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Inflation in a closed universe
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To derive a power spectrum for energy density inhomogeneities in a closed universe, we study a
spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into three
epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and nonrelativistic matter
epochs. (For our purposes it is not necessary to consider a final dark energy dominated epoch.) We derive
general solutions of the relativistic linear perturbation equations in each epoch. The constants of integration
in the inflation epoch solutions are determined from de Sitter invariant quantum-mechanical initial
conditions in the Lorentzian section of the inflating closed de Sitter space derived from Hawking’s
prescription that the quantum state of the universe only include field configurations that are regular on the
Euclidean (de Sitter) sphere section. The constants of integration in the radiation and matter epoch solutions
are determined from joining conditions derived by requiring that the linear perturbation equations remain
nonsingular at the transitions between epochs. The matter epoch power spectrum of gauge-invariant energy
density inhomogeneities is not a power law, and depends on spatial wave number in the way expected for a
generalization to the closed model of the standard flat-space scale-invariant power spectrum. The power
spectrum we derive appears to differ from a number of other closed inflation model power spectra derived

assuming different (presumably non de Sitter invariant) initial conditions.
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I. INTRODUCTION

In the standard scenario, dark energy dominates the current
cosmological energy budget and results in the observed
accelerating cosmological expansion. Earlier on nonrelativ-
istic (cold dark and baryonic) matter dominated, powering the
decelerating cosmological expansion. In flat- ACDM [1], the
current “standard” cosmological model, Einstein’s cosmo-
logical constant A is the dark energy with nonrelativistic cold
dark matter (CDM) being the second biggest contributor to
the current energy budget and spatial hypersurfaces are
assumed to be flat. See Refs. [2] for reviews of the dark
energy picture as well as of the modified gravity scenario.

The standard scenario is supported by a number of
different measurements, but these do not rule out mildly
varying—in time and space—dark energy or mildly curved
spatial hypersurfaces. These measurements include cosmic
microwave background (CMB) anisotropy observations
[3], baryon acoustic oscillation (BAO) data [4], Hubble
parameter versus redshift measurements (51, Type Ia
supernova apparent magnitude observations [8], as well
as the growth of structure as a function of redshift [9].

Other measurements, which are not as constraining, are
also consistent with the ACDM model. These include HII
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'"These H (z) data [6] are particularly interesting as they span a
large redshift range, to almost z = 2.4, and show evidence
consistent with a transition from early nonrelativistic-matter-
dominated deceleration to current dark-energy-powered accel-
eration [5,7], in agreement with what is expected in ACDM and
other dark energy models.
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galaxy apparent magnitude versus redshift data [10], galaxy
cluster number counts [11], angular size as a function of
redshift measurements [12], lookback time observations
[13], gamma-ray burst data [14], and cluster gas mass frac-
tion observations [15]. Near-future data will provide more
restrictive and possibly very interesting constraints [16].

It is reassuring that most current measurements are not
inconsistent with the standard flat-ACDM model, although
they are also not inconsistent with weakly varying dark
energy or a mild amount of space curvature. To be able to
distinguish between the options and better pin down cos-
mological parameter values will require resolution of a
number of issues. For instance, for over a decade and a half
now, median statistics analyses of Huchra’s growing compi-
lation of Hubble constant H, measurements have been
consistent with H, = 68 & 2.8 kms~! Mpc~! [17], in good
agreement with the range of values recently estimated from
CMB anisotropy data [3,18], BAO observations [4,19],
Hubble parameter measurements [20], and from a compila-
tion of recent cosmological data and the standard model of
particle physics with only three light neutrino species [21].
Unfortunately, however, local measurements of the expan-
sion rate favor a significantly larger value, H, = 73.24 £
1.74 kms~! Mpc~! [22], larger than what is favored by a
number of other observations. Until this difference is under-
stood and resolved, it is probably wiser to proceed cautiously
about judging the viability of cosmological models.”

2 .. .
Of course, similar issues affect measurements of other
parameters.
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That said, there have been a number of recent papers
suggesting that the predictions of flat-ACDM might not be
compatible with some H(z) data [23], as well as with a
combination of cosmological observations [24,25], and that
dynamical dark energy provides a better fit to these mea-
surements. If this is supported by more and better-quality
data, it will be an important clue about the nature of the dark
energy. On the other hand, it would be useful to check if these
data were also in accord with a non-flat ACDM model or if
they prefer dynamical dark energy over spatial curvature.

Compared to the time-independent cosmological constant,
a time-varying dark energy density evolves in a manner
closer to that of spatial curvature energy density and this can
cause a complication. For instance, when CMB anisotropy
measurements are studied in the context of the ACDM
model, they indicate that spatial hypersurfaces are close to
flat, although a mild amount of curvature is still allowed [3].
On the other hand, under the assumption of flat spatial
geometry these measurements favor a time-independent dark
energy density, although mild dark energy time evolution
remains an option. However, if CMB anisotropy data are
analyzed using a nonflat dynamical dark energy model, there
isdegeneracy between space curvature and the parameter that
governs the dark energy density, resulting in weaker con-
straints on both parameters when compared to the case when
only either dark energy density time variability or nonzero
spatial curvature is assumed [26]. This is the case for other
data also, see Refs. [5,27].3

The simplest physically-consistent dynamical dark
energy model is ¢CDM [29,30].* Here dark energy is a
scalar field ¢ with a potential energy density V(¢) that
gradually decreases with increasing ¢. The original pCDM
model assumed flat spatial hypersurfaces.This was gener-
alized to the nonflat case in Ref. [32]; the time-dependent
attractor solution discovered in the spatially-flat case is also
present in the non-flat case.

To complete this nonflat dynamical dark energy model
requires a prescription for what happens at very early times
in the model. This is provided by inflation, [33,34], which
is easily generalized to the spatially-open case in the Gott
open-bubble inflation model [35]. In this model a spatially-
open bubble nucleates and then inflates only for a limited
time so spatial curvature is not completely diluted. If
necessary, an earlier epoch of less-limited inflation can
be used to explain spatial homogeneity.5

3See Ref. [28] for potential constraints on space curvature
from proposed experiments.

