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The most simple superrenormalizable model of quantum gravity is based on the general local covariant
six-derivative action. In addition to graviton such a theory has massive scalar and tensor modes. It was
shown recently that in the case when the massive poles emerge in complex conjugate pairs, the theory has
also unitary S-matrix and hence can be seen as a candidate to be a consistent quantum gravity theory. In the
present work we construct the modified Newton potential and explore the gravitational light bending in a
general six-derivative theory, including the most interesting case of complex massive poles. In the case of
the light deflection the results are obtained within classical and semiclassical approaches.
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I. INTRODUCTION

Quantum gravity is an important part of a modern
quantum field theory (QFT) and of the gravitational
physics. Since there are relatively small chances to observe
quantum corrections to the action of gravity, one of the
main targets of quantum gravity is to establish the classical
action capable of providing a consistent quantum theory.
Thinking in this direction we immediately realize the
relevant role played by higher-derivative terms, as well
as the difficult problem they represent. Even at the semi-
classical level one has to include fourth derivative terms
into the gravitational action in order to provide renormaliz-
ability [1] (see also [2,3] for an introduction and [4] for a
recent review), and the same is also true for the quantum
theory of the gravitational field itself [5]. On the other hand
the fourth derivative terms lead to ghost (or tachyonic
ghost) degrees of freedom in the physical spectrum of the
theory, which implies that there will be instabilities in the
classical solutions. The existence of a physically real ghost
particle is a theoretical disaster: such a particle has negative
kinetic energy, therefore it will accelerate emitting plenty of
gravitons. As a result the absolute value of its negative
energy rapidly goes to infinity and an infinitely powerful
gravitational explosion will occur. Since nothing of this sort
was observed so far, the problem should have some
theoretical resolution.
During many years the discussions about the problem of

ghosts were based on the following approaches:

(i) Treating all higher derivatives, together with the
corresponding quantum contributions, as small cor-
rections [6], in the same way as it is done in QED to
avoid the run-away solutions [7]. Within this ap-
proach one has to ignore a great difference which
exists between gravity and QED, since the latter is
renormalizable without higher derivative terms. As a
consequence, in QED the higher derivative terms are
not running, and one can always assume that they are
just part of amore general actionwhich is presumably
nonlocal and free of ghosts. Avery simple example of
an artificial ghost appearance was recently discussed
in the context of effective approach to quantum field
theory [8]. In the case of gravity the assumption of
smallness of the higher-derivative terms is much
more ad hoc and is certainly suitable only at the
energy scales much below the Planck scale. A natural
question is why we need a theory of quantum gravity
which works only at low energies, and this question
remains without answer.

Another alternative is to assume that the higher
derivative ghosts exist only as virtual excitations, but
for some unknown reason they are not generated as
physical particles at the sub-Planck energies. The
creation of a Planck-mass ghost from vacuum re-
quires a concentration of gravitons with Planck
density, and in some gravity models this may be
impossible [9]. A strong support for this hypothesis
comes from the low-energy stability of the classical
cosmological solutions in higher derivative gravity
models [10–12].

(ii) In string theory the space-time metric is regarded as
an effective composite field and one can redefine it
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in such a way that the ghost degrees of freedom
disappear [13]. Formally this solves the problem.1

However, there are two difficulties in this approach.
First, the procedure is ambiguous. For instance one
can remove or not R2, R3, and other similar terms, or
one can just modify their coefficients. All of these
terms do not contribute to ghosts, but at the same
time they do affect classical gravitational solutions
[14], giving rise to a great uncertainty in the
predictions of the theory. Second, the removal of
all the terms which produce ghosts, such as
Rμν□

kRμν for k ≥ 0 and R□kR for k ≥ 1 must be
performed with absolute precision. Any infinitesi-
mal deviation from zero in any of these coefficients
means that the ghost comes back and that its mass is
huge, even compared to the Planck mass. Then the
effect of such a ghost (e.g., instability of Minkowski
space) will be even stronger and not weaker, as one
can imagine.
Furthermore, at lower energies our experience

shows that the appropriate description of quantum
effects is within the QFT, not string theory. However,
the loop corrections within QFT typically break
down an absolutely precise fine-tuning which is
required to avoid ghosts (see, e.g., the discussion in
[15]). Therefore, string theory is helpful in solving
ghost problems only if we assume that all the low-
energy quantum physics, in all its details, is a
consequence of a string theory, that provides the
requested cancellations. Such an assumption looks
very strong and certainly difficult to believe in
without further arguments.

(iii) In the framework of four derivative quantum gravity
one can assume that the dressed gravitational propa-
gator, with quantum corrections, makes the ghost
unstable. Then the theory could possibly have a
unitary S-matrix. This idea was nicely introduced in
[16–18], but the final conclusion was that the
information which can be obtained via the pertur-
bative QFT approaches is not sufficient to decide
whether this mechanism is working or not [19].

(iv) Another possibility is to start from a nonlocal theory
with infinitely many derivatives of the metric.
One can consider nonlocal form factors such as
RμνΦð□ÞRμν and RΨð□ÞR so that no other poles
will exist in the propagator besides the massless one
corresponding to the graviton. This procedure can be
applied either in string theory [20] as an alternative
to the metric reparametrization of [13], or in quan-
tum gravity [21] (see also [22–24] for recent
developments and further references). The main
disadvantage of this approach is that the functions

Φð□Þ and Ψð□Þ must be chosen with absolute
precision. As a result the ghost-free conditions
can not survive any kind of low-energy quantum
corrections [15]. After the specially tuned form of
the form factors gets modified, there is an infinite
amount of ghostlike states, all of them correspond-
ing to complex poles.

(v) The last possibility is to consider local gravitational
theories with more than four derivatives. These
theories have remarkable quantum properties. Typ-
ically they are superrenormalizable [25] and also, in
case of massive complex poles, can be unitary in the
Lee-Wick sense [26]. Therefore, these theories are
capable to solve the conflict between UV renorma-
lizability and unitarity in quantum gravity. Regard-
less of remaining problems, these models are unitary
without any sort of fine-tuning and hence they
represent simpler alternatives to the nonlocal
models.

Of course, at the present level the higher derivative
theories with complex massive poles cannot be seen as a
complete solution of the quantum gravity problem, but they
look as strong candidates. Therefore, it makes sense to
explore their IR properties at the classical level and identify
observables which might be useful for experimental detec-
tion of higher derivatives. The model of our interest is the
simplest theory which admits complex poles, with the
action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ α

2
R2 þ β

2
R2
μν þ

A
2
R□R

þ B
2
Rμν□Rμν þ LM

�
; ð1Þ

where LM is the matter Lagrangian, κ2=2 ¼ 16πG ¼ M−2
P ,

G is Newton’s constant, and MP is the reduced Planck
mass. α, β, A, and B are free parameters, the first two being
dimensionless, and A and B carry dimension of ðmassÞ−2.
The values of these parameters should be determined by
experimental data.
Let us note that the structure of the poles in the dressed

propagator of gravitons was considered in some recent
publications, for example in [27–29], where physical
effects of complex poles were discussed. In particular,
one of the results of [27] is that the perturbative unitarity
can be restored by the resummation. In general, the
approach of the present work differs from the one in
these references since we regard the higher-derivative
model as a fundamental rather than effective. In the IR
sector considered here, however, the difference between
the approaches is supposed to be irrelevant, as heavy
degrees of freedom should decouple in the long-distance
limit. In our present work this is not the case nonetheless,
because we are partially dealing with the propagation of
massive degrees of freedom up to the cosmic scales, or at

1It is worth noting that the same can be achieved in the
semiclassical theory of gravity.

ACCIOLY, GIACCHINI, and SHAPIRO PHYSICAL REVIEW D 96, 104004 (2017)

104004-2



least up to the scale of laboratory. Indeed, since there are
no direct experiments on quantum gravity, very different
approaches to the problem should be seen as legitimate in
this area.
The model (1) is the particular case of the superrenor-

malizable quantum gravity theory formulated in [25]. One
can generalize it by adding OðR3

…Þ-terms to the action, but
these terms should be irrelevant for our purposes, since we
are interested in the effects related to the linear gravitational
perturbations.
In the present paper we will explore in detail the two

most obvious low-energy observables which can be used to
falsify the presence of fourth- and six-derivative terms in
the theory (1). The first part of the work is about the
modified Newtonian potential. If compared to the previous
works on the subject (see, e.g., [30–32]), we include
here the cases of complex and multiple real poles, that
provides a better perspective and understanding for the
modified potential in general polynomial higher derivative
models.
The second part of the paper is devoted to the bending of

light in the theories with higher derivatives. This issue is
attracting a great deal of attention, especially in relation to
quantum gravity and quantum field theory effects. Indeed,
quantum effects can be partially taken into account in the
low-energy domain by the use of semiclassical methods. In
the case of gravity let us mention, e.g., the influence of the
one-loop vacuum polarization in the propagation of pho-
tons on a curved background. This issue was explored in
the papers [33,34] using two different approaches. In the
former work the effect is described by the differential cross
section. It gives the correct leading term for the gravita-
tional bending angle of an unpolarized beam plus a
semiclassical correction, which depends on the energy
of the photons. On the other hand, in [34] the semiclassical
correction is introduced in the interaction potential
between an external gravitational field and a photon. As
a result the deflection angle depends on the photon’s
polarization, but it is nondispersive. According to [34],
this version of the semiclassical consideration is the correct
one, since it assumes that for macroscopic systems the
photon is better described by a compact wave packet with a
definite path in the gravitational field. In Sec. V one can
find the discussion of this issue in the context of higher-
derivative gravity. In particular, we elaborate on the
explanation concerning the limits of applicability of the
semiclassical approach similar to the one of [33], and
explain why the method based on the cross sections usually
can not be used to describe the bending of light at
astronomical scales.
The bending of light in the theory (1) is briefly discussed

in the parallel work [35] which is devoted to the possibility
of a specific seesaw mechanism in higher derivative
quantum gravity. The much more detailed treatment of
this issue here complements the discussion of the parallel
work.

The paper is organized as follows. In Sec. II a gener-
alization of a theorem by Teyssandier [36] for the six-order
gravity is formulated. The theorem, which is proved in
Appendix A, presents the general solution for the linearized
sixth-order gravity as a linear combination of five auxiliary
fields. In Sec. III we study the modified Newtonian
potential of the theory. The poles of the propagator
can be either real (simple or degenerate) or complex. In
particular, we show that the potential is regular at the origin,
extending the result of [31].2 Section IV is devoted to the
study of the classical gravitational deflection of light rays,
for each of the possible types of poles. The quantum
mechanical formulation of the scattering process and the
restricted applicability of such an approach to macroscopic
systems is discussed in Sec. V. In Sec. VI we draw our
conclusions.
Our notations are as follows. The units correspond to

ℏ ¼ c ¼ 1. The signature is ημν ¼ diagð1;−1;−1;−1Þ, and
the Riemann and Ricci tensors are

Rρ
λμν ¼ ∂μΓ

ρ
λν − ∂νΓ

ρ
λμ þ Γσ

λνΓ
ρ
σμ − Γσ

λμΓ
ρ
σν ð2Þ

and Rμν ¼ Rρ
μνρ. This choice of notations is intended to

facilitate the comparison of our calculations with the
previous work [37] on the four-derivative gravity.

