rþ R _R2e−2σ − RR02e−λ þQ2

R
−
1

3
ΛR3

�
¼ −κpR2 _R:

ð22Þ

The term in the brackets is related to the Misner-Sharp mass
M [48]

2M
R

¼ _R2e−2σ − R02e−λ þ 1þQ2

R2
−
1

3
ΛR2: ð23Þ

Equation (22) can be written as

κp ¼ −
2 _M

R2 _R
; ð24Þ

and Eq. (16) can be written as follows:

κρþQQ0

R3
¼ 2M0

R2R0 : ð25Þ

When Λ ¼ 0 and Rðt; rÞ ¼ r, Eq. (23) reduces to the
familiar Reissner-Nordström solution:

eλ ¼ 1

1 − 2M
r þ Q2

r2

: ð26Þ

After simplification of the conservation laws and
Einstein equations, the five coupled partial differential
equations governing the evolution of the CCBH are
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_R ¼ �eσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R

−
Q2

R2
þ 2Eþ ΛR2

3

r
; ð27Þ

_M ¼ −κp _RR2

2
; ð28Þ

_ρ ¼ −p0 _R
R0 þ

2 _RQQ0

4πR4
− ðρþ pÞ

�
_R0

R0 þ
2 _R
R

�
; ð29Þ

_p ¼ dp
dρ

_ρ; ð30Þ

_λ ¼ 2

R0

�
p0 _R

ðρþ pÞ þ
_R0 −

2 _RQQ0

4πðρþ pÞR4

�
; ð31Þ

where

2Eðt; rÞ ¼ R02e−λ − 1 ð32Þ

is the curvature term, analogous to EðrÞ in the LTB model.
It is not to be confused with the electric field of Sec. II, also
written E but always bolded. According to (32) and the
LTB coordinate conditions, the choice of λ0ðrÞ is equivalent
to the choice of Eðt0; rÞ ¼ E0ðrÞ. Moreover, σðt; rÞ is
calculated from Eq. (21) by integrating along constant t
with σðt; r0Þ ¼ 0 [15]. Note that four initial functions need
to be determined, R0ðrÞ, ρ0ðrÞ, λ0ðrÞ and σ0ðtÞ, as well as
the equation of state pðρÞ and QðrÞ.
In the study of the accretion of a two-component fluid

into a compact object, when some small amplitude pulsa-
tion of the fluid component exists, considering the solutions
with Q ¼ Qðt; rÞ would be very important because the
presence of a pulsation is equivalent to have _Q ≠ 0 [49].

III. NUMERICAL RESULTS

To run our numerical code, we first discuss here the
equation of state of the model which is the tool to handle
the pressure behavior in relation with the energy density.
However, we do not study the effect of different equations
of states on the rate of collapse and black hole evolution, in
the case of charged black hole, it is left for further studies.
In the case of neutral black hole, the comprehensive
argument for the pressure behavior can be found in
[15,50]. Here we consider the following equation of state,

pðt; rÞ ¼ ωfðrÞρðt; rÞ; ð33Þ

with ω ¼ 1
10

and fðrÞ vanishing in the FLRW limit
fðr → ∞Þ ¼ 0: the pressure is zero at infinity as we
consider a dust source for the expansion of the
Universe. The Hubble parameter that corresponds near
the black hole to the collapse rate, is defined

as Hðt; rÞ ¼ _Rðt;rÞ
Rðt;rÞ.

A. Initial conditions

In order to fulfill the FLRW limit and to have a structure
with a void, we choose the initial density as follows,

ρðt0; rÞ ¼ ρc þ ρs − r2ρGðrÞ; ð34Þ

where ρc is the background density, ρs is the density of the
collapsingobject andρGðrÞ ¼ a expð−r2Þ is aGaussian term
that controls the location of the void. a is a dimensionless
normalization constant. The initial conditions for the curva-
ture term Eðt; rÞ and for the physical radius Rðt; rÞ are

Eðt0; rÞ ¼ −b0r2e−b1r Rðt0; rÞ ¼ r; ð35Þ

where b0 and b1 are constants. Observe again that the
FLRW limit is fullfiled for r → ∞. We now turn to the
numerical resolution of the differential system derived in
Sec. II A.

