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Given the tension between the values of the Hubble parameter H0 inferred from the cosmic microwave
background (CMB) and from supernovae, attention is turning to time delays of strongly lensed quasars.
Current time-delay measurements indicate a value of H0 closer to that from supernovae, with errors on the
order of a few percent, and future measurements aim to bring the errors down to the subpercent level. Here
we consider the uncertainties in the mass distribution in the outskirts of the lens. We show that these can
lead to errors in the inferredH0 on the order of a percent and, once accounted for, would correctH0 upward
(thus increasing slightly the tension with the CMB). Weak gravitational lensing and simulations may help
to reduce these uncertainties.
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The Hubble tension may now well provide the greatest
challenge to the canonical cosmological model [1,2]. The
value of the Hubble parameterH0 obtained from the cosmic
microwave background (CMB), where H0 affects the
very precisely determined angular scale of the acoustic
peaks in the CMB power spectrum [3–5], is HCMB

0 ¼
67.3�1.0kms−1Mpc−1 [6], which tightens to HCMBþgal

0 ¼
67.6�0.6kms−1Mpc−1 when supplemented by galaxy-
survey data [7–10].
TheHubble parameter can also be obtained by comparing

the brightnesses and redshifts of standard candles [11].
Recent supernova observations have determined the value of
the Hubble parameter to be HSNe

0 ¼73.2�1.7kms−1Mpc−1

[12], at roughly 3σ tension with the CMB-inferred value.
Cosmological explanations of the discrepancy are not easy
to come by; they typically involve somemodifications to the
cosmic expansion history that then introduces some other
tension with the detailed structure of the CMB power
spectrum [12–14]. Another possibility is that the discrep-
ancy may arise from measurement biases in one or both
observables [15–17], and so it is of paramount importance to
obtain a third independent probe of H0.
Attention is thus turning now to the value of H0 inferred

from time delays of strongly lensed quasars [18–21]. There
has been tremendous recent progress in this endeavor,
with the H0LiCOW program recently reporting Hlens

0 ¼
71.9þ2.4

−3.0 km s−1Mpc−1 [22] from three lensing systems.
Additional lenses are expected to reduce the error bars on
H0 even further [23].
In order to reach not only percent-level precision, but

also percent-level accuracy, the mass distribution of the lens
must be carefully modeled. For example, uncertainties in
the radial mass profile assumed for the lens have been
shown to induce errors of several percent in H0 [24–26],
whereas microlensing of the quasar source can cause
comparable uncertainties [27]. Here, we focus specifically

on the mass distribution of the lens at large distances from
the lens center of mass. We show that uncertainties in this
large-distance mass distribution may lead to uncertainties
inH0 of a few percent. We also argue that current modeling
may be biasing the value of H0 down (implying greater
tension with the CMB).
The mass distribution of lens galaxies at large radii

remains, to a great extent, unknown. Galactic mass profiles
must be truncated at no more than the ∼Mpc typical
intergalactic spacing, and weak-lensing studies [28] suggest
the mass distributions of galaxies that resemble typical
strong lenses ought to be truncated at distances ≲500 kpc.
The time delay depends on the totalmass projected along the
line of sight [29], and so there may be artificial contributions
to the expected time delay if the lens mass is not truncated.
Although this effect was too small to be of concern in prior
work, it introduces, if neglected, aOð1%Þ bias in the inferred
Hubble parameter and, if considered, still implies a residual
uncertainty of comparable magnitude.
We also consider a subtle issue about how cosmological

lenses are embedded in a Friedmann-Robertson-Walker
(FRW) universe. The usual discussions of lensing surmise
that the mass associated with a lens is added to an otherwise
homogeneous FRW universe, giving rise to a potential
perturbation that falls off as 1=r with distance r from the
lens. In our Universe, however, the mass associated with any
given lens arises from a local overdensity which is compen-
sated elsewherewith an underdensity. As a result, the potential
perturbation associated with any particular lens should fall off
far more rapidly than 1=r at large distances. We show that a
correct accounting of this effect biases the inferred Hubble
parameter downwards, but only by ðδH0=H0Þ ∼ 10−4.
We begin by reviewing the lensing formalism. Given a