II. FIELD GENERATED BY A POINTLIKE
MASS IN REST

It is clear that the right choice of fields parametrization
and of a suitable gauge condition may lead to an essential
simplification of the field equations. This is especially
important for the higher-order gravity models, which
have rather complicated dynamical equations. In 1989
Teyssandier [36] introduced a useful form of the third-
order coordinate condition for the linearized fourth-order
gravity described by the action

S4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ α

2
R2 þ β

2
R2
μν þLM

�
; ð3Þ

In the Teyssandier gauge the general solution of the
linearized field equations are written as a linear combina-
tion of three decoupled fields [36]. In terms of these
auxiliary fields the weak gravitational field generated by
a static source can be promptly computed, as well as the
classical potential of the theory, which is proportional to the
(00)-component of the metric perturbation.
Our goal is to obtain similar representation in the

framework of the sixth-order gravity model (1). The
variational principle applied to the action S½gμν� leads to
the field equations of the sixth-order gravity:

2A more general treatment of this issue is given in the parallel
work [32].
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2

κ2

�
Rμν −

R
2
gμν

�
þ α

2

�
2RRμν þ 2∇μ∇νR− 2gμν□R−

R2

2
gμν

�
þ β

2

�
−
1

2
gμνR2

αβ þ∇μ∇νRþ 2RμσρνRσρ −
1

2
gμν□R−□Rμν

�

þA
2

�
Rμν□RþR□Rμν þ 2□∇μ∇νR− 2gμν□2R− ð∇μRÞð∇νRÞ þ

1

2
gμνð∇RÞ2

�

þB
2

�
□∇μ∇νRþ 2□ðRμσρνRσρÞ−□2

�
Rμν þ

1

2
gμνR

�
− 4ð∇σRνρÞð∇σRμ

ρÞ

þ 2ð∇σRρðνÞð∇μÞRσρÞ þRνσ∇ρ∇μRρσ þRμσ∇ρ∇νRρσ þ 1

2
gμνð∇λRρσÞ2

− ð∇σRþ 2Rρσ∇ρÞ∇ðμRνÞσ − ð∇μRρσÞð∇νRρσÞ− 2Rσðμ□RνÞσ
�
¼ −

1

2
Tμν; ð4Þ

where the parenthesis in the indices denote symmetriza-
tion, e.g.,

∇ðμRνÞσ ≡ 1

2
ð∇μRνσ þ∇νRμσÞ:

In the weak field regime the metric can be considered as
a fluctuation around the flat space,

gμν ¼ ημν þ κhμν; ð5Þ

with jκhμνj ≪ 1. The Ricci tensor Rμν and the scalar
curvature R up to the first order in κ are

Rð1Þ
μν ¼ κ

2
½□hμν − ηλρðγλμ;νρ þ γλν;μρÞ�; ð6Þ

Rð1Þ ¼ κ

�
1

2
□h − ηλρημνγλμ;νρ

�
: ð7Þ

In the last expressions we used the notations

γμν ¼ hμν −
1

2
ημνh; h ¼ ημνhμν: ð8Þ

Since the equations of motion are already expanded to
the order κ2, the d’Alembertian is calculated using the flat
metric, □ ¼ ημν∂μ∂ν.
Using the expressions (6)–(8), the linearized equations of

motion (4) are

�
2

κ2
−
β

2
□−

B
2
□

2

��
Rð1Þ
μν −

1

2
ημνRð1Þ

�

−
�
αþβ

2
þA□þB

2
□

�
ðημν□Rð1Þ−∂μ∂νRð1ÞÞ ¼−

1

2
Tμν:

ð9Þ

The trace of Eq. (9) has the form

�
αþ β

2
þA□þB

2
□

�
□Rð1Þ

¼ −
1

3

�
2

κ2
−
β

2
□−

B
2
□

2

�
Rð1Þ þ 1

6
T: ð10Þ

Replacing (10) into (9) yields

�
2

κ2
−
β

2
□ −

B
2
□

2

��
Rð1Þ
μν −

1

6
ημνRð1Þ

�

þ
�
αþ β

2
þ A□þ B

2
□

�
∂μ∂νRð1Þ ¼ 1

6
Tημν −

1

2
Tμν:

ð11Þ

Inserting the expression (6) for the first order Ricci tensor
into the preceding equation we obtain

�
κ2

4
ðβ þ B□Þ□ − 1

��
□hμν −

1

3κ
Rð1Þημν

�
þ Γðμ;νÞ

¼ 2

�
Tμν −

1

3
Tημν

�
; ð12Þ

where we defined the quantities

Γμ ¼
�
1 −

κ2β

4
□ −

κ2B
4

□
2

�
γμρ

;ρ

−
κ

2

�
αþ β

2
þ A□þ B

2
□

�
Rð1Þ
;μ : ð13Þ

Hence, implementing the gauge condition Γμ ¼ 0 makes
the problem of solving the linearized field equations (9) for
hμν to be equivalent to the system consisting of the gauge
condition and of Eq. (12). The convenience of this gauge is
to allow the solution to be expressed in terms of auxiliary
fields. Let us formulate this statement as a Theorem, with
the proof postponed to Appendix A.
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Theorem. The general solution of the system consti-
tuted by (12) and the gauge condition Γμ ¼ 0 can be
presented in the form

hμν ¼ hðEÞμν þ Ψμν þ Ψ̄μν − ημνΦ − ημνΦ̄; ð14Þ

where the auxiliary fields hðEÞμν , Ψμν, Ψ̄μν, Φ and Φ̄ satisfy
the second order equations

□hðEÞμν ¼ κ

2

�
1

2
Tημν − Tμν

�
; ð15Þ

γðEÞ;νμν ¼ 0; γðEÞμν ≡ hðEÞμν −
1

2
ημνhðEÞ; ð16Þ

ðm2
2þ þ□ÞΨμν ¼

κ

2

�
Tμν −

1

3
Tημν

�
; ð17Þ

ðm2
2− þ□ÞΨ̄μν ¼ m2

2þΨμν; ð18Þ

ðΨμν þ Ψ̄μνÞ;μν ¼ □ðΨþ Ψ̄Þ; ð19Þ

ðm2
0þ þ□ÞΦ ¼ κ

12
T; ð20Þ

ðm2
0− þ□ÞΦ̄ ¼ m2

0þΦ: ð21Þ

Here and in what follows we use the condensed notations

Ψ ¼ ημνΨμν; σ1 ¼ 3αþ β; σ2 ¼ 3Aþ B ð22Þ

and

m2
2� ¼

− βjBj
B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 16

κ2
B

q
−2jBj ;

m2
0� ¼

σ1jσ2j
σ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 − 8

κ2
σ2

q
2jσ2j

: ð23Þ

According to the Theorem 1 formulated above, it is
possible to split the field hμν into a linear combination of
the five fields: a massless tensor representing the solution of
linearized Einstein’s equations in de Donder gauge, two
massive tensor fieldsΨμν and Ψ̄μν and two scalarsΦ and Φ̄.
Let us stress that in the present case the massive fields with
the same spin are not dynamically independent. For this
reason, as it will be shown in the next section, the theory
under discussion has a finite modified Newtonian potential,
regardless of the (complex or real) nature of the quantities
m2� and m0�.
Using the previous theorem it is straightforward to

calculate the field generated by a pointlike mass in rest
at r ¼ 0. The corresponding energy-momentum tensor is

TμνðrÞ ¼ Mημ0ην0δ
ð3ÞðrÞ. The solution for hðEÞμν is the same

as in Einstein’s gravity in the de Donder gauge:

hðEÞμν ðrÞ ¼ Mκ

16πr
ðημν − 2ημ0ην0Þ: ð24Þ

The solutions for the massive tensor fields read

ΨμνðrÞ ¼
Mκ

8π

�
ημ0ην0 −

1

3
ημν

�
e−m2þr

r
ð25Þ

and

Ψ̄μνðrÞ ¼
Mκ

8π

�
ημ0ην0 −

1

3
ημν

�

×
m2

2þ
m2

2þ −m2
2−

�
e−m2−r

r
−
e−m2þr

r

�
: ð26Þ

It is easy to verify that these solutions satisfy the subsidiary
gauge condition (19).
For the scalar modes we have

ΦðrÞ ¼ Mκ

48π

e−m0þr

r
; ð27Þ

Φ̄ðrÞ ¼ Mκ

48π

m2
0þ

m2
0þ −m2

0−

�
e−m0−r

r
−
e−m0þr

r

�
: ð28Þ

By inserting the last five expressions into Eq. (14) one
finds the nonzero components of the metric, h00 and
h11 ¼ h22 ¼ h33, in the form

h00ðrÞ ¼
Mκ

16π

�
−
1

r
þ 4

3
F2 −

1

3
F0

�
; ð29Þ

h11ðrÞ ¼
Mκ

16π

�
−
1

r
þ 2

3
F2 þ

1

3
F0

�
; ð30Þ

where (k ¼ 0, 2 labels the spin of the particle)

Fk ¼
m2

kþ
m2

kþ −m2
k−

e−mk−r

r
þ m2

k−
m2

k− −m2
kþ

e−mkþr

r
: ð31Þ

Equations (29) and (30) represent the weak field gen-
erated by a point mass in the general sixth-order gravity. In
the previous work [31] the (00)-component of the metric
perturbation has been computed in the more general case
containing terms □

n of arbitrary order in the action, but
only for real and nondegenerate massive poles of the
propagator. The expressions (29) and (30) apply to all
types of poles.

III. MODIFIED NEWTONIAN POTENTIAL
IN THE SIXTH-ORDER GRAVITY

The modified Newtonian potential (we shall use simply
“potential” in what follows) of the sixth-order gravity can
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be directly read off from the solution (29) for the field
generated by a pointlike mass in rest,

VðrÞ ¼ κ

2
h00ðrÞ ¼ MG

�
−
1

r
þ 4

3
F2 −

1

3
F0

�
; ð32Þ

with the functions F0;2 defined in Eq. (31).
In this section we analyse the possible types of “masses”

allowed by the sixth-order gravity and their influence on the
potential. The calculations require only h00; the other
components of the metric will prove relevant in the further
sections dedicated to the gravitational light deflection. The
relevant quantities to be analyzed are Fk, hence the results
will also be useful later on.
The following observation is in order. Complex massive

poles are not allowed in the fourth-order gravity, since they
would imply nonphysical complex values for the potential.
However, in the sixth-order gravity the massive modes of
the same spin form dynamically dependent pairs. As we
shall see in short, this makes complex poles admissible and
leads to a real potential with oscillatory modes.

A. Real poles

In what follows we explore three different possibilities
for real poles, namely, pairs of different poles, including the
special situation in which one of the poles is much heavier
than the other, and the case of multiple (degenerate) poles.

