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A recent analysis by one of the authors [L. Perivolaropoulos, Phys. Rev. D 95, 084050 (2017)] has
indicated the presence of a 2σ signal of spatially oscillating new force residuals in the torsion balance data
of the Washington experiment. We extend that study and analyze the data of the Stanford Optically
Levitated Microsphere Experiment (SOLME) [A. D. Rider et al., Phys. Rev. Lett. 117, 101101 (2016)]
(kindly provided by A. D. Rider et al.) searching for sub-mm spatially oscillating new force signals. We
find a statistically significant oscillating signal for a force residual of the form FðzÞ ¼ α cosð2πλ zþ cÞ
where z is the distance between the macroscopic interacting masses (levitated microsphere and cantilever).
The best fit parameter values are α ¼ ð1.1� 0.4Þ × 10−17N, λ ¼ ð35.2� 0.6Þ μm. Monte Carlo simulation
of the SOLME data under the assumption of zero force residuals has indicated that the statistical
significance of this signal is at about 2σ level. The improvement of the χ2 fit compared to the null
hypothesis (zero residual force) corresponds to Δχ2 ¼ 13.1. There are indications1 that this previously
unnoticed signal is indeed in the data but is most probably induced by a systematic effect caused by
diffraction of non-Gaussian tails of the laser beam. Thus the amplitude of this detected signal can only be
useful as an upper bound to the amplitude of new spatially oscillating forces on sub-mm scales. In the
context of gravitational origin of the signal emerging from a fundamental modification of the Newtonian
potential of the form VeffðrÞ ¼ −GM

r ð1þ αO cosð2πλ rþ θÞÞ≡ VNðrÞ þ VoscðrÞ, we evaluate the source
integral of the oscillating macroscopically induced force. If the origin of the SOLME oscillating signal is
systematic, the parameter αO is bounded as αO < 107 for λ≃ 35 μm. Thus, the SOLME data cannot
provide useful constraints on the modified gravity parameter αO. However, the constraints on the general
phenomenological parameter α (α < 0.3 × 10−17N at 2σ) can be useful in constraining other fifth force
models related to dark energy (chameleon oscillating potentials etc.).
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I. INTRODUCTION

The physical scale associated with the accelerating
expansion of the Universe is the dark energy scale
which is obtained from the dark energy density ρde≃
10−29 g=cm3 ≃ ð2.4 meVÞ4. This scale corresponds to an
energy scale of 2.4 meV and a length scale of about

λde ≃
ffiffiffiffiffi
ℏc
ρde

4

q
¼ 0.085 mm. It is therefore plausible that the

physical cause of the cosmological expansion on cosmo-
logical scales may also produce experimental signatures in
the form of new forces that manifest themselves on sub-mm
scales. Chameleon scalar field screened interactions [1–8],
modified gravity Yukawa forces [9,10] and vacuum energy
Casimir forces [11–13] are some examples of new sub-mm
forces that could also be connected with the observed
cosmological accelerating expansion.

A wide range of experiments have been performed
searching for signatures of new forces on sub-mm scales.
They include torsion balance experiments [14–28], Casimir
force experiments [29–31], levitating microsphere experi-
ments [32–36], atomic interferometry [37] etc. These
experiments as well as astrophysical observations on larger
scales [38] fit particular parametrizations to data sets that
usually involve force or torque residuals as function of
separation between interacting bodies.
Parametrizations that are commonly used to model

the spatial dependence of new forces on sub-mm scales
are monotonic and include Yukawa and power law para-
metrizations [39]. Yukawa parametrizations generalize
the gravitational potential generated by a mass M to the
form

Veff ¼ −G
M
r
ð1þ αYe−r=λÞ ð1:1Þ

where αY , λ are parameters to be constrained by the data.
Power law parametrizations generalize the gravitational
potential generated by a mass M to the form
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Veff ¼ −G
M
r

�
1þ βk

�
λ

r

�
k−1
�

ð1:2Þ

where β, k are parameters. These parametrizations are
motivated by viable extensions of general relativity (Brans-
Dicke and scalar-tensor theories [40–42] brane world
modes [43–48], fðRÞ theories [49–51], compactified extra
dimension models [52–58]. Alternative more complicated
parametrizations which may not appear in closed analytic
form are obtained in the context of nonrelativistic, steady-
state chameleon fields, that couple directly to matter
density and can mediate screened new forces between
macroscopic objects [32,59–61] which may even be sig-
nificantly larger than gravity [59].
Recent studies [62–65] have pointed out that a new class

of parametrizations describing spatially oscillating new
forces on sub-mm scales is well motivated theoretically
and viable experimentally. Such oscillating parametriza-
tions may describe deviations of the gravitational force
from a Newtonian force in a wide range of modified
gravity theories [62], in theories involving small scale
granularity of dark energy [66,67] and most importantly in
nonlocal (infinite derivative) gravity theories [10,62–65,
68–73]. These theories can be free from singularities
[70,71,74,75] (such as black holes) and instabilities
[72,73,76], they can emerge from quantum effects [69]
(such as light particle loops) and they do not need the
existence of the cosmological constant Λ to interpret the
cosmological observations [77]. They constitute a viable
physical mechanism for the observed accelerating expan-
sion of the Universe [78–81] while they predict specific
signatures in the gravitationally light bending angle [82]
testable by the Chandra X-ray Observatory.2

Oscillating force residuals are experimentally viable
and mildly favored [62] according to current torsion
balance experiments searching for new forces on sub-mm
scales [14]. These parametrizations also emerge as
analytic continuations of the Yukawa parametrization
(1.1) and generalize the Newtonian gravitational
potential as