mass density ρðrÞ of the lens, the mass distribution
projected onto the lens plane at angular position θ is
obtained by integrating over the line-of-sight distance z,
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ΣðθÞ ¼
Z

dzρðDLθ; zÞ; ð1Þ

where DL is the angular-diameter distance to the lens.
We can divide Σ by the critical density Σcrit ≡ c2DS=
ð4πGDLDLSÞ to separate strong from weak lensing, where
DS and DLS are, respectively, the angular-diameter dis-
tances to the source and between the lens and the source, to
obtain the convergence [30] κðθÞ ¼ ΣðθÞ=Σcrit. The lensing
potential is the projection of the gravitational potential ϕ,
given by [31],

ψðθÞ ¼ 2DLS

c2DLDS

Z
dzϕðDLθ; zÞ; ð2Þ

which is related to the convergence through ∇2
θψ ¼ 2κ.

This potential yields a deflection angle α ¼ ∇θψ , which
defines where images are formed through the lens equation,

β ¼ θ − αðθÞ; ð3Þ
where β is the impact parameter. The β in Eq. (3) is
unknown a priori, and is obtained by fitting to the observed
image positions θ, and the αðθÞ is predicted by the lens
model (i.e., mass distribution). Signals from the source will
arrive as different images, at positions θi and θj, with a time
delay given by [32,33]

Δtij ¼
DΔt

c

�
α2ðθiÞ − α2ðθjÞ

2
− ½ψðθiÞ − ψðθjÞ�

�
; ð4Þ

where we have defined the time-delay distance,

DΔt ≡ ð1þ zLÞ
DLDS

DLS
∝ H−1

0 ; ð5Þ

and zL is the redshift of the lens. Given thatDΔt is a ratio of
distances, it is inversely proportional to the Hubble param-
eter H0 and only weakly dependent on other cosmological
parameters [23].
The usual procedure is to consider a parametrized family

of convergences κðθ; ξÞ with parameters ξ. These param-
eters are obtained by fitting to the observed image positions
fθig. The Hubble parameter is then inferred by comparing
the time delay expected from Eq. (4) with that observed.
One issue that arises, though, is the mass-sheet degen-

eracy, in which the effect of a constant additional surface-
mass density on the observed image positions can be
compensated by a change in the impact parameter. If the
real convergence of the lens is κreal, but it is modeled as

κmodel ¼ ð1 − λÞκreal þ λ; ð6Þ
the observed image positions will be the same, granted that
the impact parameter is changed as βmodel ¼ ð1 − λÞβreal.
However, the expected time delay is changed to Δtmodel

ij ¼
ð1 − λÞΔtrealij , thus yielding a different value,

Hmodel
0 ¼ ð1 − λÞHreal

0 ; ð7Þ
for the Hubble parameter. The mass-sheet degeneracy is not
just a theoretical curiosity. It is expected that the large-scale
structure along the line of sight causes light rays to focus and
defocus, introducing an external convergence κext [34,35].
There are two avenues to breaking this degeneracy. The

first is to use dynamical measurements of stellar velocities
in the lens, as the transformation in Eq. (6) also implies a
change ðσmodel

vel Þ2 ¼ ð1 − λÞðσrealvel Þ2 to stellar velocities [36].
In practice, however, uncertainties in the lens profile can
induce errors when extrapolating the mass measurement at
small radii to the larger Einstein radius [37]. Moreover, the
possibility of anisotropy in the lens hampers translation
from kinematic data to the lens mass [24].
The second method is to simulate fields of view in

cosmological N-body simulations to obtain a probability
distribution function (PDF) for κext [38–40]. In an FRW
universe this PDF has mean hκexti ¼ 0, but the finite width
hκ2exti ≠ 0 is one of the limiting factors in current time-delay
H0 measurements [39]. There has been great development
in the study of this PDF; for instance, we have learned that
multiply imaged quasars, as biased tracers of the under-
lying matter distribution, live preferentially in overdense
regions, which causes a percent-level bias on hκexti and thus
on the inferred H0 [41]. An example of this bias is found in
the lens system RXJ1131-1231, which resides in a line of
sight with ∼40% more galaxies than average [39], which
causes the expectation value of the external convergence to
be hκexti ≈ 0.1. In an effort to find the PDF of κext for each
individual system, instead of the average PDF of an FRW
universe, both the average number counts of galaxies in the
field [42], as well as the external shear γext [39], have been
used as ancillary data.
The aforementioned N-body studies quantify the contri-