1. Real simple poles

Real simple poles occur in the propagator of the massive
tensor field provided that

β < 0; B < 0; β2 þ 16B
κ2

> 0; ð33Þ

which enables one to redefine m2
2� as

m2
2�;real ¼

β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 16

κ2
B

q
2B

: ð34Þ

These masses satisfy the condition m2− > m2þ, where the
lightest one corresponds to the well-known ghost mode and
the other is a healthy particle [25].
With respect to the scalar field, the conditions m2

0� > 0
and m0þ ≠ m0− yield

σ1 ¼ 3αþ β > 0; σ2 ¼ 3Aþ B > 0;

ð3αþ βÞ2 − 8ð3Aþ BÞ
κ2

> 0: ð35Þ

Under these conditions one can redefine the scalar
masses as

m2
0�;real ¼

σ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 −

8σ2
κ2

q
2σ2

: ð36Þ

Note that if (33) holds, then α and A must be positive. For
the scalar field m0þ > m0−, but now the largest mass
corresponds to the ghost mode [25,31]. The reason for
the qualitative difference between the scalar and tensor
cases is that in the latter there exists the graviton, which is a
healthy massless particle.
The expression for the potential is

VrealðrÞ ¼−
MG
r

þ 4MG
3

�
m2

2þ
m2

2þ−m2
2−

e−m2−r

r
þ m2

2−
m2

2− −m2
2þ

e−m2þr

r

�

−
MG
3

�
m2

0þ
m2

0þ−m2
0−

e−m0−r

r
þ m2

0−
m2

0− −m2
0þ

e−m0þr

r

�
;

ð37Þ

which is just a particular case of the result obtained in
Ref. [31] by means of a different technique. This potential
is regular at the origin. Our following calculations will
show that this feature is also present if the massive poles are
degenerate or complex.

2. Real degenerate poles

The condition for having degenerate poles in the
propagator of the tensor or scalar fields is, respectively,

B ¼ −
β2κ2

16
and σ2 ¼

σ21κ
2

8
: ð38Þ

These formulas correspond to transforming the last inequal-
ities in Eqs. (33) and (35) into equalities. Thus, the masses
mk are defined by m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β=ð2BÞp

and m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1=ð2σ2Þ

p
.

It proves useful to consider this situation starting from
the assumption that the difference between the two real
masses is small,

m2− ¼ m2þ þ ϵ2 ¼ m2 þ ϵ2

m0þ ¼ m0− þ ϵ0 ¼ m0 þ ϵ0; ð39Þ

with 0 < ϵk=mk ≪ 1. Then the quantity Fk reads

Fk ¼
�
−
mk

2ϵk
þ 1

4
−

ϵk
8mk

�
e−ðmkþϵkÞr

r

þ
�
mk

2ϵk
þ 3

4
þ ϵk
8mk

�
e−mkr

r
þO

�
ϵ2k
m2

k

�
: ð40Þ

The limit ϵk → 0 is smooth, and we arrive at the
expression for Fk for real degenerate poles,

ACCIOLY, GIACCHINI, and SHAPIRO PHYSICAL REVIEW D 96, 104004 (2017)

104004-6



Fk →

�
1

r
þmk

2

�
e−mkr: ð41Þ

The potential for two pairs of degenerate real poles assumes
the form

VdegenðrÞ ¼ MG

�
−
1

r
þ 4

3

�
1

r
þm2

2

�
e−m2r

−
1

3

�
1

r
þm0

2

�
e−m0r

�
; ð42Þ

which is indeed finite at the origin,

Vdegenð0Þ ¼ −
MG
3

�
2m2 −

m0

2

�
: ð43Þ

The result (42) is in agreement with [30], where it was
considered the particular case β ¼ B ¼ 0.

3. Real poles with strong hierarchy

Another possibility allowed by the sixth-order gravity is
to have one of the masses of the auxiliary fields some
(or many) orders of magnitude smaller than the other:

m2− ≫ m2þ and=or m0þ ≫ m0−: ð44Þ

This situation leads to potentially observable effects of
higher derivatives at low energies, e.g., through modifica-
tions of inverse-square force low which could be detected
in laboratory experiments.3 The possibility of such a strong
hierarchy is discussed in detail in the parallel paper [35],
which is mainly devoted to this issue in general higher-
derivative gravities. Hence we will give here just a brief
comment. The conditions (44) can be achieved, respec-
tively, provided that 16jBj ≪ κ2β2 and/or that 8σ2 ≪ κ2σ21.
It is easy to see that if both conditions hold, in the leading
order in m2þ=m2− (and m0−=m0þ) the potential reduces to
the approximate form

V4ðrÞ ¼ MG

�
−
1

r
þ 4

3

e−m2þr

r
−
1

3

e−m0−r

r

�
: ð45Þ

As it should be expected, this expression coincides with
that obtained in Ref. [5] within the fourth-order gravity, i.e.,
the theory defined by the action (3). Qualitatively, this
means that at longer distances the heaviest masses have no
effect.
Let us remember that the only possibility of reducing the

lightest masses in (44) is to increase the coefficients α and β
of the fourth-derivative terms. In other words, tuning the
sixth-order coefficients do not reduce the lightest masses.

Further results on the viability of a gravitational seesaw-
like mechanism can be found in [35].

B. Complex poles

Complex poles in the propagator of the spin-2 field can
occur provided that

β2 þ 16B
κ2

< 0;

�
β2 þ 16B

κ2

�
1=2

¼ ic2; ð46Þ

with c2 > 0 for definiteness. The first condition requires
B < 0, while the four-derivative parameter β can be either
positive or negative—different from the real poles case,
Eq. (33).
The positions of the poles are defined by

m2
2� ¼ β � ic2

2B
: ð47Þ

The square root of these quantities yield the “masses”

m2þ ¼ a2 − ib2 and m2− ¼ a2 þ ib2; ð48Þ

where a2, b2 > 0 are defined through

a22 ¼
−β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ c22

p
4jBj ¼

−β þ
ffiffiffiffiffiffiffiffi
16jBj
κ2

q
4jBj ;

b22 ¼
β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ c22

p
4jBj ¼

β þ
ffiffiffiffiffiffiffiffi
16jBj
κ2

q
4jBj : ð49Þ

One can always assume that m2þ and m2− have positive
real parts. A short comment is in order here. If choosing
m2� with negative real part in Eq. (48), then the decreasing
real exponentials would turn to be increasing, introducing
into the potential growing oscillating modes at large
distances. To avoid these growing modes one would
have to choose growing exponentials as solution of the
system (17)–(19). In this case the negative real part of the
“masses” would combine with the increasing exponentials
yielding decreasing oscillatory modes, resulting precisely
in Eq. (50) below. Hence, the generality is not lost due to
our choice of signs.
Finally, replacing (48) into the expression for F2 leads

us to

F2 ¼
�
cosðb2rÞ −

β

c2
sinðb2rÞ

�
e−a2r

r
; ð50Þ

which is a real quantity.
The condition for complex “masses” in the scalar field

reads

3Another consequence of this possibility is related to the
alleged protection against Ostrogradsky-type instabilities [11,12],
which would be less efficient.
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σ21 −
8σ2
κ2

< 0 ⇒ σ2 > 0; σ1 ∈ R: ð51Þ

Similar to the spin-2 case, we define

ic0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 −

8σ22
κ2

s
; m0� ¼ a0 � ib0; ð52Þ

where (a0, b0 > 0)

a20 ¼
σ1 þ

ffiffiffiffiffi
8σ2
κ2

q
4σ2

; b20 ¼
−σ1 þ

ffiffiffiffiffi
8σ2
κ2

q
4σ2

: ð53Þ

The contribution of the scalar field to the potential is

F0 ¼
�
cosðb0rÞ þ

σ1
c0

sinðb0rÞ
�
e−a0r

r
: ð54Þ

Taking together the contributions (50) and (54) we arrive
at the potential in the case of complex poles,

VCðrÞ ¼ −
MG
r

þ 4MG
3

�
cosðb2rÞ −

β

c2
sinðb2rÞ

�
e−a2r

r

−
MG
3

�
cosðb0rÞ þ

σ1
c0

sinðb0rÞ
�
e−a0r

r
: ð55Þ

It is straightforward to verify that this potential is finite at
r ¼ 0. Indeed, this feature can be extended to the theory of
arbitrary order in the derivatives, including the case of
multiple complex poles [32].
The main distinguished feature of the complex poles case

is the presence of oscillating terms. Depending on which
quantity is greater in the pair ðak; bkÞ, the oscillatory terms
can be more or less relevant in the potential. For example,
in the case of the spin-2 field, β < 0 implies a2 > b2. Since
the characteristic length of the Yukawa potential is 2π=a2
and the period of the oscillating terms is 2π=b2, the
oscillations can be smooth, yielding an appreciable con-
tribution only at distances larger than the Yukawa length
2π=a2. There, the potential associated to this field has an
oscillating sign, but with a small absolute value due to the
suppression caused by a2. Hence, at these distances the
potential is dominated by the Newtonian term owed to
the graviton.
On the other hand, if β > 0 it follows that a2 < b2. Then

the space period of oscillations is typically smaller than the
range of the Yukawa factor. This situation implies a
significant change in the behavior of the potential at small
distances, with the contribution of the spin-2 field changing
its sign. The same argument appliesmutatis mutandis to the
scalar field. In case ak ¼ 0 the “masses” are purely
imaginary quantities which correspond to tachyonic modes.
In this case Fk loses its damping term yielding a

non-Newtonian behaviour in the infinity. It is clear that
this case can be ruled out.
It is noteworthy that when we allowed massive complex

poles, the constraints on β and σ1 were relaxed. As we have
just mentioned, important changes in the ultraviolet behav-
ior of the potential occur if, contrary to the real mass case, it
is chosen β ≥ 0 and/or σ1 ≤ 0. The case of β ¼ 0 and/or
σ1 ¼ 0 makes the real and imaginary parts ak and bk to
assume the same value, hence only the cosine functions
remain in the expression for the potential.4

Likewise the case of real poles, one might suppose a sort
of natural seesaw mechanism which could reduce ak and bk
and bring the phenomenology of those modes to the low-
energy scale. Indeed, this can only happen for unnatural
values of the massive parameters at the action. Namely, in
order to have a2 ≈ b2 ≪ MP one has to impose jBj ≫ M−2

P .
A more detailed and general discussion on this subject can
be found in Ref. [35].
Before closing this section, let us return to the

Theorem 1. In Sec. II it was mentioned that the auxiliary
fields of the same spin have coupled dynamics. At the same
time, the equations for spin-2 and spin-0 components are
factorized. Due to this fact the cancelation of the
Newtonian singularity occurs independently of the (com-
plex or real) nature and the multiplicity of the massive
poles. In brief, such a cancelation takes place if there is at
least one massive state in each of the sectors [32].

