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Recently, it has been realized that the so-called G-inflation model inspired by supplementing a
generalized covariant Galileon-like nonlinear derivative self-interacting term to the standard kinetic term
should be ruled out from inflationary models. This is due to the fact that it suffers from lack of an oscillatory
phase at the end of the inflationary regime which is typically accompanied by the appearance of a negative
squared propagation speed of the scalar mode leading to instabilities of small-scale perturbations. In this
regard, the warm G-inflation scenario is proposed where for G inflation to survive, the Galileon scalar
field is coupled to the radiation field through a dissipation term which results in removing the reheating
period due to the characteristics of warm inflationary scenario. In so doing, a linear stability analysis is first
performed to obtain the appropriate slow-roll conditions in such a proposal. Cosmological perturbations
of the model are then investigated by utilizing a fluctuation-dissipation theorem and analytical expressions
are derived for observable quantities; the power spectrum, tilt spectral index, and tensor-to-scalar ratio in
terms of PSR parameters and Galileon flow functions. Finally, the model is solved for chaotic self-
interacting potentials, particularly the renormalizable Higgs potential λ

4
ϕ4, and shown to be consistent

with observations in the weak dissipationQ ≪ 1þ 3 δGX
δX

andG-dominant 3 δGX
δX

≫ 1 regime despite its large

self-coupling, since the energy scale at the horizon crossing is depressed by the synergy of Galileon and
thermal effects.

DOI: 10.1103/PhysRevD.96.103541

I. INTRODUCTION

Inflation [1,2], a quasi-de-Sitter accelerating expansion
phase which is realized by means of microphysical
models including a dynamical field, the “inflaton,”
evolving under the influence of a plateaulike potential
(H ∝

ffiffiffiffi
V

p
∝ 1016 GeV), resolves a number of long-

standing problems which the standard big bang (SBB)
cosmology is fraught with, such as the observed flatness,
horizon, homogeneity, and unwanted relics, to name but
a few [3,4]. The noteworthy feature of such an elegant
paradigm is that it serves as a casual mechanism to seed the
acoustic peaks in cosmic microwave background (CMB)
radiation as well as account for the distribution of large-scale
structure (LSS) from the evolution of primordial quantum
vacuum fluctuations during inflation [5–8].
The scenario in which an inflaton is isolated and the

interaction between the inflaton and other subdominant
fields is neglected whereby the universe undergoes a first
order phase transition [6] and its temperature drastically
diminishes, is conventionally called cold inflation (isen-
tropic). After such steep supercooling phase, the universe
should go through a reheating phase [9–11]; oscillations
of inflaton around the minimum of its potential in order to
heat up again and progressively proceed to the radiation era

required by SBB. While meshing these two isolated stages,
the inflationary phase and the subsequent reheating phase,
often brings about a severe discrepancy. Therefore, warm
inflation [12,13] (nonisentropic), as a complementary
scenario, has been constructed to avoid such problems
by introducing a supplementary viscose term having a
dissipation coefficient which illustrates the rate of energy
exchange between inflaton and radiation field. In fact,
inflaton concurrently dissipates into radiation whereby
primeval radiation will not heavily be diluted during
inflation and smoothly enters the radiation era, for details
see [14–24]. As a result, warm inflation not only inherits
the features of conventional inflation but also removes
disparities coming from the reheating phase and thus
alleviates the initial condition [25], cures the overlarge
amplitude of the inflaton field and circumvents the so-
called eta-problem [26]. Furthermore, it contributes a very
appealing mechanism for baryogenesis where spontaneous
lepto/baryogenesis can easily be realized [27]. In addition,
the nature of fluctuations stems from thermal fluctuations
in radiation which are coupled to the inflaton due to the
presence of dissipation coefficient rather than quantum
fluctuations where the condition for which thermal fluc-
tuations dominate over quantum fluctuations is given by
T > H [12,13]. Moreover, the matter components of the
universe are created by the decay of either the remaining
inflaton field or the dominant radiation field.
From a quantum field theory perspective, the only

known scalar field to drive inflation is the standard model
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(SM) Higgs boson. However, Higgs-driven inflationary
models with the standard kinetic term and renormalizable
self-interaction potential [28] produce a large amplitude
for the curvature and tensor perturbations which are not
consistent with the observed universe [29]. To reconcile
Higgs-driven inflationary models with observations,
numerous modifications have been imposed to the effective
Lagrangian in order to suppress the energy scale of inflation
including a non-minimally coupled term to gravity with a
large coupling [30], nonminimal coupling to the Higgs
kinetic term with Einstein tensor [31,32], nonstandard
higher order kinetic term, dubbed k inflation [33,34] such
as ghost condensate [35] and Dirac-Born-Infeld inflation-
ary models [36]. Apart from the first case which suppresses
the energy scale of inflation by large effective Planck scale,
the others are kinetically modified which means that extra
viscosity terms have been added to dynamical equations
whereby the evolution of inflaton may be controlled and
become consistent with observations even for large self-
couplings and steeper potentials.
Incorporating higher order kinetic terms often lead to a

new degrees of freedom followed by unwanted ghost
instabilities. It would therefore be of interest to see if a
scalar field, in spite of its higher derivative nature, does
not result in a new degree of freedom. Currently, it has
been demonstrated that a particular combination of higher
derivative kinetic terms not only maintains both the scalar
and gravitational field equations to second order but also
does not lead to new degrees of freedom [37,38]. The scalar
field having such properties is known as the Galileon
since it possesses a Galileon shift symmetry in Minkowski
background. Such a scalar field has initially been inves-
tigated in the context of modified gravity and dark energy
[39,40]. Recently, a Galileon driven inflationary model
dubbed G-inflation was proposed in [41]. The striking
characteristics of such inflationary models are that they can
produce scale-invariant spectral index even in an exactly de
Sitter background and the tensor-to-scalar ratio can take
larger values than that in conventional inflation due to the
violation of the consistency relation, that is r ¼ −8.7nt.
Although Higgs G inflation [42] is consistent with obser-
vations even for large self-coupling, which is roughly
around 0.13 from quantum field theory point of view, it
has very recently been realized that it suffers from the
absence of an oscillatory phase typically accompanied
by a negatively squared propagating sound speed leading
to a Laplacian equation for curvature perturbations instead
of a wave equation, while producing unstable small-scale
perturbations [43]. To resolve the problem, the authors in
[44] have added an extra quadratic non-standard kinetic
term to the action in order to obtain positive sound speed
resulting in the required reheating phase despite large self-
coupling of the Higgs self-interaction potential.
Taken together, the incentive to investigate G inflation

in the context of warm inflation is to eradicate the

aforementioned problems by avoiding the reheating phase
which is due to the nature of the warm inflationary scenario
to survive G inflation, particularly the Higgs G inflation.
Therefore, the layout of the paper is the following. We
present the slow-roll dynamical field equations for warm G-
inflation model, taking into account generalized Galileon
scalar field through an arbitrary function of ϕ and X as
Gðϕ; XÞ and also temperature dependence of the potential
and dissipation coefficient in Sec. II. Next, the validity of
slow-roll conditions is investigated by means of stability
analysis applied to the dynamical system in Sec. III. In
Sec. IV, the cosmological perturbations are investigated
utilizing fluctuation-dissipation theorem where the corre-
sponding power spectrum, tilt spectral index and tensor-to-
scalar ratio are also calculated in a generic form for the
dissipation coefficient and potential. We then solve the
model at hand for chaotic potentials, particularly Higgs
boson self-interaction potential λ

4
ϕ4 in Sec. V. Finally, the

conclusion is drawn in Sec. VI. Throughout the paper, we
adopt the metric signature ð−;þ;þ;þÞ.