Veff ¼ −G
M
r

�
1þ αO cos

�
2π

λ
rþ θ

��
≡ VNðrÞ þ VoscðrÞ ð1:3Þ

where αO, λ, θ are free parameters and the spatial
wavelength λ is assumed to be of sub-mm scale for
consistency with current experimental constraints. This
type of parametrization leads to oscillating new forces of
sub-mm wavelength of the form

F⃗ ¼ −r̂
GMm
r2

�
1þ αO cos

�
2π

λ
rþ θ

�

þ αO
2π

λ
r sin

�
2π

λ
rþ θ

��
: ð1:4Þ

In the case of interacting macroscopic bodies the gravi-
tational potential energy (and therefore the gravitational
force) can be obtained by integration of the oscillating
potential energy correction term [source integral obtained
from the potential Vosc Eq. (1.3)] over the volumes of the
interacting bodies. Assuming macroscopic interacting
masses M and m with a common density ρ, the correspond-
ing potential energy source integral may be written as

VoscðrÞ ¼ −GαO
Z
Vm

d3rmρðr⃗mÞ
Z
VM

d3rMρðr⃗MÞ

×
cosð2πλ jr⃗m − r⃗Mj þ θÞ

jr⃗m − r⃗Mj
: ð1:5Þ

As demonstrated in Sec. III the effective force obtained
from the potential source integral (1.5) macroscopic cyl-
inder of massM interacting with a small mass m located at
a distance z from one of its bases along its symmetry axis is
well approximated for intermediate to large z as

F⃗ðzÞ ¼ A cos
�
2π

λ
zþ c

�
ẑ ð1:6Þ

where c is a parameter. Oscillating sub-mm force residuals
like (1.6) were shown in Ref. [62] to be consistent with
current torsion balance experiments [14] and in fact to
provide a somewhat better fit than the null hypothesis of
zero force residuals.
In the present study we extend the analysis of Ref [62] by

fitting the spatially oscillating force residual (1.6) to the data
set of Stanford Optically Levitated Microsphere Experiment
(SOLME) [32] involving force measurements on optically
levitated microspheres as a function of its distance z from a
gold-coated silicon cantilever. The residual force obtained
after the subtraction of a best fit electrostatic background
from the total measured force in units of fN for z ∈
½25; 235� μm is fit to the oscillating force residual para-
metrization of Eq. (1.6) and the quality of fit is compared to
the null hypothesis of zero force residual. The analytic
expression of the source integral (1.5) is also investigated
and its quality of fit to the SOLME data is compared to the
corresponding quality of fit of the simpler approximate form
(1.6) and other monotonic parametrizations.
This work is organized as follows: in Sec. II we describe

the Stanford Optically Levitated Micropshere Experiment
(SOLME) [32] and the data set used in our analysis. We
also present the analysis of the data set and compare the
likelihood of the oscillating residual force parametrization
(1.6) with the likelihood of the null hypothesis (absence of2http://chandra.harvard.edu/.
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any residual force). In Sec. III we derive analytical
expression for the source integrals leading to the macro-
scopic residual forces corresponding to the potential
between a cylinder and a small sphere. We compare the
quality of fit (likelihood) of macroscopic Yukawa, oscillat-
ing and power law residuals. Finally, in Sec. IV we
conclude, summarize our results and discuss possible
prospects of the present work.

II. CONSTRAINTS ON A PHENOMENOLOGICAL
OSCILLATING PARAMETRIZATION

The SOLME [32] uses optically levitated dielectric
microspheres supported by the radiation pressure from a
single upward pointing laser beam. The laser traps the
microsphere in a high vacuum thus counterbalancing Earth
gravity. Any additional force is assumed to be due to a
gold-coated silicon cantilever, located in the same height
with the microsphera. In order to minimize electrostatic
background forces the trap and cantilever are shielded in a
cubic container consisting of six gold-plated electrodes
which are set to approximately equal potential as the
cantilever. Despite of this shielding, the main background
force remains of electrostatic origin. It emerges due to the
interaction of the small but nonzero permanent electric
dipole moment of the microspheres which couples to the
electric field due to the small but nonzero potential differ-
ence fluctuations (< 30 mV) between the cantilever and
shielding electrodes. Thus the best fit electrostatic back-
ground may be used to obtain the residual force data as the
difference between the measured total force and the best fit
electrostatic background force at a given microsphere-
cantilever distance z. Thus for the magnitude of the residual
force dF we have

dF≡ Fmeasured − Fbackground: ð2:1Þ

The data set analyzed in the present study corresponds
to the data shown in Fig. 3 of Ref. [32]. The data and the
best fit electrostatic background were kindly provided by
the members of the SOLME [32] after our request. This
data set was obtained using three silica microspheres with
the same radius r ¼ 2.5 μm and mass m ¼ 0.13 ng but
different polarizabilities. Each microsphera was trapped in
a high vacuum with pressure P < 10−6 mbar and its
position was measured by a position-sensitive photodiode
using a laser beam.
The small unshielded electrostatic background forces

are monotonic with the distance z between cantilever and
microsphera and have been modeled and fit by the
members of the SOLME as functions of the distance z
between the cantilever and the microsphere. We have found
that this background is very well fit by a parametrization
of the form FB ¼ aþ b=r3=2 where a, b are appropriate
parameters that depend on the polarizability of the inter-
acting microsphere. Any new type of force would manifest

itself as a statistically significant nonzero residual force
beyond the modeled electrostatic background.
For each one of the three silica microsphere the residual

force of Eq. (2.1) was obtained for 32 distances z between
cantilever and microsphere in the distance range z from
25 μm up to ∼235 μm. The total of 96 values of these
residual forces along with the corresponding distances z
and their 1σ error is shown in Table I in the Appendix (32
values for each one of the three microsphere).
We fit the residual forces of the SOLME data derived

from Eq. (2.1) using the oscillating parametrization of the
form

dFðα; λ; c; zÞ ¼ α cos
�
2π

λ
zþ c

�
ð2:2Þ

where α, λ and c are parameters to be fit. We have used the
parametrization (2.2) to minimize χ2ðα; λ; cÞ defined as

