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Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a
trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in
spatially flat (3þ 1)-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is
possible to integrate the second-order geodesic differential equations, and derive a general method for
finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat
spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact
closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter,
including spacetimes used to model our physical universe, there exists no closed-form solution, but we
provide a fast numerical method to compute geodesics. A general method is also described for determining
the geodesic connectedness of an FLRW manifold, provided only its scale factor.

DOI: 10.1103/PhysRevD.96.103538

I. INTRODUCTION

Cosmic microwave background experiments such as
COBE [1], WMAP [2], and Planck [3] provide evidence
for both early time cosmic inflation [4,5] and late time
acceleration [6,7], with interesting dynamics in between
explaining many features of the universe, many of which
are remarkably accurately predicted by the ΛCDM model
[8–11]. These and other experiments in recent decades
have demonstrated that, to a high degree of precision, at
large scales the visible universe is spatially homogeneous,
isotropic, and flat, i.e., that its spacetime is described by the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric.
FLRW spacetimes are therefore of particular interest in
modern cosmology.
Here we develop a method for the exact calculation of the

geodesic distance between any given pair of events in any
flat FLRW spacetime. Geodesics and geodesic distances
naturally arise in a wide variety of investigations not only in
cosmology, but also in astrophysics and quantum gravity,
with topics ranging from the horizon and dark energy
problems, to gravitational lensing, to evaluating the obser-
vational signatures of cosmic bubble collisions and modi-
fied gravity theories, to the AdS=CFT correspondence
[12–39]. Closed-form solutions of the geodesic equations
are also quite useful in validating a particular FLRW model
by investigating how curvature, quintessence, local shear
terms, etc., affect observational data. These solutions are of
perhaps the greatest and most direct utility in large-scale
N-body simulations, e.g., studying the large scale structure

formation, which can benefit greatly from using such
solutions by avoiding the costly numerical integration of
the geodesic differential equations [40–42].
For a general spacetime, solving the geodesic equations

exactly for given initial-value or boundary-value constraints
is intractable, although it may be possible in some cases.
For example, in (3þ 1)-dimensional de Sitter space, which
represents a spacetime with only dark energy and is a
maximally symmetric solution to Einstein’s equations, it
turns out to be rather simple to study geodesics by embedding
the manifold into flat (4þ 1)-dimensional Minkowski space
M5. This construction was originally realized by de Sitter
himself [43], and was later studied by Schrödinger [44].
In Sec. II Awe review how geodesicsmay be found using the
unique geometric properties of this manifold.
However, it is not so easy to explicitly calculate geodesic

distances in other FLRW spacetimes except under certain
assumptions. One approach would be to follow de Sitter’s
philosophy by finding an embedding into a higher-
dimensional manifold. Such an embedding always exists
due to the Campbell-Magaard theorem, which states that
any analytic n-dimensional Riemannian manifold may be
locally embedded into an (nþ 1)-dimensional Ricci-
flat space [45,46], combined with a theorem due to A.
Friedman extending the result to pseudo-Riemannian
manifolds [47,48]. In fact, the embedding map is given
explicitly by J. Rosen in [49]. However, it has since been
shown that the metric in the embedding space is block
diagonal with respect to the embedded surface, i.e., when
the geodesic is constrained to the (3þ 1)-dimensional
subspace we regain the original (3þ 1)-dimensional geo-
desic differential equations and we learn nothing new [50].
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Instead, in Sec. III we solve directly the geodesic
differential equations for a general FLRW spacetime in
terms of the scale factor and a set of initial-value or
boundary-value constraints. The final geodesic distance
can be written as an integral which is a function of the
boundary conditions and one extra constant μ, defined by a
transcendental integral equation. This constant proves to be
useful in a number of ways: it tells us if a manifold is
geodesically connected provided only the scale factor.
The solution of the integral equation defining this constant
exists only if a geodesic exists for a given set of boundary
conditions, and it helps one to find the geodesic distance, if
such a geodesic exists.
We then give some examples in Sec. IV to show that for

many scale factors of interest, we can find a closed-form
solution. In cases where no closed-form solution exists, we
can still transform the problem into one which is suitable for
fast numerical integration. Concluding remarks are in Sec. V.

II. REVIEW OF FLRW SPACETIMES
AND DE SITTER EMBEDDINGS

Friedmann-Lemaître-Robertson-Walker (FLRW) space-
times are spatially homogeneous and isotropic (3þ 1)-
dimensional Lorentzian manifolds which are solutions to
Einstein’s equations [51]. These manifolds have a metric
gμν with μ, ν ∈ f0; 1; 2; 3g that, when diagonalized in a
given coordinate system, gives an invariant interval ds2 ¼
gμνdxμdxν of the form

ds2 ¼ −dt2 þ aðtÞ2dΣ2; ð2:1Þ
where aðtÞ is the scale factor, which describes how space
expands with time t, and dΣ is the spatial metric given by
dΣ2 ¼ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ for flat space in spheri-
cal coordinates ðr; θ;ϕÞ that we use hereafter. The scale
factor is found by solving Friedmann’s equation, the
differential equation given by the μ ¼ ν ¼ 0 component
of Einstein’s equations:�

