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The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle.
Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of
inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the
Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from
the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the
WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating
temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of
parameter space where either gravitational or thermal production is dominant, and within those regions we
identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal
production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.
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I. INTRODUCTION

A superheavy particle, also known as the WIMPzilla, is
an attractive dark matter (DM) candidate. In general the
WIMPzilla mass can be much larger than the weak scale,
and possibly as large as the Hubble scale during inflation.
In this study we will consider WIMPzilla masses greater
than about 108 GeV. Unlike the lower-mass WIMP dark
matter candidates, thermal freeze-out in a radiation-
dominated universewould dramatically overpredict the relic
abundance of WIMPzilla dark matter [1]. Consequently, the
WIMPzilla is assumed to have very weak (or possibly
nonexistent) interactions with particles in the plasma.
Various nonthermal production mechanisms have been
explored for noninteracting WIMPzillas [2–4]. Perhaps
the most elegant of these mechanisms is the gravitational
production of WIMPzillas during, or at the end of, inflation
[5,6]. This scenario only requires theWIMPzilla to couple to
gravity; specifically, there need not be any direct coupling
with the Standard Model (SM) fields or the inflaton.
However, from an effective field theory (EFT) perspec-

tive we also expect the WIMPzilla to have interactions with
SM fields suppressed by the scale of new physics, which
may be as high as the Planck scale. The leading-order
interactions should be with the SM Higgs field through the
so-called Higgs portal [7–9]. In this article, we explore the
consequences of these Higgs-WIMPzilla interactions.
We suppose that heavy states at the scale of new physics

mediate interactions between the WIMPzilla and the SM
particles, and at the energy scales for thermal production
these interactions can be described by an effective field
theory. The WIMPzilla-SM couplings take a different form
depending on the spin of the WIMPzilla particle. We will
consider three cases: 1) a spin-0 WIMPzilla represented by
the real scalar field ϕðxÞ; 2) a spin-1=2 WIMPzilla

represented by the Majorana spinor field ψðxÞ; and 3) a
spin-1 WIMPzilla represented by a real vector field AðxÞ.
Henceforth, when discussing WIMPzillas in this paper,

“scalar” will refer to a real massive field with one scalar
degree of freedom, “fermion” will refer to a massive
Majorana fermion with two degrees of freedom, and
“vector” will refer to a massive real vector field with three
degrees of freedom.
The Higgs-squared operator Φ†Φ is the only dimension-

two SM operator that is Lorentz invariant and gauge
invariant. Thus, it is reasonable to expect that the lead-
ing-order WIMPzilla-SM interaction is through the Higgs
field, denoted as ΦðxÞ. The interactions contribute terms to
the Lagrangian of the form

−Lint ⊇

8>>><
>>>:

κϕ
2
ϕ2Φ†Φ ϕ ¼ scalar WIMPzilla

κψ
2

1
Mpl

ψψΦ†Φ ψ ¼ fermion WIMPzilla

κA
2

m2

M2
pl
gμνAμAνΦ†Φ Aμ ¼ vector WIMPzilla

ð1Þ

where gμν is the inverse metric and m is the WIMPzilla
mass (we will use m to denote the WIMPzilla mass for all
three models). We use the reduced Planck mass Mpl ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8πG

p ≃ 2.43 × 1018 GeV to normalize the irrelevant
operators. If the scale of new physics is lower than Mpl,
then this would correspond to jκj > 1. To ensure that the
WIMPzilla is a stable dark matter candidate, we enforce a
Z2 symmetry on the WIMPzilla field. This forbids oper-
ators such as the neutrino portal LΦψ and gauge-kinetic
mixing terms ∂μAνBμν, where L is the SM lepton doublet
and Bμν is formed from SM gauge fields. For the vector
WIMPzilla coupling we include a factor of m2=M2

pl
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because this gauge-noninvariant operator must vanish in
the limit m → 0 where the gauge symmetry is restored.
In this paper we study the range in parameter space

where the number of WIMPzillas produced after inflation
through the Higgs portal operators would exceed the
number of WIMPzillas produced through gravitational
processes. The interactions in Eq. (1) allow WIMPzillas
to be pair produced from annihilations of Higgs/anti-Higgs
pairs in the plasma (prior to electroweak symmetry break-
ing). In this way the DM abundance would be set by freeze-
in, like gravitino DM [10,11] (for a recent review, see
Ref. [12]). We will also study where production through the
Higgs portal dominates and produces WIMPzillas in the
correct abundance to be dark matter.
The remainder of the article is organized as follows. In

Sec. II we briefly motivate the Higgs-WIMPzilla inter-
actions that appear in Eq. (1). In Sec. III we review how
WIMPzilla dark matter can be generated from gravitational
particle production. The new work primarily appears in
Sec. IV where we calculate the abundance of WIMPzilla
dark matter that is produced thermally from interactions
with the Higgs as described in Eq. (1). Our main results are
summarized in Sec. V, in which we illustrate the regions of
parameter space where the current dark-matter relic abun-
dance can be explained by either gravitational or thermal
production of superheavy particles. We conclude in Sec. VI
and suggest directions for future work.

II. HIGGS-WIMPZILLA INTERACTIONS

In the spirit of effective field theory, there is nothing to
prevent us from writing the operators that appear in Eq. (1).
In fact, these operators are simply the product of the
separate WIMPzilla and Higgs mass operators, and there-
fore any symmetry that forbids the interaction operators
must also forbid the separate mass operators. Then, for a
massive WIMPzilla, one generally expects the Higgs-
WIMPzilla interaction to be present. Nevertheless, it is
instructive to give examples of how such operators might
originate from new physics at a higher mass scale. (Here
“higher mass” refers to masses larger than the expansion
rate during inflation, the mass of the WIMPzilla, or the
temperature of the universe during thermal production.)
First consider the scalar WIMPzilla operator. The lead-

ing-order term coupling scalar WIMPzillas to the SM
Higgs is dimension-four, so there is not an explicit
suppression by the scale of new physics. However there
might be a suppression encoded in κϕ. To see how this
might arise, imagine that there is an approximate shift
symmetry that forbids the term ϕ2Φ†Φ, but the shift
symmetry is explicitly broken by dimension-six operators
Λ−2χ4ϕ2 and Λ−2ϕ2χ2Φ†Φ involving a new scalar field χ
and a scale of new physics Λ. If χ obtains a vacuum
expectation hχi, the first term would generate a mass
hχi2=Λ for the ϕ, and the second term would result in a
term of the form ðhχi2=Λ2Þϕ2Φ†Φ coupling the WIMPzilla

to the Higgs. If we identify κϕ=2 ¼ ðhχi=ΛÞ2, then the scale
of new physics Λ would appear implicitly in κϕ, and jκϕj
could be much less than unity. On the other hand, one can
imagine that there is just a κϕϕ2Φ†Φ coupling where jκϕj is
of order unity.
In fact, from the EFT perspective, we should also allow

the WIMPzilla to couple directly to the inflaton field [13].
However, the argument above can be applied to explain
why the inflaton-WIMPzilla coupling might be small. More
generally, a direct WIMPzilla-inflaton coupling opens a
new channel for nonthermal WIMPzilla production in
which the latter is produced directly from the decay of
the inflaton during reheating or from a parametric reso-
nance during preheating [14,15]. We do not consider these
additional WIMPzilla production mechanisms in this work.
Now consider fermionic WIMPzillas. Imagine a UV-

complete model with the WIMPzilla ψ and, again, a new
scalar field χ of mass Λ, with interaction terms gψψχ and
μχΦ†Φ, where g is a Yukawa-type dimensionless coupling
and μ has mass dimension one. At scales much less than Λ,
integrating out the χ field generates an effective term
ðgμ=Λ2ÞψψΦ†Φ. We can then identify κψ=2Mpl ¼ gμ=Λ2.
Finally, consider a possibility for vector WIMPzillas. A

mass for the vector field breaks gauge symmetry, so it is
natural to imagine that it arises through a Higgs mecha-
nism. Consider the UV theory to include a scalar field χ
charged under the gauged U(1). The covariant derivative of
χ is Dμχ − igAμχ, and the kinetic term for χ, DμχDμχ�

generates a term g2AμAμχχ
�. When χ develops a vacuum

expectation value, a mass of m2 ¼ g2hχi2 for the vector
field is generated. Now if the Higgs field is coupled to χ
through a term Λ−2DμχDμχ�Φ†Φ, we would have a term
g2Λ−2AμAμχχ�Φ†Φ. When χ gets a vacuum expectation
value, the term becomes ðm=ΛÞ2AμAμΦ†Φ. So we would
identify κA=2M2

pl ¼ Λ−2.
These examples are not meant to be the simplest nor

most elegant UV completions, but they serve to illustrate
how the terms in Eq. (1) might plausibly arise. Moreover,
this exercise lets us estimate what might serve as a
reasonable range of values for the magnitude of the
coefficients κϕ, κψ=Mpl, or κAm2=M2

pl. For the scalar model,
κϕϕ

2Φ†Φ is a mass-dimension-four operator, and pertur-
bative unitarity requires jκϕj < 4π. For the fermion model,
the Higgs portal interaction ðκψ=MplÞψψΦ†Φ is nonrenor-
malizable, and the effective field theory is only reliable at
energy scales that are small compared to the cutoffMpl=jκψ j.
In Sec. IV we will see that WIMPzillas are produced at a
temperature (i.e., an energy scale) of Tmax, which is the
maximum temperature of the universe after inflation.
Therefore, the validity of the EFT requires jκψ j=Mpl <
1=Tmax in the fermion model, and a similar argument in
thevectorWIMPzillamodel leads to jκAj=M2

pl < 1=T2
max. So

as a rough limit, we take
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jκϕj < 101; jκψ j <
Mpl

Tmax
∼ 106; and

jκAj <
M2

pl

T2
max

∼ 2 × 1012; ð2Þ

wherewe have used Eq. (39) to evaluate Tmax∼2×1012GeV
for the fiducial parameters.