χ2ðα; λ; cÞ ¼
XN
j¼1

ðdFðjÞ − dFðα; λ; c; zjÞÞ2
σ2j

ð2:3Þ

where j refers to the jth data point as resulted from
Eq. (2.1) and dFðα; λ; c; zjÞ is the residual force para-
metrized by Eq. (2.2), for the same distance zj between
cantilever and microsphera, that corresponds to measured
residual force dFðjÞ. Also N is the number of data points
which is 96 for the full data set.
We found that, for the full data set, χ2ðα; λ; cÞ is

minimized for

α ¼ 0.011� 0.004 fN ð2:4Þ

λ ¼ 35.2� 0.6 μm ð2:5Þ

c ¼ 5.47� 0.06 rad≃ 7π=4: ð2:6Þ

This value of the best fit phase c differs by about π from the
corresponding best fit phase obtained in Ref. [62] when
fitting the Washington experiment data to the same para-
metrization. The minimum value of χ2 is χ2ðα; λ; cÞ ¼ 85.2
compared to χ2ð0; λ; cÞ ¼ 98.3 corresponding to zero
residual force (dF ¼ 0). In Fig. 1 we show the (minimized
with respect to α, c) χ2ðα; λ; cÞ for the full data set as a
function of the spatial wavelength λ. Clearly, there is a
well pronounced minimum at the spatial wavelength
λ ¼ 35.2 μm.
The red horizontal line corresponds to the value of χ2 of

zero residual force dFðα ¼ 0; λ; c; rjÞ ¼ 0. The difference
between zero force residual and best fit oscillating para-
metrization is δχ2 ¼ 13.1. The 1σ and 2σ contours for the
two parameters α, λ (fixing c ¼ 7π=4) are shown in Fig. 2.
These contours indicate that the zero residual α ¼ 0 line is
about 3σ away from the best fit α ¼ 0.01. In Fig. 3 we show
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the full data set (residual force in fN vs distance in μm)
along with the best fit oscillating model (2.2). The
oscillating signal in the data is clearly visible.
In view of the presence of other less deep χ2 minima at

different spatial wavelengths, this 3σ estimate is an over-
estimate of the true significance of the oscillating signal. In
order to estimate the correct statistical significance of the
signal we have performed a Monte Carlo simulation. The
goal of such a Monte Carlo simulation is to estimate how
often would such a deep χ2 minimum occur in SOLME
simulated data derived under the assumption of an under-
lying zero residual force.
In order to verify the level of significance of the

identified oscillating signal we have generated Gaussian
Monte Carlo data sets under the assumption of zero residual

force. In particular, we used the normal distribution to take
random values for the residual forces (with mean value
zero) for each data point distance z with the same standard
deviation as the experimental data. We processed multiple
data sets of random data points with the same method as the
measured data. A typical form of δχ2ðλÞ≡ χ2oscillating − χ2α¼0

(after minimization with respect to α, c at each value of λ) is
shown in Fig. 4. Clearly, the depth of the deepest minimum
of the Monte Carlo data set (red line) is significantly
smaller than the maximum depth obtained with the real data
set (blue line).
We considered 100 Monte Carlo zero residual force data

sets and we calculated for each Monte Carlo data set the
deepest χ2 minimum in the range λ ∈ ½10–100� μm and
subtracted this minimum χ2 from the corresponding of zero
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FIG. 2. The 1σ and 2σ contours in the parameter space ðα; λÞ
for the oscillating parametrization with c ¼ 7π=4. For the
combined data set (96 data points) there is a well-defined high
quality fit at ðα; λÞ ¼ ð0.011; 35.2 μmÞ corresponding to a wave-
length λ ¼ 35.2 μm. This best fit is about 3σ away from the zero
force residual value α ¼ 0.
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FIG. 1. The value of the minimized χ2 as a function of the
wavelength λ for the full data set (96 points). The red straight
line corresponds zero residual force dF ¼ 0. The depth of the
minimum is δχ2 ¼ 13.1.
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FIG. 3. The residual force SOLME data with error bars along
with the best fit oscillating parametrization (thin red line) for the
full data set. The best fit harmonic parametrization has spatial
wavelength λ ¼ 35.2 μm.
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FIG. 4. The value of the minimized difference δχ2 ¼
χ2oscillating − χ2α¼0 as a function of the spatial wavelength λ for
the experimental data and a random Monte Carlo data set
simulating the SOLME data under the assumption of zero
residual force and gaussian errors. The depth of the δχ2 deepest
minimum is significantly larger when the real data are fit to the
oscillating parametrization.
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residual force χ2 obtained from the Monte Carlo data. Thus
we calculated the difference