_a
a

�
2

¼ Λ
3
þ c
a3g

; ð2:2Þ

whereΛ is the cosmological constant, g parametrizes the type
ofmatter within the spacetime, c is a constant proportional to
the matter density, and we have assumed spatial flatness in
our choice of dΣ. The scale factors for manifolds which
represent spacetimes with dark energy (Λ), dust (D), radi-
ation (R), a stiff fluid (S),1 or some combination (e.g., ΛD
for dark energy and dust matter) are given by [51]

aΛðtÞ ¼ λet=λ; ð2:3aÞ

aDðtÞ ¼ α

�
3t
2λ

�
2=3

; ð2:3bÞ

aRðtÞ ¼ α3=4
�
2t
λ

�
1=2

; ð2:3cÞ

aSðtÞ ¼ α1=2
�
3t
λ

�
1=3

; ð2:3dÞ

aΛDðtÞ ¼ α sinh2=3
�
3t
2λ

�
; ð2:3eÞ

aΛRðtÞ ¼ α3=4 sinh1=2
�
2t
λ

�
; ð2:3fÞ

aΛSðtÞ ¼ α1=2 sinh1=3
�
3t
λ

�
; ð2:3gÞ

where λ and α≡ ðcλ2Þ1=3 are the temporal and spatial
scale-setting parameters. In manifolds with dark energy,
i.e., Λ > 0, λ≡ ffiffiffiffiffiffiffiffiffi

3=Λ
p

.

A. de Sitter Spacetime

The de Sitter spacetime is one of the first and best studied
spacetimes: de Sitter himself recognized that the (3þ 1)-
dimensional manifold dS4 can be visualized as a single-
sheet hyperboloid embedded in M5, defined by

−z20 þ z21 þ z22 þ z23 þ z24 ¼ λ2; ð2:4Þ
where λ is the pseudoradius of the hyperboloid [43]. The
injection χ∶dS4 ↪M5, χðxÞ ↦ z is

λ2 þ s2

2η
↦ z0;

λ2 − s2

2η
↦ z1;

λ

η
r cos θ ↦ z2;

λ

η
r sin θ cosϕ ↦ z3;

λ

η
r sin θ sinϕ ↦ z4; ð2:5Þ

where s2 ≡ r2 − η2, and the conformal time η is defined as

ηðtÞ ¼
Z

t dt0

aðt0Þ : ð2:6Þ

This embedding is a particular instance of the fact that any
analytic n-dimensional pseudo-Riemannian manifold may
be isometrically embedded into (at most) a ðnðnþ 1Þ=2Þ-
dimensional pseudo-Euclidean manifold (i.e., a flat metric

1Stiff fluids are exotic forms of matter which have a speed
of sound equal to the speed of light. They have been studied
in a variety of models of the early universe, including kination
fields, self-interacting (warm) dark matter, and Hořava-Lifshitz
cosmologies [52].
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with arbitrary non-Riemannian signature) [47,48]. The
minimal (nþ 1)-dimensional embedding is most easily
obtained using group theory by recognizing that the
Lorentz group SO(1,3) is a stable subgroup of the
de Sitter group dS(1,4) while the pseudo-orthogonal
group SO(1,4) acts as its group of motions, i.e., dS(1,4) =
SO(1,4)/SO(1,3), thereby indicating the minimal embed-
ding is into the M5 space [53].
Furthermore, it can be shown that geodesics on a de Sitter

manifold follow the lines defined by the intersection of
the hyperboloid with a hyperplane in M5 containing
the origin and both endpoints of the geodesic [54].
An illustration of both timelike and spacelike geodesics
constructed this way in dS2 embedded inM3 can be found in
Fig. 1. This construction implies that the geodesic distance
dðx; yÞ in dS4 between two points x and y can be found using
their inner product hx;yi¼−x0y0þx1y1þx2y2þx3y3þx4y4
in M5 via the following expression:

dðx; yÞ ¼

8>>><
>>>:

λ arccosh hx;yi
λ2

if x − y is timelike ;

0 if x − y is lightlike;

∞ if hx; yi ≤ −λ2 and x ≠ −y;

λ arccos hx;yi
λ2

otherwise:

ð2:7Þ
While there are many ways to find geodesic distances on a
de Sitter manifold, this is perhaps the simplest one.

III. THE GEODESIC EQUATIONS
IN FOUR DIMENSIONS

While de Sitter symmetries cannot be exploited in a
general FLRW spacetime, it is still possible to solve the

geodesic equations. A geodesic is defined in general by the
variational equation

δ

Z
ds ¼ 0; ð3:1Þ

which, if parametrized by parameter σ ranging between two
points σ1 and σ2, becomes

δ

Z
σ2

σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

∂xμ
∂σ

∂xν
∂σ

r
dσ ¼ 0: ð3:2Þ

The corresponding Euler-Lagrange equations obtained via
the variational principle yield the well-known geodesic
differential equations:

∇X
∂xμ
∂σ ¼ ∂2xμ

∂σ2 þ Γμ
ρτ
∂xρ
∂σ

∂xτ
∂σ ¼ γðσÞ ∂x

μ

∂σ ; ð3:3Þ

for the geodesic path xμðσÞ with some as yet unknown
function γðσÞ, where Γμ

ρτ are the Christoffel symbols
defined by

Γμ
ρτ ¼ 1

2
gμν

�∂gνρ
∂xτ þ ∂gντ

∂xρ −
∂gρτ
∂xν

�
; ð3:4Þ

and∇X indicates the covariant derivative with respect to the
tangent vector field X [55]. If the parameter σ is affine, then
γðσÞ ¼ 0. To solve a particular problem with constraints,
we must use both (3.2) and (3.3).