III. GRAVITATIONAL PRODUCTION
OF WIMPZILLAS

If conformal invariance is not respected in the expanding
universe, fields develop an effectively time-dependent
dispersion relation due to their coupling with gravity
[16]. If the dispersion relation evolves nonadiabatically
for some Fourier modes, then the field is excited out of its
vacuum state, which corresponds to particle production
[17]. This phenomenon is similar to the behavior of a
simple quantum harmonic oscillator when the spring
constant changes abruptly. An ideal environment for
gravitational particle production is the transition from
the accelerated expansion of cosmological inflation into
the decelerated expansion of a matter- or radiation-
dominated universe [18,19].
Various people have studied the gravitational production

of superheavy dark matter during inflation. Since gravita-
tional particle production can occur even when the particle
in question has only a minimal gravitational interaction, the
model is fully determined by specifying the particle’s mass
and spin. The authors of Refs. [4–6] studied the gravita-
tional production of scalar (spin-0) dark matter, those of
Refs. [6,20] studied spin-1=2 fermion dark matter, and
those of Refs. [21,22] studied the vector (spin-1) dark
matter case. Whereas the scalar and fermion studies
focused on superheavy (WIMPzilla) dark matter, the vector
studies focused instead on superlight dark matter. We are
not aware of any studies of gravitational particle production
with spin-3=2 fermions, and we do not consider that
possibility further here.
In order to determine the spectrum and relic abundance of

dark matter that is produced by gravitational particle pro-
duction, one can perform the following calculation. First, one
specifies a model of inflation and reheating, which fixes the
evolution of the spacetime background. The metric is in the
Friedmann-Robertson-Walker (FRW) form with scale factor
aðtÞ and Hubble parameterHðtÞ ¼ _a=a at time t. Next, one
derives the dark matter field equation and solves it assuming
the Bunch-Davies initial condition. From the late-time
behavior, one extracts the Bogoliubov coefficient, which
is denoted as βðkÞ for the Fourier mode with comoving
momentum k. Finally, one calculates the physical number
density of dark matter particles at late times as

nðtÞ ¼ g
a3ðtÞ

Z
d3k
ð2πÞ3 jβðkÞj

2: ð3Þ

The factor g counts the internal spin and flavor degrees of
freedom: g ¼ 1 for a scalar, g ¼ 2 for a fermion, g ¼ 2 for the
transverse polarizations of a vector, and g ¼ 1 for the
longitudinal polarization. Equation (3) assumes that the dark
matter does not participate in any particle-number-changing
reactions after production, and consequently the comoving
number density a3n is conserved.
In each of the three dark matter models we assume the

same background spacetime evolution, which is illustrated
schematically in Fig. 1. Initially an epoch of inflation drives
the accelerated expansion of the universe. For concreteness
we assume an inflaton potential quadratic in the inflaton
field (chaotic inflation); we do not expect that our results
will depend sensitively on this assumption [23]. We assume
an inflaton mass of 2 × 1013 GeV, so the Hubble parameter
at the end of inflation is He ≡HðteÞ≃ 1013 GeV, and 60
e-foldings before the end of inflation the expansion rate is
Hinf ≃ 1014 GeV. We define the end of inflation by
äðteÞ ¼ 0, which corresponds to the time when the comov-
ing Hubble radius (1=aH ¼ 1= _a) begins to grow. Inflation
is followed by an epoch of reheating during which time the
inflaton field oscillates about the minimum of its potential
and the universe is effectively matter-dominated. We
assume that the plasma is generated by the perturbative
decay of the inflaton. If Γ denotes the inflaton decay width,
then reheating is approximately completed at time t ¼ tRH
when HRH ≡HðtRHÞ ≈ Γ. At this time the energy density
of the plasma exceeds the energy in the coherent inflaton
oscillations, and we say that the plasma has reached the
reheat temperature, denoted by TRH, which we take as a free
parameter. However, the maximum temperature during
reheating, Tmax, will generally exceed TRH [24], and this
fact is important for our study of thermal WIMPzilla
production in Sec. IV. Subsequently, we have a standard
big bang cosmology: reheating is followed by an epoch of

FIG. 1. An illustration of the background cosmology assumed
in this work. On a log-log scale, we show how the Hubble
parameter HðtÞ varies with the monotonically growing FRW
scale factor aðtÞ. The WIMPzilla mass m defines a time t� such
that H� ≡Hðt�Þ ¼ m and a� ≡ aðt�Þ. The very recent epoch of
accelerated expansion is not shown.
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radiation domination that lasts until the dark matter energy
density comes to dominate and heralds the epoch of
WIMPzilla domination (dark matter domination), which
approximately lasts until today when dark energy
dominates.
Finally let us remark that it is only meaningful to talk

about the number density of gravitationally produced
particles [Eq. (3)] at late times. There is a time t ¼ t� at
which the Hubble parameter H decreases below m such
that H� ≡Hðt�Þ ¼ m. After this time, all of the (non-
relativistic) Fourier modes of the WIMPzilla field will be
oscillating and their amplitudes will decay such that the
energy density of the WIMPzilla field redshifts like
pressureless dust, namely ρ ∼ a−3, and then we define
n ¼ ρ=m. By this time, the evolution of ωk has become
adiabatic, and jβðkÞj2 in Eq. (3) is well defined. We
assume that the time t� occurs while the universe is still
in the matter-dominated phase of reheating. Thus we
focus on larger WIMPzilla masses that satisfy m>
HRH≃ð1.4×108GeVÞðTRH=1013GeVÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTRHÞ=106.75

p
.

In the following subsections we provide additional
details of the gravitational particle production calculation
for the scalar, fermion, and vector dark matter models, and
we summarize the salient results that are relevant to our
analysis.

A. Scalars

Consider a scalar field ϕðxÞ with a nonminimal
gravitational interaction. The action for this field is
given by

S½ϕðxÞ;gμνðxÞ�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ−

1

2
m2ϕ2−

1

2
ξRϕ2−

1

2
M2

plR

�
;

ð4Þ

where R is the Ricci scalar and ξ is a dimensionless
coupling. Two well-studied choices for ξ are ξ ¼ 0
(“minimal” coupling) and ξ ¼ 1=6 (“conformal” cou-
pling). Note that ξ ¼ 0 is not particularly special, because

even if ξ ¼ 0 at some energy scale, quantum corrections
would induce ξ ≠ 0 at other energy scales [25–27]. On
the other hand, ξ ¼ 1=6 is a quasi-fixed point of the
renormalization-group flow because the theory enjoys an
approximate conformal symmetry in the limit ξ → 1=6,
which is spoiled by the mass parameter m2=M2

pl ≠ 0, as
well as possibly the nongravitational interactions of ϕ.
That said, we will analyze gravitational particle produc-
tion for ξ ¼ 0 and ξ ¼ 1=6, and comment on the
quantitative changes for other values of ξ. Presumably,
some theory around the Planck scale will determine a
value of ξ. Running ξ down to an energy scale of Hinf
would not change the value very much.
In an FRW spacetime, the field operator may be

decomposed into mode functions χkðηÞ, which only depend
on the conformal time η [dη ¼ dt=aðtÞ] and the modulus of
the comoving wave vector jkj≡ k (owing to the homo-
geneity and isotropy of the background metric). The mode
decomposition is written as1

ϕðη;xÞ¼ 1

aðηÞ
Z

d3k
ð2πÞ3 ½âðkÞχkðηÞe

ik·xþ â†ðkÞχ�kðηÞe−ik·x�;

ð5Þ

where â†ðkÞ and âðkÞ are the creation and annihilation
operators. The mode functions satisfy the wave equation

∂2
ηχkðηÞ þ ω2

kðηÞχkðηÞ ¼ 0; ð6Þ

where the dispersion relation is

ω2
kðηÞ ¼ k2 þ a2m2 − ð1=6 − ξÞa2R; ð7Þ

and RðηÞ ¼ 12H2ðηÞ þ 6a−1ðηÞ∂ηHðηÞ in an FRW space-
time. If the matter driving the FRW expansion has an
effective equation of state w ¼ p=ρ, the deceleration equa-
tion is written as a∂ηH ¼ −ð3=2Þa2H2ð1þ wÞ. Then the
dispersion relation Eq. (7) during inflation (w ≈ −1), matter
domination (w ≈ 0), and radiation domination (w ≈ 1=3) is
given by