δχ2 ¼ χ2zero residual − χ2min−oscillating residual: ð2:7Þ

For the real data this corresponds to the difference δχ2

between the α ¼ 0 red line of Fig. 1 and the deepest
minimum of the blue line. This is the horizontal line in
Fig. 5 at δχ2 ¼ 13.1. For the Monte Carlo data sets this
difference corresponds to the difference between the
deepest minimum of the red line and the horizontal red
line of Fig. 4. Each one of the red dots of Fig. 5 corresponds
to such Monte Carlo difference. Clearly if all the 100 red
dots were found below the horizontal line of Fig. 5
(δχ2 < 13.1) then there would be less than 1% probability
that the deep χ2 minimum of Fig. 1 is due to a statistical
fluctuation. Instead we find that about 5% of the zero
residual simulated data lead to deeper χ2 minima (five red
dots in Fig. 5 are above the horizontal line). Thus the true
level of significance of the oscillating signal is at about 2σ.
A similar effect leading to reduced level of significance
compared to the one indicated by the χ2 contour plot was
observed and discussed in Ref. [62].
We conclude that there is evidence for an oscillating

signal at the 2σ level in the SOLME data. Since there is
only about 5% probability that this signal is due to a
statistical fluctuation, most likely it is due either to a
systematic effect that was not discussed in Ref. [32] or it is
due to new physics. There are indications that the signal is
most probably3 due to a systematic effect caused by a
background due to non-Gaussian tails of the laser beam
whose pressure levitates the microsphere. Due to diffrac-
tion, the intensity of these non-Gaussian tails has a periodic

oscillation, which can mimic a spatially oscillating force
signal. Thus the amplitude of this detected signal can only
be useful as an upper bound to the amplitude of new
spatially oscillating forces on sub-mm scales.
In addition to the oscillating parametrization (2.2) we

have tried to fit the data using various monotonic para-
metrizations like a Yukawa parametrization of the form

dFðα; λ; zÞ ¼ αez=λ: ð2:8Þ

However, in all cases the improvement of the quality of fit
was minor with δχ2 < 1 and thus we will not discuss these
cases further in this section.
The oscillating parametrization (2.2) is a phenomeno-

logical parametrization which cannot be used as is to
impose constraints on fundamental parameters. In order
to impose such constraints the macroscopic residual force
parametrization must be derived starting from a fundamen-
tal theory. For example we may assume a gravitational
origin of the signal and derive the macroscopically induced
residual force starting from a modified Newtonian potential
of the form (1.3). Thus we may derive the predicted
macroscopic residual force between cantilever and micro-
sphere in terms of the fundamental parameters αO and λ of
Eq. (1.3) by evaluating the source integral (1.5) over the
cantilever. This derived effective residual force may then
be fit to the SOLME data leading to constraints on the
fundamental parameters αO and λ rather than the corre-
sponding phenomenological parameters of Eq. (2.2). This
task is undertaken in the next section.

III. CONSTRAINTS ON FUNDAMENTAL
PARAMETERS: SOURCE INTEGRAL

A. Newtonian force between a cylindrical cantilever
and a microsphere

We approximate the orthogonal cantilever of the SOLME
by a cylindrical one of the same base area and height as the
one used in the experiment. This allows for analytical
evaluation of the source integral and of the macroscopic
gravitational forces of the cantilever on the small micro-
sphere located at a distance z along the symmetry axis from
the center of the base of the cylindrical cantilever. Such a
cantilever would have a radius R≃ 40 μm, height L ¼
2000 μm (see Fig. 6) and density ρ ¼ 2.3gr=cm3. As stated
in the previous section the mass of the microsphere was
m ¼ 0.13ng and its radius r ¼ 2.5 μm.
We first calculate the Newtonian gravitational force

between this cantilever and the microsphere. The gravita-
tional potential energy between the cantilever and a
point mass m at distance z from its surface is of the
form

VNðzÞ ¼ −2πρGm
Z

R

0

rdr
Z

zþL

z

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z02

p ð3:1Þ
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FIG. 5. The maximum δχ2 depth in the range λ ∈ ½10; 100� for
100 Monte Carlo data sets assuming zero residual force (red
dots). The horizontal line corresponds to the maximum δχ2 depth
for the actual SOLME data set.

3Private communication with the authors of [2].

CONSTRAINTS ON SPATIALLY OSCILLATING SUB-MM … PHYSICAL REVIEW D 96, 104002 (2017)

104002-5



We now introduce a rescaling to dimensionless length
dividing all lengths by the cantilever radius R and denote
with a ‘bar’ the new dimensionless quantities. Under this
rescaling the potential (3.1) takes the form

VNðz̄Þ ¼ −2πρGmR2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
V1

Z
1

0

r0dr0
Z

z̄þL̄

z̄

dz00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ z002

p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V̄Nðz̄Þ

ð3:2Þ

where the definitions of the potential unit V1 and of the
dimensionless gravitational potential V̄N are shown in
Eq. (3.2). The corresponding z component of the inter-
action force is

FzNðz̄Þ ¼ −2πGmρR|fflfflfflfflffl{zfflfflfflfflffl}
F1

∂V̄Nðz̄Þ
∂z̄|fflfflfflffl{zfflfflfflffl}

F̄zNðz̄Þ

ð3:3Þ

It is straightforward to calculate the dimensionless part of

the force F̄zNðz̄Þ≡ ∂V̄Nðz̄Þ∂z̄ as

F̄zNðz̄; L̄Þ ¼ −L̄ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z̄2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðL̄þ z̄Þ2

q
: ð3:4Þ

For small z̄ (z̄ ≪ 1) this is a constant as expected

F̄zNðz̄; L̄Þ≃
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ L̄

p
− ð1þ L̄Þ ð3:5Þ

while for z̄ ≫ 1 it also has the anticipated asymptotic
behavior as an inverse square of the distance

F̄zNðz̄; L̄Þ≃ −
L̄
2z̄2

: ð3:6Þ

The dimensions corresponding to the SOLME are
R¼40 μm, L̄ ¼ 50, r̄1 ¼ 0.0625, z̄min ¼ 0.5, z̄max ¼ 6.25
where r̄1 ≡ r1