butions of independent structures, along the line of sight, that
are at large (cosmological) physical distances from the lens.
What we will consider now, though, is the mass distribution
in the lensing system, but at physical distances (e.g.,
∼100 s kpc) large compared with the Einstein radius and
impact parameter (e.g.,∼10 kpc).Wewill first show that this
can be approximated as a mass-sheet transformation.
We focus on the spherically symmetric power-law

models, with mass density given by

ρmodelðrÞ ¼ ρ0ðr=r0Þ−γ0 ; ð8Þ
that are usually used in lens modeling. This density profile
gives rise to a projected surface-mass density at a distance
bð¼ DLθÞ from the center of the lens of

ΣmodelðbÞ ¼
ffiffiffi
π

p
ρ0r

γ0
0 b

1−γ0Γ
�
γ0 − 1

2

��
Γ
�
γ0

2

��
−1
; ð9Þ

where Γ is the gamma function. We now compute the
critical density through πR2

EΣcrit ¼ Mlos, where Mlos is the
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line-of-sight mass contained within a cylinder of radius RE,
to find [42]

Σcrit ¼ −ρ0r
γ0
0R

1−γ0
E

ffiffiffi
π

p
Γ
�
γ0 − 3

2

��
Γ
�
γ0

2

��
−1
: ð10Þ

We then obtain the convergence [36,43] κmodelðθÞ ¼
ð3 − γ0ÞðθE=θÞγ0−1=2. The parameters of the model are
the power-law index γ0, and the Einstein angle θE≡
RE=DL. Using this model, augmented with an ellipticity
parameter to account for the noncircularity of the lens, the
authors of Ref. [39] inferred a Hubble constant H0 ¼
78.7þ4.3

−4.5 km s−1Mpc−1 from the RXJ1131-1231 system.
The issue we first address is the uncertainty associated

with the assumption of a power-law mass distribution that
extends to infinite radius. It is clear that the mass distri-
bution cannot extend to infinity (and that the total mass
cannot be infinite, as the power-law mass profile implies).
Still, the contribution to the convergence, and thus the
observables, is small enough to be neglected in prior work.
As we move to subpercent precision/accuracy, though, the
effects of the truncation radius become significant. To see
this, we truncate the mass density from Eq. (8) at a finite
radius by adding the negative-mass distribution ρt ¼
−ρ0ðr=r0Þ−γ0Θðr − rtÞ, to the model, where ΘðrÞ is the
Heaviside step function, and rt is the truncation radius. This
distribution gives rise to a projected surface mass density
Σt ¼ −2ρ0r

γ0
0 r

1−γ0
t =ð1 − γ0Þ, neglecting terms of O½ðb=rtÞ3�

or larger. Again dividing by the critical density1 from
Eq. (10), we find the convergence due to this negative-mass
distribution to be

κt ¼
2Γðγ0

2
Þðγ0 − 1Þffiffiffi
π

p
Γðγ0−3

2
Þ

�
RE

rt

�
γ0−1

< 0: ð11Þ

This large-radius negative-mass distribution thus modifies
the convergence to

κrealðθÞ ¼
3 − γ0

2

�
θ0E
θ

�
γ0−1

þ κt; ð12Þ

independently of θ, and is then equivalent to a mass-sheet
transformation with λt ¼ −κt. We thus use Eq. (7) to relate
the real H0 to the one inferred by the nontruncated model,

