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The exterior electromagnetic fields of slowly rotating relativistic magnetized star in the braneworld
are studied in detail. We have also obtained exact analytical solutions of the Maxwell equations for the magnetic
and the electric fields inside the slowly rotating relativistic magnetized star in the braneworld. The dependence
of the electromagnetic energy losses of the rotating magnetized star from the brane tension is also calculated and
has been combined with the astrophysical data on pulsar period slowdown in order to get constraints on the

brane parameter. We have found the upper limit for the brane parameter as |Q*| <3 x 10" cm?.
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I. INTRODUCTION

The extensive study of electromagnetic fields and
radiation from the compact massive objects formed at
the final stage of the stellar evolution is one of the most
important tasks in the relativistic astrophysics for several
reasons. First of all, the current observational status of these
objects is based on the observations in the whole electro-
magnetic spectra of physical and astrophysical processes in
the vicinity of the compact objects caused by the existence
of the strong electromagnetic fields.

Definitely electromagnetic fields play an outstanding
role in observation and detection of majority astrophysical
objects in the late stage of their evolution especially
compact relativistic stars, e.g., as pulsars and SGR (soft
gamma ray repeaters) which can posses huge surface
magnetic fields By ~ 10'> G for the standard neutron stars
and B, ~ 10" G in the exceptional cases for magnetars
[1,2]. The magnetic field of relativistic compact stars is one
of the main quantities determining their observability, for
example as radio pulsars through magneto-dipolar radia-
tion. The magnetic field at the stellar surface determines
energy losses from the star and therefore may be related
with such observable parameters as period of pulsar and its
spin-down through time derivation.

The second reason is that we may test various alternative
theories of gravitation in the strong field regime through the
study of astrophysical processes around compact objects
for which general relativity effects are especially strong.
Considering different space-time geometry around the
relativistic stars one may investigate the effect of the
different parameters on evolution and behavior of stellar
interior and exterior magnetic fields. Then these models can
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be checked through comparison of theoretical results
obtained with the precise observational data on the param-
eters of the compact objects as spin down of the pulsars.

The third reason may be seen in influence of stellar
magnetic and electric field on different physical phenom-
ena around the relativistic star, such as gravitational
lensing, motion of test particles, and electromagnetic
radiation from the accretion discs [3-8].

In the Newtonian approach the exact analytical solutions
for the vacuum electromagnetic fields of rotating magnet-
ized sphere are given in the classical paper of Deutsch [9]
and interior solution for the electromagnetic fields of the
constant magnetic density star are studied by many authors,
see, for example, [10,11]. In the general relativistic
approach the study of the magnetic field structure outside
magnetized compact gravitational objects has been initiated
in the pioneering work of Ginzburg and Ozernoy [12] and
has been further extended by number of authors [13-23].

The astronomical observations performed in the last
decades have confirmed the existence of new forms of
matter which dominate in our Universe in the present
epoch. For example, the detailed analysis of type Ia
Supernovae (SNela) explosions in far galaxies, 10~ order
fluctuations in the cosmic microwave background radia-
tion, and matter power spectrum inferred from large galaxy
surveys in the Universe provide the strongest evidences for
existence of new forms of matter in the observational
cosmology. In particular, the known form of matter that is
baryons contribute only for ~4% of the total matter-energy,
while the exotic cold dark matter (DM) interacting only
gravitationally represents the bulk of the matter content
(~23%) and the so-called dark energy (DE) acting as
antigravity represents (~73%). Being the best fit to a wide
range of the astronomical data, the standard cosmological
model has some difficulties in the interpretation related to
the unknown nature of DM and DE and due to this reason
has motivated the numerous approaches for alternative
theories of gravity (for details, see, e.g., [24]).
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Here we are interested in study the behavior of the
electromagnetic fields of the slowly rotating relativistic
magnetized star in one of the alternate theories of gravity in
so-called braneworld model proposed by Randall and
Sundrum [25] where the matter is confined to a three
dimensional space so-called brane, embedded in a larger
space so-called bulk in which only gravitation interaction
can propagate. The static and spherically symmetric
exterior vacuum solution of the braneworld models has
been first obtained in the astrophysical scale in [26], which
exactly coincides with the Reissner-Nordstrom solution
with the only difference that the square of the electric
charge has to be replaced by so-called brane parameter Q*.

Braneworld corrections to the charged rotating black
holes and to the perturbations in the electromagnetic
potential around black holes are studied, for example, in
[27,28]. In the paper [29], the stellar magnetic field
configurations of the spherical symmetric relativistic stars
in dependence on the brane tension have been studied
where the numerical solutions for the exterior magnetic
field of the relativistic star in braneworld are presented.
Later this research has been extended in [30,31] for
derivation of the magnetospheric and exterior vacuum
solutions in the space-time metric of the slowly rotating
relativistic stars in the braneworld and where approximate
analytical results for the near-zone electromagnetic fields of
the star in the braneworld have been presented. The stellar
magnetic field configuration in the external background
spacetime of relativistic magnetized stars in the Horava-
Lifshitz gravity and in modified f(R) gravity has been
studied in [32]. The Kerr-Newman black hole formed as
result of the gravitational collapse of rotating and magnet-
ized neutron stars has been recently studied in [33] while
the energy extraction from the boosted and rotating black
hole immersed in the uniform magnetic field in [34].