R is the dimensionless form of the radius of the
microsphere which is clearly much smaller than all the
other dimensions of the experiment. In view of this fact we
may approximate the microsphere as a point mass and

assume that the predicted Newtonian force on it is provided
to a good approximation by Eqs. (3.3) and (3.4).
An improved approximation for the calculation of the

Newtonian force on the microsphere is the averaging of the
force through the evaluation of the integral

F̄zN;totalðz̄; L̄; r̄1Þ ¼
1

2r̄1

Z
z̄0þr̄1

z̄0−r̄1
dz0F̄zNðz0; L̄Þ: ð3:7Þ

We have found that this improved approximation has a
minor effect (less than 1%) on the estimated force on the
microsphere. Thus, in what follows we approximate the
microsphere as a point mass that is subject to a Newtonian
force from the cantilever provided by Eqs. (3.3) and (3.4) as

FzNðz̄; L̄Þ ¼ αN × 2πGmρR|fflfflfflfflffl{zfflfflfflfflffl}
F1

× F̄zN

�
z
40

; 50

�
ð3:8Þ

where z is in μm and F1 ¼ 2πGmρR≃ 5 × 10−9fN for
the geometry and objects used in the SOLME. We have
allowed for a short range amplification factor αN to the
Newtonian force. Since F̄zNð z

40
; 50Þ < 1 for the distances

considered in the SOLME (z > 20 μm) it is clear that the
Newtonian force is much smaller than the residual forces
measured in the SOLME which are of Oð10−2ÞfN and an
amplification by a factor αN ≃ 107 on these scales would be
required for such a force to be observable by the SOLME.

B. Yukawa and power law residual force between
a cylindrical cantilever and a microsphere

Deviations from the Newtonian potential on submillim-
eter scales can be parametrized through a Yukawa inter-
action, an oscillating model or a power law parametrization.
In the case of the Yukawa deviation, the potential energy of
a point massM interacting with a point massm at a distance
r gets generalized as VðrÞ ¼ VNðrÞ þ VYðrÞ with

VYðrÞ ¼ −
GMm
r

αYe−
r
λ ð3:9Þ

where αY and λ are appropriate parameters to be con-
strained. In this case, the Yukawa rescaled dimensionless
interaction potential energy [see Eq. (3.1)] between a
cylinder of dimensionless height L̄ (the cantilever) and a
point massm (the microsphere) located at a distance z̄ from
the center of one of the cylinder bases is

V̄Yðz̄Þ ¼ −αY
Z

1

0

r0dr0
Z

z̄þL̄

z̄
dz0

e−
ffiffiffiffiffiffiffiffiffi
r02þz02

p
λ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r02 þ z02
p : ð3:10Þ

The corresponding z component of the force F̄zYðz̄Þ≡
∂V̄Y ðz̄Þ∂z̄ induced on the mass m can be analytically evaluated
by first obtaining the source integral (3.10) The result is

FIG. 6. The cantilever approximated as a cylinder and a point
mass m at distance z from its surface.
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F̄zYðz̄; L̄; λ̄Þ ¼ αYλ

�
e−

L̄þz̄
λ̄ þ e−

ffiffiffiffiffiffi
1þz̄2

p
λ̄ − e−

z̄
λ̄ − e−

ffiffiffiffiffiffiffiffiffiffiffi
1þðL̄þz̄Þ2

p
λ̄

�
ð3:11Þ

with λ̄ ¼ λ
R. The asymptotic behavior of the macroscopic

Yukawa force is as expected namely it is exponentially
suppressed for z̄ ≫ 1 while for small z̄ it is constant
approximated as

F̄zYðz̄; L̄; λ̄Þ ¼ αY λ̄

�
−1þ e−

1
λ̄ þ e−

L̄
λ̄ − e−

ffiffiffiffiffiffiffi
1þL̄2

p
λ̄

�
: ð3:12Þ

For the SOLME the full residual Yukawa force may be
expressed as

FzY;tot ¼ F̄zY;tot

�
z
40

; 50;
λ

40

�
× 5 × 10−9 × αY|fflfflfflfflfflffl{zfflfflfflfflfflffl}

αY9

ð3:13Þ

where z, λmust be substituted in μm and the force is in fN.
We have found that as in the case of the simple phenom-
enological Yukawa parametrization discussed in the pre-
vious section, the source integral Yukawa force (3.13) is
unable to improve the fit of the SOLME residual force data
by more than 1 (δχ2 < 1) compared to the zero residual
force parametrization. This is demonstrated in Fig. 7 where
we show the minimum value of χ2 as a function of λ for the

macroscopic Yukawa force residual (3.13) and for the zero
force residual (red line). Clearly we have δχ2 < 1 for all
values of λ considered. Thus the Yukawa potential does not
provide a more efficient macroscopic residual force para-
metrization for fitting the force residuals of the SOLME
data compared to null hypothesis of the zero force residual.
This is also demonstrated in Fig. 8 where we show the best
fit Yukawa residual force for αY ¼ 1 which is achieved for
λ ¼ 5.6 μm and is practically indistinguishable from the
zero residual force for most of the range of the force
residual SOLME data.
A similar conclusion is obtained for other monotonic

residual force parametrizations like power law deviations
from the Newtonian potential. In that case the generalized
gravitational potential would be of the form VðrÞ ¼
VNðrÞ þ VPðrÞ with