*While the XCDM parametrization is often used to model
dynamical dark energy, it is an incomplete and inconsistent
parameterization (as it cannot describe inhomogeneities). It also
does not accurately model even the spatially homogeneous part of
the #CDM model [31].

Alternately, if the bubble nucleation process is slow enough it
might be possible to arrange for the interior of the open bubble to
be homogeneous enough.
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In this initial hyperbolic (or open) de Sitter space of the
open bubble, the standard requirement that the ground state
energy of the (appropriately rescaled) scalar inflaton field
spatial inhomogeneity not diverge in the scale factor a — 0
limit provides the needed initial condition [36] and results
in a late-time energy density inhomogeneity power spec-
trum [37,38] that is the generalization to the open case [39]
of the scale-invariant spectrum of the flat model [40].

Perhaps the simplest model of inflation in a closed
universe is that based on Hawking’s prescription for the
quantum state of the universe [41]. Hawking proposes
including in the functional integral only those field con-
figurations which are regular on the Euclidean sec-
tion [41,42]. This may be viewed as the nucleation of a
closed de Sitter Lanczos universe on the Lorentzian section,
because the waist of the Lorentzian de Sitter Lanczos
hyperboloid and the equator of the Euclidean (de Sitter
Lanczos) sphere are identified [41,42]. For variants of this
scenario see Refs. [43—45]. If the nucleation process is slow
enough it might be possible to make the nucleated
Lorentzian closed de Sitter space sufficiently spatially
homogeneous. See Refs. [46] for discussions of homo-
geneity in a more conventional closed inflation model.

During the Lorentzian closed de Sitter expansion,
quantum mechanical spatial inhomogeneities in the scalar
inflaton field could provide the needed density inhomoge-
neities. A major advantage of the Hawking proposal is that
it provides reasonable quantum mechanical initial condi-
tions for these fluctuations. In the closed de Sitter model the
a — 0 limit does not lie in the Lorentzian section [42],
unlike in the open and flat cases. Remarkably, Hawking’s
prescription of only including field configurations regular
on the Euclidean section does in fact correspond to the
ground state energy of the (appropriately rescaled) scalar
field inhomogeneity not diverging as a — 0, which in this
case is either the north or south pole of the Euclidean
section sphere (actually there are an infinite number of
spheres, each connected to the next at the poles) [42], and in
fact leads to a de Sitter invariant ground state scalar field
two-point correlation function, [42]. It is likely that this is
the unique initial condition with this property [42].

In this paper we use this initial condition to compute the
energy density inhomogeneity power spectrum in a closed
universe in terms of the potential of the inflaton and other
parameters. The spatial wave number dependence of the
late-time spectrum we find, using a simple inflation model,
is the generalization of the scale-invariant spectrum in the
spatially-flat case [40] to the closed universe [44,47,48].6
There have also been a number of earlier computations of
spectra in the closed model [45,50,51], using different
initial conditions compared to what we have used here (also
see Ref. [52]). We emphasize that the initial conditions we

%See Ref. [49] for a discussion of a massive scalar field inflaton
closed inflation model.
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use here results in a scalar field two-point function that is de
Sitter invariant [42] and it is unclear how to interpret any
other initial condition.

A proper analysis of CMB anisotropy data in a slightly
closed model—which is consistent with current observa-
tions—will make use of the spectrum we have derived here.
While all that is needed for such an analysis is the spectral
shape of the power spectrum (not the overall amplitude),
which was previously known, it is also important to show
that a computation using Hawking’s initial conditions in a
consistent inflation model—as done here—does result in
such a power spectrum. We have also established that the de
Sitter invariant initial conditions [41,42] do result in the
expected power spectrum [47] that differs from those found
in Refs. [45,50,51].

It seems that flat-ACDM, which is consistent with most
observations, predicts more large-angle (low multipole )
CMB temperature anisotropy power than is observed [3]. In
the context of inflation and the energy density inhomoge-
neity power spectrum derived here and in the open inflation
model [35], going to a slightly nonflat (closed) ACDM (or
dynamical dark energy) model might help reduce this low-
¢ discrepancy [53], also see Ref. [54].

In Sec. II we review the spatial geometry of the closed
model and various properties of the eigenfunctions of the
spatial Laplacian. Synchronous gauge linear perturbation
equations, in both the scalar field inflation epoch and fluid
(radiation and nonrelativistic matter) epochs, are derived in
Sec. III, where we also list the scalar (under general
coordinate transformations) parts of these equations in
spatial momentum space. These are used to establish that
the synchronous gauge linear perturbation equations of a
fluid model with a specified spacetime-dependent “speed of
sound” coincide with those of the scalar field model (a
generalization of the flat model result of Ref. [55]). In
Sec. III D, we examine how the (scalar) synchronous gauge
variables transform under the remnants of general coor-
dinate invariance, construct gauge-invariant combinations
of these variables, and derive equations of motion for these
gauge-invariant variables. In Sec. IV we solve the inflation
epoch equations and determine the constants of integration
in the general solution for the perturbations by using the
Hawking initial conditions. Here we also list expressions
for the gauge-invariant variables, and compute the scalar
field and energy density perturbation two-point correla-
tion functions. In Sec. VA we derive general solutions for
the gauge-invariant variables in the radiation epoch; in
Sec. V B we solve the synchronous gauge equations in the
nonrelativistic matter epoch, and list expressions for the
gauge-invariant variables in this epoch. The general sol-
utions in the radiation and matter epochs depend on
constants of integration which are determined from joining
conditions derived by requiring that the equations of mo-
tion be nonsingular at the transitions; these are listed in
Sec. VI A. The constants of integration are determined in
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Sec. VIB while in Sec. VIC we extract the large-scale
contribution to these expressions for the constants.
Nonrelativistic matter epoch theoretical expressions char-
acterizing large-scale structure are most conveniently
compared to observational data on a spatial hypersurface
on which the time derivative of the trace of the metric
perturbation has been set to zero—this is the instantane-
ously Newtonian spatial hypersurface. We construct these
coordinates, and list expressions for the relevant power
spectra, in Sec. VII, where we also record the gauge-
invariant energy density inhomogeneity power spectrum.
We conclude in Sec. VIIL