The paper is organized in the following way. Section Il is
devoted to the vacuum electromagnetic fields of a rotating
relativistic magnetized star in the braneworld. In particular in
the subsection II A we briefly explain structure of the slowly
rotating star in the braneworld. Then in the subsections II B
and IIC we present exact analytical solutions for the
magnetic and the electric fields exterior to the slowly rotating
neutron star in the braneworld, by solving vacuum Maxwell
equations analytically. We show that both magnetic and
electric fields will be essentially modified by braneworld
effects. In the next Sec. III, we analyze the exact analytical
solutions for the vacuum electromagnetic fields obtained in
previous section, and discuss the braneworld effects on the
magnetic and the electric fields of the slowly rotating
misaligned magnetized neutron star. In subsection III B
we have checked effects of the brane tension on energy
losses from the slowly rotating neutron star in the braneworld
and have got astrophysical constraints on the value of the
brane tension making comparison with the observational
data. Finally, in Sec. IV we summarize our results and give
future outlook related to the present work.
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In the present work the functions and quantities denoted
with upper index “*” are related to the ones belonging to
the braneworld. We use a space-like signature (—, 4, +, +),
a system of units in which G = ¢ = 1 and we restore them
when we need to compare the results with the observational
data. Greek indices are taken to run from O to 3, Latin
indices from 1 to 3.

II. THE VACUUM ELECTROMAGNETIC FIELDS
OF A ROTATING RELATIVISTIC MAGNETIZED
STAR IN THE BRANEWORLD

One of the most difficult mathematical problems is to
obtain an analytical solution of the Einstein-Maxwell
equations, which are coupled, but in the realistic astro-
physical approximation when the electromagnetic field
does not affect the space-time around the relativistic star
one can get exact analytical solutions of the electromag-
netic field equations (see, for the details, e.g. [22]).
Throughout the paper we assume that the electromagnetic
field and its energy are really small to change the space-
time geometry, study the electromagnetic field in the fixed
spacetime geometry, and examine the effects of the back-
ground gravitational field on the electromagnetic field of
the slowly rotating relativistic star in the braneworld.

A. Spacetime of the slowly rotating
star in the braneworld

The equations of the gravitational field are given by
following form

1
R/w - EgﬂDR = szZf/f7 (1)

where R, and R are Ricci tensor and Ricci scalar, g,, is
metric tensor of the spacetime and k*> = 87 is the Einstein
constant, Tfo is the effective energy-momentum tensor that
can be considered as

T =T, + T}, + TEM (2)

Y]

where T, is a perfect fluid energy-momentum tensor

T;w = pu,u, + p(gm/ + uﬂ”l/)’ (3)

and T}, is the energy-momentum tensor arises from extra
dimension (braneworld) that can be expressed in the
following form

*

1 1
T = gttty 27 PP 20) (G )

1
+ W [L{uﬂuy + PI"M}"U

U—P) (g,w + % u,,u,,)] , @)
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where u* is the four-velocity of the medium, r# is a unit
radial vector, p(r) and p(r) are matter energy density and
pressure, respectively. The nonlocal bulk effects are carried
by the nonlocal energy density Z/(r) and nonlocal pressure
P(r). The quantity A* is the brane tension parameter and the
standard general relativity is recovered in the case
when 4* — oo.

Finally, the energy-momentum tensor for the electro-
magnetic field has a form after minimizing Yang-Mills
action

1 1
T/,F;zl/w = E <F/szaj - Zg;wFa/;'Faﬁ> P (5)

which is very small (T < T, + T},) in comparison to

the other two terms of the total energy-momentum tensor
that is given in Egs. (3)—(4) because (i) the equations are
integrated from the inner radius where the electric currents
are negligible and (ii) as we have mentioned above, the
electromagnetic field does not contribute on the space-time
geometry of the relativistic star. A, is the vector potential of
electromagnetic field, F,3 = 0pA, — 9,Ap is antisymmet-
ric tensor of the electromagnetic field.

In the coordinates (¢, r, 6, ¢) one can write the general
form of the space-time metric of the slowly rotating
relativistic star in the braneworld

ds? = NV dr? + 12d6* + 12 sin® Odgp?
-2 df —2w*(r)r? sin® Odtdep, (6)

where w*(r) is the angular velocity of the dragging of
inertial frames.

In general, ®*(r) and A*(r) are unknown functions
which are satisfied by the following field equations inside
the star, see [29,35]

er - (52200 @)
el -37) e (122,
0=%+dj*(p+p>, ©)

(10)

where p*(r) and p*(r) are the effective total energy density
and the effective pressure defined as

1/, 6
= — 11
PrEpt o <P +k4?/l>, (11)
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1 2 4
=p+ +2pp +—SU|. 12
p=r 247 (p bp k* Z/[> (12)

The external vacuum solution of the field equations
outside the relativistic star (where p = p = 0) can be
written as the well-known Reissner-Nordstrom-type and
the exact form is given by [26]

2 2N N2 1 T E r>R, (13)

where M is the total mass and R is the radius of the star and
one can easily see that in the Reissner-Nordstrom-type
solution the squared of electric charge is replaced by a
brane parameter Q*, so called a “tidal charge” or “Weyl
charge” which arises from the projection on to the brane of
the gravitational field in the bulk and it is negatively
defined O* = —3MRp,_r/A* <0, (See [35]).