B. Solving the equations of motion (27)–(32)
To solve the equations under consideration, we modified

a code developed in [50]. Figure 1 shows a typical time
evolution of the energy density. The two important features

1

t3
t2
t1

2 3

FIG. 1. Evolution of the density of the CCBH with pressure
with an initial density profile given by (34) with ρs ¼ ρc

r2, a ¼ ρc.
In the FLRW limit, the density is decreasing while it is increasing
inside the structure. Rs is the radius of the collapsing structure, ρc
is the background density. For decreasing Rðt; rÞ, one can see first
the decreasing FLRW density corresponding to the expanding
universe, second a void and third an increasing density for the
gravitational collapse. The equation of state is given by Eq. (33)
with fðrÞ ¼ expð−rÞ:ξ ¼ QBH

MBH
¼ 0.1.
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to be noted are a decrease of the energy density for large R
and an increase for smaller R, this illustrates the collapse
process in an otherwise expanding universe.
The numerical investigations of these solutions showed

that when the pressure is zero and the charge is large
compared to the mass of the collapsing structure, the energy
density behaves in the same way that in the case of a small
pressure and large charge. Therefore, we conclude that the
presence of a small pressure does not significantly affect the
systemunder study.Whilewe presented the pressure terms in
Sec. II for completeness,wewill fromnowon assumep ¼ 0.
It will allowus to derive analytic solutions in the next section.
Mathematically speaking, the absence of pressure can be
understood in the following way: from the definition of the
Misner-Sharp mass Eq. (23), M ∝ Q2. Since we assumed
_Q ¼ 0, Q cannot contribute in the pressure part ([see
Eq. (24)]; hence, it does not contribute in a term like matter
pressure.We however note that, if one changes the definition
of the mass, for instance by considering the Hawking mass
[51], the electromagnetic pressure behaves exactly like
matter pressure, hence changing the above statement.

IV. SOLUTIONS WITH ZERO PRESSURE

In Sec. II, we presented the Einstein equations with a
general charged fluid in the spherically symmetric case. We
then solved numerically the equations in Sec. III. The study
of those numerical results motivated us to investigate the
pressureless case which allows for analytic solutions. In
this section, we therefore consider two famous special
cases: a dust charged black hole and a point mass charged
black hole in de Sitter spacetime. We checked that the
numerics corresponds to those analytic cases.

A. Charged LTB metric

Assuming Λ ¼ 0, p ¼ 0 and Q ¼ const, the metric (1)
reduces to the charged LTB metric,

ds2 ¼ −dt2 þ R02ðt; rÞ
1þ 2EðrÞ dr

2 þ R2ðt; rÞdΩ2; ð36Þ

which is discussed in [39] (see, in particular, p. 374). The
signature ð−þþþÞ of the metric implies that
∀r; EðrÞ > − 1

2
. The key assumption here is that the

electromagnetic energy is negligible relative to the dust
fluid. The general case for the electromagnetic field is
described with a fluid with pressure, a heat flow and an
anisotropic pressure [47]. We note also that another more
general treatment for the charged LTB metric could include
magnetic monopoles however they are not relevant for the
purpose of this paper. Furthermore, the assumption Q ¼
const implies that the Universe is charged in contradiction
with the standard cosmological model. We stress here that
the model we consider is a toy model to understand the
basic properties of a charged cosmological black hole but
that a realistic universe would be filled by numerous black
holes which charges would screen each others. In other
words, for our purpose, we consider the idealized case
Q ¼ const, but the effective Q in the Universe in more
realistic models would be zero at infinity.
For our purpose of describing charged black holes, the

system to solve becomes

_R2ðt; rÞ ¼ 2EðrÞ þ 2MðrÞ
R

−
Q2

R2ðt; rÞ ; ð37Þ

M0ðrÞ ¼ 1

2
κρR2ðt; rÞR0ðt; rÞ; ð38Þ

since _M ¼ 0, M is only a function of r, i.e. M ¼ MðrÞ.
The explicit solutions of Eq. (37) involve elliptic

function which in the case of Q ¼ 0 were discussed by
Lemaitre [34] and Omer [52]. When Q ≠ 0, we obtain the
explicit solutions as follows:

(i) EðrÞ < 0:

8<
:

Rðt; rÞ ¼ MðrÞ
2EðrÞ

�
cos η − 1þ EðrÞeiηQ2

MðrÞ2

�

η − sin ηþ iEðrÞeiηQ2

MðrÞ2 ¼ ð−2EðrÞÞ3=2
M ½t − tBðrÞ�

ð39Þ

(ii) EðrÞ ¼ 0:

Rðt; rÞ ¼ 1

6

�
5Q2

MðrÞ þ
Q4

MðrÞ2Lðt; rÞ þ Lðt; rÞ
�
;

Lðt; rÞ ¼
 
486½t − tBðrÞ�2MðrÞ − Q6

MðrÞ3 −
18

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243½t − tBðrÞ�4MðrÞ4 − ½t − tBðrÞ�2Q6

p
MðrÞ

!
1=3

: ð40Þ

(iii) EðrÞ > 0:

8<
:

Rðt; rÞ ¼ MðrÞ
2EðrÞ

�
cosh η − 1þ EðrÞe−ηQ2

MðrÞ2

�

η − sinh ηþ EðrÞe−ηQ2

MðrÞ2 ¼ − ð2EðrÞÞ3=2
MðrÞ ½t − tBðrÞ�:

ð41Þ

CHARGED COSMOLOGICAL BLACK HOLE PHYSICAL REVIEW D 96, 104007 (2017)

104007-5



The results of Eqs. (39)–(41) are the main results of this
article. They represent new solutions of the charged LTB
metric. Clearly if Q ¼ 0 these solutions reduce to the LTB
solutions [39].

1. Characterization of the horizons

Here we study in more details the horizon of the CCBH.
We will not review the whole theory of evolving black hole
horizons here. A comprehensive discussion can be found in
[40] and the references therein. The expansion for ingoing
and outgoing null geodesics is:

θðlÞ ∝

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R þ 2E − Q2

R2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p

1
CA;

θðnÞ ∝

0
B@−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R þ 2E − Q2

R2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p

1
CA < 0

The sign of θðlÞ is the same as the one of the quadratic

polynom in R: 1 ¼ 2M
R − Q2

R2 . Its roots are

R� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð42Þ

To study the horizon of the CCBH, we consider R ¼ Rþ
where the expansion for null outgoing geodesic changes its
sign. Furthermore, the ingoing null geodesics expansion is
negative everywhere. Therefore, the three-manifold
R ¼ Rþ is a marginally trapped tube (MTT).
Now we prove that, the MTT is located between the

singularity line R ¼ 0 and the boundary between the
collapsing and the expanding region, namely _R ¼ 0.
Imposing _R ¼ 0 in Eq. (37), it is sufficient to have 2E >
−1 (that is no changes of the metric’s signature) to obtain
the apparent horizon, 1 ¼ 2M

R − Q2

R2 as discussed before. This
horizon is spacelike asymptotically tending to be lightlike
at late times when the matter flux decreases. This can best
be seen by comparing the slope of the apparent horizon
relative to the light cone at every coordinate point of it. This
result is in contrast with the Schwarzschild black hole
horizon where the apparent horizon is always lightlike: a
null surface. At late times, however, we expect the apparent
horizon to become approximately lightlike and approach-
ing the event horizon. Mathematically, we calculate the
apparent horizon by considering

dt
dr

����
AH

¼ −
R0 −

�
M0 þ MM0ffiffiffiffiffiffiffiffiffiffiffi

M2−Q2
p

	
_R −

�
_M þ M _Mffiffiffiffiffiffiffiffiffiffiffi

M2−Q2
p

	

. From Eq. (37) at horizon: _RjAH ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðrÞp

, we find

dt
dr

����
AH

¼
R0 −

�
M0 þ MM0ffiffiffiffiffiffiffiffiffiffiffi

M2−Q2
p

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðrÞp ; ð43Þ

We now discuss the nature of the apparent horizon, and to do
so, the behavior of all the quantities involved in Eq. (43) is
required. They are all straightforward but M0ðrÞ so we will
use again the numerical code of Sec. III to characterize it.We
propose a typical behavior of M0ðrÞ for a CCBH in Fig. 2.
Since M0 > 0,

dt
dr

����
AH

¼
R0 −

�
M0 þ MM0ffiffiffiffiffiffiffiffiffiffiffi

M2−Q2
p

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðrÞp <

dt
dr

����
null

¼ R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðrÞp

at all times. From Eq. (42) when Q is increased, the radius
of the black hole R decreases, hence according to Fig. 2M0
decreases for decreasing R, so the value of

R0 −
�
M0 þ MM0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p �

tends to R0. So, by increasing the value of Q the black hole
horizon tends to an isolated horizon in a shorter time
comparing to the pure dust case. Therefore, the apparent
horizon is always a spacelike dynamical horizon leading to
a slowly varying horizon at late times [23].

2. Study of the singularity

Now, we discuss the nature of the singularity for the
charged LTB case. We consider a falling observer, its
equation of motion is given by Eq. (27). Inspecting it, one
can see that after passing the inner and outer horizon, for
decreasing Rðr; tÞ, the observer reaches a turning point:
_Rðt; rÞ ¼ 0 and its motion that was initially inward becomes
onward. The observer, as in the RN case eventually goes out

FIG. 2. A typical behavior of M0ðrÞ for a pressureless CCBH.
We see that M0ðrÞ increases when R is increased. For compact
objectsM0ðrÞ is always increasing: this qualitative behavior is not
model dependent.
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of the black hole into another external universe, see [53] for
more details in the case of RN. As the falling observer is
comoving with respect to the perfect fluid, the same
reasoning apply in the case under study in this paper.
The singularity occurs at R ¼ 0 but is never reached by

the observer. The tangent vector to the singularity is

dt=drjsin ¼ −
R0

_R
: ð44Þ

Beside, the null geodesics tangent vector is

dt=drjnull ¼
R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p : ð45Þ

A comparison between the two tangent vectors gives

dt=drjsin
dt=drjnull

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
_R

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2MðrÞ

R − Q2

R2

q : ð46Þ

From the discussion of the in-going geodesic of Sec. IVA 1,
one can conclude that j dt=drjsindt=drjnull j < 1, therefore black hole

singularity is timelike for any value of the charge Q.

3. Matter flux on the apparent horizon

To observe the effect of the charge on the black hole
accretion we calculate the matter flux on the apparent
horizon,

dM
dt

����
AH

¼ ∂M
∂t
����
AH

þ ∂M
∂r
����
AH

dr
dt

����
AH

¼ M0jAH
dr
dt

����
AH

: ð47Þ

As we discussed before, for big Q at horizonM0 decreases.
Moreover, dt

dr jAH increases faster for larger Q so dr
dt jAH

decreases as Q increases. Therefore we conclude that the
bigger the charge Q the smaller the matter flux at horizon.

4. Calculation of the C-function

To quantify the growth of the apparent horizon, we
consider the future-directed outgoing and ingoing null
vectors, la and na respectively, and the expansions θl
and θn of the null curves generated by these vectors which
are cross-normalized, l:n ¼ −1. See [40] and references
therein for more details.
Let Va be tangential to the apparent horizon, and

orthogonal to the foliation by marginally trapped surfaces.
It is always possible to find a function C such that
Va ¼ la − Cna. Moreover, the definition of Va leads to
£Vθl ¼ 0, which gives an expression for C:

C ¼ £lθl
£nθl

: ð48Þ

When C < 0 the apparent horizon is an inner apparent
horizon, when C > 0 the apparent horizon is an outer

apparent horizon, and when C ¼ 0 it becomes an event
(isolated) horizon [8]. The value for the dimensionless C
function is important because it shows the type of the black
hole horizon. This C function of this work corresponds to
the C

B quantity of Ref. [54]. It becomes dimensionless and
shows the evolving horizon’s properties. Using the
Raychaudhuri Eq. (48)

C ¼ Tablalb

1=2A − Tablanb

����
AH

¼ ρ

1=8πR2 − ρ
2

����
AH

¼ 2M0

R0 −M0

����
AH

;

ð49Þ

where A ¼ 4πR2þ is the area of the black hole. For
Q ¼ const, Eq. (49) is

C ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Q2

M2

r ����
AH

: ð50Þ

Clearly increasing the value of Q decreases C. Therefore,
one can see that charge helps to have less flux relative to the
pure dust case, in this sense the charge can even screen the
black hole formation. A graphical representation of the C-
function can be found in Fig. 3.
This concludes our study of the charged LTB metric in

connection with CCBH. We now turn to another popular
model: we assume that the background instead of being
FLRW is simply a de Sitter space.