II. TECHNICAL PRELIMINARIES

The positive spatial curvature (closed) Friedman-
Lemaitre-Robertson-Walker (FLRW) model has the line
element

ds* = dr* — a*(1)H;;(X)dx'dx/

= di* — a®(t)[dy? + sin(y){d6? + sin*(0)d¢*}], (1)
where a(t) is the FLRW scale factor, H;;(X) the metric on
the closed spatial hypersurface, the “radial” coordinate

0 <y <, and 0, ¢ are the usual angular coordinates on
the two-sphere. The square of the distance between two

points, (,y,0,¢) and (t,y,0,¢'), is

0? = 2a(1) 1 + cos(r3)]. )

cos(y3) = cos(y) cos(y') + sin(y) sin(y’) cos(y2),  (3)

where y, is the usual angle between the two points (6, ¢)
and (¢, ¢’) on the two-sphere

cos(y,) = cos() cos(8') + sin(0) sin(@') cos(¢p — ¢'). (4)

The three-dimensional spatial covariant derivative of a
spatial vector (or tensor) will be denoted by a |, is defined
in the usual way

Al|] - Ai,j + FijkAk,
Ai|j = Ai.j - FkijAkv (5)

where the commas denote spatial differentiation, and obeys
the usual relations of covariant differentiation. The three-
dimensional spatial Christoffel symbol is

. 1 ..
Iy = EHZI(HU,k + Hyj = Hjg) (6)
The | operator obeys the usual relations of covariant
differentiation.

The three-dimensional spatial Laplacian for the metric of
Eq. (1) is
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B i (05,)

1 o (. 0 1 0?
o (y)sin(6) 50 <s1n(9) %) TS (y)sin?(0) 0g*
(7)

The scalar eigenfunctions Y,z of L? obey, [42,56],

L?Y 45c(Q) = HY(Q)[Y 45 (Q)] —A(A +2)Y 450(Q),

(8)

where Q = (y,0, ¢), integer A=0,1,2---, and the two
‘magnetic’ integral indices Be[—A, A], and Ce[—B, B]. The
O(4) symmetry makes the spatial Laplacian eigenvalues
independent of the two magnetic indices B and C, see
discussion in Appendix B of Ref. [42]. The orthonormal
eigenfunctions are, [42,56],

ot (EETEE23

x [sin(y)] /2P, 2 (cos(x)) Y (6. ). (9)

lilj =

where Ypc is the standard two-dimensional spherical
harmonic, I is the gamma function, and P}, is the associated
Legendre function of the first kind (Chap. 3 of Ref. [57] or
Chap. 8 of Ref. [58]). The orthonormality relation is

/0 dysin®(y) /SdeZY 1B (Q)[Y arpre ()] =04 405 50¢ ¢
(10)

where $? is the two-dimensional unit sphere with volume
element d€2,, and 6, 4, Opp, and ¢ are Kronecker
deltas. The addition theorem is, [42],

—1/2
PA+/1/2 (cos(r3))

(27)3/2

= m [Sin(h)}1/2;YABC(Q)[YABC(Q/)}*’ (1 1)

where y3 is in Eq. (3).

We shall have need for the following relations, which
may be derived by using standard manipulations (see the
first of Refs. [56]),

Yiij = Yyjiis (12)
ijY‘k|i|j :—(A2+2A—2)Y‘i, (13)

HYY i = —(A* +2A = 5)Y 5, + A(A+2)YH,;,  (14)

ijs
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HYY i = —(A? +2A - 6)Y ), + 2A(A + 2)YH,;, (15)

where we have suppressed the spatial momentum indices
on the scalar (under the spatial reparameterization remnants
of general coordinate transformations in synchronous
gauge) spatial harmonic Y4 (Q).

Also, the Ricci tensor on the spatial hypersurface is

(3>Rij =T —Th + T8 =T, (16)

and it may be shown that for the spatial metric given in
Eq. (D),

(17)

III. EQUATIONS OF MOTION

In this section we derive the general, closed FLRW
model, position space, synchronous gauge, linear pertur-
bation theory equations of motion, for both the homo-
geneous background fields and for the spatial irregularities,
in the early time scalar field inflation epoch and in the late
time ideal fluid (radiation or matter) epochs. (The current
dark energy dominated epoch is not as analytically tractable
and so is ignored here; our matter epoch results suffice for
our purposes.) We then extract the scalar (under general
coordinate transformations) parts of these equations (i.e.,
we ignore transverse peculiar velocity perturbations and
gravitational wave perturbations), and record their spatial
momentum space form.

For later use, we establish that the synchronous gauge
linear perturbation theory equations of a fluid model which
allows for a specified spacetime-dependent “speed of
sound” are identical to the scalar field model synchronous
gauge linear perturbation equations.

We also examine how the (scalar) synchronous gauge
spatial irregularity variables of interest transform under the
remnants of general coordinate invariance in synchronous
gauge, write down combinations of these variables that are
invariant under these transformations, and derive the
equations of motion for these gauge-invariant variables.