VPðrÞ ¼ −
αPGMm

rn
: ð3:14Þ

The rescaled dimensionless source integral may be
written as

V̄Pðz̄Þ ¼ −αP
Z

1

0

r0dr0
Z

z̄þL̄

z̄

dz0

ðr02 þ z02Þn=2 ð3:15Þ

leading to the z component of the rescaled dimensionless

force F̄zPðz̄Þ≡ ∂V̄Pðz̄Þ∂z̄ in the analytic form

F̄zPðz̄; L̄; nÞ ¼ αP
z̄−nðL̄þ z̄Þ−n

n − 2
½ð1þ z̄2Þ½1þ ðL̄þ z̄Þ2��−n2 f−z̄nðL̄þ z̄Þnð1þ z̄2Þn2½1þ ðL̄þ z̄Þ2�

þ ½1þ ðL̄þ z̄Þ2�n2½z̄nðL̄þ z̄Þnð1þ z̄2Þ þ ð1þ z̄2Þn2½z̄nðL̄þ z̄Þ2 − z̄2ðL̄þ z̄Þn��g: ð3:16Þ

2 4 6 8 10

97.6

97.8

98.02

98.2

FIG. 7. The minimized χ2 using the SOLME data as a function
of the parameter λ of the Yukawa force ansatz including the
effects of the source integral. The improvement of the fit is
marginal despite the additional two parameters αY , λ.
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FIG. 8. The best fit form of the source integral for the Yukawa
residual force is practically indistinguishable from the zero force
residual.
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Introducing the parameters of the SOLME the dimen-
sionful force in fN takes the form

FzP;tot ¼ F̄zP;tot

�
z
40

; 50; n

�
× 5 × 10−9 × αP|fflfflfflfflfflffl{zfflfflfflfflfflffl}

αPg

: ð3:17Þ

It is straightforward to show that the quality of fit of this
power law source integral force residual is similar to that of
the corresponding Yukawa residual and thus it is not of
particular interest since it is not favored over the zero
residual hypothesis. Thus we will not pursue this case
further.

C. Oscillating force residual between a cylindrical
cantilever and a microsphere

We now consider an oscillating gravitational residual
potential of the form VðrÞ ¼ VNðrÞ þ VOðrÞ with

VOðrÞ ¼ −
GMm
r

αO cos

�
2π

λ
rþ θ

�
: ð3:18Þ

The macroscopic dimensionless form of the potential
energy between a cylindrical cantilever and a microsphere
on the cantilever’s axis of symmetry is expressed in terms
of the dimensionless source integral as

V̄Oðz̄Þ ¼ −αO
Z

1

0

r0dr0
Z

z̄þL̄

z̄
dz0

cos
�
2π
ffiffiffiffiffiffiffiffiffiffi
r02þz02

p
λ þ θ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ z02

p :

ð3:19Þ

The corresponding z component of the rescaled dimension-

less force F̄zOðz̄Þ≡ ∂V̄Oðz̄Þ∂z̄ , can be obtained analytically as

F̄zOðz̄; L̄; λ̄; θÞ

¼ αOλ̄

2π

�
sin

�
2πz̄
λ̄

þ θ

�
− sin

�
2πðL̄þ z̄Þ

λ̄
þ θ

�

þ sin

 
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðL̄þ z̄Þ2

p
λ̄

þ θ

!

− sin

 
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z̄2

p

λ̄
þ θ

!#
: ð3:20Þ

For large z, the residual force (3.20) is oscillating with an
amplitude that decreases as 1=z̄ and is of the form

F̄zOðz̄; L̄; λ̄;θÞ¼ cos

�
2πz̄

λ̄

�
cosð2πL̄

λ̄
þθÞ−cosθ

2z̄

−sin

�
2πz̄

λ̄

�
sinð2πL̄

λ̄
þθÞ−sinθ

2z̄
: ð3:21Þ

For small z̄ we find

F̄zOðz̄; L̄; λ̄; θÞ

¼ λ̄

2π

�
sin θ − sin

�
2π

λ̄
þ θ

�
− sin

�
2πL̄
λ̄

þ θ

�

þ sin

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L̄2

p

λ̄
þ θ

��
: ð3:22Þ

For the case of the SOLME the oscillating residual force
on the microsphere located at a distance zμm from the
cantilever is would be of the form

FzO;tot ¼ F̄zO;tot

�
z
40

; 50;
λ

40
; θ

�
× 5 × 10−9 × αO|fflfflfflfflfflffl{zfflfflfflfflfflffl}

αO9

ð3:23Þ

where z, λ in μm and the force is in fN.
In Fig. 9 the force source integral (3.23) with λ ¼ 30 μm

and αO9 ¼ 1 (thick black dotted line) is compared with the
plain harmonic residual force (2.2) with the same λ and
α ¼ 1 (continuous red line), with the Newtonian source
integral force (3.4) (long dashed line), with a power law
source integral [n ¼ 1.5, (3.16), blue dashed line] and with
a Yukawa source integral force with λ ¼ 10 μm (gray line).
Notice that the oscillating force source integral for the
particular parameters is an oscillating nonperiodic function
with initially increasing amplitude which reaches a maxi-
mum and subsequently decreases at large distances in
accordance with the predicted asymptotic behavior (3.21).
It is straightforward to fit the SOLME data using the

macroscopic oscillating residual force (3.23) obtained from
the source integral. In this case as in the case of the plain
harmonic residual force (2.2) we have a significant
improvement of the quality of fit compared to the zero
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0.5
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0.5

1.0

1.5

R
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id
ua
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 (

fN
)

Harmonic ansatz

Oscillating Source Integral

9 =1Newtonian ansatz

Yukawa ansatzPower law force(n=1.5)