IV. LIGHT BENDING: CLASSICAL APPROACH

Up to this point all the discussions were related to the
(00)-component of the metric (29). Here and in the
following section we shall use this and also other compo-
nents to study the weak-field regime of the gravitational
deflection of light within the sixth-order gravity. This issue
has already been analyzed in the framework of the fourth-
derivative theory (see [37] and references therein). In these
works the phenomenon of light bending was used to derive
a lower-bound on the mass of the tensor mode of the metric.
The sixth-order model which we deal with here has a richer
variety of possible scenarios. The main purpose of our
present study is to systematically explore all of them for
different types of poles in the gravitational propagator.
The gravitational light bending problem has been

explored by using both classical or semiclassical
approaches. In several works it was explained that these
two methods may lead to different results (see, e.g.,
[33,34,37–40]). In the present section we analyze the
phenomenon from a classical point of view, that is, by
treating both gravity and light as classical fields. In the next
section we describe the semiclassical approach and discuss
its applicability, so as to explain the mentioned difference.

4When the first version of the present work was under
preparation, we learned that the potential for the particular case
β ¼ α ¼ 0 and a2 ¼ a0 was derived in Ref. [23].
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In order to arrive at a better understanding of the
qualitative features of the gravitational deflection of a light
ray passing close to a massive body we shall use the so-
called ϵ − μ-form of Maxwell equations in curved space-
time [41,42]. This formalism can be applied to static,
spherically symmetric gravitational fields, since under such
circumstances it is always possible to find a coordinate
system where the metric has the isotropic form

g00 ¼ g00ðrÞ; g0i ¼ 0; gij ¼ −δijfðrÞ; ð56Þ

for some function fðrÞ, where r ¼ jrj. Using this metric it
is not difficult to show that the inhomogeneous Maxwell
equations

Fμν
;μ ¼ Jν ð57Þ

can be cast into the form

∇ · ðεEÞ ¼ ρ;
∂
∂t ðεEÞ −∇ ×

�
B
μ

�
¼ j; ð58Þ

where

ϵ ¼ μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ
g00ðrÞ

s
: ð59Þ

These equations have the form of the usual (flat-space)
Gauss’s and Ampère’s laws in a medium with refractive
index

nðrÞ ¼ ffiffiffiffiffi
ϵμ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ
g00ðrÞ

s
: ð60Þ

Thus, in the geometric optics limit, i.e., if the wavelength
of light is much smaller than the curvature scale, the
influence of gravity on light can be taken into account
through (58), which can be naturally interpreted as if
gravity endows the flat space-time with an effective
refractive index. For example, the deflection of a light
ray passing close to a massive body can then be evaluated
using the Snell-Descartes law. Following the calculations of
[42], the deflection angle θ for a light ray passing in the
vicinity of a massive body with the impact parameter ρ is
given, to the first order in G, by the expression

θ ¼ −
Z þ∞

−∞

ρ

rnðrÞ
dnðrÞ
dr

dx;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ρ2

q
ð61Þ

and the trajectory of the photon is parametrized by x. A
small observation concerning the limits of integration in
(61) is on order. According to the scheme introduced in [42]

the integration is performed starting at the position x of the
light source (a distant star, for example), up to the position
of the observer, respectively to the massive scattering
object. Since we consider deflection caused by the Sun,
it is natural to suppose that both the light source and the
Earth correspond to the space infinities. However, for a
precise calculation in more exotic scenarios (e.g., those
with complex poles), the upper limit related to Earth’s
position may need to be redefined.
Since the field generated by a pointlike mass in rest

found in Sec. II is already in the isotropic form, it is
straightforward to evaluate the effective refractive index
associated to the sixth-order gravity. From Eqs. (29) and
(30) it follows that, to the first order,

nðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−κh11ðrÞ
1þκh00ðrÞ

s

¼1−MG

�
−
1

r
þ4

3
F2−

1

3
F0

�
−MG

�
−
1

r
þ2

3
F2þ

1

3
F0

�
¼nGRðrÞ−2MGF2; ð62Þ

where

nGRðrÞ≡ 1þ 2MG
r

ð63Þ

is the effective refractive index of general relativity.
The immediate conclusion which follows from the

expression (62) is that light bending in this theory does
not depend directly on the scalar excitations m0�, and
hence on the sectors R2 and R□R. This result is rather
expected, since both sectors can be regarded as the result of
a conformal transformation on the weak-field metric. Since
the curved-space Maxwell equations are conformally
invariant, these terms have no direct effect on the light
deflection, in the leading approximation. Let us note that
the semiclassical derivation of the same statement for Rþ
R2 can be found in [43] and will be extended to the theory
with R□R term in the next section.
On the other hand, the scalar modes may have an indirect

influence on the bending of light, through the redefinition
of Newton’s constant G and the related calibration of mass
of astronomical bodies. This effect is typical in the
literature on the masless Brans-Dicke theory [44].5 The
situation for the massive Brans-Dicke theory can be very
different, as explained, e.g., in the Refs. [46,47].
Indeed, it is even easier to understand the difference

between massless and massive cases for the model of
Rþ αR2-gravity, than for the classically equivalent Brans-
Dicke theory. According to our previous considerations,

5An important consideration concerning the effective Newton
constant in metric-scalar models, including cosmological aspects
of the problem, was given in [45].
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the modified Newtonian potential in this case has the
form

VðrÞ ¼ −
GM
r

�
1þ 1

3
e−m0r

�
; ð64Þ

where the mass of the scalar mode m0 can be very small
only for a huge value of the parameter α. In the case when
the enormous value of α can overwhelmingly compensate
the “natural” value of m0 (which is of the Planck order of
magnitude), the scalar mass becomes incredibly small and
the exponential in Eq. (64) can be considered as constant
unity at the astronomical scale. This is exactly what we
observe for the massless limit of the Brans-Dicke model. In
such an exotic situation one cannot measure a real value
of the product GM in laboratory experiments or in the
Solar System observations, and will observe ð4=3ÞGM
instead. At the same time the bending of light will be
measuring the real value GM, so some discrepancy is
unavoidable between the two sets of observational and
experimental data.
In general, we will not bother with the redefinition of the

product GM, since we are not interested in such huge
values of β. We will come back to this discussion only at
one point, when comparing the effect of the deflection of
light to the modified Newtonian potential.
For the sake of completeness we show explicitly how the

scalar contributions appear as a conformal transformation.
Starting from the auxiliary fields representation in Eq. (14),
if α ¼ A ¼ 0 the general solution of the field equations
reads

hðα¼A¼0Þ
μν ¼ hðEÞμν þ Ψμν þ Ψ̄μν −

1

2
ημνðΨþ Ψ̄Þ; ð65Þ

which yields the metric

gðα¼A¼0Þ
μν ¼ ημν þ κ

�
hðEÞμν þ Ψμν þ Ψ̄μν −

1

2
ημνðΨþ Ψ̄Þ

�
:

ð66Þ

Thus, the metric associated to the full sixth-order gravity
can be expressed in the conformal form

gμν ¼
�
1 − κðΦþ Φ̄Þ þ κ

2
ðΨþ Ψ̄Þ

�
gðα¼A¼0Þ
μν ; ð67Þ

keeping, as usual, terms up to first order in the metric
fluctuation.
In what follows we consider systematically the results

for the light deflection according to the nature of the
massive tensor excitations. Namely, we analyze the effec-
tive refractive index for the different versions of F2, as
described in the previous section.

A. Deflection with real simple poles

In the case of real simple poles the effective refractive
index is given by the general formula

nðrÞ ¼ nGRðrÞ

þ 2MG

�
m2

2þ
m2

2− −m2
2þ

e−m2−r

r
−

m2
2−

m2
2− −m2

2þ

e−m2þr

r

�
:

ð68Þ

Since m2− > m2þ, the m2−-term yields an attractive
force and produces an increase of nðrÞ, while the
m2þ-term gives a negative contribution to the refractive
index, which is responsible for the well-known repulsive
force caused by the ghost mode [31,37]. This repelling
force is stronger than that of the healthy massive mode,
since

				 m2
2−

m2
2− −m2

2þ

e−m2þr

r

				 >
				 m2

2þ
m2

2þ −m2
2−

e−m2−r

r

				: ð69Þ

As a consequence nðrÞ < nGRðrÞ, implying that light
deflects less in the sixth-order gravity than in general
relativity.
It is easy to show that for a fixed value of β there is also

the relation

nðrÞ > n4ðβ; rÞ ¼ nGRðrÞ −
2MG
r

exp

�
−

4r
jβjκ2

�
; ð70Þ

where the r.h.s. is the effective refractive index of the
fourth-order gravity with the same β, i.e., with A ¼ B ¼ 0.
In order to prove inequality (70), we note that
∂m2

2þ=∂B < 0, therefore the smallest value for m2
2þ can

be achieved by taking the limit B → 0 (remember B < 0),
hence

lim
B→0

m2
2þ ¼ −

4

βκ2
¼ m2

2ð4Þ; ð71Þ

which is precisely the square of the mass of the fourth-order
gravity’s ghost [5]. Since the Yukawa potential is stronger
for a smaller mass, if m2

2þ ¼ m2
2ð4Þ the repulsive term

achieves its maximum strength, while the attractive massive
term tends to zero. We conclude that nðrÞ > n4ðrÞ for the
same value of β in six- and fourth-derivative models. In
particular, nðrÞ > 1, which means that the balance of the
three forces never results in a net outward deflection.
The previous discussion can be summarized by the

following chain of inequalities, where the last two hold
with the same value of β:

nGRðrÞ > nðrÞ > n4ðrÞ > 1: ð72Þ
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Those inequalities become true equalities, respectively, in
the following limits:

iÞ m2� → ∞;

iiÞ m2þ=m2− → 0;

iiiÞ m2� → 0: ð73Þ

The possibility (ii) corresponds to the fourth-derivative
gravity theory, with two disproportional masses as
explained in Sec. III A 1, and with B → 0 as we have
discussed above.
For the sake of completeness we write the result for the

deflection angle of a light ray with impact parameter ρ,
given by Eq. (61) with the effective refractive index (68),

θ ¼ θGR þ 2MGρðI− − IþÞ; ð74Þ

I� ¼ m2
2∓

jm2
2� −m2

2∓j
Z þ∞

−∞

�
1

r
þm2�

�
e−rm2�

r2
dx;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ρ2

q
: ð75Þ

Here θGR ≡ 4GM=ρ is the bending angle predicted by
general relativity. In a higher derivative theory the ghost
term Iþ enters with a “wrong” sign, tending to reduce the
deflection angle.
The magnitude of deflection depends on the three length

scales, defined by the inverse masses of the tensor modes
and by the impact parameter. There is a region delimited by
r1 ¼ 1=m2− and r2 ¼ 1=m2þ where the dominant contri-
bution to the deflection is owed to the ghost mode and the
graviton. If there is a strong hierarchym2− ≫ m2þ between
the masses, then the massive healthy tensor mode is
irrelevant along the trajectory of the light ray, and the
deflection angle is approximately that of the fourth-order
gravity [37],

θ ≈ θGR − 2MGρ
Z þ∞

−∞

�
1

r
þm2

�
e−rm2

r2
dx: ð76Þ

Here the definition of r is the same as in (75). One can
observe that outside of the sphere of the radius 1=m2þ, the
dominant contribution to the light deflection comes from
the graviton sector and the effect of the massive modes is
suppressed.