B. CCBH in de Sitter background

A cosmological constant is the simplest model to
describe the current cosmic acceleration which has been
observed first from supernovae and then confirmed by
various cosmic observables. As discussed in Sec. I, many
physical processes usually taken in flat Minkowski space-
time are now investigated in de Sitter space. The de Sitter

FIG. 3. C function of a pressureless CCBH for different values
of ξ ¼ QBH

MBH
. From this behavior of the C-function, one can

conclude that the charge helps to reach the event (isolated)
horizon in a shorter time.
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metric is an exact vacuum solution to the Einstein equations
with a cosmological constant. We will consider it as a
special case of the FLRWmetric; indeed, as the Universe is
currently expanding at an accelerated rate, it will reach
asymptotically a de Sitter metric.
The Reissner-Nordström solution can be extended to the

de Sitter static solution background as a de Sitter-Reissner-
Nordström solution. The metric in static coordinates is

ds2 ¼ −Φdt2 þΦ−1dR2 þ R2dΩ2; ð51Þ

where

Φ ¼ 1 −
Λ
3
R2 −

2M
R

þQ2

R2
; ð52Þ

where Λ is cosmological constant. This metric does not
describe a charged black hole in an otherwise expanding
universe. In Ref. [45], the coordinate transformation in
order to obtain a point mass CCBH in a cosmological
background was presented in the case of charged and
uncharged BH solutions. We present here only the final
result for the metric:

ds2 ¼ −dτ2 þ
 
Λ
3

e−2ðrþτÞ
ffiffi
Λ
3

p
½e4ðrþτÞ

ffiffi
Λ
3

p
þ 3ΛQ2�

2Λ

−
2ΛQ2

e−2ðrþτÞ
ffiffi
Λ
3

p
½e4ðrþτÞ

ffiffi
Λ
3

p
þ 3ΛQ2�

!
dr2

þ
 
e−2ðrþτÞ

ffiffi
Λ
3

p
½e4ðrþτÞ

ffiffi
Λ
3

p
þ 3ΛQ2�

2Λ

!
dΩ2:

This metric is a point mass case of a CCBH in the expanding
de Sitter background. The general dynamicmodels of CCBH
of Sec. II reduce to (IV B) in the de Sitter case therefore
studying its properties could give much insight for general
properties of the CCBH. For instance a good starting point to
study thermodynamic properties of theCCBHwould bewith
the use of this de Sitter limit. More properties andmotivation
to investigate this metric are presented in Ref. [45].

V. CHARGED BLACK HOLE
AND GAMMA-RAY BURSTS

The fireshell model is an alternative model introduced to
propose an engine for gamma-ray bursts (GRB) through the
induced gravitational collapse of compact objects like
neutron stars leading to the formation of a Kerr-Newman
BH[55]. In thismodel, the energy released in theGRBcomes
from Schwinger pair production [56] around a charged black
hole.We havemotivated the existence of charged black holes
in the introduction within the paradigm of the induced
gravitational collapse which is based on the fireshell model.
Once the electromagnetic field becomes overcritical, a
substantial number of pairs will be created in the region

around the BH [44,57] (see also references therein), called
“dyadosphere” in the case of a Reissner-Nordström BH.
With the solution for Rðt; rÞ discussed in Secs. III and IV,

it is then possible to define a dyadosphere for the CBH. The
dyadosphere is defined as the region between the outer
horizon and the largest sphere where the electrical field is
overcritical around the BH, i.e., the radius is such that

jE½Rðt; rÞ�j ≥ Ec ≡m2
e

e
≃ 1.268 × 10−9 m−1 ð53Þ

in geometric units. In modeling a CCBH, we did not
consider the rotation of the BH, so after forming an isolated
horizon, one expects a dyadosphere with a radius of