–

–

FIG. 9. Comparison between the source integral signal for
oscillating force with the naive constant amplitude cosine
oscillator. On scales z larger than the disk radius (R ¼ 40 μm)
they both behave like harmonic functions with very similar
wavelength,while on small scales the signal is not periodic. Also,
we have plot the Newtonian ansatz (blue line), the Yukawa ansatz
(gray line) and a power law force with n ¼ 1.5 (magenta line).
For the oscillating source integrals we have set αO9 ¼ 1 which
implies αO ¼ 109.
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residual hypothesis by δχ2 > 13. This is demonstrated in
Fig. 10 (right panel) where we show the minimized χ2 as a
function of the spatial wavelength λ of the macroscopic
oscillating force (3.23). The depth of the best fit χ2

minimum is δχ2 > 13 and is obtained for λ≃ 33 μm which
is almost the same value λ≃ 35 μm of the plain harmonic
force parametrization (2.2) shown on the left panel4

In Fig. 11 (right panel) we show the best fit macroscopic
oscillating force parametrization (3.23) superposed with
the SOLME residual force data. For comparison we also
show the corresponding best fit of the plain harmonic
parametrization (2.2). The quality of fit (value of χ2) is
almost identical despite the fact that the right panel shows
the full source integral best fit parametrization where the
oscillation amplitude decreases slowly with z.

D. Oscillating source integral
in cartesian coordinates

In order to make the evaluation of the source integral
analytically tractable we have approximated the orthogonal
cantilever used in the SOLME by a cylindrical one of the
same base area. The orthogonal cantilever used in the
SOLME had dimensions a × b × L ¼ 10 μm × 500 μm×
2000 μm. Had we kept the orthogonal geometry in the
evaluation of the oscillating force source integral and rescaled
with the dimension a ¼ 10 μm of the cantilever we would
have to calculate the following source integral:

FOzðz̄0; λ̄; θÞ ¼ Gmρa × αO ×
∂
∂z̄0

Z
1

−1
dx̄
Z

b̄

−b̄
dȳ

×
Z

z̄0þL̄

z̄0

cos ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄2þȳ2þz̄2

p
λ̄

þ θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄2 þ ȳ2 þ z̄2

p dz̄ ð3:24Þ

which in contrast to the cylindrical geometry is not
analytically tractable. Using a numerical approach we
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FIG. 10. Left panel: The χ2 value as a function of the wavelength λ for plain harmonic ansatz. Right panel: The χ2 value for the source
integral oscillating ansatz. In both cases the fit improvement to the data is significant compared to a null residual fit. The difference in χ2

is more than 13 units and the minimum appears in almost the same wavelength (about 35 μm).
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FIG. 11. Left panel: The best fit plain harmonic ansatz with λ ¼ 35 μm. Right panel: The best fit source integral oscillating ansatz with
λ ¼ 33 μm. As we see, in both cases the waveform is practically the same even though the amplitude for the best fit source integral
decreases slowly with distance.

4The left panel of Fig. 10 is identical with Fig. 1 but we show it
here again for easier comparison with the corresponding figure
obtained using the full source integral (3.23) rather than the
simple parametrization (2.2).
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have evaluated the source integral (3.24) at the dis-
tances of the data points and confirmed that a similar
quality of fit can be obtained using the orthogonal
source integral (3.24) as with the cylindrical analytic
source integral (3.23) for the same spatial wavelength.
Thus our result for the existence of the oscillating
signal is robust and insensitive to the particular geom-
etry used for the evaluation of the source integral. This
is demonstrated in Fig. 12 where we show the best fit
source integrals for cylindrical (3.23) and orthogonal
(3.24) cantilever along with the best fit plain harmonic
force residual ansatz (2.2). Clearly the three best fit
parametrizations are very similar leading to practically
the same quality of fit (χ2 ≃ 85) compared to the much
lower quality of fit for the zero residual hypothesis and
the Yukawa or power law residuals (χ2 ≃ 98).

IV. CONCLUSIONS-DISCUSSION

We have analyzed and fit the SOLME [32] force residual
data using a wide range of parametrizations including plain
phenomenological ones and parametrizations obtained
by evaluating source integrals based on simple functional
forms. We have shown that monotonic parametrizations
(Yukawa and power laws) are unable to improve the quality
of fit of the null hypothesis (zero force residuals) at any
significant level despite the introduction of a number of
parameters (δχ2 < 1). In contrast, oscillating parametriza-
tions at the plain phenomenological level and at the level of
source integral can improve significantly the quality of fit
compared to the null hypothesis (δχ2 > 13). The statistical
significance of this oscillating signal is at about 2σ level.
The most probable cause of this signal is a systematic

effect caused by the non-Gaussian tails of the laser beam
whose pressure levitates the microsphere. Due to diffrac-
tion, the intensity of these non-Gaussian tails has a periodic

oscillation, which can mimic a spatially oscillating force
signal. Thus the detected signal can only be used as an
upper bound to physically interesting new forces of sub-
mm oscillating nature. The amplitude α of such an
oscillating force background with spatial wavelength λ≃
35 μm is bounded at the 2σ level as α < 0.3 × 10−17N.
This bound is phenomenological and applicable to the
conditions and geometry of the SOLME.
If the origin of this signal is assumed to be gravitational

through a modified Newtonian potential of the form of
Eq. (1.3) the bounds obtained on the parameter αO are
particularly weak (αO < 107) due to the partially shielded
electrostatic backgrounds that limit the sensitivity of the
experiment in measuring gravitational forces between the
cantilever and the microsphere.
More interesting bounds on fundamental fifth force

parameters could be obtained if the origin of the signal is
assumed to be nongravitational. In particular, it is plausible
that a chameleon potential with multiple extrema can lead to
a spatially oscillating fifth force which is screened in regions
of high density via the chameleon mechanism. Consider for
a example [7] the chameleon field profile around a spherical
object of radius Rc and density ρðrÞ. The profile of the
chameleon field which acts also as a potential for the
chameleon fifth force is determined by the equation