II. SLOW-ROLL REGIME OF
WARM G INFLATION

We begin with the multicomponent, kinetically modi-
fied, minimally coupled action as follows

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ X − Vðϕ; TÞ

−Gðϕ; XÞ□ϕþ Lr þ Lint

�
; ð1Þ

where g is the determinant of the metric tensor gμν, R is Ricci

scalar, MPl ¼ ð8πGNÞ−1
2 ¼ 2.44 × 1018 GeV is the reduced

Planck mass with GN being the gravitational constant
and Gðϕ; XÞ represents an arbitrary function of the scalar
field ϕ and the standard kinetic term X ¼ − 1

2
gμν∂μϕ∂νϕ.

Also, Lr and Lint denote the Lagrangian of the radiation
field and interaction term between inflaton and other
subdominant fields, respectively.
Varying the action (1) with respect to the metric, the total

energy-momentum tensor Tμν containing the inflaton and
radiation field contributions read

Tμν ¼ ∇μϕ∇νϕþ gμνðX − Vðϕ; TÞÞ − 2∇ðμG∇νÞϕ

þ gμν∇λG∇λϕ − G;X□ϕ∇μϕ∇νϕþ Tsuμuν; ð2Þ

where T is the universal temperature, s is the entropy
density and uμ ¼ ð−1; 0; 0; 0Þ is the radiation fluid 4-
velocity vector. Note that here and hereafter we utilize
the notation G;X for ∂G

∂X. Taking variation of the action with
respect to the scalar field also yields the following modified
Klein-Gordon equation
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−□ϕþ 2ðG;ϕ −G;ϕXXÞ□ϕ − G;X½ð∇μ∇νϕÞð∇μ∇νϕÞ
− ð□ϕÞ2 þ Rμν∇μϕ∇νϕ� − 2G;ϕXð∇μ∇νϕÞð∇μϕ∇νϕÞ
þ G;XXð∇μ∇λϕ − gμλ□ϕÞð∇μ∇νϕÞð∇νϕ∇λϕÞ þ V;ϕ

− 2G;ϕϕX ¼ −Γuμ∂μϕ: ð3Þ

Here, Rμν denotes the Ricci tensor and Γ is defined as a
dissipation coefficient implying the rate of energy
exchange between inflaton and radiation (i.e. the rate of
inflaton decaying to radiation). Let us proceed by adopting
a spatially flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) space-time with scale factor aðtÞ where t is the
cosmic time. Therefore, equation of motion takes the
following form

Bϕ̈þ 3HA _ϕþ V;ϕ ¼ 0; ð4Þ

with

A ¼ 1þQþ 3H _ϕG;X þ
_H _ϕG;X

H

þ 2XG;ϕX − 2G;ϕ −
G;ϕϕ

_ϕ

3H
ð5Þ

B ¼ 1þ 6H _ϕG;X þ 6H _ϕXG;XX − 2XG;ϕX − 2G;ϕ; ð6Þ

where the dimensionless parameter Q ¼ Γ
3H quantifies the

strength of dissipation. The energy-momentum tensor has
the form Tμ

ν ¼ diagð−ρ; p; p; pÞ with

ρ ¼ X þ Vðϕ; TÞ þ 6HG;XX _ϕ − 2G;ϕX þ Ts; ð7Þ

p ¼ X − Vðϕ; TÞ − 2ðG;ϕ þ G;Xϕ̈ÞX; ð8Þ

where ρ and p are total energy density and pressure of
the system, respectively. Here, ρ and p have an explicit
dependence on the Hubble rate, therefore, gravitational
field equations are given by

3M2
plH

2 ¼ ρ; −M2
plð3H2 þ 2 _HÞ ¼ p: ð9Þ

Now, considering the thermodynamic relation U ¼
F þ Ts where U is the total energy and F is total free
energy, the free energy density will be

f ¼ X þ Vðϕ; TÞ þ 6HG;XX _ϕ − 2G;ϕX: ð10Þ

Indeed, through the definition of entropy in thermodynam-
ics, sðϕ; TÞ has following relation with potential

s ¼ −
∂f
∂T ¼ −V;Tðϕ; TÞ: ð11Þ

Using conservation equation _ρþ 3Hðρþ pÞ ¼ 0 together
with Eq. (4), entropy production equation reads

T _sþ 3HTs ¼ Γ _ϕ2: ð12Þ

When thermal correction to field masses is negligible, i.e.
b ≪ Q

A in the slow-roll regime as we will see in the next
section, the effective potential can be written as Vðϕ; TÞ≃
VðϕÞ þ VðTÞ and therefore VðTÞ contributes to the energy
density of the radiation field resulting in ργ ¼ 3

4
Ts.

Equivalently, conservation Eq. (12) is given by

_ρr þ 4Hρr ¼ Γ _ϕ2: ð13Þ

Now lets us define a dimensionless Hubble Slow-Roll
(HSR) parameter as

ϵH ≡ −
_H
H2

;

¼ 1

2

2X þ 6HG;X
_ϕX − 4G;ϕX − 2G;Xϕ̈X þ Ts

M2
plH

2
;

¼ δX þ 3δGX − 2δGϕ − δϕδGX þ 3Ts
2V

; ð14Þ

where

δX ≡ X
M2

plH
2
; δGX ≡G;X

_ϕX
M2

plH
;

δGϕ ≡ G;ϕX

M2
plH

2
; δϕ ≡ ϕ̈

H _ϕ
:

The second HSR parameter ηH characterizing the relative
size of ϵ is systemically defined as follows

ηH ≡ d ln ϵH
d ln a

¼ _ϵH
HϵH

: ð15Þ

Accordingly, inflation then takes place when condition
ϵH < 1 is satisfied, implying ä > 0 and will terminate
when ϵH ¼ 1. Therefore, A and B can be reformulated in
terms of the newly defined parameters as

A ¼ 1þQþ ð3 − ϵHÞ
δGX
δX

þ 2ðλX − 1Þ δGϕ
δX

;

−
ffiffiffi
2

p

3
λϕ

δGϕffiffiffiffiffi
δX

p ; ð16Þ

B ¼ 1þ 6ð1þ κXÞ
δGX
δX

− 2ð1þ λXÞ
δGϕ
δX

; ð17Þ

where λX, λϕ, and κX are defined as
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λX ≡ XG;ϕX

G;ϕ
; λϕ ≡Mpl

G;ϕϕ

G;ϕ
; κX ≡ XG;XX

G;X
:

The difficulty in solving dynamical equations of inflation
in exact form often leads to introducing a set of slow-roll
approximations where the logarithmic variation of the
Hubble parameter with respect to the e-folding number
should be very small, _H ≪ H2, and the leading derivative
terms ϕ̈ ≪ H _ϕ & _s ≪ Hs are neglected, implying that
the energy is dominated by the potential, inflaton is
slowly evolving and radiation is quasistatically produced.
Consequently, the first condition ð _H ≪ H2Þ implies that
each terms in Eq. (14) should be small (such assumption is
to be taken with care since the sum of all terms may also be
small)

fδX; δGX; δGϕ; δϕg ≪ 1; Ts ≪ V; ð18Þ

and as a result, slow-roll equations take the following form

3M2
plH

2 ≃ V; ð19Þ

3HA _ϕþ V;ϕ ≃ 0; ð20Þ

Ts≃Q _ϕ2; ð21Þ

and A reduces to

A≃ 1þQþ 3
δGX
δX

þ 2ðλX − 1Þ δGϕ
δX

: ð22Þ

Furthermore, the number of e-folding is defined as follows

N ≡
Z

tend

thc

Hdt ¼
Z

ϕend

ϕhc

H
_ϕ
dϕ ¼ −

Z
ϕend

ϕhc

M−2
pl

V
V;ϕ

Adϕ;

ð23Þ

where ϕhc denotes the value of the inflaton field at the
Hubble crossing time and ϕend represents the value of the
inflaton field at the end of inflation.
Before closing this section, in order to have a concise

investigation of the consistency of warm G inflation in the
upcoming section we introduce the customary dimension-
less Potential Slow-roll (PSR) parameters as [45]

ϵ≡M2
pl

2

�
V;ϕ

V

�
2

; η≡M2
pl

V;ϕϕ

V
; β≡M2

pl

V;ϕΓ;ϕ

VΓ
;

which are supplemented with two more parameters, namely

b≡ TV;ϕT

V;ϕ
; c≡ TΓ;T

Γ
; ð24Þ

which account for temperature dependence of the potential
and damping coefficient, respectively.

III. STABILITY ANALYSIS

The slow-roll approximations which were used above
and led to slow-roll Eqs. (19)–(21), immediately bring up
the question as to under what conditions can slow-roll
equations portray the system well? To answer the question,
let us consider the inflaton field as an independent variable
for which dynamical Eqs. (4), (12) can be expressed in
terms of its first derivative, that is

u0 ¼ −B−1½3HAþ V;ϕu−1� ¼ fðu; s;ϕÞ; ð25Þ

s0 ¼ −3Hsu−1 þ ΓuT−1 ¼ gðu; s;ϕÞ; ð26Þ

where a prime denotes derivative with respect to ϕ

and u ¼ _ϕ. A glance at Eqs. (25), (26) reveals that
these equations form a two dimensional dynamical system
where its fixed points can be obtained by equating f and g
to zero

u0 ¼ −
V;ϕ

3HA
; ð27Þ

s0 ¼ Qu20T
−1; ð28Þ

where a subscript zero means that u0 and s0 are the
solution of the so-called slow-roll Eqs. (20), (21). To
answer the question of validity of the slow-roll approx-
imations involves a linear stability analysis which means
perturbing exact solutions around the slow-roll solutions
in order to see under what conditions the system will
remain close to the slow-roll solutions for many Hubble
times. In other words, the slow-roll solutions should be the
attractors of the dynamical system. Therefore, perturbing
variables u and s around the slow-roll solutions, that is
u → u0 þ δu and s → s0 þ δs, with perturbed terms being
much smaller than the background ones (δu0 ≪ u0 &
δs0 ≪ s0), we have

δx0 ¼ Mðx0Þδx − x00; ð29Þ

with

x ¼
�
u

s

�
; ð30Þ

and M is 2 × 2 matrix given by

M ¼
�
A B

C D

�
¼
 ∂f

∂u
∂f
∂s

∂g
∂u

∂g
∂s

!
ju¼u0
s¼s0

: ð31Þ
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The matrix elements of M are

A ¼ H
uB

�
−3A − 3ð2κX þ 1Þ

�
3 −

ϵ

A

�
δGX
δX

−
�

ϵ

A2
þ 3ð2κX þ 3ÞδGX − 2ðλX þ 1ÞδGϕ

�

×

�
1þ 6

δGX
δX

þ 2ðλX − 1Þ δGϕ
δX

�
− 12λXX

δGϕ
δX

þ 2ðκϕϕ þ 3ÞδGX þ 9

�
2κX þA

B
þ 3

�
δ2GX
δX

þ
ffiffiffi
2

p
λϕ

δGϕffiffiffiffiffi
δX

p − 12ðλX þ 1Þ δGϕδGX
δX

þ 9
δ2GX
Bδ2X

ð3ð2κX þ 1ÞδGX þ 4λXXδGϕÞ
�
; ð32Þ

B ¼ H
sB

�
−
Qϵ

A2

�
1þ 6

δGX
δX

þ 2ðλX − 1Þ δGϕ
δX

�
þ 4QδGX −

�
1 −

3

B
δ2GX
δX

�
cQþAb

�
1 −

3

B
δ2GX
δX

��
; ð33Þ

C ¼ Hs
u2

�
6 −

ϵ

A2
− 3ð2κX þ 3ÞδGX þ 2ðλX þ 1ÞδGϕ

�
; ð34Þ

D ¼ H
u

�
c − 4 −

Qϵ

A2

�
: ð35Þ

These matrix elements reduce to the corresponding results obtained in [20] for G ¼ 0. To derive Eqs. (32)–(35), we have
utilized the following useful expressions

3u
H;u

H
≃ ϵ

A2
þ 3ð2κX þ 3ÞδGX − 2ðλX þ 1ÞδGϕ; ð36Þ

−6XG;X

_H;u

H
≃ 9

δ2GX
Bδ2X

ð3ð2κX þ 1ÞδGX þ 4λXXδGϕÞ þ 9

�
2κX þA

B
þ 3

�
δ2GX
δX

þ 6δGX − 12ðλX þ 1Þ δGϕδGX
δX

; ð37Þ

3
sH;s

H
¼ Qϵ

ð1 − δGXÞA2
≃Qϵ

A2
; V;ϕs ¼

Vϕb

3s
; Γ;s ¼

HcQ
s

ð38Þ

−3
s _H;s

_ϕG;X

H
≃ 4QδGX þ 3

cQ
B

δ2GX
δX

−
3Ab
B

δ2GX
δX

; ð39Þ

with λXX, λϕϕ, and κϕϕ defined as follows

λXX ≡ X2G;ϕXX

G;ϕ
; λϕϕ ≡M2

pl

G;ϕϕϕ

G;ϕ
; κϕϕ ≡M2

pl

G;ϕϕX

G;X
:

Being the attractor for a warm inflationary dynamical system only depends on the nature of the eigenvalues. To put it
differently, the slow-roll solutions can be an attractor when the eigenvalues of the matrixM are negative or possibly positive,
but of order ϵ (i.e. it should be slowly evolving) [20] where ϵ refers to slow-roll parameters in general. More clearly, the
determinant should be positive (detM > 0) and the trace should be negative (TrM < 0). Equally importantly, the force term
x00 whose size depends on the logarithmic derivative of x0 with respect to e-folding number should be small enough (i.e.
_u

Hu ≪ 1 and _s
Hs ≪ 1). Taking the time derivative of slow-roll Eqs. (27), (28), we arrive at the leading order of ϵ
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δϕ ¼ _u0
Hu0

¼ 1

Δ

�
4Q
A

β þ ðc − 4Þηþ 3Abcþ ϵ

A

�
4 − cð1þQÞ þ

�
1 − 2cQ

2A

��
12

δGX
δX

þ 4ð2λX − 1Þ δGϕ
δX

− 12ð2κX þ 1Þ λX
Aσ

δGϕδGX
δ2X

��
þ
�
1

2
− cQ

�
×

�
−4κϕϕδGX þ 4

ffiffiffi
2

p
λϕ

δGϕffiffiffiffiffi
δX

p þ 4

3
λϕϕδGϕ − 8

λXκϕϕ
Aσ

δGϕδGX
δ2X

− 12
ffiffiffi
2

p λXλϕ
Aσ

δ2Gϕ

δ
3
2

X

− 12λX
δGϕ
δX

��
; ð40Þ

δs ¼
_s0
Hs0

¼ 3

Δ

�
2Q −Aσ

A
β þAb

Q
ð2cQþAσð1 − cÞÞ − 2ηþ ϵ

A

�
2þAσ þ 12

δGX
δX

þ 4ð2λX − 1Þ δGϕ
δX

− 12ð2κX þ 1Þ λX
Aσ

δGϕδGX
δ2X

�
− 4κϕϕδGX þ 4

ffiffiffi
2

p
λϕ

δGϕffiffiffiffiffi
δX

p þ 4

3
λϕϕδGϕ − 8

λXκϕϕ
Aσ

δGϕδGX
δ2X

− 12
ffiffiffi
2

p λXλϕ
Aσ

δ2Gϕ

δ
3
2

X

− 12λX
δGϕ
δX

�
;

ð41Þ

with Δ and σ being defined as

Δ≡
�
4 − cÞAσ þ 2cQ; ð42Þ

σ ≡ 1þ 1

A

�
3ð1þ 2κXÞ

δGX
δX

þ 4λXX
δGϕ
δX

�
: ð43Þ

We again note that Eqs. (40), (41) reduce to Eqs. (30) and
(31) in [20] for G ¼ 0. The Hubble parameter should
also be slowly varying, i.e. _H

H2 ¼ − ϵ
A ≪ 1 which leads to a

sufficient condition to satisfy the above requirement

fjϵj; jηj; jβjg ≪ A; 0 ≤ b≪
Q
A
; jG;ϕj ¼

				 δGϕδX

				≪ 1:

ð44Þ

However, the condition δGϕ
δX

≪ 1 in weak dissipation
Q ≪ 1þ 3 δGX

δX
and G-dominant 3 δGX

δX
≫ 1 regime translates

into

				 δGϕ3δGX

				≪ 1: ð45Þ

Inspection of the above conditions shows that some terms
in δϕ and δs will be of order ϵ2 and higher, and therefore we
neglect them during calculations since they are too small.
Also, σ and A reduce to

σ ≡ 1þ 1

A

�
3ð1þ 2κXÞ

δGX
δX

�
; ð46Þ

and

A ¼ 1þQþ 3
δGX
δX

: ð47Þ

In fact, conditions (44) generalize the standard slow-
roll in the supercooled case including two overdamping
terms, namely the thermal and Galileon friction terms
which illustrate that inflationary potentials have broader
choices whereupon further novel inflationary models with
steeper potential may be constructed in warm G-inflation.
Furthermore, the last condition implies that the kinetic part
of the Galileon scalar field interaction plays a substantial
role in dynamics of the model at hand. In addition, the
condition on slow-roll parameter b implies that thermal
corrections to the potential should be as small as in the
absence of Galileon scalar field. As a result, the total energy
density can be written in a separable form as ρðϕ; TÞ ¼
ρinfðϕÞ þ ρradðTÞ which guarantees the former assumption.
So far, we have obtained conditions on the whole

parameters of the model except for c. In order to obtain
conditions on c, we derive the determinant and trace of
matrix M at zero order of ϵ as follows

detðMÞ ¼ H2

u2B

�
ðc − 4Þ

�
−3A − 9ð2κX þ 1Þ δGX

δX

�

þ 6cQ − 6Ab

�
; ð48Þ

trðMÞ ¼ H
uB

�
−3A − 9ð2κX þ 1Þ δGX

δX
þ ðc − 4ÞB

�
; ð49Þ
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where B reduces to

B ¼ 1þ 6ðκX þ 1Þ δGX
δX

: ð50Þ

Here, B should be positive since it later appears under a
radical in power spectrum (72) and δGX should also be
positive in order to avoid instability and ghosts [46,47],
therefore, κX and A are positive quantities. Consequently,
to have detðMÞ > 0 and TrðMÞ < 0, one arrives at the
condition on c as

jcj ≤ 4 − 2b;

and since 0 ≤ b ≤ Q
A, we find

jcj < 4; ð51Þ

which means that temperature dependence of the dissipa-
tive coefficient should be within the range Γ ∝ ðT−4; T4Þ.
Utilizing Eq. (21) one deduces that ρradV ≃ Qϵ

2A2 which in turn
means that the radiation field is subleading during the slow-
roll regime which is consistent with the requirement for a
warm inflationary scenario. Before closing the section, it is
useful to derive some useful expressions which can also be
used in the forthcoming section

δT ≡ d lnT
dN

¼
_T

HT
¼ 1

3
δs −

Ab
Q

; ð52Þ

δΓ ≡ d lnΓ
dN

¼
_Γ

HΓ
¼ −

β

A
−
Abc
Q

þ c
3
δs; ð53Þ

δV ≡ d lnV
dN

¼
_V

HV
¼ −2

ϵ

A
þ 2

3

ϵ

A
b −

2Q
9

ϵ

A2
δs; ð54Þ

δV;ϕ
≡ d lnV;ϕ

dN
¼

_V;ϕ

HV;ϕ
¼ −

η

A
−A

b2

Q
þ 1

3
δsb: ð55Þ

A glance at the above expressions reveals that temperature,
potential, and the dissipative coefficient are all slowly
varying parameters during slow-roll inflation which is
consistent with the nature of inflation.