A. The differential form of the geodesic equations

If only the nonzero Christoffel symbols are kept, then
(3.3) can be broken into two differential equations written
in terms of the scale factor:

FIG. 1. Geodesics on the 1þ1 de Sitter manifold. There are three classes of non-null geodesics on the de Sitter manifold. In (a), we see
a future-directed timelike geodesic emanating from P1 and terminating at P2. These geodesics map out physical trajectories of
subluminal objects within spacetime because the two points lie within each other’s light cones, shown by the green and red lines. The
Alexandroff set of points causally following P1 and preceding P2 is shown in yellow. A spacelike geodesic joining two points with no
causal overlap, shown in (b), “bends away from the origin,”meaning that in the plane defined by the origin ofM3 and points P1, P2, this
geodesic is farther from the origin than the Euclidean geodesic between the same points. If a spacelike geodesic extends far enough,
there will exist an extremum, identified as P3 in (c). As a result, it is simplest to use the spatial distance ω to parameterize these
geodesics, though time can be used as well so long as those geodesics with turning points are broken into two parts at the point P3.
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∂2t
∂σ2 þ a

da
dt

hij
∂xi
∂σ

∂xj
∂σ ¼ γ

∂t
∂σ ; ð3:5aÞ

∂2xi

∂σ2 þ 2

a
da
dt

∂t
∂σ

∂xi
∂σ þ Γi

jk
∂xj
∂σ

∂xk
∂σ ¼ γ

∂xi
∂σ ; ð3:5bÞ

where hij is the first fundamental form, i.e., the induced
metric on a constant-time hypersurface, and the Latin
indices are restricted to f1; 2; 3g.
To solve these, consider the spatial (Euclidean) distance

ω between two points σ1 and σ2:

ω ¼
Z

σ2

σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hij

∂xi
∂σ

∂xj
∂σ

r
dσ;

�∂ω
∂σ

�
2

¼ hij
∂xi
∂σ

∂xj
∂σ : ð3:6Þ

This relation implies the spatial coordinates obey a geo-
desic equation with respect to the induced metric hij.
Now, (3.5a) may be written in terms of ω using (3.6).
The transformation needed for (3.5b) is found by multi-
plying by hijð∂xj=∂σÞ and substituting the derivative of
(3.6) with respect to ω:

∂ω
∂σ

∂2ω

∂σ2 −
1

2

∂hij
∂xk

∂xi
∂σ

∂xj
∂σ

∂xk
∂σ þ 2

a
da
dt

∂t
∂σ

�∂ω
∂σ

�
2

þ hijΓi
kl
∂xj
∂σ

∂xk
∂σ

∂xl
∂σ ¼ γ

�∂ω
∂σ

�
2

: ð3:7Þ

The second and fourth terms cancel by symmetry and,
supposing ð∂ω=∂σÞ ≠ 0, the pair of Eqs. (3.5) may be
written as

∂2t
∂σ2 þ a

da
dt

�∂ω
∂σ

�
2

¼ γ
∂t
∂σ ; ð3:8aÞ

∂2ω

∂σ2 þ
2

a
da
dt

∂t
∂σ

∂ω
∂σ ¼ γ

∂ω
∂σ : ð3:8bÞ

We now proceed by parametrizing the geodesic by the
Euclidean spatial distance, i.e., σ ≡ ω. This yields
∂ω=∂σ ¼ 1, ∂2ω=∂σ2 ¼ 0, and then (3.8b) gives γ ¼
ð2=aÞðda=dtÞð∂t=∂ωÞ. Using these new relations, (3.8a)
can be written as

∂2t
∂ω2

þ da
dt

�
a −

2

a

� ∂t
∂ω

�
2
�

¼ 0: ð3:9Þ

While neither the spatial distance ω nor time t are affine
parameters along all Lorentzian geodesics, the results will
not be affected, since the differential equations no longer
refer to γ. We can see that if ∂t=∂ω ¼ 0 then the second
derivative of t is always negative for t > 0 and positive for
t < 0, since da=dt > 0 for expanding spacetimes:

∂2t
∂ω2

¼ −a
da
dt

: ð3:10Þ

If there exists a critical point exactly at t ¼ 0, it is a saddle
point. From these facts, we conclude that any extremum
found along a geodesic on a Friedmann-Lemaître-
Robertson-Walker manifold is a local maximum in t > 0
and a local minimum in t < 0 with respect to ω.2 An
example of such a curve with an extremum is shown in
Fig. 1(c).
The second-order Eq. (3.9) may be simplified by

multiplying by 2a−4ð∂t=∂ωÞ and integrating by parts to
get a non-linear first-order differential equation and a
constant of integration μ:

0 ¼ ∂
∂ω

�
a−4

�� ∂t
∂ω

�
2

− a2
��

; ð3:11Þ

∂ω
∂t ¼ �ða2ðtÞ þ μa4ðtÞÞ−1=2 ≡Gðt; μÞ; ð3:12Þ

the right-hand side of which is hereafter referred to as the
geodesic kernel Gðt; μÞ. We may neglect the sign by noting
that the spatial distance ω should always be an increasing
function of t, so that any integration of the geodesic kernel
should be always be performed from past to future times.
It will prove necessary to know the value of μ to find the
final value of the geodesic length between two events.