ω2
kðηÞ ¼

8>><
>>:

k2 þ a2m2 − 2ð1 − 6ξÞa2H2 during inflation

k2 þ a2m2 − 1
2
ð1 − 6ξÞa2H2 during matter-dominated expansion

k2 þ a2m2 during radiation-dominated expansion:

ð8Þ

We will discuss below how particle production results from
the nonadiabatic evolution of ω2

kðηÞ during cosmological
expansion. The dispersion relation Eq. (8) acquires a time
dependence from both the mass term (a2m2), provided that
m ≠ 0, and the curvature term, provided that ξ ≠ 1=6. We

1The factor of a−1ðηÞ ensures the field and its conjugate
momentum satisfy the usual algebra ½ϕðη;xÞ;ϕðη;x0Þ� ¼
½πðη;xÞ;πðη;x0Þ� ¼ 0 and ½ϕðη;xÞ;πðη;x0Þ�¼−½πðη;xÞ;ϕðη;x0Þ�¼
iδð3Þðx−x0Þ.
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assume that if ξ ≥ 1=6 the effective mass-squared will
always be positive, and therefore ω2

k > 0 for all k. A value
of ξ smaller than 1=6 implies that some Fourier modes will
experience a tachyonic instability (ω2

k < 0), which plays an
important role in particle production.
For isotropic field configurations, we can parametrize

solutions of the wave equation (6) as

χkðηÞ ¼
αkðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞ

p e−iθkðηÞ þ βkðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞ

p eiθkðηÞ ð9Þ

where αk and βk are complex mode functions, and the phase
is defined by ∂ηθkðηÞ ¼ ωkðηÞ. This parametrization is
particularly convenient because the Bunch-Davies initial
condition becomes αkðηÞ → 1 and βkðηÞ → 0 as η → −∞.
The parametrization (9) allows the second-order wave
equation for χkðηÞ, Eq. (6), to be written as a pair of
coupled first-order equations for αkðηÞ and βkðηÞ:

∂ηαkðηÞ ¼
1

2
AkðηÞωkðηÞβkðηÞe2iθkðηÞ; ð10aÞ

∂ηβkðηÞ ¼
1

2
AkðηÞωkðηÞαkðηÞe−2iθkðηÞ: ð10bÞ

The coefficient AkðηÞ, which is defined by

AkðηÞ≡ ∂ηωkðηÞ
ω2
kðηÞ

; ð11Þ

quantifies the departure from adiabaticity, i.e. it is large if
the dispersion relation changes rapidly.
The abundance of gravitationally produced particles is

determined by integrating Eq. (10) with the initial condition
αkðη ¼ −∞Þ ¼ 1 and βkðη ¼ −∞Þ ¼ 0. At late times the
evolution becomes adiabatic (AkðηÞ ≪ 1), and the mode
functions, αk and βk, become static. The physical number
density of created particles is then given by Eq. (3).

1. Minimally coupled scalar field

For the minimally coupled scalar field (ξ ¼ 0) the
dispersion relation (7) and adiabaticity parameter (11)
can be written as

ω2
kðηÞ ¼ k2 þ a2ðm2 − 2H2Þ þ a∂ηH; ð12aÞ

AkðηÞ ¼
ðm2 − 2H2Þa3H − 3

2
a2H∂ηH þ 1

2
a∂2

ηH

½k2 þ a2ðm2 − 2H2Þ þ a∂ηH�3=2 ; ð12bÞ

where the factor in the denominator of Eq. (12b) is just
ω3
kðηÞ. Efficient particle production occurs when ω2

k passes
through zero and Ak diverges; see Eq. (10). During inflation
we can neglect the term a∂ηH. For m2 ≥ 2H2 there is no
time at which the adiabaticity parameter diverges. On the
other hand, for m2 < 2H2, the frequency passes through
zero at a time ηk such that k ¼ ffiffiffi

2
p

aðηkÞHðηkÞ þOðm=HÞ.
Since ðaHÞ−1 is the comoving Hubble radius, the modes

with jkj ¼ k experience their largest departure from adia-
baticity at the time of horizon crossing (k ≈ aH).
Consequently, one expects efficient particle production
for light scalar fields, m2 ≪ 2H2, and little particle pro-
duction for heavy fields, m2 > 2H2.
The authors of Ref. [6] calculated the relic abundance of

gravitationally produced, minimally coupled, scalar dark
matter. We reproduce their result in Fig. 2 where we have
scaled their calculation2 to show the comoving number
density a3n normalized to a3eH3

e. For m=He < 1, the scalar
field amplitude is fixed to roughly hϕ2i ∼H2

e until H drops
below m at time η�, and then the field begins to oscillate
about the minimum of its potential, behaving like non-
relativistic matter. At this time the physical number density
is roughly n ¼ ρ=m ∼mH2

e, and the comoving number
density is larger by a factor of ða�=aeÞ3 ¼ H2

e=m2, which
explains the scaling a3n=a3eH3

e ∼ ðHe=mÞ. For m=He > 1
the gravitational particle production is exponentially
suppressed, and hϕ2i ≪ H2

e.
Generalizing to ξ ≠ 0, we expect the results to be

qualitatively unchanged for any ξ < 1=6 (including negative
ξ), because the dispersion relation (7) admits a tachyonic
phase where ω2

k < 0 as long as m2 < 2ð1 − 6ξÞH2.

2. Conformally coupled scalar field

For the conformally coupled scalar field (ξ ¼ 1=6) the
dispersion relation (7) and adiabaticity parameter (11) can
be written as

FIG. 2. The comoving number density of WIMPzilla dark
matter produced though its gravitational interaction during or at
the end of inflation.

2Figure 2 of Ref. [6] shows ρ=ðρcm2
13Þ where ρcðaÞ ¼

3M2
plH

2ðaÞ is the cosmological critical density and m13 is the
inflaton mass in units of 1013 GeV. (The inflaton mass is approx-
imately 2He.) This ratio is static during the matter-dominated
phase of reheating. We evaluate ða3n=a3eH3

eÞ¼ð3M2
plm

2
13=H

2
eÞ−1×

ðm=HeÞ−1ðρ=ρcm2
13Þ where ð3M2

plm
2
13=H

2
eÞ−1 ≃ ð7.1 × 1011Þ,

which is static at all times after reheating.
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ω2
kðηÞ ¼ k2 þ a2m2; and AkðηÞ ¼

a2m2

½k2 þ a2m2�3=2 ðaHÞ:

ð13Þ

Unlike the case of the minimally coupled scalar field, Ak
does not diverge at the time of horizon crossing because
ω2
k > 0 at all times (we assume m2 > 0). Instead, Ak ∼

ðaHÞ is maximized near the end of inflation, since the end
of inflation is defined as the time when the comoving
Hubble radius ðaHÞ−1 stops decreasing and starts increas-
ing. In fact, for nonrelativistic modes (k=a ≪ m) we have
Ak ∼ ðaHÞ=a, which peaks just before the end of inflation,
and for relativisticmodes (k=a ≫ m) we haveAk ∼ a2ðaHÞ,
which peaks just after the end of inflation. Consequently, the
gravitational production of a conformally coupled scalar
field primarily occurs at the end of inflation, rather than at the
time of horizon crossing. Since there is no divergence in
AkðηÞ, the abundance of gravitationally produced, confor-
mally coupled scalars is expected to be smaller than
minimally coupled scalars.
In Fig. 2 we do not show explicitly the result for

gravitational production of a conformally coupled scalar
field. However, we will see in the next subsection that the
gravitational production of fermions has the samequalitative
features as gravitational production of conformally coupled
scalars. Therefore, the comoving number density of gravi-
tationally produced, conformally coupled scalars is well
represented in Fig. 2 by the curve labeled “Fermion.” In the
limit m=He → 0 the theory enjoys a conformal symmetry,
and there is no gravitational particle production [5]. In the
low-mass regime, m=He ≪ 1, we can understand the scal-
ing withm as approximatelym=He as follows [6]. Since the
largest departure from adiabaticity occurs after the end
of inflation (see above), the FRW scale factor evolves as
a ∝ H−α with α ¼ 2=3 for a matter-dominated universe.
The density of gravitationally produced particles is n ∼
m3ða=a�Þ−3 where a� is the value of the scale factor whenH
drops belowm and particle production stops. It follows that
a3n=ða3eH3

eÞ ∼ ðm=HeÞ3−3α, which is ðm=HeÞ1 for α ¼ 2=3.
We expect the results to be qualitatively similar for

ξ≳ 1=6, because ω2
kðηÞ > 0 is positive at all times.

However, larger ξ oscillations of the Ricci scalar during
reheating can drive a parametric resonance, which leads to
an additional source of particle production [28,29].