A. Einstein-scalar-field model equations of motion

The Einstein-scalar field action, for the metric tensor g,
and inflaton scalar field ®, is

m, 2 1 1
S=—L | dtd®x/=g|—-R + = ¢**9,®0,®> — — V(D) |,
16;:/ o g[ +390,00,® -3 V()

(18)

where m, = G=1/2 is the Planck mass. Varying, we find the
equations of motion,
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1 v 1 / _
\/—_—gay(\/_ggM 9,@) +5 V(@) =0, (19)
8 1
le = mpz (le - EgﬂyT>, (20)

where prime denotes a derivative with respect to @ and 7 is
the trace of the stress-energy tensor,

1
T

! 0u50,00,0 - v<<1>>}} - @)

To derive the equations of motion for the spatially
homogeneous background fields and for the spatial irregu-
larities, we linearize Eqs. (19)—(21) about a closed FLRW
model and a spatially homogeneous scalar field. We work
in synchronous gauge, with line element

ds? = di* — a*(1)[H,;;(X) = h;;(1.X)]dx'dx/,  (22)
where the background metric on the closed spatial hyper-
surfaces, H,;, is given in Eq. (1), and the metric perturba-

tions are denoted by h;;. The expansion for the scalar
field is

®(1,X) = Oy (1) + ¢(1. %), (23)
where @, and ¢ are the spatially homogeneous and
inhomogeneous parts of the scalar field (the scalar field
perturbation ¢ should not be confused with the angular

variable ¢ of Sec. II). The linearized stress-energy tensor
components are

2 2
Too—32 @, +V((Db)]+F [¢h¢+1v (‘Db)fﬁ] +o
(24)
Ty = Fq)”a ¢+ - (25)
m,? .
T, = ﬁazH (@, = V(D,)]
2
i, { i Lo
167
5h,.j{obb? — V(Cbb)}] 4+ (26)

where the ellipses denote terms of second and higher order
in the perturbations.

The equations of motion for the spatially homogeneous
parts of the fields are

PHYSICAL REVIEW D 96, 103534 (2017)

. 1 . 1
q)b + 3E(Dh +§V/(q)b) = 0, (27)
a
a\? 1 1
(&) —perrven-5. e

a 1. 1
—=——®, 2+ —V(D 2
a 6 b +12V< b)’ ( 9)

where an overdot denotes a derivative with respect to time.
The only change, relative to the equations for the flat model
(Sec. VII of Ref. [30] and Sec. II of Ref. [55]), is the new
term (1/a*) on the right-hand side of Eq. (28). The first
order perturbation equations are

. 2
br3%h-Tog e Vi@)p =i, (30
2% = 2q‘>h¢—lw(q>h)¢, (31)
a 2
hi; = (H*hy) ; = Pyepys, (32)

. a- a . 1
| 4
+ = [HY (hagj + huggi = higp)] . = —5 by
a a
1
=~ HV'(®,)¢. (33)
where the trace of the metric perturbation is denoted by
h(= H"h;;) and spatial indices are raised and lowered with
the background metric H;;. Equation (30) governs the
evolution of the scalar field perturbation, Eq. (31) that of
the trace of the metric perturbation, and Egs. (32) and (33)
that of the remaining part of the metric perturbation.
Besides the expected change, relative to the equations of
the flat model (Sec. VII of Ref. [30] and Sec. II of
Ref. [55]), of all spatial derivatives being replaced by
spatial covariant derivatives, the only other change is the
new last term on the left-hand side of Eq. (33), 4h;;/ a’.
To extract the scalar parts of Egs. (30)—(33) in spatial
momentum space we focus on a mode with spatial
momentum characterized by the indices (A, B, C), [56],

¢(Q, t) :¢(A,B, C, t)Y(Q), (34)
h (1) = %h(A, B.C.0)H,(Q)Y(Q)
L H(AB.C.1) %%HU(Q)Y@) ,

(35)

where h(A, B, C,t) is the trace of the metric perturbation
(the perturbation to the size of the proper volume element)
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and H(A,B,C,t) is the trace-free part (the shearing
perturbation of the volume element). Equation (35) is
the most general decomposition of the scalar part of the
metric perturbation (we have ignored gravitational wave
perturbations). The scalar parts of Egs. (30)-(33) for a
given mode in spatial momentum space are

¢+3%¢+#¢+%v”(®b)¢:%h¢b, (36)
h+ 23;‘; =20, — % V/(®)p. (37)
h+6%h+%h+ﬂ+3gﬂ
+ (A2+52A_4)H = —%V’(CI),,)(/), (39)
H+3§H—A(A+22)H—A(A+22)h:0. (40)
a 3a 3a

B. Einstein-fluid model equations of motion

The fluid model equations of motion are covariant
conservation of stress-energy

Ta/’;ﬁ =0, (41)

and the Einstein equations, Eq. (20), where the stress-
energy tensor for the fluid is

™ = (p + p)u'u’ — g p, (42)

where p and p are the fluid energy density and pressure and
ut is the fluid coordinate peculiar velocity.

To derive the equations of motion for the spatially
homogeneous background fields and for the spatial irregu-
larities, we linearize Egs. (41), (20), and (42) about a
spatially closed FLRW model and a spatially homogeneous
background fluid. We work in synchronous gauge, with the
line element of Eq. (22). The expansions for the fluid
variables are

p(t.X) = py(1)[1 4 6(2. X)]. (43)
p(t.%) = py(t) + ¢py (1)5(1. %), (44)
ul(1,X) =1, (45)

W (1,X) =0+ ui(1, %), (46)

PHYSICAL REVIEW D 96, 103534 (2017)

i.e., u' is taken to be of the same order as the fractional
perturbation in the fluid energy density, 6. Here p;, and p,,
are the homogeneous background fluid energy density and
pressure and the background equation of state is taken to be

pi(t) = vpy(2), (47)

where v is a constant. The speed of propagation of
“acoustic” waves is

dp
2= 48
2= (48)
and, for the present, will be allowed to be a function of the
spacetime coordinates. Expanding the fluid stress-energy
tensor, Eq. (42), we find the components

Too=pp+ppo+---, (49)
Toi = =a*(py + pp)Hyjt! + - -, (50)
T;;= azHijpb + az(cszpb(SHij = pphyj) +---. (51)

where the ellipses denote terms of quadratic and higher
order in the perturbations.