B. Deflection with real degenerate poles

If the masses of the tensor excitations are approximately
the same, one can use the quantity F2 given by Eq. (40), or
Eq. (41) in the limitm2− ¼ m2þ ¼ m2. The latter yields the
effective refractive index

ndegenðrÞ ¼ nGRðrÞ − 2MG

�
1

r
þm2

2

�
e−m2r: ð77Þ

As far as the mentioned limit is smooth, it is possible to
restrict our consideration to the limit of equal masses.
Without the hierarchy between the masses, the relation (69)
and its implications do not hold. Then for a sufficiently
small r it is possible to have ndegen < 0. In this case the
repulsive force is strong enough to cause a net outward
deflection at this region. Hence, the chain of inequalities of
Eq. (72) simplifies to nGR > ndegen, formally without a
lower bound.
In this scenario, the expression for the deflection angle θ

reads

θdegen ¼ θGR − 2MGρ
Z þ∞

−∞

�
m2

2r
2

þm2 þ
1

r

�
e−rm2

r2
dx;

ð78Þ
with r the same as in (75), which can be recognized as the
deflection angle in the fourth-derivative gravity with the
same mass m2 according to Eq. (76), minus an extra
correction owed to the healthy massive (degenerate) exci-
tation. Indeed, the effective refractive index (77) can be cast
into the form

ndegenðm2; rÞ ¼ n4ðm2; rÞ −MGm2e−m2r; ð79Þ
where n4ðm2; rÞ corresponds to fourth-order gravity with
the mass m2.
It is important to stress that the strong repulsive force

occurs only at distances smaller than 1=m2. For the Planck-
order mass m2 ∝ MP this distance is of the order of
10−43 cm, so the repulsive effect does not affect the light
deflected by astronomical bodies including our Sun.

C. Deflection with complex poles

The expression for the effective refractive index of the
sixth-order gravity in the presence of complex massive
poles follows from Eqs. (50) and (62),

nCðrÞ ¼ nGRðrÞ − 2MG

�
cosðb2rÞ −

β

c2
sinðb2rÞ

�
e−a2r

r
:

ð80Þ
Accordingly, the deflection of a light ray with impact
parameter ρ is given by

θ ¼ θGR − 2MGρ
Z þ∞

−∞
dx

��
b2 −

β

c2

�
a2 þ

1

r

��
sinðb2rÞ

þ
�
a2 þ

1

r
þ β

c2
b2

�
cosðb2rÞ

�
e−a2r

r2
; ð81Þ

where we use the standard parametrization of (75).
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Since the expressions presented above for the deflection
angles carry the assumption that these angles are small, to
all practical purposes the impact parameter coincides with
the closest approach distance [42]. Thus one can define the
trajectory scale by ρ−1. In the complex poles cases there are
also three length scales: the one of the Yukawa part, the
typical length period of the oscillation and the impact
parameter. The analysis is complicated due to the presence
of the oscillating terms, hence in what follows we describe
only two simple but illustrating examples.

1. The case of a2 ≫ b2
From the definitions of Sec. III. 2, it follows that a2 > b2

if and only if β < 0. Besides, if c2 is sufficiently small, such
that c22=β

2 ≪ 1, it is possible to have the real part of the
“mass” much larger than the imaginary part. In such a
scenario, the massive quantities a2 and b2 may be approxi-
mated by

a22 ≈
4

κ2jβj
�
2 −

3

2

c22
β2

�
; b22 ≈

2

κ2jβj
c22
β2

: ð82Þ

Furthermore, the condition a2 ≫ b2 means that the Yukawa
potential has a very short range if compared to the large
space period of the oscillatory terms.
It remains possible for the Yukawa and oscillation scales

to be either small or large with respect to the impact
parameter. Assuming that ρ−1 ≪ a2, the correction due to
the higher-derivatives is always tiny against the general
relativity’s term, hence θ ≈ θGR. The only interesting
situation is therefore b2 ≪ ρ−1, with ρ−1 comparable
to a2. Accordingly we may write cosðb2rÞ ≈ 1 and
sinðb2rÞ ≈ b2r, which reduces the deflection angle to

θ ≈ θGR − 2MGρ
Z þ∞

−∞
dx

�
−
βa2b2
c2

rþ a2 þ
1

r

�
e−a2r

r2

≈ θGR − 2MGρ
Z þ∞

−∞
dx

�
a22
2
rþ a2 þ

1

r

�
e−a2r

r2
: ð83Þ

It is easy to see that this is roughly the same expression (78)
for the real degenerate poles. This result should be
expected, since the condition b2 ≪ ρ−1 ∼ a2 means that
the imaginary part of m2� is tiny with respect to all other
scales of the system. Hence, to the leading order both
scenarios turn out to be the same, confirming the correct-
ness of our calculations. Differences start to emerge only
when second- and first-order corrections in b2r and b2=a2,
respectively, are taken into account.

2. The case of b2 ≫ a2
This condition only holds provided that β > 0 and

c22=β
2 ≪ 1. The quantities a2 and b2 now read, to the

leading order,

a22 ≈
2

κ2jβj
c22
β2

; b22 ≈
4

κ2jβj
�
2 −

3

2

c22
β2

�
; ð84Þ

and therefore b22=a
2
2 ≈ 4β2=c22. As a consequence

b2
jβj
c2

≫ b2 >
b2
2
≈ a2

jβj
c2

≫ a2: ð85Þ

Let us remember that the condition a2 ≪ b2 means that the
range of the Yukawa term is much larger than the space
period of the trigonometric functions in the expression for
the effective refractive index. Then many oscillations
typically occur before the exponential factor makes the
whole expression negligible. This regime, therefore, has a
much stronger dependence on the impact parameter if
compared to the analysis which was described before.
In the regime ρ−1 ≫ b2 one may approximate the argu-

ment of the trigonometric functions by the leading constant
value ρb2, for r ≈ ρ, where the amplitude of the correction
term is maximum. It is clear that the change of impact
parameter by even a small fraction of its original value
can produce a large variation of the correction from the
higher-derivative terms, including altering the sign of this
correction.
This strong dependence on ρ is only suppressed for

ρ−1 < a2, due to the exponential damping. In view of
Eq. (85), the expression for the deflection angle simplifies to

θ ≈ θGR −MGρ
βb2
c2

Z þ∞

−∞
dx cosðb2rÞ

e−a2r

r2
: ð86Þ

D. Final comments on classical deflection

Some general comments are in order. The two previous
simple examples show that the corrections due to the
higher-derivative terms can manifest strong dependence
on the impact parameter in the case of complex poles. The
origin of this effect is the oscillatory behaviour of the
effective refractive index. In the realistic situations, how-
ever, the only feasible scenarios are those where the real
part is large enough to damp the oscillations far beyond the
current experimental bounds. For instance, the most precise
measurements of deflection of light rays close to the Sun,
carried out by modeling solar occultations of radio sources,
have confirmed general relativity’s prediction within the
uncertainty of a few parts in 100,000 [48]. In the visible
spectrum, the astrometry of stars during solar eclipses
yield the verification of the deflection angle to the precision
of 1% [49].
The deflection of light rays close to the solar limb in the

four-derivative gravity (76) corresponds to the Yukawa
potential with mass m2 > 10−23 GeV [37]. Such a figure,
nevertheless, is far too small if one takes into account
laboratory tests of the inverse-square force law. Torsion-
balance experiments currently yield a much stricter bound
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on the order ofm2 > 10−12 GeV for one additional Yukawa
potential [50,51]. These bounds may be viewed as first
estimates to a lower-limit on the real component a2, if we
assume that it is large enough to damp the oscillations up to
this length scale. However, no bound on the imaginary part
can be established from this preliminary analysis. Precise
modeling of experimental data, especially those from
torsion-balances, are required in order to detect a possible
oscillatory behavior of the gravitational potential. A stimu-
lating discussion on the perspective of detecting oscilla-
tions in the gravitational potential was set about in the
recent work [52].

V. LIGHT BENDING: SEMICLASSICAL
APPROACH

Let us now consider the photon as a quantum particle
which interacts with the classical external gravitational
field. The main virtue of the semiclassical calculation using
Feynman diagrams is to consider the background metric
not as a completely sterile medium, but as an external field
whose massive modes are excited depending on the energy
of the interacting particle. In the case of the purely massless
gravitational excitation both classical and the semiclassical
approaches are equivalent, but in the presence of a massive
parameterm the semiclassical scattering starts to depend on
the ratio between m and the energy of the photon [37,39].
As we have already mentioned in the Introduction, the
question of whether and when the semiclassical approach
can be used has been discussed in the literature [34] and the
general conclusion is that its pertinence is restricted to
scattering processes with very small impact parameter. Yet,
this approach looks interesting for it clarifies some general
features of the scattering, and therefore we include it here.
In what follows we present the results of the calculations
for the cross section formulas, and then discuss their
applicability to the bending of light in the Solar System.
At the tree level the only diagram contributing to the

scattering of a photon by a classical external gravitational
field is the one in Fig. 1, producing the vertex function

Vμνðp; p0Þ ¼ κ

2
hλρextðkÞFμνλρðp; p0Þ; ð87Þ

where p and p0 are the four-momenta of the initial and
final states of the photon, while hλρextðkÞ is the linearized
gravitational field in the momentum-space representation.
The function in (87) has the form

Fμνλρðp; p0Þ ¼ −ημνηλρp · p0 þ ηλρp0
μpν

þ 2ðημνpλp0
ρ − ηνρpλp0

μ

− ημλpνp0
ρ þ ημληνρp · p0Þ: ð88Þ

Since, according to the Theorem 1, the gravitational field
hλρext can be written as the sum of five auxiliary fields, and
owed to the linearity of the Fourier transform, the vertex
function assumes the form

Vμν ¼ MðEÞ
μν þMðΨÞ

μν þMðΨ̄Þ
μν þMðΦÞ

μν þMðΦ̄Þ
μν ;

Mð…Þ
μν ¼ κ

2
hð…Þλρ
ext Fμνλρ; ð89Þ

where the last equation is valid for all five auxiliary fields.
We point out that for a photon the dispersion relation is

p2 ¼ E2 − p2 ¼ 0 ¼ p02. Furthermore, we can assume the
field to be weak and hence neglect the possible energy
exchange between the photon and gravitational field.
Therefore it follows that jpj ¼ jp0j. Bearing this in

mind, it is easy to verify that ηλρFμνλρ ¼ 0. Hence MðΦÞ
μν ¼

MðΦ̄Þ
μν ¼ 0 and the Feynman amplitudes related to the scalar

modes of the gravitational field are null.
From the perspective of Feynman diagrams, the con-

tribution of the scalar mode of the metric vanishes because
it interacts with the photon through the trace of the energy-
momentum tensor. This trace is null for the electromagnetic
field, and as a consequence none of the scalar components
contribute to the scattering of light. This confirms the result
which we obtained in Sec. IV within the classical frame-
work. One of the manifestations of this is that the R2- and
R□R-terms do not affect light deflection, except in the
recalibration of the product GM in the special case of very
light scalar mode(s).
The Feynman amplitude for the scattering of photons

with initial polarization vector ϵμrðpÞ and final polarization
ϵνr0 ðp0Þ is given by