B. Fermions

In this section we discuss gravitational particle produc-
tion for spin-1=2 fermions. Although we are primarily
interested in Majorana fermions, the calculation is more
transparent in the case of Dirac fermions. Here we briefly
review the calculation for Dirac fermions following
Ref. [20]. Since particles and antiparticles are produced
in equal abundance, due to the universal nature of the

gravitational interaction, the Dirac and Majorana calcula-
tions differ only by a factor of 2.
Consider a free Dirac fermion field ψðxÞ with minimal

gravitational interaction. The theory is specified by the
action

S½ψðxÞ; ψ̄ðxÞ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ψ̄ðxÞðiγa∇ea −mÞψðxÞ: ð14Þ

In an FRW spacetime, the action can be written as

S½ψðη; xÞ; ψ̄ðη; xÞ�

¼
Z

∞

−∞
dη
Z

d3xψ̄ðη; xÞ½iγμ∂μ − aðηÞm�ψðη; xÞ ð15Þ

after performing a Weyl transformation which absorbs a
factor of a3=2ðηÞ into the field ψ . The Dirac equation is
written as

½iγμ∂μ − aðηÞm�ψðη; xÞ ¼ 0: ð16Þ

This is identical to the Dirac equation in flat (Minkowski)
space up to the replacementm → aðηÞm. This result should
not be surprising: FRW and Minkowski space are con-
formally equivalent, and the fermion mass m is the only
source of conformal symmetry breaking. Consequently, the
spectrum of gravitationally produced particles must vanish
as m → 0, similar to the case of the conformally coupled
scalar field.
The field operator ψðη; xÞ can be decomposed into the

mode functions Ur;kðηÞ and Vr;kðηÞ, which are labeled by
the wave vector k and the helicity quantum number r ¼ �1.
The decomposition is written as

ψðη;xÞ¼
X
r¼�1

Z
d3k
ð2πÞ3 ðâk;rUr;kðηÞeik·xþ b̂†k;rVr;kðηÞe−ik·xÞ

ð17Þ

where âk;r and b̂k;r are the annihilation operators. If we
further write the mode functions as

Ur;kðηÞ ¼
�

uA;kðηÞhk;r
ruB;kðηÞhk;r

�
and

Vr;kðηÞ ¼
�−u�B;kðηÞh−k;r

ru�A;kðηÞh−k;r

�
e−irϕ ð18Þ

where hk;r is an eigenfunction of the helicity operator with
eigenvalue r and ϕ is the azimuthal angle, then the Dirac
equation (16) becomes

i∂η

�
uA;kðηÞ
uB;kðηÞ

�
¼
�
maðηÞ k

k −maðηÞ

��
uA;kðηÞ
uB;kðηÞ

�
: ð19Þ
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This equation should be solved along with the Bunch-
Davies initial condition

�
uA;kðηÞ
uB;kðηÞ

�
⟶
η→−∞

�uBDA;kðηÞ
uBDB;kðηÞ

�

≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞ

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωkðηÞþmaðηÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðηÞ−maðηÞp

!
e−iθkðηÞ ð20Þ

where the dispersion relation,ω2
kðηÞ ¼ k2 þm2a2ðηÞ, is the

same one that we encountered for the conformally coupled
scalar field, and ∂ηθk ¼ ωk as before. It is convenient to
introduce the ansatz

�
uA;kðηÞ
uB;kðηÞ

�
¼ αkðηÞ

� uBDA;kðηÞ
uBDB;kðηÞ

�
þ βkðηÞ

�−uBD�B;k ðηÞ
uBD�A;k ðηÞ

�

ð21Þ

since the Bunch-Davies initial condition simply becomes
αk → 1 and βk → 0. In terms of the mode functions αkðηÞ
and βkðηÞ, the mode equations become

∂ηαkðηÞ ¼ −
1

2
AkðηÞωkðηÞβkðηÞe2iθkðηÞ; ð22aÞ

∂ηβkðηÞ ¼ þ 1

2
AkðηÞωkðηÞαkðηÞe−2iθkðηÞ; ð22bÞ

where AkðηÞ≡mk∂ηa=ω3
kðηÞ. Note the strong resemblance

with the mode equation for the conformally coupled scalar
field that appears in Eq. (10).
We solve Eq. (22) numerically, extract the late-time

behavior of βkðηÞ, and calculate the comoving number
density of gravitationally produced particles using Eq. (3).
For a Dirac fermion one would take g ¼ 4 in Eq. (3), which
counts two spin states and two particle/antiparticle states,
but we take g ¼ 2 to count only the two spin states of the
Majorana fermion.
Figure 2 also shows the predicted comoving

number density of gravitationally produced fermion
WIMPzillas. For Dirac fermions, the abundance would
be larger by a factor of 2 and for conformally coupled
scalars, the abundance would be qualitatively similar
and smaller by a factor of approximately 2. In the
small-mass regime, m=He ≪ 1, the theory enjoys an
approximate conformal symmetry, and the abundance is
suppressed.

C. Vectors

Finally we review the gravitational production of spin-1
vector particles; additional details can be found in
Refs. [21,22]. Consider a neutral vector field AμðxÞ with

a minimal gravitational interaction.3 The action for this
theory is written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
gμαgνβFμνFαβ −

1

2
m2gμνAμAν

�
: ð23Þ

In an FRW spacetime the action becomes

S ¼
Z

∞

−∞
dη
Z

d3x
1

2
½j∂ηA − a2∇A0j2 − j∇ × Aj2

þ a4m2A2
0 − a2m2jAj2�: ð24Þ

The field A0 does not have a kinetic term, and therefore we
can integrate it out exactly. This is most easily done by first
moving to Fourier space where we have

S ¼
Z

∞

−∞
dη
Z

d3k
ð2πÞ3

�
1

2
ðk2 þ a2m2Þ

����aA0 −
ik · ∂ηA

k2 þ a2m2

����2

þ 1

2

�
j∂ηAj2 −

jk · ∂ηAj2
k2 þ a2m2

− jk × Aj2 − a2m2jAj2
�	

:

ð25Þ

Now the integral overA0 is Gaussian, andwe can integrate it
out trivially. Next we write A ¼ AT þ AL where AT repre-
sents the two transverse polarization modes (k · AT ¼ 0 and
k × AT ¼ �kjAT j) andAL represents the single longitudinal
polarization mode (k · AL ¼ kAL and k × AL ¼ 0). Then,
the action breaks up into S ¼ ST þ SL where

ST¼
Z

∞

−∞
dη
Z

d3k
ð2πÞ3

1

2
½j∂ηAT j2−ðk2þa2m2ÞjAT j2�; ð26aÞ

SL ¼
Z

∞

−∞
dη
Z

d3k
ð2πÞ3

1

2

�
a2m2

k2 þ a2m2
ð∂ηALÞ2 − a2m2A2

L

�
:

ð26bÞ

The two transversely polarized modes are canonically
normalized, and we can immediately read off the dispersion
relation, which is just ω2

kðηÞ ¼ k2 þ a2ðηÞm2. This is the
same dispersion relation that we encounteredwhen studying
the conformally coupled scalar field; see Eq. (7) with
ξ ¼ 1=6. Thus, the abundance of gravitationally produced,
transversely polarized spin-1 particles is simply double the
abundance of conformally coupled scalar particles of the
samemass. This is represented by the blue curve in Fig. 2.As

3More generally, we could introduce a nonminimal coupling
such as ξRAμAμ. However, this operator does not respect the
gauge invariance under which Aμ → Aμ þ ∂μχ, and thus one
expects ξ ∼m2=Λ2. During inflation this term contributes to the
vector mass on the order ofm2H2=Λ2, but the validity of the EFT
requires H2=Λ2 ≪ 1, so this term is negligible compared to the
usual mass term.
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before, the suppression at small mass is understood, because
an enhanced conformal symmetry arises when m=He → 0.
The longitudinally polarized mode is more complicated.

In order to have a canonical kinetic term we define a new
field ϕL in terms of AL by AL ¼ ðamÞ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2m2

p
ϕL.