The equations of motion for the spatially homogeneous
parts of the fields are

. a

pp=-3 p (Pp + Pb) (52)

a\? 8 1

4y = — 53
(a> 3mp2 Pb Cl2 ( )
a A
4__ 3py). 54
P 3mp2 (pp +3p5p) (54)

The only change, relative to the equations of the flat model
(Secs. 82 and 85 of Ref. [59] and Sec. I of Ref. [60]), is
the new term (1/a?) on the right-hand side of Eq. (53). The
first order perturbation equations are

. 1 . a
Pu0 = (P + Pp) (Eh - Mli) = 35 (Py—ci*pp)8, (55)

b4 290 =2 (14 3¢,2)py0, (56)
a

mp

[a®(pp + Pb)sz”l],o = _a3(cs2pb5)\k1 (57)

. L 167 )
hyi = (H*hy;) ;= —Waz(ﬂb + pp)Hjju!,  (58)
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o a a1 (I
hij+32hij+5Hijh—Zh|i\j+;[H (haijj =+ hujii = hiji) e

4 8

L h =
2" 2
a m,

Hyj(1=cs%)pyd. (59)
Equation (55) governs the evolution of the fractional energy
density perturbation, Eq. (57) that of the peculiar velocity
perturbation, Eq. (56) that of the trace of the metric
perturbation, and Eqgs. (58) and (59) that of the remaining
part of the metric perturbation. Besides the expected change
relative to the equations of the flat model (Sec. II of
Ref. [55]), of all spatial derivatives being replaced by
spatial covariant derivatives, the only other change is the
new last term on the left-hand side of Eq. (59), 4h;;/ a’.
To extract the scalar parts of Egs. (55)—-(59) in spatial
momentum space we focus on a mode with spatial
momentum characterized by the indices (A, B, C) and write

8(Q.1) = 5(A. B.C.0)Y(Q), (60)

u;(Q,1) = — u(A,B,C,.1)Y;(Q); (61)

A(A+2)
we also use the metric perturbation decomposition of
Eq. (35). Equation (61) only accounts for longitudinal
peculiar velocity perturbations (we ignore the transverse

peculiar velocity). The scalar parts of Egs. (55)—(59), for a
given mode, are

. 1. a
P06 = (Pp + D) <§h - u) =3 (po —c?pp)s.  (62)

. 1. 8
2% = =2 (14 3¢,2)pyo, (63)
a mp

[@®(py + py)ul g = A(A+2)a’cp,6, (64)

AT [2ralp,+ polu
_ 24n _ 65
" (A—l)(A+3)[mp2 aAi2) M (69
. 1 - A2 +2A -4
h+6gh gh 438 @y
A2ioA—4) 24
+(+*2)H+*’§<1—c£>pb5=o, (66)
a mp
L a. AA+2). A(A+2)
R G PV h=0. (67)
a 3a 3a?

C. Scalar field as spacetime-dependent speed
of sound fluid

We have shown that in the spatially flat and spatially
open models the synchronous gauge linear perturba-
tion equations of a fluid model with a given spacetime-
dependent speed of propagation of acoustic disturbances

PHYSICAL REVIEW D 96, 103534 (2017)

are identical to those of a scalar field model, Sec. II of
Ref. [55] and Sec. III. C of Ref. [38]. Here we show that this
result also holds in the closed model.

Defining the background energy density and pressure of
the scalar field

2

m,2 .

Pro = oA [@,° + V(®,)], (68)
32r
mp2 .

Pro = 55— [@p" = V(D)) (69)
32r

and the fractional energy density, peculiar velocity, and
speed of sound of the scalar field perturbation,

m, 2 1
Prode = 16 [‘Dbéb +5 V/((Db)¢:| (70)
m 2
a*(ppo + Pro)Hij uly = —F‘Dba o, (71)

my2[. . 1
50 Prodo = é {q%(ﬁ ) V’(@b)qﬁ] (72)
we see that the fluid stress-energy tensor, Egs. (49)—(51),
coincides with the scalar field stress-energy tensor,
Egs. (24)—(26). It is straightforward to show that when
Egs. (68) and (69) are used in Egs. (52)-(54) these
homogeneous fluid equations coincide with the homo-
geneous scalar field equations, Eqgs. (27)—(29). Using the
definitions of Egs. (70)—(72) in the fluid spatial irregularity
equations (56), (58), and (59), we find that they reproduce
the scalar field spatial irregularity equations (31)—(33). It
may also be shown that when the definitions of Egs. (71)
and (72) are used in Eq. (57) this equation reduces to an
identity [if the equation for the spatially homogeneous part
of the scalar field, Eq. (27), is satisfied]. It is only a little bit
more involved to show that the definitions (68)—(72) imply
that Eq. (55) reduces to Eq. (30) (the manipulations are very
similar to those outlined at the end of Sec. II of Ref. [55]).

D. Gauge-invariant variables

Choosing synchronous gauge does not completely fix
general coordinate invariance—there are four remaining
time-independent gauge symmetries. Their effect on the
metric perturbation is

dr
2(7)
22 Py @), (73)

Sy (1) = —(F0,(Q) + 1°,() / A @)

- wj\i(g)