Hreal
0 ¼ Hmodel

0

ð1þ κtÞ
≈ ð1 − κtÞHmodel

0 > Hmodel
0 : ð13Þ

Thus, time-delay measurements of H0 are biased low if the
finite extent of the lensing mass distribution is not taken
into account.
We now consider the range of reasonable values for the

truncation radius rt. As the analysis above indicates, the

image positions do not depend significantly on the mass
distribution at large radii, a consequence of the fact that the
light rays for observed images have trajectories with impact
parameters comparable to the Einstein radius, which is
much smaller than rt [26]. Nonetheless, galaxies produce
weak lensing at very wide angular separations, which can
be detected by the shear created on background galaxies
[44]. In Ref. [45] a study of the truncation radius of galaxies
was performed, where the lens mass density was modeled
as a dual pseudoisothermal elliptical mass distribution [46]

ρðrÞ ¼ σ2vels
2

4πGr2ðr2 þ s2Þ ; ð14Þ

which is isothermal for r ≪ s, and decays as r−4 for larger
radii, effectively showing a cutoff at r ∼ s. To first non-
vanishing order in r=s the mass distribution in Eq. (14)
yields a convergence

κðrÞ ¼ θE
2θ

�
1þ RE

2s

�
−
RE

2s
; ð15Þ

which can be identified with the isothermal case (γ0 ¼ 2) of
our Eq. (12), if κt ¼ −RE=ð2sÞ. By comparing to Eq. (11),
κt ¼ −RE=ðπrtÞ, we find s ¼ πrt=2. This also shows that
for the purposes of strong lensing, where r ∼ RE ≪ rt, our
sharp cutoff is a good approximation to the smooth
truncation scheme in Eq. (14), while remaining valid for
γ0 ≠ 2, thus fitting most lens models, which are not
isothermal. The size of s has been estimated in Ref. [45]
to be s≳ 100h−1 kpc, whereas a more recent study in
Ref. [47] found s ¼ 185þ30

−28 h−1 kpc on average over an
ensemble population of all galaxies. Furthermore, in
Ref. [28] it was found that red galaxies, which tend to
be early type and thus more likely to be strong lenses, have
on average larger truncation radii, s ≈ 300 h−1 kpc.
We thus find that time-delay Hubble-parameter mea-

surements are biased low by

δH0

H0

≈ −0.01
�

RE

10 kpc

��
rt

300 kpc

�
−1
; ð16Þ

where for simplicity we have set γ0 ¼ 2. Although the
precise bias will differ from lens to lens, the bias will
survive even if Hubble parameters inferred from multiple
systems are averaged, as it has the same sign for all lenses,
and thus averages to some nonzero value κ̄t. The uncer-
tainties in the values of rt for each lens introduce moreover
an accompanying error in the inferred value of H0. If the κt
for different lenses are distributed about the mean with a
variance σ2κt , then there will still be an uncertainty in H0 of
σH0

=H0 ≈ σκt=
ffiffiffiffi
N

p
, from N time-delay systems. Moreover,

the average κ̄t between the lenses can only be inferred with
an error σκ̄t ≈ σκt=

ffiffiffiffi
N

p
. Therefore, subtracting our estimate

of the average from the data yields a residual bias
1Which is accurate to first nonvanishing order in RE=rt, since

otherwise Σcrit from Eq. (10) would depend on rt.
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δH0=H0 ∼ σκ̄t . Detailed studies of the lens-galaxy popu-
lation are thus imperative to overcome these uncertainties.
We have chosen a simple power-lawmodel to illustrate the

effects of truncation of the mass distribution, although a
similar uncertainty should be present in other models. For
instance, in Refs. [48,49] truncated Navarro-Frenk-White
models were presented. Furthermore, in Refs. [50,51] the
lens systems RXJ1131-1231 andHE 04351223were fit with
both a power-law distribution and a composite model, which
includes dark matter and baryons. The composite model
presents an effective cutoff with respect to the power law, due
to the faster decrease of the dark-matter density at large radii
[24]. This is to be compared with our modeled cutoff in
Eq. (12), fromwhichwewould expect a higher inferred value
of H0 for the composite model. Nevertheless, this effect—
whichwe estimate to biasH0 byone percent—is smaller than
current measurement and modeling uncertainties.
There is another issue, of a more conceptual nature,