Then SL becomes,

SL¼
Z

∞

−∞
dη
Z

d3k
ð2πÞ3

1

2

�
ð∂ηϕLÞ2

−2aH∂ηϕL

�
1−

a2m2

k2þa2m2

�
ϕL

þa2H2

�
1−

a2m2

k2þa2m2

�
2

ϕ2
L−ðk2þa2m2Þϕ2

L

	
: ð27Þ

Then integrating by parts and dropping the total derivative
gives

SL ¼
Z

∞

−∞
dη
Z

d3k
ð2πÞ3

1

2

�
ð∂ηϕLÞ2 −

�
k2 þ a2m2 − a2

R
6

þ a2
R
6

�
1 −

k2

k2 þ a2m2

�
þ 3a2H2

�
k2

k2 þ a2m2

�

×

�
1 −

k2

k2 þ a2m2

��
ϕ2
L

	
: ð28Þ

Since the kinetic term is now canonically normalized, the
dispersion relation is simply equal to the expression in
square brackets. In general this expression cannot be
matched to the dispersion relation for a scalar field
[Eq. (7)], even with a judicious choice of the nonminimal
coupling ξ. However, a matching can be performed in
limiting regimes. For the nonrelativistic modes, k=a ≪ m,
the dispersion relation becomes ω2

k ≈ k2 þ a2m2, which
matches the conformally coupled scalar field model. For
the relativistic modes, k=a ≫ m, the dispersion relation
becomes ω2

k ≈ k2 þ a2m2 − a2R=6, which matches with
the minimally coupled scalar field model.4 Since we have
seen in Fig. 2 that gravitational particle production is much
more efficient for minimally coupled scalars, we expect that
the longitudinal polarization modes will be efficiently
produced in the regime m ≪ H with the largest departure
from adiabaticity occurring when a mode exits the horizon,
m ≪ k=a ∼H. Then the comoving density of longitudi-
nally polarized vectors is well approximated by the red
curve in Fig. 2, and this population dominates over the
transversely polarized vectors.

D. Summary of gravitational production of WIMPzillas

The results are summarized in Fig. 2 where we show the
comoving WIMPzilla number density normalized to the

comoving Hubble volume at the end of inflation, 1=ða3eH3
eÞ.

The comoving density a3n is static and the physical density
n redshifts like a−3, as we expect for a dark matter
candidate. One can derive the corresponding relic abun-
dance Ωh2 using the formulas in Sec. V. The numerical
results are well approximated by the following empirical
formulas, which show the comoving number density well
after inflation when t ≫ m:

Scalarðξ¼0Þ
LongitudinalVector

)
a3n
a3eH3

e
≃
(
96He

m
m
He
<1

0.76He
m e−2m=He m

He
>1

Fermion

2×Scalarðξ¼1=6Þ
TransverseVector

9=
; a3n
a3eH3

e
≃
(
0.0021 m

He

m
He
<1

0.0080He
m e−2m=He m

He
>1.

ð29Þ
For these estimates, we have assumed that the

WIMPzilla is a self-conjugate particle, but if there are
multiple species of degenerate WIMPzilla particles and
antiparticles, the redundancy is taken into account by a
trivial rescaling of g in Eq. (3).

IV. THERMAL PRODUCTION OF WIMPZILLAS

We now turn to the main purpose of this paper: to find the
parameters where thermal production of supermassive
particles will dominate gravitational production. In the last
section we reviewed the calculation of gravitational pro-
duction of WIMPzillas. In this section we calculate thermal
production of WIMPzillas. We suppose that the WIMPzilla
interacts with the SMparticles through the Higgs portal, and
we calculate the number density ofWIMPzilla particles that
are produced fromHiggs annihilations in the early universe.
The interactions in Eq. (1) allow WIMPzilla pairs to be

produced from the annihilation of Higgs-boson pairs. At
the temperatures of interest (T ≫ 100 GeV) the electro-
weak symmetry is unbroken, and the Higgs field factor
Φ†Φ represents two states. The two WIMPzilla production
channels are

Φ0Φ̄0 → XX and ΦþΦ− → XX; ð30Þ
where we use X to denote the WIMPzilla whose identity is
yet unspecified. The physical number density of WIMPzilla
particles satisfies the kinetic equation for self-conjugate
particles

_nþ 3Hn ¼ −hσviðn2 − n̄2Þ; ð31Þ
where hσvi is the time-dependent (and hence, temperature-
dependent) thermally averaged WIMPzilla annihilation
cross section. The equilibrium density of WIMPzilla
particles with mass m > T is denoted by n̄, and it takes
the value (for Maxwell-Boltzmann statistics)

4As expected from the Goldstone boson equivalence theorem,
the relativistic limit of a massive vector field behaves as a
massless vector plus a minimally coupled scalar field, which
corresponds to the eaten Goldstone boson.
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n̄ðtÞ ¼ g
Z

d3p
ð2πÞ3 e

−E=T ¼ g
m2T
2π2

K2ðm=TÞ: ð32Þ

Here KnðxÞ is a modified Bessel function of the second
kind of order n.
In the parameter regime of interest, the coupling of the

WIMPzilla to the plasma is so weak that the WIMPzilla
abundance does not reach the thermal abundance, n ≪ n̄.
In this regime, the right side of the kinetic equation (31)
reduces to a source term,

SðtÞ≡ hσvin̄2; ð33Þ
which accounts for WIMPzilla production via Higgs boson
annihilation. Using the approximation n ≪ n̄, we integrate
Eq. (31) directly to find the comoving number density of
thermally produced WIMPzilla particles:

a3ðtÞnðtÞ
a3eH3

e
¼
Z

aðtÞ

ae

da0

ae

a02

a2e

Sða0Þ
H3

eHða0Þ : ð34Þ

Here the time dependence is captured by the monotonically
growing scale factor.
To evaluate Eq. (34) we must know TðaÞ and HðaÞ,

which requires us to specify a model of reheating. We
assume that reheating proceeds through the perturbative
decay of the inflaton condensate. Provided that thermal-
ization occurs quickly, it is known [15] that the plasma
temperature scales as T ∼ a−3=8 during the epoch of
reheating, while the universe remains matter-dominated
(H ∼ a−3=2). When the entropy injection from the inflaton
decay is completed, the universe is radiation-dominated
(H ∼ a−2) and temperature scales as T ∼ a−1. Thus, we
model the background evolution as

TðaÞ ¼
�
Tmaxða=aeÞ−3=8 for ae ≤ a < aRH
TRHða=aRHÞ−1 for aRH ≤ a

ð35Þ

HðaÞ ¼
�
Heða=aeÞ−3=2 for ae ≤ a < aRH
HRHða=aRHÞ−2 for aRH ≤ a;

ð36Þ

where aRH is the value of the scale factor at the start of the
radiation era, and we can relate [15]�

aRH
ae

�
3

¼
�
Tmax

TRH

�
8

¼
�

He

HRH

�
2

: ð37Þ

Applying the Friedmann equation to the radiation-
dominated universe at a ¼ aRH gives

3H2
RHM

2
pl ¼

π2

30
g�T4

RH; ð38Þ

where g� is the effective number of relativistic species at
temperature TRH. We will use g� ¼ 106.75, and our results

are insensitive to Oð1Þ changes in this value which would
arise from new physics above the weak scale. Using these
relations, there are only two free parameters: the Hubble
parameter at the end of inflation, He, and the plasma
temperature at the beginning of radiation domination, TRH.
Then, Eqs. (37) and (38) imply

Tmax ≃ ð1.6 × 1012 GeVÞ
�

g�
106.75

�
1=8
�

TRH

109 GeV

�
1=2

×

�
He

1013 GeV

�
1=4

: ð39Þ

As we already mentioned in Sec. III, we focus on
He ¼ 1013 GeV, but we take TRH as a free parameter.
In the following subsections, we consider each of

the WIMPzilla models in turn. We calculate the
thermally averaged annihilation cross section hσvi,
and we evaluate the abundance of thermally produced
particles using Eq. (34).

A. Scalars

If the WIMPzilla is a spin-0 self-conjugate scalar field
ϕðxÞ, then the coupling of ϕ to the Higgs field, given in
Eq. (1), is specified by the dimensionless coupling constant
κϕ. It is straightforward to calculate the annihilation cross
section; see the Appendix. Summing over the two channels
in Eq. (30), we find the thermally averaged WIMPzilla
annihilation cross section to be

hσvi ¼ jκϕj2
16π

1

m2

K2
1ðm=TÞ

K2
2ðm=TÞ : ð40Þ

The source term is then calculated using Eqs. (32) and (33)
with g ¼ 1, and we obtain

S ¼ jκϕj2
64π5

m2T2K2
1ðm=TÞ: ð41Þ

Evaluating the integral in Eq. (34) yields the density of
thermally produced WIMPzilla particles in terms of special
functions. At late times (a ≫ aRH) the source vanishes and
the comoving number density of thermally produced
WIMPzilla particles becomes static. Extracting the asymp-
totic behavior in the small- and large-mass regimes, we find

a3n
a3eH3

e
≈

8<
:

105jκϕj2
64π4

T12
max

H4
em8e−2m=Tmaxf0ðm=TmaxÞ for TRH ≪m

jκϕj2
64π5

T8
max

mH4
RHT

3
RH

form≪TRH

ð42Þ

where f0ðxÞ≡ 1þ 2xþ 2x2 þ 4x3=3þ 2x4=3þ 4x5=
15þ 4x6=45þ 8x7=315þ 2x8=315. In Fig. 3 we show
the comoving number density of thermally produced
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WIMPzillas. In Fig. 4we solve for jκϕ�j, the value of jκϕj that
results in an equal population of thermally produced
WIMPzillas and gravitationally produced WIMPzillas.
For jκϕj > jκϕ�j thermal production dominates, while for
jκϕj < jκϕ�j gravitational production dominates.