In the vacuum region the Lense-Thirring angular veloc-
ity can be written in term of the brane parameter in the
following way

s =o0)(1-2). e =%. (4)

where the quantity J = IQ is the total angular momentum
of the star, with the moment of inertia / and the angular
velocity Q of the relativistic star, respectively.

We plan to study electromagnetic properties of the
slowly rotating relativistic magnetized stars in the brane-
world. In order to study the electromagnetic field of the
relativistic star, one should consider the general relativistic
form of the Maxwell equations [in particular in the
spacetime geometry given by Eq. (6)]. The first pair of
the general relativistic form of Maxwell equations is
given by

0,(\/—gF*") = 4n\/—=gJ", (15)

which are the main equations along with the second pair
of the Maxwell equations for the dual partner of the
electromagnetic field tensor

Ou(V=g'F") =0, (16)

the so-called Bianchi identity for the electromagnetic field
tensor, definition of the dual tensor of the electromagnetic
field is given by *F* = (1/2,/=g)e" P F .5, where &4, is
the Levi-Civita symbol in four dimensional space and in
general the four vector J, is the electric current density
which is the source of the electromagnetic field.

In Appendix A, the explicit form of the Maxwell
equations are given in terms of the electric and the magnetic
fields and related detail calculations are also shown.
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B. The stationary magnetic field of the slowly
rotating star in the braneworld

Before doing the calculation, let us assume that the
magnetic moment of the magnetized star does not vary in
time as a result of the high electrical conductivity of the
medium inside the star 6 — oo, see [36], and in case of the
slowly rotation, one can ignore the deformation due to
rotation that means the star has spherical shape and during
the calculations we will consider only linear approximation
for angular velocities as O(w) and O(Q).

We now look for the stationary solutions of the Maxwell
equations for the components of the magnetic field in the
following separable form, see [21,36]

B'(r,0,¢,t) = F*(r)[cosycos@+sinysinfcosl], (17)
BY(r,0..1) = G"(r)[cosysind—sinycosfcosd], (18)
BY(r.0.¢.1) =H*(r)singsind, A=¢-Qt,  (19)

where unknown functions F*(r), G*(r), and H*(r) account
for the general relativistic and braneworld extra dimension
corrections to the magnetic field of the star and y is the
inclination angle of the magnetic field relative to the
rotation axis of the star. Substituting the solutions in
Egs. (17)—(19) into the Maxwell equations (A2), (A7)—
(A9) that is given in the Appendix A, and ignoring the
higher order terms in the rotational parameters O(®), O(Q)
and after making simple algebraic calculation one can
easily obtain the following set of the differential equations
for the unknown radial functions [21]

d,, 2r
—(PPF*) +—G* =0, 20
(PP + 5 (20)
d (rN*H*) + F* =0 (21)
—(r =0,
dr

H* = G*. (22)

These equations can be expressed as a single, second order
differential equation for the unknown function F*(r)

d _2_M g i 2\ | %
4 1(1-2,2) L epy] 2p o,

which is analytically solvable. The exact analytical form of

the profile functions F*(r), G*(r), and H*(r) are given by
the following form

e T (1)
r

4<M2_Q*)3/2 r
o* r—M — MZ—Q*>}
1-=]1 , 24
+< r2> n<r—M+\/M2—Q* 2

F*(r)=—
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G*(r) = H'(r)
_ 3u [2 M? - Q" <1 M)

4(M? — Q*)3/? rN* r
r—M — M2—Q*>]
+ N*1 , 25
n(r—M+\/M2—Q* )

where y is the magnetic dipole moment.

It is always useful to get the right limiting values for the
results obtained in the alternative theories of gravity in the
general relativistic case by doing the following operation
Q" - 0 (all detailed calculations are shown in the
Appendix C). In the weak field approach one can easily
obtain the following results for the profile functions (24)—(25)

2u 3M  2M? 0* M3

Friry==|1l+—+—|(1+— —
(r) 3 { + P + 2 < + 5 +0 mal AR

N 2M  3M? 70° M?
G(r)—r3[l—|— . + . 1+30 +0 5|

here we have introduced new parameter @:

“\ 1/2
o= (1-4:)" 26)

which is responsible for the effect of the braneworld tension.
In the Newtonian approximation the functions F*(r) and
G*(r) take the following right limits:

lim G*(r) = L. (27)

) y 2u
fim F <r) - M/r—0 }"3

M/r—0 1”3 ’

Finally, the exterior solution for the stationary magnetic
field of a misaligned magnetized star can be written in
terms of the brane parameter Q* (and @) as

i 3 [ReM [ M

(-8t

x (cos ycos @ + siny sin@cos ), (28)

p 3u  (20M M
ool (-2

rN* r
)

x (cosysin@ — siny cos@cos k), (29)

) 3u  [20M M
8000 =3 s e (1)
r—M(1+o)

N*ln| ——- "¢
- n<r—M(1—e)

>] sinysind.  (30)
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It can be easily found the interior solution for the
magnetic field when the stellar matter consists of stiff
matter with the equation of state p = p, see [21]

*

B = Rf(cosxcosé’%—sin;(sinecos/l), (31)
P in0 —sinycosOcos2), (32
= —W(cosg sin@ —siny cos@cosl), (32)
B? = sin y sin 4, (33)

T R3O

where C* is an arbitrary constant that can be found after
imposing the continuity of the radial magnetic field B”
across the star surface, or [B"] = Bl|,_r — Bl |,_g = 0 as

(-Bpsz)

In a flat space this constant is satisfied through the
following condition

lim cr=2.
M/R—0.0%/R*—0

C. The stationary electric field of the slowly
rotating star in the braneworld

In this subsection we will find an exact analytical
solutions of the Maxwell equations for the electric field
of the slowly rotating magnetized star in the braneworld.
By knowing the expressions for the components of the
magnetic field one can immediately write the Maxwell
equations for the electric field of the misaligned rotating
relativistic star, see, e.g., [21].