Mrr0 ¼ Vμνðp; p0ÞϵμrðpÞϵνr0 ðp0Þ: ð90Þ

Taking into account Eq. (88) and the completeness relation
for the polarization vectors,

X2
r¼1

ϵμrðpÞϵνrðpÞ ¼ −ημν −
pμpν

ðp · nÞ2 þ
pμnν þ pνnμ

p · n
;

ðnμnμ ¼ 1Þ: ð91ÞFIG. 1. Photon scattering by an external gravitational field.
Here jpj ¼ jp0j.
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The sum over all the polarizations yields the unpolarized
cross section

dσ
dΩ

¼ 1

2ð4πÞ2
X
r;r0

jMrr0 j2 ¼
1

2ð4πÞ2 VμνVμν: ð92Þ

Furthermore, it is cursory to show that

ηλ0ηρ0Fλρμνηα0ηβ0Fαβμν ¼ 2E4ð1 − cos θÞ2; ð93Þ

where E ¼ E0 is the energy of the photon and θ is the
deflection angle between p and p0.
Using Eqs. (89), (92), and (93) it follows that

dσ
dΩ

¼ κ4M2E4ð1þ cos θÞ2
ð16πÞ2

×

�
1

k2
−

1

m2
2− −m2

2þ

�
m2

2−
k2 þm2

2þ
−

m2
2þ

k2 þm2
2−

��
2

:

ð94Þ

In the formula (94) one can recognize the standard
gravitational version of the Rutherford formula, plus the
correction coming from the massive modes.
In what follows we assume that the bending angle is

small and calculations are performed in the leading order
in θ. Then k2 ≈ 2p2ð1 − cos θÞ ≈ E2θ2 and the previous
expression reduces to

dσ
dΩ

¼ 16G2M2

�
1

θ2
−

m2
2−

m2
2− −m2

2þ

E2

E2θ2 þm2
2þ

þ m2
2þ

m2
2− −m2

2þ

E2

E2θ2 þm2
2−

�
2

; ð95Þ

where we omitted Oðθ−3Þ and other relatively small terms.
It is clear that the propagation of photons in this model is

dispersive, i.e., depends on the energy of the photon. The
same general feature was established in Ref. [37] for the
photons in the fourth-order theory. However, in the six-
derivative case there are several possible scenarios, depend-
ing on the type of the quantities m2�. In what follows we
treat each case separately.

A. Scattering with real simple poles

Let us start by recalling that in the simpler fourth-order
gravity, for a given θ, the cross section is smaller than in
general relativity,

�
dσ
dΩ

�
4

¼ 16G2M2

�
1

θ2
−

E2

E2θ2 þm2
2

�
2

<
16G2M2

θ4
¼

�
dσ
dΩ

�
GR

: ð96Þ

This happens because the R2
μν-sector yields a repulsive

dispersive interaction such that more energetic photons are
less scattered.
In the sixth-order gravity, in addition to the attractive

nondispersive force coming from the R-sector and the
repulsive dispersive force due to the R2

μν-sector, there is
another attractive, dispersive, force due to the term
Rμν□Rμν. This makes the “tug of war” between those
forces more complicated than in the fourth-order gravity;
yet, the qualitative conclusions are the same. One can
summarize the results as follows:

(i) Light is less scattered than in general relativity. The
hierarchy m2− > m2þ implies that

m2
2−E

2

E2θ2 þm2
2þ

>
m2

2þE
2

E2θ2 þm2
2−

; ð97Þ

and hence [see Eq. (95)]

�
dσ
dΩ

�
GR

>
dσ
dΩ

>

�
dσ
dΩ

�
4

> 0; ð98Þ

where ðdσdΩÞ4 is the cross section for the fourth-order
gravity with the same β (see discussion in the
Sec. IVA). The second inequality tends to equality
in the case of strong hierarchy m2− ≫ m2þ, while
the last inequality in (98) tends to equality in the
limit E → ∞, when no deflection occurs.

(ii) More energetic photons undergo less deflection.
This happens because they interact strongly with
the dispersive terms and, as one can see in (97),
among the dispersive forces the repelling one is
always bigger. Physically, the reason is that the
coupling constant is the same for all intermediate
tensor bosons, thus the one with larger mass makes
smaller effect.

The dependence on E cannot be observed in the classical
approach. But it is interesting to note that besides the
dispersive behavior, the general qualitative conclusions of
the classical approach are verified at the quantum level. In
order to see this, one can compare, for instance, the chain of
inequalities in Eqs. (72) and (98).

B. Scattering with real degenerate poles

The cross section for the case of real degenerate
poles can be explored using the general expression for
the cross section (95). We start from the case of a weak
hierarchy

m2− ¼ m2þ þ ϵ ¼ m2 þ ϵ; with
ϵ

m2

≪ 1;

and then take the limit ϵ → 0, which smoothly yields
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�
dσ
dΩ

�
degen

¼ 16G2M2

�
1

θ2
−
E4θ2 þ 2m2

2E
2

ðE2θ2 þm2
2Þ2

�
2

: ð99Þ

It is straightforward to verify that this cross section is
bounded by zero (for m2=E → 0) and by the general
relativity cross section as E=m2 → 0. Therefore the quali-
tative conclusions of the case with real simple poles apply
here too; namely, light deflects less than in general
relativity, and more energetic photons are less scattered.

C. Scattering with complex poles

The unpolarized cross section for the situation where the
poles of the propagator are complex can be evaluated by
inserting the quantities (48) and (49) into the general
formula (95). This procedure yields�

dσ
dΩ

�
C
¼ 16G2M2

�
1

θ2
− f

�
2

; ð100Þ

where

f ¼ E4θ2 þ 2E2ða22 − b22Þ
ðE2θ2 þ a22 − b22Þ2 þ 4a22b

2
2

: ð101Þ

Differently from the case of real poles, for certain angles
and combinations of B, β, and E it is possible to have
ðdσdΩÞC ≥ ðdσdΩÞGR. A useful example is as follows:

θ2 ¼
β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 8B

κ2

q
2jBjE2

⇒

�
dσ
dΩ

�
C
ðθÞ ¼ 4

�
dσ
dΩ

�
GR

ðθÞ:

ð102Þ

It is good to remember that Eq. (102) only holds if β > 0,
otherwise θ2 < 0.
It is natural to ask whether it is possible to have ðdσdΩÞC >

ðdσdΩÞGR with β < 0. In order to answer this question,
we must note that the quantity f which appears on the
cross section (100) is always positive if a2 > b2, but has
indefinite sign if a2 < b2. In view of this fact, we analyze
each possibility separately, as well as the special case
a2 ¼ b2.

1. The case of a2 > b2
It is straightforward to verify that f in Eq. (101) is not

only positive, but is also a strictly increasing function on E,
if a2 > b2 (or, equivalently, β < 0). In fact, the sign of
∂f=∂E is determined by its numerator,

sgn

�∂f
∂E

�
¼ sgn½4a22b22ða22 − b22Þ þ 4E2θ2a22b

2
2

þ ða22 − b22Þ3 þ E2θ2ða22 − b22Þ2�: ð103Þ

Hence, if β < 0, the function f grows with the increase of
E. Besides, f → 1=θ2 when E → ∞, which means that
sending photons with higher energy can, at most, cancel the
Einstein’s term 1=θ2 in the cross section expression. We
conclude that if β < 0 then light would always scatter less
than in general relativity, and even less for high-energy
photons. This is qualitatively the same behavior as in the
case of real poles.
In the strong hierarchy regime a2 ≫ b2, the cross section

formula (100) boils down to

dσ
dΩ

≈ 16G2M2

�
1

θ2
−
E4θ2 þ 2a22E

2

ðE2θ2 þ a22Þ2
�
2

: ð104Þ

As one ought to expect, this expression corresponds to the
cross section for real degenerate poles (99). Indeed, in
Sec. IV C 1 it was argued that both situations are equivalent
if terms of order b2=a2 are not taken into account.

2. The case of a2 < b2
In the six-derivative theory one can set β > 0 and still

have a stable massless tensor mode. Then a2 < b2, hence it
is possible to have f < 0 and ∂f

∂E < 0, according to the
conditions

f < 0⇔b22 − a22 >
E2θ2

2
; ð105Þ

∂f
∂E < 0⇔b22 − a22 > E2θ2: ð106Þ

It is easy to see that the two following regimes may occur,
in addition to the usual behavior of the previously described
scenario. First, if f < 0 but ∂f∂E > 0, then the correction term
f will sum up with the general relativity term 1=θ2, making
the cross section larger than the general relativity one.
At the same time more energetic photons still have
smaller cross section. For low energy photons, the cross
section increases with the energy up to the point where
E2θ2 ¼ b22 − a22. Below this value of energy the sign
of derivative changes and the cross section starts to
decrease.
The zero point of the derivative ∂f=∂E corresponds to

the unique local minimum of fðEÞ. For lower energy
photons both f < 0 and ∂f

∂E < 0, hence the cross section is
still greater than in general relativity, but it decreases
to ðdσdΩÞGR as E → 0. At this region more energetic
photons undergo more scattering. Therefore, f is bounded
between − E4θ2

4a2
2
b2
2

and θ−2, and the cross section satisfies

the conditions

0 ≤
dσ
dΩ

≤ 16MG

�
1

θ2
þ E4θ2

4a22b
2
2

�
2

: ð107Þ

LOW-ENERGY EFFECTS IN A HIGHER-DERIVATIVE … PHYSICAL REVIEW D 96, 104004 (2017)

104004-15



One can note that if the massive parameters of the action
are of the order of the Planck mass, then the upper bound on
the cross section is going to be very close to the cross
section of general relativity. Hence, this scenario is not
ruled out in principle. It is interesting to notice that this is
the only scenario where the upper-bound on the cross
section is not trivial.

3. The case a2 ≈ b2
The condition a2 ≈ b2 ¼ μ is fulfilled provided that

κ2β2 ≪ 16jBj. Under such an assumption the massive
parameter reads μ ≈ ðκ2jBjÞ−1=4, and the cross section
becomes

dσ
dΩ

≈ 16G2M2

�
1

θ2
−

E4θ2

4μ4 þ E4θ4

�
2

≤
�
dσ
dΩ

�
GR

: ð108Þ

As expected, dσdΩ → ðdσdΩÞGR when μ=E → ∞. Hence, as in
the scenario with real poles or with a2 > b2, the cross
section decreases with the energy of the photon.