B. Fermions

If the WIMPzilla is a spin-1=2 fermion ψ , then the
coupling of the ψ to the Higgs field, given in Eq. (1), is
specified by the ratio κψ=Mpl. The thermally averaged
WIMPzilla annihilation cross section is calculated in the
Appendix, and we find

hσvi¼ 1

4π

jκψ j2
M2

pl

T4

m4K2
2ðm=TÞ

�
3
ffiffiffi
π

p
8

G30
13

�
m2

T2

����5=20;2;3

��
;

ð43Þ

where we have averaged over the g ¼ 2 spin states. Here
Gmn

pq ðzj a1;…;ap
b1;…;bq

Þ is the Meijer G-function, defined by a line

integral in the complex plane

Gmn
pq

�
z

����a1;…; ap
b1;…; bq

�

¼ 1

2πi

Z
γ

Q
m
j¼1 Γðbj − sÞQn

j¼1 Γð1− aj þ sÞQp
j¼nþ1 Γðaj − sÞQq

j¼mþ1 Γð1− bj þ sÞx
sds;

ð44Þ

where ΓðzÞ is the gamma function and γ indicates the
appropriate contour [30]. The source term is calculated
using Eqs. (32) and (33), and we obtain

S ¼ jκψ j2
M2

pl

T6

4π5

�
3
ffiffiffi
π

p
8

G30
13

�
m2

T2

���� 5=20; 2; 3

��
: ð45Þ

In the limits of asymptotically small and large WIMPzilla
mass, these formulas have the following limiting behavior:

hσvi ≈ 1

16π

jκψ j2
M2

pl

×

(
3T
m for T ≪ m

1 for m ≪ T
ð46Þ

S ≈
1

16π

jκψ j2
M2

pl

×

(
T6 3

2π3
m2

T2 e−2m=T for T ≪ m

T6 4
π4

for m ≪ T:
ð47Þ

We calculate the comoving number density of thermally
produced WIMPzilla particles by evaluating the integral in
Eq. (34). The integral can be expressed in terms of the
MeijerG-function in general, and in the asymptotic limits it
simplifies to

FIG. 3. The comoving number density of thermally produced
particles in the scalar WIMPzilla model. We take the Hubble
scale at the end of inflation to be He ¼ 1013 GeV while varying
the WIMPzilla mass m and the reheating temperature TRH.

FIG. 4. The values of jκϕj corresponding to equal thermal and gravitational production, denoted as jκϕ�j, for scalar WIMPzilla models
for minimally coupled scalars (left panel) and conformally coupled scalars (right panel).
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a3n
a3eH3

e
≈

8>><
>>:

945jκψ j2
128π4

T12
max

H4
eM2

plm
6 e−2m=Tmaxf1=2ðm=TmaxÞ for TRH ≪ m

13jκψ j2
36π5

T8
max

H3
eHRHM2

plT
2
RH

for m ≪ TRH;
ð48Þ

where f1=2ðxÞ≡1þ2xþ2x2þ4x3=3þ2x4=3þ4x5=15þ
4x6=45þ16x7=945.
In the left panel of Fig. 5 we plot the thermally produced

comoving density. In the right panel we compare the
gravitationally produced WIMPzilla abundance to the
thermally produced WIMPzilla abundance, and obtain a
value of jκψ j where the two sources of WIMPzillas will
result in equal abundances. For jκψ j > jκψ�j, thermal
production dominates, while for jκψ j < jκψ�j, gravitational
production dominates. In the region of parameter space
where jκψ j ≫ 1, the cutoff of the theory is lowered to

Mpl=jκψ j. As we discussed before Eq. (2), the validity of the
EFT imposes jκψ j ≪ 106, which is satisfied across the
entire parameter space shown in Fig. 5.

C. Vectors

If the WIMPzilla is a spin-1 vector A, then the coupling
of A to the Higgs field, given in Eq. (1), is specified by the
ratio κAm2=M2

pl. We evaluate the thermally averaged
WIMPzilla annihilation cross section in the Appendix
finding

hσvi ¼ jκAj2
2592π

T2

M4
pl

�
6
m2

T2

K2
1ðm=TÞ

K2
2ðm=TÞ þ

4
ffiffiffi
π

p
K2

2ðm=TÞG
30
13

�
m2

T2

����−1=2−2; 1; 2

�
−

4
ffiffiffi
π

p
K2

2ðm=TÞG
30
13

�
m2

T2

���� 1=2−1; 1; 2

��
: ð49Þ

The source term is calculated using Eqs. (32) and (33) with g ¼ 3, and we obtain

S ¼ jκAj2
256π5

m4

M4
pl

T4

�
6
m2

T2
K2

1ðm=TÞ þ 4
ffiffiffi
π

p
G30

13

�
m2

T2

����−1=2−2; 1; 2

�
− 4

ffiffiffi
π

p
G30

13

�
m2

T2

���� 1=2−1; 1; 2

��
: ð50Þ

We evaluate the integral in Eq. (34) to obtain the comoving number density of thermally producedWIMPzilla particles, and
the result is shown as the blue curves in Eq. (6). In the limits of large and small WIMPzilla mass, the density can be
approximated as

a3n
a3eH3

e
≈

8><
>:

33885jκAj2
8192π4

T12
max

H4
eM4

plm
4 e−2m=Tmaxf1ðm=TmaxÞ for TRH ≪ m

3jκAj2
8π5

T8
max

H4
RHM

4
pl

for m ≪ TRH

ð51Þ

FIG. 5. Left panel: The comoving number density of thermally produced particles in the fermion WIMPzilla model. We take the
Hubble scale at the end of inflation to be He ¼ 1013 GeV while varying the WIMPzilla mass m and the reheating temperature TRH.
Right panel: The values of jκψ j corresponding to equal thermal and gravitational production, denoted as jκψ�j, for the fermion
WIMPzilla model.
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where f1ðxÞ≡ 1þ 2xþ 2x2þ 4x3=3þ 2x4=3þ 4x5=15þ
4x6=45þ 32x7=1255þ 128x8=33885.
In the left panel of Fig. 6 we plot the thermally produced

comoving density. In the right panel we compare the
gravitationally produced WIMPzilla abundance to the
thermally produced WIMPzilla abundance, and obtain a
value of jκAj where the two sources of WIMPzillas will
result in equal abundances. For jκAj > jκA�j, thermal
production dominates, while for jκAj < jκA�j, gravitational
production dominates. Large values of jκAj correspond to
lowering the cutoff to Mpl=

ffiffiffiffiffiffiffiffijκAj
p

. As we discussed before
Eq. (2), the validity of the EFT requires κA ≪ 1012, which
is satisfied across Fig. 6.

V. DARK MATTER PRODUCED THROUGH
THE HIGGS PORTAL

If the WIMPzilla is stable, as we have assumed, then a
relic abundance of WIMPzilla particles will persist in the
universe today. In this section, we assess the region of
parameter space in which the WIMPzilla saturates the
present dark-matter density. We also show the regions of
parameter space where models are disallowed because of
overproduction of dark matter.
TheWIMPzilla relic abundance today (time t ¼ t0) is given

byΩ¼mnðt0Þ=3M2
plH

2
0 whereH0¼100hkmMpc−1sec−1 is

the Hubble constant. Using the a−3 scaling behavior for
the number density of WIMPzillas, it is straightforward to
show that

Ωh2 ¼ ð0.12 × 107Þ
�

He

1013 GeV

�
2
�

TRH

109 GeV

�

×

�
m
He

��
a3n
a3eH3

e

�
: ð52Þ

The last factor is simply the comoving WIMPzilla
number density, which we have calculated in the previous
sections. The dark matter relic abundance is measured to
be ΩDMh2 ≃ 0.12.

For each of the three models we calculate Ωh2 using
Eq. (52). For a given value of the coupling κ, we determine
the values of m and TRH that are required to reproduce the
present dark matter relic abundance, Ω ¼ ΩDM. We present
our results in Figs. 7 and 8. The shaded areas in the figures
represent regions of parameter space that are disallowed
because of gravitational overproduction. (Of course, gravi-
tational production does not depend on κ). Along the edge
of the shaded area we obtain Ω ¼ ΩDM from gravitational
particle production alone. The (blue) curves labeled with
values of jκj are the values of TRH and m for which thermal
production populates WIMPzillas through the Higgs portal
in the correct abundance for Ω ¼ ΩDM. Values of TRH
above the blue curves will result in overproduction of dark
matter through thermal processes. Therefore, the allowed
regions of parameter space are outside the shaded area, and
below the curves labeled by values of jκj.
Values of model parametersm, TRH, and jκj that result in

Ω ¼ ΩDM may be found along the jκj curves that are
outside the shaded area, or on the shaded perimeter below
the curve corresponding to a given value of jκj.
For the minimally coupled scalar (ξ ¼ 0) and vector