One can look for the components of the electric field in
the following separable form [21]

EN(r,0,¢,1) = [fi(r) + f5(r)] cos y(3cos? 6 — 1)
+ 3[g;(r) + g5(r)] sin y sin @ cos & cos A,

(35)
E?(r.0..1) = [f3(r) + fi(r)] cos  sinfcos 0
+[g5(r) + gi(r)] siny cos A
—[g5(r) + g (r)](cos® @ — sin® O) sin y cos 4,
(36)
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E(r0.¢.1) = [95(r) + g¢(r)] siny cos @sin 4
—[g5(r) + g;(r)] sinycos@sini. (37)
Substituting Eqgs. (35)—(37) into the Maxwell
equations (A3)—(A4) and (A6) in Appendix A, one can

obtain the following set of systems of the linear differential
equations for the unknown functions f}(r) — f4(r) and

91(r) = g5(r)

d
N*%(rsz)%-rf;:O, (38)
d * Lk %
E(rN f3) +6fi =0, (39)
* d 2 % *
N E(Vf3)+”f4:0’ (40)
d . . Ouwr |2o0M M
E(er4)+6f3_W[T <1+7>
o r—M(1+Q)
I Y Rl S
(- (i e)]
(41)
* d 2 % *
N*—-(r°gi) + 2rgs = 0, (42)
d % % *
2, 'N"g5) + 37 =0, (43)
* d 2 % *
N E(r g5) +2rgi =0, (44)

Quw* M M

po'r [2eM (M

8°M3 | r r
r—

[2
(-9

(45)

d
E(rN*gZ) + 39} =

From these equations one can easily find interrelations
between the unknown functions as [21]

*

g =J 95 = f3 gszifzv 96:§f4’

and from Eq. (A3) one can directly obtain the expressions
for the functions ¢3(r) and g;(r) as

3uQr  [20M M
=S I+—
80°M°N r

(D)

9 (r)
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N 3uw*r |20M | M where a constant of integration C} can be found from the
gi(r) == 8OM3N* | r T r boundary conditions.
0" r—M(1 +0) It is necessary to solve one more equation for the
+<1 _—> In (4Q>] (47)  functions f3(r) which comparing to the previous equa-
r M(1 - o) tion (48) has an additional term:
After making algel?raic calgulations one can get the d oM Q , )
second order differential equation for the function f7(r): ar T ( f3)| — 613
d 2M QO ) ouJ Q* 20M M
— D —6fF = 1- 14—
dr [(1 T te > (i )] 6fi =0, (48) +2Q3M37‘2 2Mr) | r 5
o r—M(1+0)
i i i i 1-=)In[ ————= ]| =0. 51
which has the following analytical solution +< r2> n(r Y (1 — Q) ( )
uQC*Cy 2M?  2M  4QF . . . . .
() = i~ | Analytical solution of this equation has the following form
fi(r) 6co°R? 3.2 + P +3r2
2r QF r—M(1 + ) 15u] 2M? 2M  4Q*
_ 2 r—ruTe H(r) = ——%—={ C; —4
+<3 M r2>ln(r—M(1—Q) ' (49) £3(r) 8co’ M @ 372 T r +3 2
2r QF r—M(1+p) ;
. . . . % 3 - _= 1 I S 4 ,
One can immediately find a form of the function f3(r) as +< Vi r2> n (r “M(1—0o) + f37(r)
QC* Cy -M(1 52
£ = =B AN (1= ) (=2 (1+e) (52)
@R’ M) \r—M(1-e) o : :
N where f3”(r) is the particular solution of the Eq. (51) and
—20— Qz—Mz} . (50) its detailed form has shown in Appendix B. The function
3r°N* fa(r) can be easily found as

45uJ r r—M(1+o) 20°M? N*
i(r)=—————={ON|(1——=|In| ————< ) — 20— — 53
falr) dc@>M> { 3 {( M) n(;’—M(] -0) ¢T3N r drf g (53)
where a constant of integration C3 can be found from the boundary conditions.