IV. DENSITY FLUCTUATIONS

It is now the time to develop the theory of cosmological
perturbations in warm G inflation. Since we are working in
the context of a cosmological system, metric perturbations
as well as field and thermal fluctuation should be included.
As is well known, the prime characteristic of dissipating
inflationary models which distinguishes them from the so-
called cold inflation is that the nature of density fluctuations
is due to thermal fluctuation in radiation field rather than in

quantum fluctuations. These thermal fluctuations in radiation
field are coupled to the inflaton field through the presence of
damping terms in dynamical equations of inflation and their
amplitude is fixed by the fluctuation-dissipation theorem.
This means that both entropy and curvature perturbations
must contribute to density fluctuations [18,20].
During inflation the energy density of radiation is

subdominant, therefore, its thermal fluctuation merely
contributes to entropy perturbations. Furthermore, in such
system with a heat bath, entropy perturbations decay on
scales larger than horizon and Consequently, one should
keep track of curvature perturbations. Primordial cosmo-
logical perturbations are typically expressed in terms of
curvature perturbation on uniform energy density hyper-
surfaces denoted by R. The reason behind using this
quantity is that it is conserved on large scales in simple
models, even beyond linear order perturbation theory.
In the linear order perturbation theory for the slow-roll
single field inflation (warmG inflation is dominated by one
single canonical field kinetically modified by the Galilean
field interaction in over damped slow-roll regime) the
curvature perturbation on the uniform density hypersurface
is given by the gauge invariant linear combination R ¼
ψ þ H

_ρ δρ with ψ being the spatial metric perturbation and
δϕ representing perturbations about homogeneous inflaton
field, respectively. For convenience, we choose the spatially
flat gauge and accordingly, the perturbation is given by
R ¼ H

_ρ δρ which in the slow-roll regime becomes R ¼
H
_ϕ
δϕ [48]. With these in mind, we expand the full inflaton

field as Φðt; xÞ ¼ ϕðtÞ þ δϕðt; xÞ, with ϕðtÞ being the
homogeneous background field and δϕ a small perturbation
δϕ ≪ ϕðtÞ.
To compute the value of Fourier transformation of

the inflaton fluctuation δϕ, a stochastic field approach is
commonly utilized. In fact, the interaction between the
inflaton field and radiation can be analyzed within the
Schwinger-Keldysh approach in nonequilibrium field
theory. Therefore, evaluation of fluctuations in expanding
universe is obtained by applying equivalence principle to
the nonexpanding universe leading to the generalized
second order Langevin equation after introducing stochas-
tic thermal noise ξðt; xÞ [15]

B0Φ̈ðx; tÞ þ 3HA _Φðx; tÞ þ V;Φ − F
∇2

a2
Φðx; tÞ þKðΦÞ

¼ ξðx; tÞ; ð56Þ

where

B0 ¼ B − 2G;X
∇2

a2
Φ − 2XG;XX

∇2

a2
Φ; ð57Þ

F ¼ 1 − 2G;Φ þ 2G;ΦX þ 4H _ΦG;X; ð58Þ
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whereK is a function of multiple terms of spatial derivative
ofΦ or its higher order derivative. Therefore, expanding the
inflaton field the term K will at least be of order ðδϕÞ2
which can be ignored and consequently, second order
Langevin equation for the perturbed inflaton field in
Fourier space is given by

Bδϕ̈ðk; tÞ þ 3HA0δ _ϕðk; tÞ þ
�
F 0 k

2

a2
þ V;ϕϕ þ S0

�
δϕðk; tÞ

¼ ξðk; tÞ; ð59Þ

with

A0 ¼
�
1þQ− 2ð1− λX − 2λXXÞ

δGϕ
δX

−
2

3
λϕϕδGX

þ 2ð3− ϵHÞð1þ κXÞ
δGX
δX

−
2
ffiffiffi
2

p

3
λϕ

δGϕffiffiffiffiffi
δX

p
�
; ð60Þ

S0 ¼ 3H2

�
−ϵH þQδΓ þ 2λϕϕδGX − 2

ffiffiffi
2

p
λϕ

δGϕffiffiffiffiffi
δX

p

−
2

3
κϕϕδX þ 2ð3− ϵHÞκX

δGϕ
δX

�
; ð61Þ

F 0 ¼ 1− 2ð1− λXÞ
δGϕ
δX

þ 4
δGX
δX

þ 2
δϕδGX
δX

ð1þ κXÞ: ð62Þ

To compute the power spectrum at the Hubble crossing
point we note that Hubble crossing occurs well inside the
slow-roll regime and as was discussed in stability analy-
ses, the slow-roll regime is well consistent and therefore,
the inertia terms can be ignored. As a result, the first
derivative Langevin equation in Fourier space takes the
form

3HCδ _ϕðk; tÞ þ
�
D
k2

a2
þ V;ϕϕ

�
δϕðk; tÞ ¼ ξðk; tÞ; ð63Þ

with

C ¼
�
1þQþ 6ð1þ κXÞ

δGX
δX

�
¼ Qþ B; ð64Þ

D ¼
�
1þ 4

δGX
δX

�
; ð65Þ

where we have neglected the terms first order in ϵ in the
coefficient of perturbed inflaton since they will later
appear as second order in the spectral index. If the
temperature in the universe is sufficiently high, the
thermal noise is assumed to be Markovian and having
the following properties

hξðk; tÞi ¼ 0; ð66Þ

hξðk; tÞξð−k0; t0Þiξ ¼T→∞
2ΓTð2πÞ3δ3ðk − k0Þδðt − t0Þ: ð67Þ

The approximate analytical solution is

δϕðk; tÞ ≈ 1

C
e−ðt−t0Þ=τðϕÞ

Z
t

t0

eðt0−t0Þ=τðϕ0Þξðk; t0Þdt0

þ δϕðk; t0Þe−ðt−t0Þ=τðϕ0Þ ð68Þ

where τðϕÞ ¼ 3HC
Dk2

a2
þm2

with m2 ¼ V;ϕϕ, represent the effi-

ciency of thermalizing processes. The first term in the
right hand side acts to thermalize δϕ, whereas the last is
the memory term for the initial value of δϕ which
becomes negligible over time. Since thermal effects in
Eq. (63) act in accordance with physical wave numbers,
we use the relation between the physical wave number
and comoving wave number given by kphy ¼ kc

a ¼ k.
Therefore, the mode ϕðkcÞ should be thermalized at
the physical scale k in the time interval ∼ 1

H to satisfy
the thermalization condition which means that the
memory term should vanish within the Hubble time
i.e. 1

Hτ > 1. The freeze-out wave number kF is at the
point where this condition first holds, which for a
negligible mass term is

kF ¼ H

ffiffiffiffiffiffi
3C
D

r
: ð69Þ

The power spectrum for scalar fluctuations is calculated
in the same manner as in cold inflation

PR ¼
�
H
_ϕ

�
2

ðδϕÞ2; ð70Þ

where scalar perturbation of the inflaton field is obtained
through

ðδϕÞ2 ¼ kFT
2π2

: ð71Þ

Combining Eqs. (70), (71), the power spectrum for warm
G inflation can be expressed as