WIMPzilla models, gravitational production is very effi-
cient for m < He. The region of parameter space where
thermal production can account for all of the dark matter
(blue lines) is already excluded by gravitational production
(in the shaded area). Conversely, gravitational production
is very inefficient for m > He, and thermal production
is the dominant source of WIMPzilla dark matter for
m≳ 1014 GeV, provided that the reheat temperature is
sufficiently large. For the fermion model and the confor-
mally coupled scalar (ξ ¼ 1=6) model, gravitational
production becomes inefficient for m < He. For example,
for jκψ j ¼ 1 and m≲ 1011 GeV the dark matter abundance
arises primarily from thermal production.
We only show values of the couplings jκj that are

consistent with the theoretical self-consistency arguments
in Eq. (2). Recall that we have normalized the higher-mass-
dimension operators by the Planck mass, and thus jκj > 1
implies a lower cutoffΛ ∼Mpl=jκj for the fermionmodel and

FIG. 6. Same as Fig. 5, but for the vector WIMPzilla model.
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Λ ∼Mpl=
ffiffiffi
κ

p
for the vector model. In the scalar model, the

thermally produced relic abundance becomes insensitive to
the reheat temperature TRH at high values of TRH. This is
becausea3n ∼ T−1

RH in the limit of high reheat temperature, as
we can see from Fig. 3, and then Ω ∼ T0

RH from Eq. (52).
In the upper-right corner of Figs. 7 and 8, the spacing

between the blue thermal-production curves begins to
shrink. This is because the thermal abundance becomes

exponentially suppressed if the WIMPzilla mass is too
large; see Eqs. (42), (48), and (51). The Boltzmann
suppression sets in where m≳ 10Tmax with Tmax given
by Eq. (39). To compensate the exponential suppression,
the coupling jκj must be made exponentially large in order
for Ωh2 to match the correct relic abundance. Hence, jκj
changes very rapidly in this regime, and the spacing
between the blue curves becomes small.

FIG. 7. The region of parameter space where the predicted scalar WIMPzilla abundance (minimal coupling in left panel and conformal
coupling in right panel) matches the measured dark matter abundance. See text for explanation. Constraints on isocurvature
perturbations exclude m=He ≲ 6 [31].

FIG. 8. The region of parameter space where the predicted fermion (left panel) and vector (right panel) WIMPzilla abundance matches
the measured dark matter abundance. See text for explanation.
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Although we have not discussed the power spectrum of
dark matter density perturbations here, it is well known
that the spectrum is nearly scale invariant for gravita-
tionally produced minimally coupled scalar-WIMPzilla
dark matter in the regime m=He ≲ 1 [6]. Since the dark
matter is produced nonthermally, the dark matter density
fluctuations are not correlated with the photon density
fluctuations, which corresponds to a large dark matter–
photon isocurvature. In fact, minimally coupled scalar-
WIMPzilla dark matter is ruled out for m=He ≲ 6 from
the cosmic microwave background limits on isocurvature
[31]. The isocurvature constraint does not apply to the
models with conformally coupled scalar, fermionic, or
vector WIMPzilla dark matter, which have blue power
spectra.
In the regions of parameter space shown in Figs. 7

and 8 we have verified that the WIMPzilla does not
reach thermal equilibrium by comparing the density n
against the would-be equilibrium density n̄ at the time
when a3n becomes constant and freeze-in is completed.
If we were to increase the Higgs-WIMPzilla coupling
jκj sufficiently, then the WIMPzilla would thermalize,
and its relic abundance would be determined instead
by thermal freeze-out. In this regime, it can also be
possible to achieve the correct relic abundance [24], but
the predicted abundance depends also on additional
dynamics in the dark sector, such as self-interactions
[32], that are not described by the Higgs portal oper-
ators in Eq. (1). Thus we do not consider this scenario
here.
Throughout these calculations we have fixed the Hubble

parameter at the end of inflation to be He ¼ 1013 GeV.
Consequently, energy conservation puts an upper limit on
the reheat temperature, which is 3M2

plH
2
e > ðπ2=30Þg�T4

RH

or equivalently TRH ≲ 3 × 1015 GeV for g� ¼ 106.75.

VI. CONCLUSION

In this article, we have studied superheavy (WIMPzilla)
dark matter in the context of effective field theory. In
previous studies of WIMPzilla production it was customary
to assume that the WIMPzilla is noninteracting apart from
its coupling with gravity. However, when the WIMPzilla is
viewed from the perspective of effective field theory, one
expects additional interactions to arise. In particular, there
is no symmetry to forbid a direct interaction between the
WIMPzilla and the Standard Model Higgs field since this
interaction is just a product of the WIMPzilla and Higgs
mass terms. The strength of this interaction may be Planck-
suppressed (or smaller), but in general one expects it to be
present. In this work, we have studied the role of the direct
Higgs-WIMPzilla coupling in the thermal production
(freeze-in) of WIMPzilla dark matter.
The primary new calculation in this work is the deriva-

tion of the comoving number density of WIMPzilla dark

matter produced from the annihilation of Higgs-boson
pairs in the plasma via the interactions in Eq. (1). The
numerical results appear in Figs. 3,5, and 6 for the scalar,
fermion, and vector WIMPzilla models respectively, and
the corresponding analytic approximations can be found
in Eqs. (42), (48), and (51). By comparing with the
abundance of gravitationally produced WIMPzilla dark
matter, which was calculated in other works and sum-
marized in Fig. 2, we determined the strength of the
Higgs-WIMPzilla coupling at which the thermally pro-
duced abundance becomes dominant. These results
appear in Figs. 4,5, and 6. For instance, in the fermion
WIMPzilla model we found that even a Planck-sup-
pressed Higgs-WIMPzilla interaction (corresponding to
jκψ j ¼ 1), can be sufficient for the thermal abundance to
dominate over the gravitationally produced population
if m ∼ TRH < He.
This study leaves open various directions for future

work. For instance, we have focused on a chaotic model of
inflation (quadratic inflaton potential) followed by a period
of perturbative reheating with an effective equation of state
wRH ¼ 0. These assumptions could be generalized to
consider different models of inflation and reheating.
However, we do not expect that these modifications would
change our general conclusions. It would also be interesting
to explore more carefully the gravitational particle pro-
duction for higher-spin fields, such as spin-1 and spin-3=2.
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APPENDIX: CROSS SECTION CALCULATION

Here we evaluate the thermally averaged WIMPzilla
annihilation cross section for each of the three models. Let
us first introduce some model-independent definitions. (See
Ref. [33] for additional details.)
LetMXX→ΦΦ̄ðp1; s1; p2; s2; pΦ; pΦ̄Þ denote the scattering

amplitude for the annihilation of a WIMPzilla of momen-
tum p1 and spin s1 and a second WIMPzilla with momen-
tum p2 and spin s2 into a Higgs boson with momentum pΦ
and an anti-Higgs with momentum pΦ̄. There are two
annihilation channels [see Eq. (30)], andMXX→ΦΦ̄ denotes
the matrix element for either one or the other. Due to the
isospin symmetry, these two matrix elements are equiv-
alent, and the final thermally averaged cross section is
doubled. We include this factor of 2 at the end of the
calculation.
The thermally averaged annihilation cross section is

defined by
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hσviXX→ΦΦ̄ ≡ 1

n̄ n̄

Z
d3pΦ
ð2πÞ3

1

2EΦ

Z
d3pΦ̄
ð2πÞ3

1

2EΦ̄

Z
d3p1
ð2πÞ3

1

2E1

Z
d3p2
ð2πÞ3

1

2E2

ð2πÞ4δ4ðpΦ þ pΦ̄ − p1 − p2Þ

×
X
s1;s2

jMXX→ΦΦ̄j2 exp ½−ðE1 þ E2Þ=T�; ðA1Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
, and the physical number density n̄ is defined in Eq. (32). Although we could evaluate this integral

directly, it is convenient first to express the integrand in different terms. We use the definition

σXX→ΦΦ̄ ¼ 1

4Fðp1; p2Þ
�Z

d3pΦ
ð2πÞ3

1

2EΦ

��Z
d3pΦ̄
ð2πÞ3

1

2EΦ̄

�
ð2πÞ4δ4ðpΦ þ pΦ̄ − p1 − p2ÞjMXX→ΦΦ̄j2; ðA2Þ

where the Lorentz scalar function Fðp1; p2Þ is

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 − p2

1p
2
2

q
: ðA3Þ

Note that Fðp1; p2Þ ¼ ð1=2Þ ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
where s ¼

ðp1 þ p2Þ2 is the Mandelstam variable.
Upon averaging over the g ¼ ð2Sþ 1Þ possible spin

projections of the WIMPzilla particles in the initial state,
we obtain the spin-averaged annihilation cross section

σ̄XX→ΦΦ̄ ¼ 1

g2
X
s1

X
s2

σXX→ΦΦ̄: ðA4Þ

With this notation, the thermally averaged annihilation
cross section (A1) can be written as

hσviXX→ΦΦ̄ ¼ g2

n̄ n̄

Z
d3p1
ð2πÞ3

d3p2
ð2πÞ3 σ̄XX→ΦΦ̄vMølðp1; p2Þ

× exp ½−ðE1 þ E2Þ=T�; ðA5Þ

where we have defined the Møller velocity

vMølðp1; p2Þ≡ Fðp1; p2Þ
E1E2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv1 − v2j2 − jv1 × v2j2

q
ðA6Þ

with v ¼ p=E. As long as σ̄XX→ΦΦ̄ only depends on s,
which is the case for the models of interest, the other
momentum integrals can be evaluated exactly, leaving [33]

hσviXX→ΦΦ̄

¼ g2

n̄ n̄
T

32π4

Z
∞

4m2

dsðs − 4m2Þ ffiffiffi
s

p
K1ð

ffiffiffi
s

p
=TÞσ̄XX→ΦΦ̄ðsÞ

ðA7Þ

where KnðxÞ is the modified Bessel function of the second
kind of order n. All that remains is to evaluate the cross

section σ̄XX→ΦΦ̄ðsÞ for each of the models, and perform the
final integral in Eq. (A7).