where the general coordinate transformation parameters f°
and w; are time independent. The scalar field perturbation
and the variables derived from it transform according to
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— ¢, 0 ;
5p(Q.1) = B,1°(Q), (74) 5{c,261(A,B,C. 1) = L2 04, B,C),  (86)
. Pb
Pro 0
0|69(Q,1)] =—— f2(Q), 75 L
190 (€2. 1] pbq,f (@) (75) where w; and @ obey a relation like Eq. (61).
Following Ref. [55], it may be shown that all gauge-
5”& (Q’ 1) =-— iz Hii fo\j(ﬂ), (76) invariant.info.rmation a‘pout the sca.llar part of the ﬂuid
a perturbations is encoded in the gauge-invariant combinations
p : 2
Sllcs?d0}(@.0)] = 222 (), (77)  AAB.C.HY=5(A.B.C.1) 4 3% (Lot o) WA Ct)
Pro a\ pp A(A+2)
while the fluid variables transform, as expected, (87)
according to A(A,B,C,1) = 5(A, B, C, 1)
Pb 1o Po ¥ Pb (A, B.C.1) + H(A.B.C
S[8(Q, 1)] =2 f2(Q), (78) ) [h(A,B.C.t) + H(A,B,C.1)]
Po Pb
; | (88)
Su'(Q.1) = —— Hf (Q), (79) . : :
a (the variable A should not be confused with the spatial
) P 0 momentum A). In the scalar field model Egs. (87) and (88)
S[{e,?81(Q,1)] = Ef (Q). (80) may be rewritten, using Egs. (68)—(71), as
In spatial momentum space the scalar parts of the fields Ap = 2; [Zd)bd’ + V(D) + 6Ed)b¢], (89)
transform as D"+ V(D) a
1 .. .
todr Ap = —5———[2Dyp + V() — D, (h + H)).
SH(A.B.C.1) = —2A(A +2)f°(A. B,C) / 200 * o+ V((I),,)[ o + V(@) = Dy (k- H)]
+2w(A, B, C), (81) (90)
Cdr We now record the equations of motion for the fluid
Sh(A,B,C,t) =2A(A+2)f°(A,B,C) / 5 gauge-invariant variables, A and A. We have need only for
a <t ) the equations in the ideal fluid model, so we set
a
0
—2w(A, B, C)_6Ef (A,B,C), (82) c2=u, (91)
Sp(A.B.C.1) = (i)b (A, B, C), (83) Z\;If‘f:nzi/erilst etlonvliréifl:(ri\c”a;lthconstant defined in Eq. (47). It is
S[5(A, B, C.1)] = 2—" f(A, B, C), (84) D =A/(py+ py): (92)
b
A(h 42 instead of the variable A of Eq. (88). Using the fluid
Su(A. B, C. 1) = AL i ) (A B.C),  (85) Z?a‘iai"ﬁié’fp mgggyn Egs. (52)~(54) and (62)~(67), we find
|
3 a (14+3v) A(A+2)) 1 1 b
A+ |=(1-v)— —lA==-(A-1)(A+3)(1 —D 3
+ -2 {UER AL - 30 40 2D, (93)

. TAA+2) al . AA+[[1 3 (1+v) 13 (144 a
D‘[ 3aa +3(1+U)E]D__(l+u)pbH§+§(A—1)(A+3)}%+§(A—1)(A+3)E}A' (94)

These equations may be combined to yield

A+ (2—3y)gA+ [—%(1 _)( +3y)<g)2+ {—%(1 —)(1 4 3) +uA(A+2)}%A —0: (95)

a similar second order equation may be derived for the variable D—since we have no need for it we do not record it here.
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IV. INFLATION EPOCH

In this section we solve the synchronous gauge equations
of motion to derive expressions for the spatially homo-
geneous and inhomogeneous fields in the inflation epoch.

The potential energy density for the scalar field ® which
drives inflation is taken to be

V(®) = 1212]1 — e, (96)

where h? is a numerical parameter related to the inflation
epoch cosmological constant (the parameter & should not
be confused with the trace of the metric perturbation /) and
€ is a small numerical parameter. (These two free param-
eters will be constrained by comparing our predictions to
observational data.) The first term, 1242, is large and is
responsible for driving the expansion of the universe during
inflation, and the term proportional to e® is small and is
responsible for forcing the scalar field down the slope. This
form of potential energy density is chosen so that the
leading term acts like a cosmological constant and results in
closed de Sitter inflation while the subleading term powers
a very slowly rolling inflaton field.

Besides the standard expansion in spatial irregularity (or
the Newtonian gravitational constant) used to derived the
usual equations of synchronous gauge relativistic linear
perturbation theory, we shall also make use of an expansion
in the parameter € to simplify the computation, [38,61].
This second expansion assumes that ¢ is small; we shall
have to check that this is a consistent assumption by
comparing our predictions to observational data and veri-
fying that the needed numerical value of € is indeed small.

A. Spatially homogeneous background fields

We wish to determine the solutions of Eqs. (27)—(29) for
the model with the scalar field potential energy density of
Eq. (96). Our ansatz for the homogeneous fields is

Dy, (1) = Ppo (1) + €@y (1) (97)

a(t) = ap(1)[1 +ef (1)), (98)

where @ (1), Dy (1), ag(t), and f(z) are independent of ¢
and will be determined below.
To lowest order in ¢ Egs. (27)—(29) are

(.I.)b() + 3@d)b0 - 0, (99)
[0
G\*_Lg 2 R —o (100)
ag 12 b0 Cloz_ ’
g 1. o,
— 4+ -®, "= h*=0. 101
a0+6 b0 (101)

PHYSICAL REVIEW D 96, 103534 (2017)
The first integral of Eq. (99) is

3
d : doi
Do) = Dpoi | —— | »
l0) = b (25
where Cbbo,-(ao,»)3 is a constant of integration. This solution

decreases with time, because of Hubble damping, and we
choose the constant to be

(102)

@0 = 0. (103)

The lowest order solution for the scalar field is then
D@0 (1) = Dy, (104)

where ®@,; is a constant of integration. The lowest order
solution for the scale factor is

ao(t) = h~'cosh(ht). (105)
The first order in € parts of Egs. (27)—(29) are
b, +3%d,, —6h2 =0, (106)
ap
S
2@f——];+h2q>b0,- —0, (107)
ap ao
L dos s
0

After some work, it may be shown that the solutions of
these equations are

@, (1) = ¢y + % {m + tan‘l{sinh(ht)}}
1
+2 [In {cosh(ht)} — m] , (109)
Flt) = %CDW _ [53}12 + %cp,,o,.m] @nh(ht),  (110)

where ¢\, ¢;, and ¢; are constants of integration.