Finally collecting all equations, one can find the expression for the electric field produced by the magnetic dipole moment
of the misaligned relativistic star in the braneworld

kK 2 % " _
B0 = PECG (MM G 4) 4 (3-2- Q) (L Mi )]

6c0°R? 372 r 352 M r—M(1-o)
15u0r’ 2M?* 2M  4Q* 2r QF r—M(1+9) y
ol S5+ 5= —4 S B Y (el S 24 P
T l6cg M <C3[Q<3r2 LTI R G vin=y Ll Gy virpersy | REARG:
X [cos y(3c0s?0 — 1) + 3 siny sin @ cos O cos 4], (54)
) QCeCy —-M(1 20°M?
Ee(r,e,gb,t):— H CClN* 1_L In w —20-— Qz >
2co°R M r—M(1-09) 3r°N*

45puwr r r—M(1+ o) 20°M? N*
v | (1= D (20T, il
+16CQ5M5< K M) n<r—M(1 -0) 732N r drf '

X [cos y sin 26 — sin y cos 20 cos /]

3por  |2eM M o r=M(1+0)\] .
8ca MIN® { p (1 +7) + (1 ——2) ln<7g) sin y cos A, (55)
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ENr.0,4.1) = —{”QC*CT N* Kl _ L) In (M) —20-

2¢0°R? M r—M(1-p)
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20°M?
3’,2N*2

45u0r° r r—M(1+9) 20°M*] N*d , ) )
— (N | (1 —— | In[ ——F—~—5 ) =20 — ——f5r 0
16¢0° M <C3 K M) n(r—M(l ~o) VTS . drf3 (r) ] ¢ siny cos@sin i
3por  |20M M Q" r=M(1+¢)\] .. .
+ 8CQ3M3N* |: . <1 + 7) + (1 - 7 In m sy cos@sin . (56)
|
Under the assumption of the infinite perfect electric .0 R R-M(1+o)
conductivity ¢ — oo of the stellar medium in the region C=vz |1~/ e ra=
N M) \R-M(1-p)
Ry <7 <R, and by using the Ohm law the interior 30s27 -1
solution of the electric field has the form [21] 20— 20°M (60)
3R2NZ|
» Qrsing
g - * 9 57
ce® ) (57)
Drsi 8M> NZR d
R @rsin@ _. C: — —C*[ " RIL A p 61
g = 20 g, st = =Ci| s C + S O] 61
o) (58) 45R o dr
E? =0, (59)

where @ = Q — »* is the angular velocity of the fluid as
measured from the local free-falling frame.

The integration constants C} and C3 can now be found
from the following boundary conditions [E’|=E%|,_r—
Eiém],:R:O and [E¢] =E) | - E;’fn|r:R = 0, that after
imposing the continuity of the tangential electric field across
the star surface [21]
|

III. RESULTS AND DISCUSSIONS

A. Normalization of the physical quantities

Now we will analyze the analytical expressions for both
magnetic and electric fields of rotating relativistic magnet-
ized star in the braneworld. The expressions for the
magnetic field (28)-(30) can be rewritten in terms of
new normalized dimensionless radial variable # = r/R
and compactness of the star e = 2M /R as

. 3B, |:Q€ ( e> < €2 (1 —QZ)> <2;1—€(1 —l—()))} .
B =———|—14+—]+(1- In cos y cos @ + sin y sin @ cos 4|, 62
Qe [n 2n an? 2 -e(l-0) | | (%2)
3B, [ o€ < e> 2n—e(1+0) . .
o020 1—— +N*ln( cos y sin @ — sin y cos @ cos 4], 63
o'e’ Lﬂ\’?; 2n ™2 Ze(i=)) ! | (%)
» 3B, |:Q€ ( e) (2}1—6(14—@))] o
B? = — | 1= +NyIn| ———|sinysini. 64
e [N, ' 21 T\ -e(l-0) N
Similarly the components of the electric field given by Eqgs. (54)—(56) take the form
g Eo ¢ €03-2) N\ (3 t_e1-¢)\ (n=c(l+e) 2 o
= — K —_ _— —_———— _—
6" 1*1°\n o1’ c 47 m-e(i=g))] T
x [cos y(3cos?0 — 1) + 3 sin y sin 0 cos € cos ], (65)
5 E 2 2n —e(1 3e? T2N; d
g =~ B Loy (122 1 2n—e(1+e) _2p-CC | 2N d b
20 € 2n—¢(1—-0) 61N, e ndn
X [cos y sin 260 — sin y cos 26 cos /]
3Ey 2¢ \ [oe € e2(1-0?%) 2n—e(l+0)\] .
——— (1= = 1+= 1- 1 A, 66
T oen; ( 5?73) {11 < +211> " ( ar ) N —e(i=¢)) """ (69
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- E 2 2n —e(1
E? = - % kN; 1=\ 1n -e(l+e) ~ 20
2¢° € 2n—e(l-0)

PHYSICAL REVIEW D 96, 104001 (2017)

72N; d
et n dn

o3¢
61> N;?

37 (n) } sin y cos @ sin A

3Eyn ( 26) |:Q€ ( e) < e*(1 —Qz)> <2}7—€(1 +Q)>:| . .
+——(1—-——]|— 1 +=+|1- In sin y cos @sin 4,
Q*e’N; 5n°) L n 2 dp? 2n—e(l-o)

(67)

where By = 2u/R> and E, = By(QR/c) are the Newtonian values of the magnetic and the electric field at the polar cap of

the star.

We introduce the new constant k = C*C; 4+ 72C;/e* and the variable

N2=1-S4
n

e(1-¢%)

d?