which we now consider. In the usual discussions of lensing,
a lensing mass distribution (e.g., from a galaxy or cluster) is
added to an otherwise FRW universe, thus giving rise to
potential perturbations that fall off as 1=r with the distance
r from the lens. In our Universe, however, galaxies and
clusters are formed from local overdensities, in an other-
wise FRW universe, that are then compensated by under-
densities elsewhere. Thus, if we go to distances large
compared with the typical intergalactic separation, there
will be no residual 1=r potential perturbation (somewhat
analogously to Debye screening in a plasma). What we are
considering here thus differs from prior work [52,53] in
which the lens was embedded in a spacetime that asymp-
totes to FRW at large distance (the residual 1=r potential
perturbation still arises there). Our analysis also differs
from that of Ref. [54] in that we compensate the mass of the
strong lens, instead of the weak perturbers along the line
of sight.
To estimate the impact of this issue, we consider a lens of

mass M that is surrounded by a spherical negative-mass
shell (NMS) of the same total mass at some large radius
Rf—i.e., we take the lens to be a spherical mass distribu-
tion of zero total mass. We take Rf to be the radius in a
homogeneous universe of matter density ρm, at which an
object of mass ML dominates the gravitational potential,
i.e., Rf ∼ ½3ML=ð4πρmÞ�1=3, which for a matter density of
ρmðzÞ ≈ 5 × 10−8ð1þ zÞ3 M⊙=pc3 is

Rf ∼Mpc

�
ML

1011 M⊙

�
1=3 1

1þ zL
: ð17Þ

The NMS has a mass distribution,

ρNMS ¼ −
Mg

4πR2
f

δDðr − RfÞ; ð18Þ

which gives rise to a convergence,

κNMSðbÞ ¼ −
R2
E

2Rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
f − b2

q : ð19Þ

For Rf ∼Mpc, and for an Einstein radius RE ∼ 10 kpc, we
find κNMS ≈ −ðR2

E=R
2
fÞ=2 ∼ −10−4, which is, again, inde-

pendent of angle to first nonvanishing order. The con-
vergence thus resembles a negative-mass-sheet, since we
are only observing it at distances b ≪ Rf, where the
curvature of the NMS is negligible. The magnitude of
the bias and uncertainty introduced in H0 measurements is
only Oð10−4Þ and thus not significant for current or
forthcoming measurements of H0.
We now return to the bias and error in H0 introduced by

the uncertainty in the large-radius mass distribution, and
now consider what is known about the truncation radius
and what more might be learned about it in the future.
Weak-lensing measurements are already beginning to
provide some constraints on the average value of rt, but
rt varies amongst different types of galaxies [28]. It will
thus be important to extend such measurements further
restricting the population of lens galaxies to those that more
closely resemble strong-lensing systems. The chal-
lenge here will be statistics with the reduced number of
systems and then beyond that, separating the effects, in
galaxy-galaxy lensing, of the lens potential, from those of
large-scale clustering.
Even if a lens-like population of galaxies can be well

characterized, one might want to measure the truncation
radius for an individual lens. This will be difficult with
traditional weak-lensing measurements, given the relatively
small masses of the lens galaxies and the finite number of
background sources to be lensed. Still, in the longer term,
radio arrays may provide measurements of the 21-cm line
during the dark ages to arcsecond resolution. This would
allow studies of weak lensing around individual objects,
characterizing their environment to great accuracy [55].
Although simulations might not shed light on the large-

distance mass distribution of every individual lens, there is
more that can be done to determine the PDF of the effective
convergence associated with a family of lenses. The
procedure should be analogous to that used to infer the
PDF of the external convergence due to line-of-sight
objects, (e. g., ray-tracing through simulations,) albeit
applied to the outskirts of lens-like galaxies with the
necessary resolution.
As yet, the effects we have considered here have been

subdominant compared with other uncertainties associated
with modeling the lens mass distribution. As we move
forward, though, to subpercent precision, there will need to
be more focus on the mass distribution in the outskirts of
the lens, work that can be pushed forward with weak
lensing and simulations, to enable a precise and unbiased
subpercent-level measurement of H0.
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