B. Spatial irregularities

We shall only have need for the order € part of ¢. To this
order Eq. (36) is

A(A +2)i?2

bo + 3htanh(ht)d
$o + 3htanh(ht)do + cosh?(ht)

do=0.  (111)

The solution of this equation is
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h . e
$o(A, B, C.t) = ————[c, {sinh(ht) — i(A + 1)}e A+ 1tan™" {sinh(h)}

cosh(ht)

+ c_{sinh(ht) + i(A + 1)}ei(A+1)tan"{sinh(ht)}]’

(112)

where ¢ are A dependent constants of integration which will be determined from quantum mechanical initial conditions.
We note that, to leading order in €, the two solutions in this equation are gauge invariant.

We shall have need for the fractional energy density and peculiar velocity perturbations during the inflation epoch,
Egs. (70) and (71). Using Egs. (60), (61), and (112), and the expressions of Sec. IVA, we have, to lowest order in ¢,

6o(A,B,C.1) = — m [c, emilA+ D™ {sinh(h)} A (A 4 2){&, 4 2k sinh(ht)[cosh®(ht) + 2]}
+ 6hcosh? (ht)[sinh(h) — i(A + 1)]] 4 c_e/A+1an {sinh(hn)}
x [A(A + 2){¢, + 2hsinh(ht)[cosh?(ht) + 2]} + 6hcosh* (ht)[sinh(ht) + i(A + 1)]]],  (113)
3
“ol4.B.C.0) = e[c, +2h siflf(Ah;;{i)ohsh%ht) +2}] ({einh(h) = (4 + D}, emistier i
+ {sinh(ht) + i(A 4 1)}c_eiAt+Dan {sinh(hr)} ] (114)

We shall also have need for expressions for the gauge-invariant variables Ag and Ag during inflation. We find, to leading

order in e,

€
Ao(4.B.C.1) = 6cosh’ (ht)

[ emilA+Dan {sinh(k)} (3 sinh (hr) {&, + 2k sinh(ht)[cosh?(hr) + 2]}[sinh(hr) — i(A 4 1)]

— A(A + 2){¢, + 2hsinh(ht)[cosh?(ht) + 2]} — 6hcosh*(ht)[sinh(ht) — i(A + 1)]]
+ c_eAtDan {sinh(h)} (3 sinh (hr) {&, + 2h sinh(ht)[cosh?(ht) + 2]}[sinh(ht) + i(A + 1)]

— A(A + 2){¢, + 2hsinh(ht)[cosh?(ht) + 2]} — 6hcosh* (ht)[sinh(ht) + i(A + 1)]]]

Ag(A,B.C.1) = 54(A,B.C.1).

where d4 is given in Eq. (113).

C. Initial conditions and two-point correlation functions

Conformal time 7 is related to ¢ through

tan 7 = sinh(hr). (117)
In Eq. (112), defining the constants ¢,
167\ /2
ey =+ ! <’;> &, (118)
V2AA+1)(A+2) \m,

the initial conditions, Sec. VII of Ref. [42], require that we
choose (up to an irrelevant phase)

¢,=1 and ¢_=0. (119)
This is equivalent to Hawking’s prescription of including
only regular Euclidean field configurations [41], and is de
Sitter invariant, see Secs. VI-IX of Ref. [42].

(115)

(116)

In the closed de Sitter model the @ — 0 limit does not lie
in the Lorentzian section [42], unlike in the open and flat
cases. Hawking’s prescription [41] of only including field
configurations regular on the Euclidean section does in fact
correspond to the ground state energy of the rescaled scalar
field inhomogeneity not diverging as a — 0, which in this
case is a pole of the Euclidean section sphere [42] and in
fact leads to a de Sitter invariant ground state scalar field
two-point correlation function, [42].

With this choice we find that the equal-time scalar field
perturbation two-point correlation function is

(¢o(A.B.C.1)¢5(A". B'. C'. 1))

= |po(A. B.C.1)[*64 46 grSc.c- (120)

167 1 h2a?
A,B,C.1)|?=— 1 . (121
b4, B, C.1) mpzz(AH)az[ ] 02

This result coincides with Eq. (7.13) of Ref. [42]. We note
that at late time the right-hand side of Eq. (121) becomes
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time independent, as does the corresponding two-point
correlation function in flat (exponentially expanding) de
Sitter spacetime (Sec. V of Ref. [42]) as well as in open de
Sitter spacetime (Sec. IV of Ref. [36] and Sec. IV 3 of
Ref. [38]), however, the dependence on spatial momentum
in the long wavelength limit are quite different in the
nonflat and flat cases.

This difference in the infrared behavior is also seen in the
fractional energy density perturbation two-point correlation
function. We find

(50(A, B, C.1)85(A", B, C'. 1))
= |60(A. B, C. 1)

2(SA.A’(SB,B’éc,CU (122)

where the fractional energy density perturbation power
spectrum is

167 1
60(A,B,C,1)|? =e2—
19 )IF=e m,22A(A+ 1)(A+2)a?

x {(A+ 1)?+ [ h2a2—1+%
x {¢| +2hV h*a®> — 1(h*a* +2)}} 2} :
(123)

where ¢, is the real constant of integration in the expression
in Eq. (109). In the short wavelength limit the last term in
the inner square parentheses dominates, and at late times

|60|* o< A/a’, (124)
which is what one finds in the flat de Sitter case (Eq. (3.56)
of Ref. [62], also see Ref. [63]); this is the scale-invariant
spectrum, [40]. In the long wavelength limit the first term in
the inner square parentheses dominates at late time

|6p]> o< 1/A; (125)
this suggests that in the closed model the large-scale energy
density power spectrum will break away from the scale-

invariant form and will instead behave like an n = —1
spectrum, like in the open case, see Eq. (4.31) of Ref. [38].

so from Eq. (129) we find

(A=1)(A+3)Ag(x) = 3c\P —g(zﬂ -

PHYSICAL REVIEW D 96, 103534 (2017)
V. THE RADIATION AND MATTER EPOCHS

In this section we solve the equations of motion to derive
expressions for the spatially homogeneous and inhomo-
geneous fields in the radiation and matter epochs.