Assuming that an angle between the magnetic and rotation axes is zero y = 0, the components of the magnetic fields take

the following form

. 3B 0 2(1 — o 2n —e(1
B = — 22050 [ﬁ <1+i>+<1—6( ¢ )) ln< =l +Q))], (68)
¢ |n 2n 4 2n—e(1-0)
~ 3Bysinf 2n —e(1
39:% Qe l_i +N; In w ’ (69)
e’ |nN, 2n 2n—e(l-0o)
B? =0. (70)
And in the case of the condition w < Q, one can rewrite the electric field as
) CCi [ (e €*(3-20% 4n  €*(1-0%) 2n—e(l+0)
E"=E, Lo -+ —-=—+—-4 3——— 1 3cos?0 — 1), 71
* 60’ [Q<’7+ 6 " € 4? 2 —e(l-0) (3cos ) an
5 C*Cy 3¢? 2 2n —e(1
E’ = E,—<*N; |:2Q + %—(1 - _’1> In <m>} sin @ cos 0, (72)
0 61° N,y € 2n—e(l-o)

E? =0. (73)
Figures 1 and 2 draw the radial (n = r/R) dependence of
the normalized radial and tangential magnetic field at the
magnetic pole and in the equatorial plane of the magnetized
star at the different sets of brane parameter. In both cases

1.8 :
* Newtonian
= GR
- Q/ME=2
. |QH|/M? =5

1.6},

b .
14N
1.2+

r/R

FIG. 1. The radial # = r/R dependence of the normalized
radial component of the magnetic field for several values of the
brane parameter Q*/M? when e = 0.4, y = 0 and 6 = 0.

one can see that effects of the brane larger near the surface
of the star as compared to a distance far from the star.

B. The dipolar electromagnetic radiation from the
relativistic star in the braneworld

In this subsection, we will focus on the electromagnetic
dipole radiation from the radio pulsar which is the

1.2 \

* Newtonian

— R
1.0} - QA =2

boe e e QM =5

FIG. 2. The radial n = r/R dependence of the normalized
tangential component of the magnetic field for several values of
the brane parameter Q*/M? when e = 0.4, y = 0 and 4 = /2.
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observational evidence for the rotating magnetized
(neutron) star. The luminosity of the magnetized star in
the case of a purely electromagnetic dipolar radiation in the
braneworld can be calculated as [22]

Q*4R6 )
Lén = ﬁBEZ sin® (74)

where Qf = Q/N} is angular velocity in observer frame
and By is the value of the magnetic field strength at the
surface of the star:

By = f*(e. Q")By. (75)

with
3 €
f*(e,0%) =Tae [Q€<1 +§>

e(1-¢*)\, (2-¢(l+e)
(1-SE)n(Zg)) o
where subscript R indicates that the value of the quantity at
r = R. From Eq. (74), one can easily see that the luminosity
of the rotating magnetized neutron star in the braneworld is
increased due to the amplification of the magnetic field and
by the gravitational redshift of the effective rotational
angular velocity €f.
The Newtonian value of the luminosity in the case of

pure dipole electromagnetic radiation has the following
form [37]

Q4RO
=——B}sin?y. (77)

LOem 66‘3

In the presence of brane parameter the rate of the energy
loss from the radio pulsar through dipolar electromagnetic
radiation is [22]

e (a) () - Gg) o
Loem Q B, Ny

The dependence of the rate of the energy loss from the
compactness of the magnetized neutron star in the brane-
world for several values of the brane parameter is given in
Fig. 3. The plots show the increase the rate of the energy
loss with the increase of the compactness of the star.

In Fig. 4 it is shown the dependence of the rate of the
energy loss of the magnetized neutron star in the brane-
world from the module of the dimensionless brane param-
eter Q*/M? for several values of the compactness of the
star.

Assuming that the rotational energy of the star is
converted into electromagnetic radiation one can relate
the electromagnetic energy loss L., with the loss of
rotational kinetic energy as [22]

PHYSICAL REVIEW D 96, 104001 (2017)
20

— GR

- Q=1
== Q=3
15H. « j@ym=5

0 L L L
0.20 0.25 0.30 0.35 0.40
€

FIG. 3. The dependence of the energy losses L%, /Loen from
the compactness ¢ of the star for several value of the brane
parameter Q* /M?>.

= _Lzm’ (79)
where factor y* is defined as

“1/2 o -0

v = [=go00 + giju'w] ;
with the three velocity of conducting medium inside the star
u' = dx'/dt, see more details in [22,38].

Finding and measuring the moment of inertia of the
neutron stars is one of the difficult problems in astrophys-
ics. However under the assumption that the pressure of the
matter inside the star is very small compared to its density
p < p one can find [22]

I :/d3r y e ® p*(r)r?sin? 0, (80)

in the Newtonian limit moment of inertia can be written
as Iy = (2/5)MR>.

100

T
= =03
_— =033

80’ == c=0.36

c =04

L :,m / L Oem
D
o

T

40+

20+

|Q1/M?

FIG. 4. The dependence of the energy losses L%, /Loen from
the brane parameter Q*/M? for several value of the compactness
€ of the star.
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10°

1000k
10-11 L
102k -
10731
10k o
107%
w0k

10771

Period Derivative (s s7!)

- Radio pulsar H
® RRAT
+ Magnetar
% XDINS

- Y¢ New RRAT

10° 10"

Period (s)

FIG. 5. P — P diagram for the observable pulsars and magnet-
ars from the paper [45].