D. On the applicability of semiclassical approach

Let us now comment on the applicability of the dia-
grammatic approach for the gravitational light bending,
which has been described in this section. It is well known
that this method is equivalent to the classical one for
evaluation of the modified Newtonian potential in both
general relativity and higher derivative gravity. This
approach also works pretty well in general relativity for
the description of the bending of light. At the same time, we
know that for the fourth-derivative gravity the results of the
classical and semiclassical methods diverge [37], and we
have just seen that the situation is the same in the six-
derivative gravity case. Therefore, it is necessary to explain
the discrepancy between the two methods and understand
which of them is correct and which is not.
The semiclassical approach implies the evaluation of the

scattering amplitude, representing the interaction of a
photon with a massive matter source. It is usually assumed
that this massive particle is heavy and remains static, since
it represents a heavy body such as a star or a galaxy, while
the photon plays the role of a test particle. At the tree level
this corresponds to a Feynman diagram as displayed in
Fig. 1. In the case of general relativity, the cross section for
the exchange of one graviton is simply a reduced case of
Eq. (94),

�
dσ
dΩ

�
GR

¼ κ4M2

ð8πÞ2
E4

k4
; ð109Þ

which in the small-angle approximation boils down to

�
dσ
dΩ

�
GR

¼ 16G2M2

θ4
: ð110Þ

This matches the small-angle classical cross section for
general relativity [53], but it is not a trivial fact. It only
happens because of the special form of the interaction,
which has an infinite range or, in other words, does not
have an intrinsic scale [34]. This interaction classically
corresponds to the Newtonian potential, and its remarkable
feature is that the classical, the Born-approximated and the
exact quantum cross sections do coincide [54].
In the very simple terms we can understand the validity

of the semiclassical approximation in this case as follows.
The underlying assumption in the quantum formulation is
that the initial and final states of the photon are described
by a wave which has no space localization. Therefore, the
massless intermediate particle provide a non-scale descrip-
tion, such that the absence of localization of the free photon
in the quantum formalism does not manifest as a trouble in
the calculations. However, if the same scheme is applied to
the theory with massive intermediate particles, the result
may be incorrect, especially if the range of the force is not
much larger than the impact parameter of the given
scattering process. In other words, in the case of a massive
intermediate particle one cannot regard the initial and
final states of the scattered particle as a free wave without
space localization, unless the impact parameter is suffi-
ciently small.
Let us consider the issue in more detail. In order to

apply quantum cross sections for evaluating the deflection
of a photon passing close to an astronomical body, one
has to compare quantum and classical cross sections
[33,37–39,55,56],

b
sin θ

				 dbdθ
				 ¼

�
dσ
dΩ

�
quantum

: ð111Þ

Solving the differential equation we arrive at the answer for
θ as a function of the impact parameter b. As we have
already noted above, the semiclassical methodology based
on (111) cannot be safely used in most of the cases, since it
gives the correct result only in the case of tree-level general
relativity [34] (see also more recent discussion in [40]).
The reason for the failure of using (111) is related to the

fundamental difference of the terms on both sides of this
equation. In the classical scattering theory there is a direct
relation between the impact parameter and the scattered
angle. At the same time the quantum cross section has an
intrinsic probabilistic meaning, for it is related to the
amplitude of the scattered wave function. It assumes that
the incoming particle can be well represented by a plane
wave, and that the scattered particle is going to be detected
far away from the interaction zone. Such assumptions
should not be taken for granted in all cases.
Consider as an example the sixth-order gravity with real

poles. Following the extremely “mild” assumption which
was already used in Sec. IV, let us assume that the masses
m2� are such that the Yukawa potentials have ranges on the
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submillimeter scale, in agreement to the lower bounds from
laboratory experiments [50,51]. Then, classically, a light
ray with impact parameter of one solar radius R⊙ would
undergo roughly the same deflection as in general relativity.
On the other hand, the quantum cross section depends on
the energy of the photon, and can become arbitrarily small
provided that E ≫ m2�. The last means that no appreciable
deflection should occur if the wavelength of the photon is
short enough, e.g., at the submicrometer scale.
The contradiction occurs because in the present case it is

not correct to use the quantum cross section as for large
impact parameters we are not in the quantum regime. The
light emitted by a distant star and deflected by the Sun with
the massive intermediate particle cannot be represented by
a probabilistic plane wave interacting with the correspond-
ing Yukawa potential. Instead, it ought to be described by a
compact wave packet arriving with a definite impact
parameter b ∼ R⊙ and hence it is passing far away from
the center of the potential. The quantum cross section
should be used only when the impact parameter is
comparable to the size of the wave packet. The typical
scale involved in the problem of our interest is the one
defined by the massive tensor modes. It is clear that this
condition cannot be achieved at the macroscopic astro-
nomical scales.
The correct way to use the tree-level scattering ampli-

tudes for evaluating the gravitational bending of light by
astronomical bodies is via its Fourier transform, which
provides the classical interaction potential. This quantity
may be used within the classical scattering theory to
compute the bending angle. The methodology is equivalent
to the classical analysis presented in Sec. IV and agrees
with the common lore that the tree-level computations, in
general, should agree with the classical physics results.

VI. CONCLUSIONS

The six-derivative model represents the simplest version
of the large class of quantum gravity theories which are
local (i.e., polynomial in derivatives), superrenormalizable
and that enable one to have only complex conjugate pairs of
massive poles in the propagator. According to the recent
paper [26] this kind of theories have unitary S-matrix and
therefore resolve an old-standing conflict between renor-
malizability and unitarity in quantum gravity. Another class
of theories which possess similar properties are nonlocal,
(or non-polynomial in derivatives) and have no massive
poles at the tree level [20,21,57,58]. However, in these
theories an infinite number of ghostlike states with complex
poles emerge when any kind of quantum loop corrections
are taken into account [15]. For this reason the theory with
higher derivatives and complex massive poles is quite
general in quantum gravity, and therefore it deserves serious
investigation not only in the UV, but also in the IR limit.
In the present work wemade the first step in exploring the

low-energy manifestations of complex higher-derivative

states. For the sake of completeness we also considered
the cases of real massive poles, both simple and multiple. It
turned out that the effect of complex poles on the modified
Newtonian potential and on the gravitational bending of
light is partially similar to the one of the massive real ghost
mode in the four-derivative gravity theory. At the same time,
there are some new and remarkable features, such as the
oscillatory behavior of the potentialVðrÞ, which takes place
in the case of complex poles.
We have shown that there is a difference between the

classical and quantum cross sections for the gravitational
scattering of the photon. In the former case one has to treat
photon as a particle moving in the determined classical
background of a weak gravitational field. Contrary to this,
within the semiclassical approach the tree-level cross
section is used to evaluate the same scattering. We have
confirmed, for the six-derivative models, the previous
conclusions of [34], that the semiclassical approach used,
e.g., in [33] cannot be applied for higher-derivative models,
except in the case of extremely small impact parameters.
Still in the quantum domain, it was shown that the cross

sections vanish for photons with energies E ≫ jm2�j. This
feature was also noticed in the case of fourth-order gravity
[37] and it can be qualitatively explained recalling the
uncertainty principle. In fact, this is the energy necessary to
localize a particle with uncertainty smaller than 1=jm2�j. In
such case the Coulomb-shielding property of the Yukawa
short-range potentials is broken, and the photon is able to
probe the inner parts of the potential, where it tends to
behave like 1=r. As the contribution of the Yukawa-type
potentials approaches that of Rutherford scattering, they
cancel out the authentic Rutherford term owed to the
(massless) graviton. From the diagrammatic perspective,
this can be understood as the backreaction of the photon on
the background and its capability of exciting the massive
modes. The effect becomes significant for high-energy
photons with small impact parameters, with frequencies
comparable to the mass of the tensor excitations.
From the phenomenological side, our investigation has

shown that the gravitational light bending in the Solar
System cannot predict new dispersive phenomena such as
in lensing or arriving time delays, nor give tight constraints
to the massive modes. It is more likely to detect the
influence of the higher-derivative terms in laboratory
experiments using torsion-balance or in the cosmological
observations. The analysis of these possibilities would be
quite interesting and should represent an interesting subject
for future work.
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APPENDIX: PROOF OF THE THEOREM 1

Let us prove Theorem 1 which enables one to write the
general of the field equations in terms of auxiliary fields.
It is easy to show that the gauge condition Γμ ¼ 0

can be achieved by means of coordinate transformation
xμ → x0μ ¼ xμ þ κξμðxÞ. The transformation of the linear-
ized perturbations are

h0μν ¼ hμν − ðξμ;ν þ ξν;μÞ; ðA1Þ

γ0μν ¼ γμν − ðξμ;ν þ ξν;μÞ þ ημνξλ
;λ: ðA2Þ

Since for the scalar curvature R0 ¼ R, it is easy to derive

Γμ → Γ0
μ ¼ Γμ −

�
1 −

κ2β

4
□ −

κ2B
4

□
2

�
□ξμ: ðA3Þ

The next step consists in the following proposition:
Proposition 1 The general solution of the system

�
1−

κ2β

4
□−

κ2B
4

□
2

��
−□hμνþ

R
3κ

ημν

�
¼κ

2

�
Tμν−

T
3
ημν

�
;

ðA4Þ

Γμ ¼
�
1 −

κ2β

4
□ −

κ2B
4

□
2

�
γμρ

;ρ

−
κ

2

�
αþ β

2
þ A□þ B

2
□

�
R;μ ¼ 0 ðA5Þ

has the form

hμν ¼ hðEÞμν þ ðm2
2þ þm2

2− þ□Þψμν

−ημνðm2
0þ þm2

0− þ□Þϕ; ðA6Þ

where the fields hðEÞμν , ψμν and ϕ satisfy the equations

□hðEÞμν ¼ κ

2

�
1

2
Tημν − Tμν

�
; ðA7Þ

γðEÞ;νμν ¼ 0; where γðEÞμν ¼ hðEÞμν −
1

2
ημνhðEÞ; ðA8Þ

ðm2
2þ þ□Þðm2

2− þ□Þψμν ¼
κ

2

�
Tμν −

1

3
Tημν

�
; ðA9Þ

ðm2
2þ þm2

2− þ□Þðψμν
;μν −□ψÞ ¼ 0; ðA10Þ

ðm2
0þ þ□Þðm2

0− þ□Þϕ ¼ κT
12

: ðA11Þ

Here we used notations (22) and (23).
Proof.—The first parenthesis in Eq. (A4) can be

factorized as

−
κ2B
4

ðm2
2þ þ□Þðm2

2− þ□Þ; ðA12Þ

provided that

m2
2þ þm2

2− ¼ β

B
and m2

2þm
2
2− ¼ −

4

κ2B
; ðA13Þ

that corresponds to the definition (23). Defining

ψμν ¼ −
κ2B
4

�
−□hμν þ

1

3κ
Rημν

�
; ðA14Þ

Eq. (A4) results in

ðm2
2þ þ□Þðm2

2− þ□Þψμν ¼
κ

2

�
Tμν −

1

3
Tημν

�
; ðA15Þ

which is precisely (9). In terms of the field ψμν, Eq. (A4)
can be rewritten as

□
2ψμν þ

β

B
□ψμν −□hμν þ

R
3κ

ημν ¼
κ

2

�
Tμν −

1

3
Tημν

�
:

ðA16Þ

This equation can be cast in a more useful form by means
of the following expressions:

(i) Trace of (A4),

�
1 −

κ2

4
ðβ þ B□Þ□

��
□h −

4

3κ
R

�
¼ κ

6
T: ðA17Þ

(ii) Divergence of Γμ in (5)