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ V;ϕ þ
β

MPl
ρðrÞeβϕ=MPl ; ð4:1Þ

where β is a parameter, MPl is the Planck mass scale and
VðϕÞ is the chameleon field self-interaction potential. The
density profile may be approximated as

ρðrÞ ¼


ρc for r < Rc

ρ∞ for r > Rc
: ð4:2Þ

Let ϕc and ϕ∞ be the chameleon field value that minimizes
the effective potential Veff defined as VeffðϕÞ≡ VðϕÞ þ
ρðrÞeβiϕ=MPl for r < Rc and r > Rc, respectively. For these
field values we have [7]

V;ϕðϕcÞ þ
β

MPl
ρceβϕc=MPl ¼ 0

V;ϕðϕ∞Þ þ
β

MPl
ρ∞eβϕ∞=MPl ¼ 0: ð4:3Þ

The screened chameleon fifth force is obtained from the
profile solution of Eq. (4.1) with boundary conditions

dϕ
dr

¼ 0 at r ¼ 0

ϕ → ϕ∞ as r → ∞: ð4:4Þ
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FIG. 12. The best fit source integrals for cylindrical (3.23) and
orthogonal (3.24) cantilever along with the best fit plain harmonic
force residual ansatz (2.2).The three best fit parametrizations are
very similar leading to practically the same quality of fit.
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It can be shown from the chameleon field action that the
chameleon fifth force on a test particle of mass M is of the
form

F⃗ϕ ¼ −
β

MPl
M∇⃗ϕ: ð4:5Þ

Thus ϕ plays the role a potential for the chameleon induced
fifth force.
If the chameleon self-interaction potential is monotonic

between the central value ϕc and the asymptotic field value
ϕ∞ thenϕðrÞvariesmonotonically between its valueϕc in the
center of the massive object and its asymptotic value ϕ∞
which is approached exponentially fast in the exterior of the
massive body. We thus obtain the usual screened fifth force
obtained from the gradient of ϕðrÞ which is maximized
around a thin shell at the borderline of the massive object and
goes rapidly to 0 in the intrerior and in the exterior of the
object with significantly larger mass in the interior (screened
region).
If on the other hand there are multiple extrema of the

potential VðϕÞ in the range between the central value ϕc and
the asymptotic field value ϕ∞, then Eq. (4.1) implies that
these extrema may be inherited to the chameleon field profile
around themassive object. Thus fromEq. (4.5) thesemultiple
extrema may induce localized sub-mm spatial oscillations of
the chameleon induced screened fifth force. A similar
behavior may be obtained if the exponential conformal
coupling to the density eβϕ=MPl is replaced by an oscillating
function. The detailed investigation of this class of fifth forces
and their signature in the SOLME data is an interesting
extension of the present project.
The numerical analysis Mathematica files used for the

construction of the figures and the derivations of the source
integrals may be found at Ref. [84].
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APPENDIX NUMERICAL ANALYSIS

In Table I we show the data set used in our maximum
likelihood analysis. The data set includes the distance
between the center of the microsphera and the origin of
a cartesian coordinate system which located in the center
of the front side of the cantilever (see Fig. 1 of [32]), the
residual force (the difference between the measured force F
and the electrostatic background FB), the corresponding 1σ
error and the number of the experiment (microsphera). The
data set was kindly provided by the authors of Ref. [32])
after our request.

TABLE I. The residual force 96 data points used for the χ2

analysis.

rðμmÞ F − FB (fN) 1σðF − FBÞ Microsphera

26.2 −0.0098 0.017 I
36.2 0.0193 0.0235 I
46.2 0.0373 0.0355 I
56.2 −0.0301 0.0359 I
66.2 0.0445 0.0572 I
66.4 −0.0186 0.0219 I
76.2 −0.0248 0.0762 I
76.4 0.019 0.0205 I
86.2 0.0461 0.0504 I
86.4 0.0363 0.0218 I
96.2 −0.035 0.0173 I
96.4 −0.0055 0.0183 I
102.4 −0.0152 0.0166 I
106.4 0.027 0.016 I
112.4 0.0248 0.0165 I
116.4 0.038 0.016 I
122.4 −0.0178 0.0158 I
126.4 −0.0557 0.0171 I
132.4 0.0017 0.0165 I
136.4 −0.0123 0.0195 I
142.4 0.0114 0.0164 I
152.4 0.007 0.0158 I
158.5 −0.0012 0.0162 I
162.4 −0.0169 0.0193 I
168.5 0.0061 0.0156 I
172.4 0.0133 0.0165 I
178.5 −0.0005 0.0156 I
188.5 0.0016 0.0155 I
198.5 −0.0095 0.0202 I
208.5 0.0048 0.0175 I
218.5 −0.0163 0.0183 I
228.5 −0.0075 0.0162 I
25.3 −0.0439 0.0565 II
35.3 0.0398 0.0321 II
45.3 0.0217 0.0325 II
55.3 −0.0271 0.0344 II
64.9 0.0124 0.0593 II
65.3 0.0189 0.0358 II
74.9 −0.0605 0.042 II
75.3 −0.0388 0.0244 II
84.9 0.0116 0.0341 II
85.3 −0.0395 0.0184 II
94.9 −0.0045 0.0364 II
95.3 0.0185 0.0397 II
104.9 0.0237 0.0213 II
106.1 −0.0083 0.0185 II
114.9 −0.0044 0.0271 II
116.1 0.0482 0.0183 II
124.9 −0.0175 0.0249 II
126.1 −0.0149 0.02 II
134.9 0.0064 0.0222 II
136.1 −0.0167 0.0309 II
146.1 0.0176 0.041 II
156.1 0.0072 0.0351 II

(Table continued)
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