B. The integral form of the geodesic equations

To find the geodesic distance between a given pair of
points/events, we need to use (3.12) in conjunction with
the integral form of the geodesic equation, given in (3.2).
We begin by defining the integrand in (3.2) as the distance
kernel DðσÞ:

DðσÞ≡ ds
dσ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

∂xμ
∂σ

∂xν
∂σ

r
; ð3:13Þ

so that the geodesic distance is

d ¼
Z

σ2

σ1

DðσÞdσ: ð3:14Þ

The invariant interval (2.1) tells us that D2 is negative for
timelike-separated pairs and positive for spacelike-separated
ones, assuming σ is monotonically increasing along the
geodesic. Therefore, we always take the absolute value ofD2

so that the distance kernel is real-valued, while keeping in
mind which type of geodesic we are discussing.

2This statement is true under the assumption that the scale
factor is a well-behaved monotonic function. If this condition
does not hold, the following analysis must be reinspected.
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Depending on the particular scale factor and boundary
values, we might sometimes parametrize the system using
the spatial distance and other times using time. If we
parametrize the geodesic with the spatial distance we find

DðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
� ∂t
∂ω

�
2

þ a2ðtðωÞÞ
s

; ð3:15Þ

and if we instead use time we get

DðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ a2ðtÞ

�∂ω
∂t

�
2

s
; ð3:16Þ

where the function tðωÞ in the former equation is the
inverted solution ωðtÞ to the differential Eq. (3.12). Since
the distance kernel is a function of the geodesic kernel, we
will need to know the value μ associated with a particular
set of constraints.
If we insert (3.12) into (3.16), we can see what values the

constant μ can take:

DðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μa2ðtÞ

1þ μa2ðtÞ

s
: ð3:17Þ

If D2 < 0 for timelike intervals, then μ > 0. If μ ¼ 0, we
obtain a lightlike geodesic, since the distance kernel
becomes zero. Hence, spacelike intervals correspond to
−a−2ðtÞ < μ < 0. We do not consider μ < −a−2ðtÞ because
this corresponds to an imaginary ∂ω=∂t, which we consider
non-physical.

C. Geodesic constraints and critical points

Wewould like to find geodesics for both initial-value and
boundary-value problems. If we have Cauchy boundary
conditions, i.e., the initial position and velocity vector are
known, then finding μ is simple: since the left-hand side
of (3.12) is just the speed v0 ≡ jviðt0Þj, where vi is the
velocity vector defined by our initial conditions, we have

μ ¼ a−20 ðv−20 a−20 − 1Þ; ð3:18Þ

where a0 ≡ aðt0Þ. This allows for simple solutions to cases
with Cauchy boundary conditions.
However, if we have Dirichlet boundary conditions, i.e.,

the initial and final positions are known, then we must
integrate (3.12) instead. The bounds of such an integral
need to be carefully considered: if we have a spacelike
geodesic which starts and ends at the same time, for
instance, then it is not obvious how to integrate the
geodesic kernel. In fact, we face an issue with the
boundaries whenever we have geodesics with turning
points. This feature occurs whenever ∂t=∂ω ¼ 0, i.e.,

aðtcÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi
−μ−1

q
: ð3:19Þ

Since in this case μ < 0, we see that turning points only
occur for spacelike geodesics. Furthermore, since all of the
scale factors given by (2.3) are monotonic, this situation
occurs in such spacetime only at a single point along a
geodesic, if at all, identified as P3 in Fig. 1(c). Specifically,
if t1, t2, t3 respectively correspond to the times at points P1,
P2, P3, then the integral of the geodesic kernel is found by
integrating from t3 to t1 as well as from t3 to t2, since time is
not monotonic along the geodesic. If no such turning point
P3 exists along the geodesic, a single integral from t1 to t2
may be performed. The integral of the distance kernel
should be performed in the same way for the same reasons.
To determine if a turning point exists along a spacelike

geodesic, we begin by noting that there is a corresponding
critical spatial distance ωc which corresponds to the critical
time defined in (3.19). If we suppose t2 > t1 > 0, then the
geodesic kernel is maximized when μ ¼ μc ≡ −a−2ðt2Þ,
i.e., when μ attains its minimum value. This is the minimum
value of μ along the geodesic, since aðtÞ is monotonically
increasing. The critical spatial distance is defined by this μc
and is given by

ωc ¼
Z

t2

t1

1

aðtÞ
�
1 −

�
aðtÞ
aðt2Þ

�
2
�

−1=2
dt: ð3:20Þ

Since μc maximizes the geodesic kernel, it is impossible for
a spacelike-separated pair to be spatially farther apart
without their geodesic having a turning point. We then
conclude that if ω < ωc for a particular pair of spacelike-
separated points, then the geodesic is of the form shown in
Fig. 1(b), and if ω > ωc it is of the form shown in Fig. 1(c).
In other words, if the geodesic is of the latter type, then the
solution to (3.12) is

ω ¼
Z

tc

t1

Gðt; μÞdtþ
Z

tc

t2

Gðt; μÞdt; ð3:21Þ

while the solution to (3.14) using (3.16) is

d ¼
Z

tc

t1

DðtÞdtþ
Z

tc

t2

DðtÞdt; ð3:22Þ

again supposing t2 > t1 > 0. The bounds on the integral
are chosen this way due to the change of sign in the
geodesic kernel on opposite sides of the critical point. If
0 > t2 > t1 then the bounds on the integrals are reversed so
that ω, d > 0.