0 ¼
�
1 −

κ2

4
ðβ□þ B□2Þ

�
γμρ

;μρ

−
κ

2

�
αþ β

2
þ A□þ B

2
□

�
□R: ðA18Þ

(iii) Summing up the last two equations and using (7)
yields

R
3κ

¼ κ

12
T −

κ

2

�
αþ β

3
þ A□þ B

3
□

�
□R: ðA19Þ
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Then, inserting (A19) into (A16) gives

□hðEÞμν ¼ −
κ

2

�
Tμν −

T
2
ημν

�
ðA20Þ

where we defined the new field

hðEÞμν ¼ −□ψμν −
β

B
ψμν þ hμν

þ κ

2

�
αþ β

3
þ A□þ B

3
□

�
Rημν: ðA21Þ

One can rewrite (A21) in an alternative useful form

hμν ¼ hðEÞμν þ ðm2
2þ þm2

2− þ□Þψμν

−
κ

2

�
Aþ B

3

��
3αþ β

3Aþ B
þ□

�
Rημν: ðA22Þ

The only field which remains to be defined is the scalar
ϕ. Equation (A19) can be rewritten in the factorized form

κ

2

�
Aþ B

3

�
ðm2

0þ þ□Þðm2
0− þ□ÞR ¼ κ

12
T; ðA23Þ

where the quantities m2
0þ and m2

0− satisfy

m2
0þ þm2

0− ¼ 3αþ β

3Aþ B
; ðA24Þ

m2
0þm

2
0− ¼ 2

κ2ð3Aþ BÞ : ðA25Þ

It is straightforward to verify that the solution of this system
is the second relation in (23). Hence one can define the
scalar field

ϕ ¼ κ

2

�
Aþ B

3

�
R; ðA26Þ

while its equation of motion follows from (A23),

ðm2
0þ þ□Þðm2

0− þ□Þϕ ¼ κ

12
T: ðA27Þ

The general solution (A22) of the system (12) can be
presented in the form

hμν ¼ hðEÞμν þ ðm2
2þ þm2

2− þ□Þψμν

− ημνðm2
0þ þm2

0− þ□Þϕ: ðA28Þ

Up to this pointwe have shown that the general solution of
(A4) is written as a combination of three independent fields
which satisfy the equations of motion (A15), (A20), and
(A27). In order to complete de proof one has to show that the
tensor fields hðEÞμν and ψμν satisfy the gauge conditions.

In terms of γðEÞμν ¼ hðEÞμν − 1
2
hðEÞημν, Eq. (A20) can be

written as

□γðEÞμν ¼ −
κ

2
Tμν: ðA29Þ

One can note that the gauge condition Γμ ¼ 0 is equivalent
to Ωμν

;ν ¼ 0, where

Ωμν ¼
�
1 −

κ2

4
ðβ□þ B□2Þ

�
γμν

−
κ

2

�
αþ β

2
þ A□þ B

2
□

�
Rημν: ðA30Þ

According to Eq. (A28) it follows

γμν ¼ γðEÞμν þ
�
β

B
þ□

��
ψμν −

1

2
ημνψ

�

þ
�
σ1
σ2

þ□

�
ϕημν: ðA31Þ

By combining Eqs. (A15), (A26), (A29), and (A31), it is
easy to show that

Ωμν ¼ γðEÞμν : ðA32Þ

Therefore, the gauge condition (5) implies

γðEÞ;νμν ¼ 0: ðA33Þ

Together with the equation of motion (A20), this means

hðEÞμν is the solution of linearized general relativity in de
Donder gauge.
The gauge condition for the field ψμν can be obtained by

remembering that [see Eq. (7)]

γμν
;μν ¼ 1

2
□h −

1

κ
R: ðA34Þ

Taking into account (A28), (A31), and (A33) in the
previous expression it can be shown that

ðm2
2þ þm2

2− þ□Þðψμν
;μν −□ψÞ ¼ 0; ðA35Þ

completing the proof.
The Theorem 1 can then be regarded as a corollary of the

previous proposition which follows from the change of
variables

Ψ̄μν ¼ m2
2þψμν; Ψμν ¼ ðm2

2− þ□Þψμν; ðA36Þ

Φ̄ ¼ m2
0þϕ; Φ ¼ ðm2

0− þ□Þϕ ðA37Þ

in Eqs. (A6)–(A11).
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B. R. Holstein, L. Planté, and P. Vanhove, Light-like
scattering in quantum gravity, J. High Energy Phys. 11
(2016) 117.

[41] A. P. Lightman and D. L. Lee, Restricted Proof that the
Weak Equivalence Principle Implies the Einstein Equiva-
lence Principle, Phys. Rev. D 8, 364 (1973).

[42] E. Fischbach and B. S. Freeman, Second-order contribution
to the gravitational deflection of light, Phys. Rev. D 22,
2950 (1980).

[43] A. Accioly, A. D. Azeredo, E. C. de Rey Neto, and H.
Mukai, Bending of light in the framework of Rþ R2 gravity,
Braz. J. Phys. 28, 2 (1998).

[44] C. M. Will, Theory and Experiment in Gravitational
Physics, 2nd ed. (Cambridge University Press, Cambridge,
England, 1993).

[45] B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A.
Starobinsky, Reconstruction of a Scalar Tensor Theory of
Gravity in an Accelerating Universe, Phys. Rev. Lett. 85
(2000) 2236.

[46] L. Perivolaropoulos, PPN parameter and solar system
constraints of massive Brans-Dicke theories, Phys. Rev. D
81, 047501 (2010).

[47] J. Alsing, E. Berti, C. M.Will, andH. Zaglauer, Gravitational
radiation from compact binary systems in the massive Brans-
Dicke theory of gravity, Phys. Rev. D 85, 064041 (2012).

[48] D. E. Lebach, B. E. Corey, I. I. Shapiro, M. I. Ratner, J. C.
Webber, A. E. E. Rogers, J. L. Davis, and T. A. Herring,
Measurement of the Solar Gravitational Deflection of Radio
Waves Using Very-Long-Baseline Interferometry, Phys.
Rev. Lett. 75, 1439 (1995); E. Fomalont, S. Kopeikin, G.
Lanyi, and J. Benson, Progress in Measurements of the
Gravitational Bending of Radio Waves Using the VLBA,
Astrophys. J. 699, 1395 (2009).

[49] B. F. Jones, Gravitational deflection of light: solar eclipse of
30 June 1973 II. Plate reductions, Astron. J. 81, 455 (1976);

F. Schmeidler, Messung der Lichtablenkung während der
Sonnenfinsternis am 15. Februar 1961, Astron. Nachr. 306,
71 (1985).

[50] D. J. Kapner, T. S. Cook, E. G. Adelberger, J. H. Gundlach,
B. R. Heckel, C. D. Hoyle, and H. E. Swanson, Tests of the
Gravitational Inverse-Square Law below the Dark-Energy
Length Scale, Phys. Rev. Lett. 98, 021101 (2007).

[51] B. L. Giacchini, Experimental limits on the free parameters
of higher-derivative gravity, in Proceedings of the Four-
teenth Marcel Grossman Meeting on General Relativity,
edited by M. Bianchi, R. T. Jantzen, and R. Ruffini (World
Scientific, Singapore, 2017) [arXiv:1612.01823].

[52] L. Perivolaropoulos, Sub-millimeter spatial oscillations of
Newton’s constant: Theoretical models and laboratory tests,
Phys. Rev. D 95, 084050 (2017).

[53] D. Boccaletti, V. de Sabbata, C. Gualdi, and P. Fortini,
Graviton emission by photons in a gravitational field,
Nuovo Cimento A 48, 58 (1967).

[54] D.Bohm,QuantumTheory (Prentice-Hall, NewYork, 1951).
[55] S. R. Huggins and D. J. Toms, One-graviton exchange

interaction of non-minimally coupled scalar fields, Classical
Quantum Gravity 4, 1509 (1987); S. R. Huggins, Cross
sections from tree-level gravitational scattering from a non-
minimally coupled scalar field, Classical Quantum Gravity
4, 1515 (1987).

[56] A. Accioly and H. Blas, Gravitational rainbow, Phys. Rev. D
64, 067701 (2001); A. Accioly, J. Helayël-Neto, F. E.
Barone, B. Giacchini, and W. Herdy, Dispersive photon
propagation in semiclassical higher-derivative gravity, Mod.
Phys. Lett. A 30, 1550052 (2015); A. Accioly, M. Dias, B.
Giacchini, and W. Herdy, Interesting features of semi-
classical gravitational deflection, Classical Quantum Grav-
ity 32, 175020 (2015).

[57] N. V. Krasnikov, Nonlocal gauge theories, Teor. Mat.
Fiz. 73, 235 (1987) [Theor. Math. Phys. 73, 1184 (1987)].

[58] Y. V. Kuz’min, The convergent nonlocal gravitation. (in
Russian), Yad. Fiz. 50, 1630 (1989) [Sov. J. Nucl. Phys. 50,
1011 (1989)].

LOW-ENERGY EFFECTS IN A HIGHER-DERIVATIVE … PHYSICAL REVIEW D 96, 104004 (2017)

104004-21

https://doi.org/10.1103/PhysRevD.91.064008
https://doi.org/10.1103/PhysRevD.91.064008
https://doi.org/10.1007/JHEP11(2016)117
https://doi.org/10.1007/JHEP11(2016)117
https://doi.org/10.1103/PhysRevD.8.364
https://doi.org/10.1103/PhysRevD.22.2950
https://doi.org/10.1103/PhysRevD.22.2950
https://doi.org/10.1590/S0103-97331998000400025
https://doi.org/10.1103/PhysRevLett.85.2236
https://doi.org/10.1103/PhysRevLett.85.2236
https://doi.org/10.1103/PhysRevD.81.047501
https://doi.org/10.1103/PhysRevD.81.047501
https://doi.org/10.1103/PhysRevD.85.064041
https://doi.org/10.1103/PhysRevLett.75.1439
https://doi.org/10.1103/PhysRevLett.75.1439
https://doi.org/10.1088/0004-637X/699/2/1395
https://doi.org/10.1086/111907
https://doi.org/10.1002/asna.2113060207
https://doi.org/10.1002/asna.2113060207
https://doi.org/10.1103/PhysRevLett.98.021101
http://arXiv.org/abs/1612.01823
https://doi.org/10.1103/PhysRevD.95.084050
https://doi.org/10.1007/BF02721341
https://doi.org/10.1088/0264-9381/4/6/010
https://doi.org/10.1088/0264-9381/4/6/010
https://doi.org/10.1088/0264-9381/4/6/011
https://doi.org/10.1088/0264-9381/4/6/011
https://doi.org/10.1103/PhysRevD.64.067701
https://doi.org/10.1103/PhysRevD.64.067701
https://doi.org/10.1142/S0217732315500522
https://doi.org/10.1142/S0217732315500522
https://doi.org/10.1088/0264-9381/32/17/175020
https://doi.org/10.1088/0264-9381/32/17/175020
https://doi.org/10.1007/BF01017588