Rds ≃ 1.12 × 106
ffiffiffiffiffi
μξ

p
m; ð54Þ

with μ ¼ MBH
M⊙ and ξ ¼ QBH

MBH

Now we apply the numerical investigation of Sec. III to
define the dyadosphere. As seen from Fig. 4, when Q is
large enough to produce the overcritical electric field
required for vacuum polarization to happen, we report a
strong repulsive electric force, an explosion, preventing any
collapse and formation of a BH at all. Therefore within the
toy model developed in this article, it is not possible to
constrain the induced gravitational collapse. We are in this
view in perfect agreement with the classical work of Wald:

0
2

FIG. 4. The effect of the electric charge (Q) on the collapse rate
(H ¼ _R

R) of a CCBH with pressure at a constant time for three
different values of Q. When Q is large, the collapse rate tends to
zero for large radius R. This illustrates the repulsive nature of the
electromagnetic energy. In the case Q ¼ M, this repulsive force
halts the collapse and the BH does not form. Note also that the
equation of state for the three cases is the same.
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the presence of a large charge prevents once again the
gravitational collapse [42]. We hope, however, to come
back to those issues in a future paper. In order to better
model the collapse, it could be possible to consider the
pressure together with the charge distribution. If such
approximations are still inconclusive to obtain a GRB, it
is eventually the full Einstein-Maxwell system which will
have to be solved numerically without any symmetry
assumption, contrary to the work in this article.

VI. CONCLUSIONS AND PERSPECTIVES

The cosmological black hole is a topical issue as it can
reveal dynamical features absent in classical (astrophysical)
black hole theory. These features are, therefore, particularly
relevant for the study of a gravitational collapse and for the
formation of black holes. In this paper, we presented the
charged black holes, which is a natural step toward
studying cosmological black holes located in an expanding
cosmological background. As the cosmological back-
ground evolves with time, the dynamics is a characteristics
of these black holes.
We first presented the general equations of motion for the

charged cosmological black hole. Second, we solved them
numerically in a specific case which can be found in Fig. 1.
Qualitatively, it was possible to observe the collapse and a
decrease of the density way outside the black hole. Third,
we presented a new analytic solution to the charged LTB
equations, which can be found in Eqs. (39)–(41). This
solution can describe a CCBH. Since the neutral matter
moves on geodesics different than the ones for a pure
gravitational field (without charge), this is a pure relativistic
effect of the charge. In order to investigate the effect of the
charge on the CBH, we computed various quantities such
as the density evolution, the flux of these black holes, and
the C-function. We also characterized the effect of the
charge on the type of singularity and horizon. The main

results are that (i) the singularity is always timelike, (ii) the
horizon is spacelike, asymptotically reaching a slowly
varying horizon, and (iii) the presence of a charge decreases
the matter flux of the black hole. We also presented the
special case of a CCBH in a de Sitter background
spacetime, which corresponds to the asymptotic state of
the background.
Fourth and last, we applied this model of CCBH to an

idea to model GRB—the fireshell model. We do not report
any possibility to trigger the events predicted by the
fireshell model within our working hypotheses. We do,
however, suggest that it could be possible to further
challenge this model by considering more general solutions
with nonzero pressure and/or more involved charge dis-
tribution. It could also be possible to model more precisely
the pair creation process within the collapse in order to
avoid the halt of it too soon to release a GRB. Those
considerations are left for future works.
Other routes opened by this article include the exploi-

tation of the novel solution found in Eqs. (39)–(41), which
could be relevant not only in black hole modeling or in
cosmology but also for nuclear physicists where the LTB
solution is also used. Regarding cosmology, the LTBmetric
is sometimes used to model structures such as void or
overdensities. This solution offers now the possibility to
model charged structure, for instance hydrogen clouds, and
work out the effect of their charge to cosmological
observables. While for this work, we imposed a specific
charge distribution [see Eq. (6)], it is desirable to study the
general case for the formation of a charged black hole via
numerical simulations of the full Einstein-Maxwell system.
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