D. Geodesic connectedness

Certain FLRWmanifolds are not spacelike-geodesically-
connected, meaning not all pairs of spacelike-separated
points are connected by a geodesic. For a given pair of

EXACT GEODESIC DISTANCES IN FLRW SPACETIMES PHYSICAL REVIEW D 96, 103538 (2017)

103538-5



times t1, t2 there exists a maximum spatial separation ωm
past which the two points cannot be connected by a
geodesic. To determine this maximum spatial distance
ωm for a particular pair of points, we use (3.21), this time
taking the limit μ → 0−. This limit describes a spacelike
geodesic which is asymptotically becoming lightlike. If
the critical time tc remains finite in this limit, the manifold
is geodesically connected and ωm ¼ ∞, whereas if it
becomes infinite then ωm remains finite, shown in detail
in Fig. 2. Equation (3.21) in the limit μ → 0− is

ωm ¼
Z

tc

t1

dt
aðtÞ þ

Z
tc

t2

dt
aðtÞ : ð3:23Þ

Comparing (3.23) to (2.6) we notice that ωm is simply a
combination of conformal times using the boundary points
t1 and t2: ωm ∝ ηc ≡ ηðtcÞ, and so if ηc is finite, then ωm
will be finite as well. Therefore, we conclude that a
Friedmann-Lemaître-Robertson-Walker manifold is geo-
desically complete if

lim
μ→0−

jηcj ¼ ∞; ð3:24Þ

where ηc is obtained by inverting

aðtðηcÞÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi
−μ−1

q
; ð3:25Þ

using the appropriate aðtÞ and tðηÞ for the given manifold.
As an example, consider the de Sitter manifold:

λ

ηc
¼ �

ffiffiffiffiffiffiffiffiffiffi
−μ−1

q
; ð3:26Þ

so that the limit maximum conformal time in terms of μ is

lim
μ→0−

jηcj ¼ lim
μ→0−

λ
ffiffiffiffiffiffi
−μ

p ¼ 0: ð3:27Þ

Therefore, in the flat foliation, there exist pairs of points on
the de Sitter manifold which cannot be connected by a
geodesic. On the other hand, if we consider the Einstein-de
Sitter manifold, which represents a spacetime with dust
matter, the scale factor is proportional to η2:

lim
μ→0−

jηcj ∝ lim
μ→0−

ð−μ−1Þ1=4 ¼ ∞; ð3:28Þ

so that every pair of points may be connected by a geodesic.

IV. EXAMPLES

Here we apply the results above to calculate geodesics in
the FLRW manifolds defined by each of the scale factors
in (2.3), using two type of constraints: the Dirichlet and
Cauchy boundary conditions. The former conditions
specify two events or points in a given spacetime that
can be either timelike or spacelike separated, as in Fig. 1.
The latter conditions specify just one point and a vector of
initial velocity. If the initial speed is below the speed of
light, then the resulting geodesic is timelike, and corre-
sponds to a possible world line of a massive particle. If the
initial speed is above the speed of light, i.e., the initial
tangent vector is spacelike, then the resulting geodesic is
spacelike, and corresponds to a geodesic of a hypothetical
superluminal particle. Even though tachyons may not exist,
spacelike geodesics are well defined mathematically. The
last example that we consider illustrates how to apply these
techniques to find numerical values for geodesic distances
in our physical universe.

A. Dark energy

Suppose we wish to find the geodesic distance using the
Dirichlet boundary conditions ft1; t2;ωg. The geodesic
kernel in a flat de Sitter spacetime is
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FIG. 2. Evidence of geodesic horizons in FLRW manifolds. Certain FLRW manifolds are not spacelike-geodesically-connected, such
as the de Sitter manifold. In (a) we see the relation between the integration constant μ, first defined in (3.12), and the spatial separation
between two points on the de Sitter manifold. The initial point is located at t1 ¼ 0.1 and the curves show the behavior for several choices
of the final time t2. For small ω, the pair of points is timelike-separated and μ is positive. As ω tends to zero, μ tends to infinity, indicating
the manifold is timelike-geodesically-complete. As ω increases and the geodesic becomes spacelike, it will ultimately have a turning
point at ωc, located at the minimum of each curve and defined by (3.20). Ultimately, for manifolds which are spacelike-geodesically-
incomplete the curve terminates at some maximum spatial separation ωm defined by (3.23). In (b), showing the Einstein-de Sitter
manifold case, the curves extend to infinity on the right because the manifold is geodesically complete.
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GΛðt; μÞ ¼ λ−1ðe2t=λ þ μe4t=λÞ−1=2; ð4:1Þ

where μ has absorbed a factor of λ2 and we use η ∈ ½−1; 0Þ
so that t ≥ 0. We can easily transform the kernel into a
polynomial equation by using the conformal time:

GΛðη; μÞ ¼
�
1þ μ

η2

�
−1=2

: ð4:2Þ

If the minimal value of μ is inserted into this kernel, the
turning point ωc can be found exactly:

μc ¼ −η22; ð4:3Þ

GΛðη; μcÞ ¼
�
1 −

�
η2
η

�
2
�

−1=2
; ð4:4Þ

ωcðη1; η2; μcÞ ¼
Z

η2

η1

GΛðη; μcÞdη;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η21 − η22

q
: ð4:5Þ

The geodesic kernel may now be integrated both above and
below the turning point:

ω ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffi

η21 þ μ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η22 þ μ

p
if ω < ωc;ffiffiffiffiffiffiffiffiffiffiffiffiffi

η21 þ μ
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η22 þ μ

p
if ω > ωc:

ð4:6Þ

The variable μ is then found by inverting one of these
equations. Finally, substitution of the scale factor and
numerical value μ into (3.16) gives the geodesic distance
for a pair of coordinates defined by fη1; η2;ωg:

dΛðt1; t2; μÞ ¼ sinh−1
� ffiffiffi

μ
p
η1

�
− sinh−1

� ffiffiffi
μ

p
η2

�
; ð4:7aÞ

for timelike-separated pairs, and

dΛðt1; t2; μÞ

¼
8<
:

sinh−1
� ffiffiffiffiffi−μp

η1

�
− sinh−1

� ffiffiffiffiffi−μp
η2

�
if ω < ωc;

sinh−1
� ffiffiffiffiffi−μp

η1

�
þ sinh−1

� ffiffiffiffiffi−μp
η2

�
þ π if ω > ωc;

ð4:7bÞ

for spacelike-separated pairs. In the Appendix we show that
this solution is equivalent to the solution found using the
embedding in Sec. II A.

B. Dust

In this example, let us suppose we have Cauchy
boundary conditions and we want an expression for the
geodesic distance in terms of spatial distance traveled ω.
First, knowing the values ðt0; r0; θ0;ϕ0Þ and jv0j, we can

find the parameter μ via (3.18). Because the manifold has a
singularity at t ¼ 0, we assert t0 ≠ 0 to avoid a nonsensical
value for μ. We proceed by parametrizing the geodesic
equation by the spatial distance, following (3.15), so that
the distance kernel for this spacetime is

DDðωÞ ¼ α2jμj1=2
�
3tðωÞ
2λ

�
4=3

: ð4:8Þ

We use the geodesic kernel to find tðωÞ directly, by solving
(3.12) for ωðtÞ and inverting the solution. In the spacetime
with dust matter and no cosmological constant the geodesic
kernel is

GDðt; μÞ ¼
�
α2
�
3t
2λ

�
4=3

þ μα4
�
3t
2λ

�
8=3

�
−1=2

; ð4:9Þ

which, using the transformations x≡ ð3t=2λÞ1=3 and
μ → α2μ, becomes

GDðx; μÞ ¼
2λ

α
ð1þ μx4Þ−1=2: ð4:10Þ

The value of ω where the turning point occurs is then

ωcðx0; μÞ ¼
2λ

α

� ffiffiffi
π

p
Γð5=4Þ

Γð3=4Þ ð−μÞ−1=4

−x0 2F1

�
1

4
;
1

2
;
5

4
;−μx40

��
; ð4:11Þ

where x0 ≡ xðt0Þ and 2F1ða; b; c; zÞ is the Gauss hyper-
geometric function.
The final expression ωðtÞ still depends on the existence

of a critical point along the geodesic. To demonstrate how
piecewise solutions are found, hereafter we suppose we
are studying a superluminal inertial object moving fast
and long enough to take a geodesic with a turning point.
The spatial distanceωðx; x0Þ, with x > x0 and μ < 0, which
we know because the geodesic is spacelike, is

ωð1Þðx; x0; xcÞ ¼
2λ

α
xc

�
F

�
arcsin

�
x
xc

�				 − 1

�

−F
�
arcsin

�
x0
xc

�				 − 1

��
; ð4:12aÞ

before the critical point, and

ωð2Þðx; x0; xcÞ ¼
2λ

α
xc

�
2Kð−1Þ − F

�
arcsin

�
x0
xc

�				 − 1

�

− F

�
arcsin

�
x
xc

�				 − 1

��
; ð4:12bÞ

afterward, where xc ¼ ð−μÞ−1=4, and KðmÞ and FðϕjmÞ
respectively are the complete and incomplete elliptic
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integrals of the first kind with parameter m. These expres-
sions ωðx; x0; xcÞ are slightly different for μ > 0. Despite
the apparent complexity of the above expressions, they are
in fact easy to invert via the Jacobi elliptic functions.
The distance for a geodesic with a turning point is

dðω; μÞ ¼
Z

ωc

0

Dðωð1ÞÞdωþ
Z

ω

ωc

Dðωð2ÞÞdω; ð4:13Þ

giving the final result

dDðω; μÞ ¼
α2jμj1=2x4c

3β1

�
β1ð2ωc − ωÞ

þ x0
xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
x0
xc

�
4

s
þ fnðβ3 − β1ωcj − 1Þ

− fnðβ1ωc þ β2j − 1Þ − fnðβ1ω − β3j − 1Þ
�
;

ð4:14Þ

where we have used the auxiliary variables

β1 ≡ α

2λxc
; ð4:15Þ

β2 ≡ F

�
arcsin

�
x0
xc

�				 − 1

�
; ð4:16Þ

β3 ≡ 2Kð−1Þ − β2; ð4:17Þ

fnðϕjmÞ≡ snðϕjmÞcnðϕjmÞdnðϕjmÞ; ð4:18Þ

and the three functions in the last definition are the Jacobi
elliptic functions with parameter m.