PR ¼ H3T

2π2 _ϕ2

ffiffiffiffiffiffi
3C
D

r
: ð72Þ

Based on calculations in [49,50], the form of the power
spectrum in the high dissipation regime will be modified
by a growing mode due to the coupling between radiation
and inflaton fields through the temperature dependence
part of the dissipation coefficient in the high dissipation
regime. Since the power spectrum (72) has been obtained
by neglecting such a coupling, this will result in an
accurate expression in the weak dissipation rather than
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strong dissipation regime for c ≠ 0. In this sense, we will
examine the model in Sec. V in the weak dissipation regime
in order to obtain very reliable results. However, the power
spectrum is still reliable even in the high dissipation regime
for c ¼ 0. We therefore work with power spectrum Eq. (72)
in general without considering the weak dissipation regime.
Also, the spectral index is given by

ns − 1≡ d lnPR

d ln k

¼
_PR

HPR

¼ 3
_H
H2

þ
_T

HT
− 2

ϕ̈

H _ϕ
þ 1

2

_C
HC

−
1

2

_D
HD

¼ −3ϵH þ δT − 2δϕ þ
1

2
δC −

1

2
δD; ð73Þ

with

δC ≡ d ln C
dN

¼
_C

HC
¼ C−1

�
δΓ þ ϵH þ κXλX

ffiffiffiffiffi
δX

p
þ 6

δGX
δX

�
2δϕðκX þ λXX − 2κ2XÞ þ 2λXX

δGϕ
δX

�

þ 6ð1þ κXÞðηGX − ηXÞ
δGX
δX

�
; ð74Þ

and

δD ≡ d lnD
dN

¼
_D

HD
¼ 4D−1ðηGX − ηXÞ

δGX
δX

; ð75Þ

where we have used the following expression

_κX
H

¼ 2δϕðκX − 2κ2X þ λXXÞ þ 2λXX
δGϕ
δX

− κXλX
ffiffiffiffiffiffiffiffi
2δX

p
:

ð76Þ

Yet again, we note that Eq. (73) reduces to Eq. (36) in [20]
for G ¼ 0. The corresponding running of the spectral index
is indeed given by

αs ≡ d ln ns
d ln k

¼ −3ϵHηH þ δTηT − δϕηϕ þ
1

2
δCηC −

1

2
δDηD;

ð77Þ

where ηT , ηϕ; ηC,ηD, ηX, and ηGX are systemically defined as

ηT ¼
_δT
HδT

; ηϕ ¼
_δϕ
Hδϕ

; ηC ¼
_δC
HδC

;

ηD ¼
_δD
HδD

; ηX ¼
_δX
HδX

; ηGX ¼
_δGX
HδGX

: ð78Þ

Therefore, Eqs. (73), (77) indicate that ns − 1 is of order ϵ
and αs is of order ϵ2. This means that the spectral index is
scale-invariant and that the size of spectral index variations
is very small which coincides with observation qualitatively.
The tensor perturbations do not couple to thermal
background and therefore gravitational waves are merely
generated by the quantum fluctuations as in conventional
inflation

PT ¼ 2M−2
pl

�
H
2π

�
2

: ð79Þ

The corresponding spectral index of gravitational waves
is expressed as

nT ¼ −2ϵH ¼ −2
ϵ

A
: ð80Þ

Dividing Eq. (70) by Eq. (79), the tensor-to-scalar ratio is
given by

r ¼ PT

PR
¼ H

T
2ϵ

ffiffiffiffi
D

pffiffiffiffiffiffi
3C

p
A2

: ð81Þ

It is now observed that the tensor-to-scalar ratio can be
much smaller, thanks to both thermal effects and Galileon
field effects if both are strong, which is another synergy of
both effects. Considering the slow-roll condition ϵ < A, we
find that the energy scale of inflation merely bounds from
above as

r <
H
T

2
ffiffiffiffi
D

pffiffiffiffiffiffi
3C

p
A
: ð82Þ

Also, the consistency relation becomes

r ¼ −
H
T

ffiffiffiffi
D

pffiffiffiffiffiffi
3C

p
A
nT; ð83Þ

which is not a fixed relation as in standard G inflation
(r ¼ −8.7nT). The radiation energy density and universal

temperature has the Stefan-Boltzmann relationship ργ ¼
π2g⋆
30

T4 and therefore, utilizing slow-roll equations and power
spectrum relation we find

T
H

¼
�
45

4π2

�1
3

�
Q

g⋆PR

�1
3

�
3C
D

�1
6

: ð84Þ

In fact, C > D ameliorates the ratio of T
H, thus, the thermal

effect is more obvious and the case is opposite when we have
C < D. The condition for warm inflation (T > H) to occur
can be obtained by Q > g⋆PR. Taking g⋆ of order 102 and
PR of order 10−9, we deduce that very small amount of
dissipation results in warm inflation. One evaluates the
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variation of the inflaton field for observable scales with
ΔN ≃ 4 corresponding to 1 < l < 100 as follows

Δϕ
Mpl

¼
_ϕΔN
MplH

≃ 5.2

�
T
H

�1
2

�
C
D

�1
4

r
1
2: ð85Þ

In effect, it is possible to have large excursion of the inflaton
field in a strong regime even if the tensor-to-scalar ratio is
unobservable which can cure overlarge amplitudes of the
inflaton field in conventional inflation. This is a striking
characteristic of warm inflationary scenarios even in a non-G
inflation limit.

V. WARM HIGGS G INFLATION IN WEAK
DISSIPATION AND G-DOMINANT REGIME

(Q ≪ 1 + 3 δGX
δX

& 3 δGX
δX

≫ 1)

Now is the time to test the model at hand against
observational data for particular forms of Vðϕ; TÞ,
Γðϕ; TÞ and Gðϕ; XÞ. We take a general possible form
of the generalized Galileon interaction term as [43]

Gðϕ; XÞ ¼ −
ϕ2pþ1Xq

M4qþ2p ; ð86Þ

where M is a constant with dimension of mass. The aim
of considering such general form is to show that for
ðp; qÞ ¼ ð0; 1Þ, the simplest model of warm Higgs G
inflation is consistent with Planck results even for large
self-coupling while the Higgs G-inflation which has been
investigated in [43] could not exhibit such property since it
may not be reheated for large self-couplings. Therefore, we
compare our theoretical predictions against Planck like-
lihood including TT, TE, and EE polarizations and BAO
data [29] to confirm the consistency of the model with
observations.
Upon considering (86), the modified Klein-Gordon

equation in weak dissipation Q ≪ 1þ 3 δGX
δX

and

G-dominant regimes 3 δGX
δX

≫ 1 reduces to

−9qH2 _ϕ2 ϕ
2pþ1Xq−1

M4qþ2p þ V;ϕ ≃ 0; ð87Þ

where it deserves to be pointed out that the weak dissipation
condition reduces to Q ≪ 3 δGX

δX
using the G-dominant

condition.
Now, the chaotic inflation is characterized by the

following power-law potential form

VðϕÞ ¼ λ

n
M4

pl

�
ϕ

Mpl

�
n
; ð88Þ

and from first principles in quantum field theory, dissipa-
tion coefficient has the following general form [51]

Γðϕ; TÞ ¼ Γ0Mpl

�
ϕ

Mpl

�
1−m
�

T
Mpl

�
m
; ð89Þ

where Γ0 is connected to dissipative microscopic dynamics.