1. Scalar WIMPzilla

For the scalar case discussed in Sec. IVA, the matrix
element is simply MXX→ΦΦ̄ ¼ κϕ, and using Eq. (A2) we
write the WIMPzilla annihilation cross section as

σXX→ΦΦ̄ ¼ jκϕj2
4Fðpx1 ; px2Þ

ð2πÞ4
ð2πÞ6

×

�Z
d3pΦ
2EΦ

d3pΦ̄
2EΦ̄

δðpΦ þ pΦ̄ − px1 − px2Þ
�
:

ðA8Þ

The integral was evaluated in Ref. [34], which gives
ðπ=2Þðs − 4m2

ΦÞ1=2=s1=2. The spin averaging is trivial since
all the particles are scalars. Combining the various factors,
the annihilation cross section is

σ̄XX→ΦΦ̄ ¼ jκϕj2
16π

1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

Φ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p : ðA9Þ

Using Eq. (A7) with g ¼ 1 for a scalar WIMPzilla, we write
the thermally averaged annihilation cross section as

hσviXX→ΦΦ̄ ¼ 1

n̄ n̄

jκϕj2
16π

T
32π4

Z
∞

4m2

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
K1ð

ffiffiffi
s

p
=TÞ;

ðA10Þ

where we have also set mΦ ¼ 0. The equilibrium number
densities are given by Eq. (32) with g ¼ 1. Evaluating the
integral gives the thermally averaged annihilation cross
section

hσviXX→ΦΦ̄ ¼ 1

m2

jκϕj2
32π

K2
1ðm=TÞ

K2
2ðm=TÞ : ðA11Þ

To account for the two annihilation channels we multiply
by a factor of 2, which yields the expression in Eq. (40).
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2. Fermion WIMPzilla

For the fermion case discussed in Sec. IV B, the spin-
summed, squared matrix element is

X
s1;s2

jMXX→ΦΦ̄j2 ¼
2jκψ j2
M2

pl

ðs − 4m2Þ: ðA12Þ

Combining Eqs. (A2) and (A4) we write the spin-averaged
annihilation cross section as

σ̄XX→ΦΦ̄ ¼ 1

4

1

4Fðp1; p2Þ
2jκψ j2
M2

pl

ðs − 4m2Þ ð2πÞ
4

ð2πÞ6

×

�Z
d3pΦ
2EΦ

d3pΦ̄
2EΦ̄

δðpΦ þ pΦ̄ − px1 − px2Þ
�
;

ðA13Þ

where we have used g ¼ 2 for a Majorana fermion
WIMPzilla. As in the scalar calculation, we use Ref. [34]
to evaluate the integral, which gives

σ̄XX→ΦΦ̄ ¼ 1

32π

jκψ j2
M2

pl

1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

Φ

q
: ðA14Þ

Putting this intoEq. (A7) lets uswrite the thermally averaged
annihilation cross section as

hσviXX→ΦΦ̄

¼ 1

n̄ n̄
1

256π5
jκψ j2
M2

pl

T
Z

∞

4m2

dsðs − 4m2Þ3=2K1ð
ffiffiffi
s

p
=TÞ;

ðA15Þ

where we have neglected the Higgs boson mass. With a
change of variables, we can write

hσviXX→ΦΦ̄ ¼ 1

n̄ n̄
1

8π5
jκψ j2
M2

pl

T6

×

�
1

16

Z
∞

2m=T
ydyðy2 − 4m2=T2Þ3=2K1ðyÞ

�
:

ðA16Þ

The integral can be evaluated in terms of the Meijer
G-function, and the quantity in square brackets equals

½� � �� ¼ 3
ffiffiffi
π

p
8

G30
13

�
m2

T2

���� 5=20; 2; 3

�

≈

(
3π
8

m2

T2 ð1þ 7
4
T
m � � �Þe−2m=T for T < m

1 − 3
4
m2

T2 þ � � � for m < T:
ðA17Þ

The double exponential suppression arises because colli-
sions producing a pair of X particles (energy E ¼ 2m) can
only occur for Φ particles deep in the high-energy
Boltzmann tail of the phase-space distribution function.
Now using the expression for n̄ from Eq. (32) we have

hσviXX→ΦΦ̄ ¼ 1

8π

jκψ j2
M2

pl

T4

m4K2
2ðm=TÞ

×

�
3
ffiffiffi
π

p
8

G30
13

�
m2

T2

���� 5=20; 2; 3

��
; ðA18Þ

which yields Eq. (43) after multiplying by a factor of 2 to
account for the two annihilation channels.

3. Vector WIMPzilla

For the vector case discussed in Sec. IV C, the spin-
summed, squared matrix element is

X
s1;s2

jMXX→ΦΦ̄j2 ¼
jκAj2m4

M4
pl

�
2þ ðs − 2m2Þ2

4m4

�
: ðA19Þ

The first term in square brackets corresponds to the two
transverse polarization states, and the other term corre-
sponds to the longitudinal polarization. Note that the matrix
element diverges in the limit s=m2 → ∞, which signals a
loss of perturbative unitarity. As with longitudinalW-boson
scattering in the SM, perturbative unitarity is regained if the
theory is Higgsed in the UV. Since we will be considering
energies as high as s ∼ T2

max, the validity of our calculation
requires the symmetry-breaking scale to be larger
than Tmax=4π.
Combining Eqs. (A2) and (A4) we write the spin-

averaged annihilation cross section as

σ̄XX→ΦΦ̄ ¼ 1

9

1

4Fðp1; p2Þ
jκAj2m4

M4
pl

�
2þ ðs − 2m2Þ2

4m4

� ð2πÞ4
ð2πÞ6

×
�Z

d3pΦ
2EΦ

d3pΦ̄
2EΦ̄

δðpΦ þ pΦ̄ − p1 − p2Þ
�
;

ðA20Þ

where we have used g ¼ 3 for a vector WIMPzilla. This is
the same integral that we encountered in the previous
subsections, and upon evaluating it we obtain

σ̄XX→ΦΦ̄ ¼ 1

9

jκAj2
16π

m4

M4
pl

�
2þ ðs − 2m2Þ2

4m4

�
1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

Φ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p :

ðA21Þ

Putting this into Eq. (A7) lets us write the thermally
averaged annihilation cross section as
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hσviXX→ΦΦ̄ ¼ 1

n̄ n̄
m4

M4
pl

jκAj2
512π5

T
Z

∞

4m2

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s−4m2

p
K1ð

ffiffiffi
s

p
=TÞ

×

�
2þðs−2m2Þ2

4m4

�
; ðA22Þ

where we have neglected the Higgs boson mass (mΦ ≪ m).
A change of variables results in

hσviXX→ΦΦ̄

¼ 1

n̄ n̄
m4

M4
pl

jκAj2
256π5

T4

�Z
∞

2m=T
dyy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4m2=T2

q
K1ðyÞ

×

�
2þ ðy2 − 2m2=T2Þ2

4m4=T4

�	
: ðA23Þ

The integral in f� � �g brackets evaluates to

f� � �g¼ 6
m2

T2
K2

1ðm=TÞþ4
ffiffiffi
π

p
G30

13

�
m2

T2

����−1=2−2;1;2

�
−4

ffiffiffi
π

p
G30

13

�
m2

T2

����1=2−1;1;2

�
≈

8<
:
3πm

T ð1þ 11
4
T
m � � �Þe−2m=T for T <m

96 T4

m4−24 T2

m2þ9þ�� � form<T:

ðA24Þ

Now using the expression for n̄ from Eq. (32) with g ¼ 3, we have

hσviXX→ΦΦ̄ ¼ T2

M4
pl

jκAj2
5184π

�
6
m2

T2

K2
1ðm=TÞ

K2
2ðm=TÞ þ 4

ffiffiffi
π

p
K−2

2 ðm=TÞG30
13

�
m2

T2

����−1=2−2; 1; 2

�
− 4

ffiffiffi
π

p
K−2

2 ðm=TÞG30
13

�
m2

T2

���� 1=2−1; 1; 2

��
;

ðA25Þ

which yields Eq. (49) after multiplying by a factor of 2 to account for the two annihilation channels.
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