C. Radiation

Here we suppose we have Cauchy boundary conditions,
but the particle will take a timelike geodesic, i.e., μ > 0.
Using the transformations x≡ ffiffiffiffiffiffiffiffiffi

2t=λ
p

and μ → α3=2μ, we
can write the geodesic kernel as

GRðx; μÞ ¼
λ

α3=4
ð1þ μx2Þ−1=2: ð4:19Þ

If this kernel is integrated over x to find the spatial distance
ωðxÞ, the result can be inverted to give

xðω; μ; x0Þ ¼ μ−1=2 sinh ðβ1ωþ β2Þ; ð4:20Þ

where β1 ≡ α3=4μ1=2=λ and β2 ≡ arcsinhðμ1=2x0Þ. Since the
geodesic distance is more easily found when we para-
metrize with the spatial distance ω, we can write the
distance kernel as

DRðωÞ ¼ α3=2μ1=2x2ðω; μ; x0Þ; ð4:21Þ

and the geodesic distance as

dRðω; μ; x0Þ ¼
Z

ω

0

DRðω0Þdω0; ð4:22Þ

¼ α3=2

4μ1=2β1
ðsinh ð2ðβ1ωþ β2ÞÞ

− sinh ð2β2Þ − 2β1ωÞ: ð4:23Þ

Typically, timelike geodesics are parametrized by time:
since there exists a closed-form solution for ωðxðtÞÞ this
expression can be substituted here, though it would need-
lessly add extra calculations. Therefore, in practice it is
computationally simpler to use a spatial parametrization.

D. Stiff fluid

Suppose we have a spacetime containing a homogeneous
stiff fluid, and we wish to find a timelike geodesic using
Dirichlet boundary conditions. Using the transformation
x≡ ð3t=λÞ1=3, we can write the geodesic kernel as

GSðx; μÞ ¼
λ

α1=2
x

ð1þ μx2Þ1=2 ; ð4:24Þ

where μ has absorbed a factor of α. This kernel can easily
be integrated to find

ωðx0; x1; μÞ ¼
λ

α1=2μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μx21

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μx20

q �
: ð4:25Þ

The constant μmay be found provided the initial conditions
fx0; x1;ωg:

μ ¼ x20 þ x21
ω2

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20x

2
1 þ ω2

ω4

s
: ð4:26Þ

Finally, if the geodesic is parametrized by xðtÞ we arrive at

dSðx0; x1; μÞ ¼
λ

3μ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ μ−1

q
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ μ−1

q

− x31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðx−21 þ μÞ

q
þ x30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðx−20 þ μÞ

q �
:

ð4:27Þ

E. Dark energy and dust

None of the spacetimes with a mixture of dark energy
and some form of matter have closed-form solutions for
geodesics, because the scale factors are various powers of
the hyperbolic sine function, so it becomes cumbersome to
work with the geodesic and distance kernels. However, by
using the right transformations, it is still possible to make
the problem well-suited for fast numerical integration.
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In this example, we use the mixed dust and dark energy
spacetime, following the same procedure as before; for
other spacetimes with mixed contents the same method
applies. This time, the geodesic kernel is

GΛDðt; μÞ ¼
�
sinh4=3

�
3t
2λ

�
þ μsinh8=3

�
3t
2λ

��
−1=2

:

ð4:28Þ

Once again, the kernel can be written as a polynomial
expression, this time using the square root of the scale
factor as the transformation:

xðtÞ≡ sinh1=3
�
3t
2λ

�
;

GΛDðx; μÞ ¼ 2ðð1þ x6Þð1þ μx4ÞÞ−1=2: ð4:29Þ

There is no known closed-form solution to the integral of
GΛD. The distance kernel is best represented as a function
of t to simplify numerical evaluations:

DΛDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μsinh2=3ð3t=λÞ

1þ μsinh2=3ð3t=λÞ

s
: ð4:30Þ

There is no known closed-form solution to this kernel’s
integral either, but it can be quickly computed numerically,
since the hyperbolic term needs to be evaluated only once
for each value of t. In general, the numeric evaluations of
such integrals can be quite fast if the kernels take a
polynomial form, and a Gauss-Kronrod quadrature can
be used for numeric evaluation of these integrals.

F. Dark energy, dust, and radiation

Typically in cosmology one studies one particular
era, whether the early inflationary phase, the radiation-
dominated phase, the matter-dominated phase after
recombination, or ultimately today’s period of accelerated
expansion. Perhaps the most important spacetime which we
have not looked at yet is the FLRW spacetime which most
closely models our own physical universe, in its entirety. In
this section we will show how to most efficiently find
geodesics in our (FLRW ΛDR) universe.
Because the scale factor aðtÞ is a smooth, monotonic,

differentiable, and bijective function of time, it, instead of
time t or spatial distance ω, can parametrize geodesics, so
long as we remember to break up expressions when there
exists a turning point in long spacelike geodesics. In what
follows we will restrict the analysis to timelike geodesics
for simplicity. To find spacelike geodesics, refer to the steps
performed in Sec. IV B. Using the scale-factor parametri-
zation, the geodesic and distance kernels are

GΛDRða; μÞ ¼ λ

�
ð1þ μa2Þ

�
ΩR

ΩΛ
þ ΩD

ΩΛ
aþ a4

��
−1=2

;