The above expression for m ¼ −1 becomes Γ ¼ Γ0
ϕ2

T
which corresponds to a dissipative coefficient in non-
supersymmetric case, m ¼ 0 gives Γ ¼ Γ0ϕ which corre-
sponds to a supersymmetric (SUSY) case with an
exponentially decaying propagator, m ¼ 1 gives Γ ¼ Γ0T,
[52], which corresponds to a high temperature SUSY case
and m ¼ 3 gives Γ ¼ Γ0

T3

ϕ2, [53], which corresponds to a

low temperature SUSY case. Considering (87), (88), one can
obtain the inflaton velocity versus inflaton field as follows

_ϕ≃ −
ffiffiffi
2

p
M2

plζ
1
2q

�
ϕ

Mpl

�
−pþ1

q

; ð90Þ

with

ζ ¼ n
6q

�
M
Mpl

�
4qþ2p

; ð91Þ

where we have considered a negative sign for the velocity
field in order to have δGX > 0, therefore

A≃ 3
δGX
δX

¼
ffiffiffiffiffi
nλ
6

r
ζ−

1
2q

�
ϕ

Mpl

�nqþ2p−2qþ2
2q

; ð92Þ

and using (20), (21), (90), (92), one can derive the following
relation between temperature and inflaton field

T
Mpl

¼ γ0ζ
1

qð4−mÞ

�
ϕ

Mpl

�2q−2mq−qn−4p−4
2qð4−mÞ

; ð93Þ

where

γ0 ¼
�
60Γ0

ffiffiffi
n

p

π2g�
ffiffiffiffiffi
3λ

p
� 1

4−m
: ð94Þ

Utilizing Eq. (93), the condition on c can be written in terms
of parameters of the model as follows

jcj ¼
				 qð8 − 8m − nmÞ − 4mðpþ 1Þ

qð2 − 2m − nÞ − 4ðpþ 1Þ
				 < 4: ð95Þ

Therefore, condition (95) should be checked for any special
p, q,m, and n. Using the condition ϵH ¼ 1, one may find the
value of the inflaton filed at the end of inflation and by
inserting that into Eq. (23), one may obtain the following
relation between the inflaton field at Hubble crossing time
and the e-folding number
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ϕhc

Mpl
¼
�
n
6q

� 1
z0

�
M
Mpl

�4qþ2p
z0

� ffiffiffiffiffiffi
6n
λ

r
z0N þ nq

2q

�2q
z0

: ð96Þ

Now, inserting (90), (93) into Eq. (72) by using κX ¼ q,
Eq. (96) and definition for the spectral index, one may obtain
the spectral index in terms of the e-folding number

ns − 1 ¼ −
z1

z0N þ nq
; ð97Þ

with

z0 ¼ nqþ 2qþ 2pþ 2;

z1 ¼
nqð11 − 3mÞ þ 2qð1 −mÞ þ ð4pþ 4Þð3 −mÞ

ð4 −mÞ :

Therefore, the model with m ¼ −1, 0, 1 is just red tilted but
for m ¼ 3 can be blue tilted for n < 2, red tilted for n > 2
and gives ns ¼ 1 for n ¼ 2. Furthermore, by inserting
m ¼ 3 in Eq. (97) one can find that ns is very near unity,
therefore, it is outside of the Planck data even for lowest
possible e-folding number N ¼ 35 [54,55] as has been
illustrated in Fig. 1.
One may derive observable parameters of the model in

terms of the spectral index as follows

PR ¼
ffiffiffiffiffiffiffi
qλ3

6n3

s
γ0
2π2

ζ
ð5−mÞðn−2Þ
2z0ð4−mÞ

 ffiffiffiffiffiffi
3n
2λ

r
z1

qð1 − nsÞ

!z1
z0

; ð98Þ

r ¼ λ

6nπ2PR
ζ

n
z0

 ffiffiffiffiffiffi
3n
2λ

r
z1

qð1 − nsÞ

!2nq
z0

; ð99Þ

T
H

¼
ffiffiffi
2

q

s
12n2π2PR

λ2
ζ
2−n
z0

 ffiffiffiffiffiffi
2λ

3n

r
qð1 − nsÞ

z1

!4ðnqþpþ1Þ
z0

; ð100Þ

				 ΔϕMpl

				 ¼
ffiffiffiffiffiffiffiffi
96n
λ

r
ζ

1
z0

 ffiffiffiffiffiffi
2λ

3n

r
q
z1
ð1 − nsÞ

!nqþ2pþ2
z0

; ð101Þ

Q ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n3π5
ffiffiffiffiffiffiffiffiffi
15g�

p
5qλ3

s
PR

!4

ζ
3ð2−nÞ
z0

×

 ffiffiffiffiffiffi
3n
2λ

r
z1

qð1 − nsÞ

!−12ðnqþpþ1Þ
z0

; ð102Þ

3
δGX
δX

¼
ffiffiffiffiffi
nλ
6

r
ζ−

2
z0

 ffiffiffiffiffiffi
3n
2λ

r
z1

qð1 − nsÞ

!nqþ2p−2qþ2
z0

; ð103Þ

δGϕ
3δGX

¼ −
2pþ 1

3z1
ð1 − nsÞ: ð104Þ

Using the condition for warm T > H, weak dissipation
Q < 3 δGX

δX
and G-dominant 3 δGX

δX
> 1 regime, we can obtain

a range for the value of M

Mmin < M < minfM1;M2g; ð105Þ

where

Mmin ¼ Mpl

�
6q
n

� 1
4qþ2p

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n3π5

ffiffiffiffiffiffiffiffiffi
15g�

p
5qλ3

s
PR

1
CA

4z0
ð3n−8Þð4qþ2pÞ

×

�
6

nλ

� z0
6n−16

 ffiffiffiffiffiffi
2λ

3n

r
2qð1 − nsÞ

z1

!13nqþ14p−2qþ14

ð3n−8Þð4qþ2pÞ
; ð106Þ

M1 ¼ Mpl

�
6q
n

� 1
4qþ2p
�
6

nλ

� z0
4ð4qþ2pÞ

×

 ffiffiffiffiffiffi
2λ

3n

r
2qð1 − nsÞ

z1

!−nqþ2p−2qþ2

2ð4qþ2pÞ
; ð107Þ

M2 ¼ Mpl

�
6q
n

� 1
4qþ2p

 ffiffiffi
2

q

s
12n2π2PR

λ2

! z0
ðn−2Þð4qþ2pÞ

×

 ffiffiffiffiffiffi
2λ

3n

r
2qð1 − nsÞ

z1

! 4ðnqþpþ1Þ
ðn−2Þð4qþ2pÞ

: ð108Þ

Now, using Eq. (98) and the bound on the value ofM, we
can also find the range of the parameter Γ0. Having a look at
Eqs. (99)–(104) and using Eq. (97) one may find that these
expressions are independent of m for particular values of
the e-folding, and hence the range of these parameters for
different p and q obtained in Table I. We have also plotted
the allowed region for M versus spectral index in order to

n s

20 40 60 80 100
0.94

0.95

0.96

0.97

0.98

0.99

1.00

q

FIG. 1. The variation of spectral index ns versus q for N ¼ 35,
m ¼ 3, n ¼ 4 and λ ¼ 0.13 in which dotted, dashed and dot-
dashed curves denote p ¼ 0, 10 and 100, respectively. Also dark
and light shades represent the range of tilt spectral index for 1σ
and 2σ of Planck likelihoodþ TTTEEEþ BAO.
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check if it is inside the Planck likelihood for m ¼ 1, 0
and m ¼ −1 in Figs. 2, 3, and 4. In fact, these models are
well-consistent with observational date even for large self-
coupling for very small values of M as we expected from

Eqs. (106)–(108) since they are proportional to PR and
ð1 − nsÞ which have very small values. We also note that
the value ofM will become larger by increasing the value of
p and q as we can observe from Figs. 2, 3, and 4.