The magnetic field of the pulsar can also be written in
terms of the most measurable quantities in the pulsar

observation as period P and its time derivative P =
dP/dt [22]:

. 27 1 B:R® 2 .
P*P* = ”37 R* = <f*4§<)>P0P0’ (81)
3¢ Ny 1 I
. 272 ByR®
PPy =" (82)
33 I,

Finally one can get constraints for the brane parameter
Q* comparing the theoretical results with the observational
data for the known rotating magnetized stars observed as
pulsars and magnetars. In order to get the upper limit for the
brane parameter Q*, one can consider P — P diagram for
the typical pulsars [39-44]. From observation data [45]
which is shown in the Fig. 5, one can see that average value

5.0
4.5

4.0

3.5
3.0
2.5
2.0

B/ By

o
(a5

10 15 20
|Q|/M?

FIG. 6. The dependence of the magnetic field at the surface of
the NS from the brane parameter for the different values of the
compactness of the star.

PHYSICAL REVIEW D 96, 104001 (2017)

= GR
-l =1

18] == 1@ =3

- Q=5

1. L L
(9.20 0.25 0.30 0.35 0.40

FIG. 7. The dependence of the magnetic field at the surface of
the NS from the compactness of the star for the different values of
the brane parameter.

of the magnetic field strength for the typical radio pulsar is
about B,, = 10'> G, and its period derivative is about
=10"13 ss7!. Using these values and the magnetodipolar
formula one can find the upper limit for the value of the
brane parameter as |Q*| <3 x 10!l em? (|Q*|/M? =38)
which is in good agreement with the constraint obtained
from the observations of the inner part of the accretion
disks [28]. This statement is in agreement with the Figs. 6
and 7 on the dependence of the magnetic field at the surface
of the NS from the brane parameter for the different values
of the compactness of the star.

IV. SUMMARY

In the present work, we have studied modifications of the
electromagnetic fields of a rotating magnetized neutron
stars in the braneworld and their astrophysical applications.
We have formulated the Maxwell equations for the slowly
rotating magnetized compact star with nonzero brane
tension and dipolar magnetic field configuration. As the
analytical solutions are always more valuable for further
applications we have derived exact analytical solution for
the dipolar magnetic field in terms of the brane tension
parameter Q* and mass M which gives an opportunity to
check the effects of the brane in the plasma magnetosphere
of the rotating neutron stars, especially, when one calcu-
lates the Goldreich-Julian density which is very important
quantity in the pulsar astrophysics.

Then we have solved the Maxwell equations for the
electric field of the rotating magnetized star in the brane-
world. The electric field strongly depends on the brane
tension and becomes stronger with the increase of the brane
tension.

As an important application of the obtained results we
have calculated energy losses of slowly rotating magnet-
ized neutron star in the braneworld through magnetodipolar
radiation and found that the rotating star with nonzero
brane tension will lose more energy compared to the typical

104001-10
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rotating neutron star in general relativity. The obtained
dependence has been combined with the astrophysical data
on pulsar period slowdown in order to get constraints on the
brane parameter. We have found the upper limit for the

brane parameter as |Q*| <3 x 10! cm?.
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APPENDIX A: MAXWELL EQUATIONS

The four-velocity in the ZAMO (zero angular momen-
tum observer) frame can be written in the following form

1
w =—(1,0,0,0"), u

= N*(-1,0,0,0).
= ( )

f (A1)

According to [21] the explicit form of the first pair of the
general relativistic Maxwell equations in the spacetime (6)
for the stationary electromagnetic fields in the orthonormal
reference frame can be expressed as

N*sin@(r*B") , + r(sin0B?) , + rB%, =0, (A2)

PHYSICAL REVIEW D 96, 104001 (2017)

and the second pair is given by [21]

N*sin0(r2E") , + r(sin 0E?) , + rE(/:ﬁ = 4ar*sin 0J°,
(A6)

N*(sin HB‘;’),Q - N*B%ﬁ — w'rsinQE’, = 4zN*rsinJ",
(A7)

N*Bl,—N*sin0(rN*B?) , — " rsinE = 4zN*rsin6J°,
(A8)

N*(rN*B) , — N*B%, + N* sin6(w*r’E"),,

+ ' r(sinOE?) , = 4zN*rJ? + 4z P sin6J7,  (A9)
where the four-current J# is a sum of convection and
conduction currents. According to Ohm’s law [46,47], its
components have the following form in the ZAMO
frame [21]:

R prsin @
Ji=p,+ a“”;fl 7, (A10)
N N @rsin @ P
J ' =0|E — o B? ), (A11)
5 P wrsin® .
J' =06 E o B" |, (A12)
[}5 (}5 @rsin @
J? = oE? + o Pe (A13)

Here o is the electrical conductivity and p, is the proper
charge density of the medium that is located in the region
Ry <r <R of the neutron star. Outside the star

N*[E%, — (sin0E?) )] — o' rsin 0B, =0, (A3) o0=p,=0.
N*[sin@(rN*E?)  — E',] —w*rsin0B’, =0, (A4
SinO(rN"E?) , = Eg] = 'rsin0B,, (A%} APPENDIX B: PARTICULAR SOLUTION FOR
i ; THE FUNCTION f(r)
N*E) — N*(rN*E?) ,
. P L 5 The differential equation for the unknown function f75(r)
+ N*sin@(@*r’B") , + 0 r(sindB”) , =0, (AS) g given as
|
d 2M Q" d ouJ o 20M M o* r—M(1+ o)
L e e | Y - 2 (1= ) m( 22T
dr{( r * r2>dr(r fS)] f3+2Q3M31"2< 2Mr r + r + 2)" r—M(1-p)
(BI)
The solution of this equation is
15uJ 2M?* 2M 40 2r QF r—M(1+ o) .
0 D i Wory PN (el s~ S WY (S 20 Y il A Gl ) riyb. B2
f3(r) 8CQSM5{ 3[Q<3r2 + r * 3r? * M- 2)" r—M(1-p) 170 (B2)
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The explicit form of the particular solution of this equation is given by

iy = 3CM [ o (= M+ Q)
S =g 2 Iy )| T S0euro”

) -oi) o

(18M* + 122M2Q* + Q*?)