ð4:31Þ

DΛDRðaÞ ¼ λ

��
−μa4

1þ μa2

��
ΩR

ΩΛ
þ ΩD

ΩΛ
aþ a4

�
−1
�−1=2

:

ð4:32Þ

As we saw in Sec. IV E, integrands such as these produce
no closed-form solutions, but they are easily evaluated
numerically due to their polynomial form.
We now provide a simple example of computing an exact

geodesic distance between a pair of events in our physical
universe using these results. Suppose we are to measure the
timelike geodesic distance between an event in the early
universe, where t1 ¼ 1011 s, and another event near today,
t2 ¼ 4.3 × 1017 s. Let the spatial distance of this geodesic
be ω ¼ 4.1 × 1013 km, roughly the distance to Alpha
Centauri. Taking relevant experimental values from recent
measurements [56], we find the Hubble constant is H0 ¼
100h km=s=Mpc where h ¼ 0.705, and the density param-
eters areΩΛ ¼ 0.723,ΩD ¼ 0.277, andΩR ¼ 9.29 × 10−5.
The leading constant λ in the above equations can be
expressed as λ ¼ H−1

0 Ω−1=2
Λ , thereby completing the set of

all the relevant physical parameters used in (4.31) and
(4.32). We then integrate the geodesic kernel (4.31),
inserting the speed of light c where needed, to numerically
solve for the integration constant μ, which we find to be
μ ¼ 2.53 × 1023. Inserting this value into the distance
kernel (4.32) and evaluating numerically gives a final
geodesic distance of d ¼ 2.22 × 1023 km.

V. CONCLUSION

By integrating the geodesic differential Eqs. (3.3) we
have shown for spacetimes with dark energy, dust, radia-
tion, or a stiff fluid, that it is possible to find a closed-form
solution for the geodesic distance provided either initial-
value or boundary-value constraints. Furthermore, by
studying the form of the first-order differential Eq. (3.12)
we found that extrema along spacelike geodesic curves will
always point away from the origin. This insight provides a
better understanding of how to integrate the geodesic and
distance kernels (3.12), (3.15), (3.16) for different types of
boundary conditions. Moreover, our other important result
in Sec. III D demonstrates how, using (2.6), (3.19), and
(3.24), we are able to tell, using only the scale factor,
whether or not all points on a flat FLRW manifold can be
connected by a geodesic. This observation is particularly
useful in numeric experiments and investigations that can
study only a finite portion of a spatially flat manifold.
Finally, in Sec. IV we provided several examples of
how these results might be applied to some of the most
well-studied FLRW manifolds, including the manifold
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describing our universe. While not all spacetimes have
closed-form solutions for geodesics, it is still possible to
reframe the problem in a way which may be solved
efficiently using numerical methods in existing software
libraries.
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APPENDIX: EQUIVALENCE
OF DE SITTER SOLUTIONS

Here we show that the Eqs. (2.7) and (4.7) are equal
under certain assumptions. Let us refer to the former as d1
and the latter as d2. The conformal time in the de Sitter
spacetime is ηðtÞ ¼ −e−t=λ, with η ∈ ½−1; 0Þ so that the
cosmological time t remains positive. Since the geodesic
distance depends on the spatial distance, but not the
individual spatial coordinates, we can assume without loss
of generality that the initial point is located at the origin,
r ¼ θ ¼ ϕ ¼ 0, and the second point is located at some
distance ω from the origin, r ¼ ω; θ ¼ ϕ ¼ 0. Further, to
simplify the proof, suppose the initial point is at time t ¼ 0
(η ¼ −1) and the second point at some t ¼ t0 > 0
(η ¼ η0 ∈ ð−1; 0Þ). We are allowed to make these assump-
tions due to the spatial symmetries associated with the dS
(1,3) group and the existence of a global timelike Killing
vector in the flat foliation of the de Sitter manifold [57].

In addition, suppose the geodesic is timelike so that
ω ∈ ½0; η0 þ 1Þ⊆½0; 1Þ. This same method may be applied
to spacelike geodesics.
Using these values, the embedding coordinates in

M5 are x ¼ ðð1 − λ2Þ=2;−ð1þ λ2Þ=2; 0; 0; 0Þ and y ¼
ððλ2 þ ω2 − η20Þ=2η0; ðλ2 − ω2 þ η20Þ=2η0; λω=η0; 0; 0Þ.
This equation gives a geodesic distance

d1 ¼ λ arccosh
�
ω2 − η20 − 1

2η0

�
: ðA1Þ

On the other hand, we can use the solution provided by
(4.7) using the value of μ in (4.6):

μ ¼ ðωþ η0 þ 1Þðωþ η0 − 1Þðω − η0 þ 1Þðω − η0 − 1Þ
4λ2ω2

;

ðA2Þ

in the geodesic distance expression

d2 ¼ λ

�
arcsinh

�
λ

ffiffiffi
μ

p
−η0

�
− arcsinhðλ ffiffiffi

μ
p Þ

�
: ðA3Þ

If we apply coshðd=λÞ to each of these expressions, and use
the identities coshðx − yÞ ¼ cosh x cosh y − sinh x sinh y
and cosh arcsinhx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
, we may equate them to get

ω2 − η20 − 1

2η0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2μþ 1Þ

�
λ2μ

η20
þ 1

�s
þ λ2μ

η0
: ðA4Þ

Using (A2) and some algebra, the right-hand side may be
simplified to give the result on the left-hand side, thereby
proving they are equal.
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