VI. CONCLUDING REMARKS

In a warm inflationary scenario one avoids the reheating
phase by introducing a dissipating exchange between inflaton
and radiation fields. The disability of a Galileon-driven
inflationary model, the G inflation, to properly exhibit
reheating motivated us to reconstruct G inflation in the
context of a warm scenario. In this sense, we modified the
action by adding a generalized Galileon scalar field inter-
action where dynamical equation of the inflaton field is
modified by the appearance of a viscose term. This resulted in
broader slow-roll conditions due to the synergyof thermal and
Galileon effects and was achieved by applying a stability
analysis to the resulting dynamical system. Indeed we
obtained a novel but still scale-invariant form for power
spectrum and found that the energy scale during horizon
crossing is depressed by the synergy of the two effects.
Furthermore, the tensor-to-scalar ratio becomes substantially
larger in weak warm G-inflation and insignificant in the
opposite way.
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FIG. 3. The allowed region for M and spectral index ns for
m ¼ 0. Other information is the same with Fig. 2.
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FIG. 4. The allowed region for M and spectral index ns for
m ¼ −1 in which dot-dashed and solid curves denote lower and
upper bounds on M for ðp; qÞ ¼ ð1; 1Þ and (3, 2), respectively.
Other information is the same with Fig. 2.

TABLE I. Constraints on the parameters of the model for different p, q, N ¼ 50, n ¼ 4, g� ¼ 100 and λ ¼ 0.13. Here we defined
x1 ¼ Log10ðΓ0Þ, x2 ¼ Log10ðrÞ, x3 ¼ Log10ðΔϕMpl

Þ, x4 ¼ Log10ðTHÞ, x5 ¼ Log10ðAÞ, and x6 ¼ Log10ðQAÞ for convenience.
ðp; qÞ (0, 1) (0, 2) (1, 1) (3, 2)

jδGϕ=3δGXj 0.0008 0.00042 0.0018 0.0023

x1 −6.5 < x1 < 13.9 −6.7 < x1 < 13.9 −6.5 < x1 < 14.2 −6.7 < x1 < 14.4
x2 −35.7 < x2 < −15.2 −35.9 < x2 < −15.2 −36.4 < x2 < −15.6 −37 < x2 < −15.9
x3 −12.2 < x3 < −7.1 −12.1 < x3 < −6.9 −12.5 < x3 < −7.3 −12.5 < x3 < −7.2
x4 0 < x4 < 10.2 0 < x4 < 10.3 0 < x4 < 10.4 0 < x4 < 10.5
x5 13.1 < x5 < 23.4 13.1 < x5 < 23.5 13.4 < x5 < 23.8 13.6 < x5 < 24.1
x6 −20.5 < x6 < 0 −20.0 < x6 < 0 −20.8 < x6 < 0 −21.1 < x6 < 0

jcj < 4 m ¼ 0, 1 m ¼ 0, 1 m ¼ −1, 0, 1 m ¼ −1, 0, 1
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FIG. 2. The allowed region for M and spectral index ns for
m ¼ 1, n ¼ 4, g� ¼ 100 and λ ¼ 0.13 in which dotted, dashed,
dotdashed and solid curves denote lower and upper bounds onM
for ðp; qÞ ¼ ð0; 1Þ; ð0; 2Þ; ð1; 1Þ and (3, 2), respectively, as well
as dark and light shades represent the range of tilt spectral index
for 1σ and 2σ of Planck likelihoodþ TTTEEEþ BAO. Indeed,
the points have been plotted for N ¼ 50 and used Planck
normalization PR ¼ 2.44 × 10−9.
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Since we have not considered the coupling between the
inflaton and radiation fields due to temperature dependent
part of the dissipation coefficient (c ≠ 0) in a high dis-
sipation regime, the resulting power spectrum is more
reliable in a weak dissipation regime. In this sense, we
finally solved the model for the chaotic potential λ

nϕ
n and

Γðϕ; TÞ ¼ ϕ1−mTm with Gðϕ; XÞ ¼ ϕ2pþ1Xq and illus-
trated that Higgs G inflation for a renormalizable potential
(n ¼ 4), which may not otherwise be reheated for large self-
coupling λ≃ 0.13 in cold G inflation, produces a scale-
invariant power spectrum consistent with observations in the
weak dissipation Q ≪ 1þ 3 δGX

δX
and G-dominant 3 δGX

δX
≫ 1

regime of the warm scenario for m ¼ −1, 0 and 1 and very
small value ofM. However,m ¼ 3 should be excluded since
it cannot be inside the Planck likelihood for a sufficient
e-folding number. Furthermore, we found that the value of
M, for which the model is resistant with observation, will
become larger by increasing the value of p and q.
As the final remark, warm G inflation with a low

dissipative rate not only survives G-inflation, particularly
Higgs inflation and its properties but also inherits the
aforementioned properties coming from the warm scenario.
We will focus attention on specific models and give the
precise comparison with observations in a separate work.
As a matter of fact, natural inflation which suffers from
the super-Planckian value of f [43], the parameter of

the model, may also be cured in the warm scenario
of G inflation. Furthermore, we hope to be able to present
an accurate analysis of the model in high dissipation for
c ≠ 0 in the near future. Also, the detailed issue of non-
Gaussianity in the new scenario deserves more
investigation.

Note added.—Recently, we became aware of [56] where the
author has basically addressed the same issues. However,
the present work goes much further by studying the
consistency of the model and considerations of the general
form of the Galileon interaction term Gðϕ; XÞ, the general
form of the dissipation coefficient and potential while
taking into account temperature dependence, in contrast
to what is done in [56] where the author only considers the
scalar field dependence. In addition, it should be mentioned
that the freeze-out number which is derived in this work is
different from that obtained in [56] for Gðϕ; XÞ ¼ gðϕÞX
due to the fact that to derive the freeze-out number, one
should insert the full inflaton field which depends on the
space and time, into covariant form of the modified Klein
Gordon equation (3) and, therefore, a Laplacian term will
appear in the second order Langevin equation (56). As a
result, the Laplacian term will be multiplied by a term “D”
which changes the freeze-out number as compared to what
has been obtained in [56].
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