0 r
+ 20Mre(1 + o) [e(30(8e — 1) — 122) — 91] log <m>
+ W l0(30(8¢ + 1) — 122) = 91]In <m>

+m[6+0(1—0)(3—0)—1+Q)1nr]1n[r—M(1+Q)]

<

_mm—g(l+Q)(3+g)—1—g)lnr]ln[r—M(l—Q)}. (B3)

APPENDIX C: GENERAL RELATIVISTIC LIMIT VALUES FOR THE PROFILE FUNCTIONS

In general relativistic limit the functions F*(r) and G*(r) related to the magnetic field take the form (see, e.g., [21])

3u |2M M
F(r) = lim F(r) = Jim F(r) = =75 [7 (1 +7) - lnNZ], (c1)
. . . . 3uN 1 r
G(r) = Jim G*(r) = Jim G*(r) = ;5 {1 +W+M1“N2]’ ()

and other functions f;(r) related to the electric field take the form (see [21])

o . uQCC, [2M? 2M
fl(r)=Q11310f1(r)=llggof1(r)=W[?+7—4+ 3-—)InN?|, (€3)
. o uQCC, r 2M?
£a0) = Jim f30r) = fim g30r) = =22 (1= 1) -2 - 220, (c4)
o . 15uwr? (2M? am? 2M?  2M 2r
fa(r) = Qllr_r)10f3(r) :lll_rgof3(r) —W{?lnNz—l—?—l-Q 74-7—44— 3_M InN?| 3, (C5)
Folr) = T Fi(r) = lim f3(r) = — 2HOr M en[(1 - e — 2 2 (C6)
r)= r)= 1l r)=-— -— -2-
4 0 =0 4 Foe 4 4eMS \154N2 T3 M 3r2NZ| [
. o 3uQr 2M [ M
0r) = Jim g3(r) = lim g3(r) = 220 [7 (1 +7> i Nz], ()
L L 3uwr |2M M
3u(r) = Jim i) = tim gi(r) = - S |20 (1 2 e, (c8)
where the constants are
3R [2M M
= (142 ) + A2
C 4M3{R<+R)+n ] (C9)
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1 R 2M?* -1
l——)InN2 -2 - 1
“=n K M) "Nk 3R2N%J - (1o
2M2 2M

with N = 1-2M/r and Ny = 1-2M/R.

APPENDIX D: THE NORMALIZED
MAGNETIC FIELDS

The components of the normalized magnetic field are

B = *E . ;’71 [cos y cos @ + siny sinfcos @], (D1)
BY = Oji((??)nl [cosysinf — siny cos@cos p], (D2)
B? 0 ]g:; EZ” (i; %sin)( sin @, (D3)
where
n\’ [e€ €
% , = 3L & —
frone) (@6) [11 (1 +217>
e(1-¢)\, (2n—e(l+e)
+<1_ an? >ln<2n—€(1—e))]’
(D4)
and
3 (1 — 02N\ -1
g'(n.0) = [2N* Nyf*(n. Q)K %) :
(Ds)

APPENDIX E: THE NORMALIZED
ELECTRIC FIELDS

Assuming that @ = 0 one can rewrite the expressions for
the electric field in much simple way

1 p*(n.o)
7 p*(1.1)
+3 siny sin @ cos @ cos 1], (E1)

5 Ny 1 p*
B E()_i( p (m@))
n dn \np*(1,1)
X [cos y sin 26 — sin y cos 26 cos /]

1 f(n.0)
"N £ (L)

E" = [cos y(3cos? 6 — 1)

siny cos 4, (E2)

PHYSICAL REVIEW D 96, 104001 (2017)

3 Ny d (1 . . .
E? = —E,— ( P(n Q>> sin y cos @sin 4

n dn \np*(1,1)
1 f(n.e) :
+ E e sin y cos 0sin 4, E3
0 2N f( ) ( )
where
C*Cy { <€2(3—2Q2) € )
p*(n.e) = Q +o—4
0) 6¢’ 61 n
4 2(1 — 52 _
(3 m_e( 2@) m(2—el+e)
€ 4n 2n—e(l—-o)
(E4)
and
2 1= 2
NTzzl—e_i_e(fQ)'

We can easily find relations for the surface current
density and the surface charge density for the star in the
braneworld:

{B”} {B’}
and
. 1E]
Oy = Oy m 5 (E6)

where we have used the following shortage notation for the
fields at the surface of the star {A} = [A]|y-_o in the
Schwarzschild spacetime.

5 . Ny €
e =1 1—— 1
292NT[ 2+Q( +2>

1= Nf21n<2_€(1+93>} (E7)

o€ 2—¢(l-p

where b = 1 + 2 cot? 0.
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