A. The radiation epoch

In this epoch v=1/3=c¢,? and from Eq. (52) p,r xa™*, or
3m,? hg?

8z a*(t)’

where hy is a constant of integration determined below. We
shall not have need for the explicit expression for a(z).

It suffices to derive expressions for the gauge-invariant
variables Ay and Ap. Defining

Pur(t) = (126)

x =a/hg, (127)

and using Eq. (53) to rewrite Eq. (95) in the radiation epoch
we have

1
X (1=x?) Al —x3 Al + [—2+§A(A+2)x2] Ar=0; (128)

here a prime denotes a derivative with respect to x. The
solution of this equation is

Ag(x) :c(1R>x2F(1 +b,1-b;5/2;x)

ST F(=1/240,-1/2-bi-1/2:2%); (129)

c(iR> are spatial momentum dependent constants of inte-

gration, determined below, the F’s are hypergeometric
functions (Chap. 15 of Ref. [58]), and

RYCUERIES

5 : (130)

From Eqgs. (92) and (93) we have

3 (1-x%)
AN =T ThEEs x ok

3 I A(A+2)
+(A—1)(A+3)Lc—2+ 3 ]AR’ (131)

Dx?(1=x*)F(2+b,2 = b;7/2;x%)

+ {3+ (42 = 2)x2}F(1 4+ b, 1 — b;5/2;x%)

+ 3P [(4p% — 1)(1 = 2)x" " F(1/2+ b, 1/2 — b1 1/2;2%)

+ (40 + D)x'F(=1/2 + b, —1/2 = b; —1/2; x%)].

(132)
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B. The matter epoch
3

In this epoch v=0=c,? and from Eq. (52) pjy; « a3, or
3m,% hy?
P Je— , 133
pr( ) ] a3(t) ( )

where £, is a constant of integration determined below. We
shall not have need for the explicit expression for a(z).
In the matter epoch Eq. (64) reduces to

%[aspruM] =0, (134)
and we find
M)
) = 3o (135)
where céM) is a constant of integration. In this epoch

Egs. (62) and (63) reduce to

. 1.
6M—§h<M> +uy =0, (136)
.. a - 87
hM) 25h(M) = P””M‘SM’ (137)
P

where (™) is the trace of the metric perturbation in the
matter epoch. Differentiating Eq. (136) with respect to
time, adding this result to Eq. (136) multiplied by 24/ a, and
using Eqgs. (135) and (137) we find

5M+235M—2—;pr5M = 0. (138)
Introducing the variable x, Sec. 11.C of Ref. [59],
x = a/hy’, (139)
we find that Eq. (138) becomes
2x%(1 = x)8y; + x(3 — 4x)8), — 38y, = 0,  (140)

where a prime denotes a derivative with respect to x. The
solution of this equation is, [59],

(M) \/l—x

ou(x) = ¢ —an

3 3y1l—-x
PR

X
tan~! , (141
x P \/1 —xJ (141)

where ch) and ¢™) are spatial momentum dependent con-
stants of integration. In terms of the variable x Eq. (136) is

4 M| -1

PHYSICAL REVIEW D 96, 103534 (2017)

W' =283, + 2y [ fxuM. (142)
The solution of this equation is
(M)
4c 1—x
B () = ¢+ 28(x) = =2 . (143)
3 X

where C(1M> is a spatial momentum dependent constant of

integration and &y,(x) is given in Eq. (141). It is straight-
forward to verify that the solutions of Eqs. (141) and (143)
satisty Eq. (137). Using Eq. (135), Eq. (65) reduces to:

gy __AAED)
(A-1)(A+3)
(M)
- ’ S (144)
(A=1)(A+3)hy? 52/ —x
The solution of this equation is
M) () = o AATD)
HEW =" ~anargt W
(M)
6 VI—x(2x +1
cg x(2x+1) (145)

C(A=1)(A+3)hy? X312 ’

where céM) is a spatial momentum dependent constant of
integration. In the matter epoch Egs. (63), (66), and (67)
may be combined to give

7. A-1)(A+3 8
@ o) +¥(2>(hw> + HM)) +_”2pr5]” =0.
a 3a m,

(146)

Using Eqgs. (141), (143), and (145), we find that this
equation results in

(M) _ 3 (M) _ (M)
= -2 . 147
C9 (A_l)(A+3)[C1 ¢ } ( )
It may be verified that this result with Egs. (143) and (145)
satisfies Eq. (67).

The matter epoch gauge-invariant variables, Ay, and A,
Egs. (87) and (88), are

(M) n 362(;M) V1—x
AA+2)hy? [ 2

4 el {_H%_Ll‘x
X

—1 X
tan

7 . (148)
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A(A+2)

A == a3

{ (M) 3céM> } VI-x

A+ PP

VI. JOINING CONDITIONS AND EXPRESSIONS
FOR THE INTEGRATION CONSTANTS

In the previous section we have derived expressions for
the spatially homogeneous and spatially inhomogeneous
fields in the radiation and matter epochs. These solutions
depend on constants of integration, and in this section we
list the equations that determine these constants of inte-
gration and compute them. We then approximate these
expressions for the constants of integration by discarding
the contribution from perturbations that were inside the
Hubble radius at the reheating and radiation-matter tran-
sitions (since we have ignored physical processes that are
relevant on these small length scales).

As in the models of Refs. [38,62,64], the constants of
integration, in the radiation and matter epochs in the model
at hand, are determined by joining conditions at the
inflation-radiation (or reheating) transition and the radia-
tion-matter transition. We make use of the spatially
homogeneous local energy density spatial hypersurface
transition model (discussed in Refs. [38,55,62]), general-
ized to the closed FLRW model, to derive the needed
joining conditions. The resulting joining conditions are
identical to those in Sec. VI A of Ref. [38], as they must be.

A. Joining conditions

In linear theory, the scalar field is identical to a
spacetime-dependent speed of sound fluid (Sec. IIIC),
so we treat both the reheating and radiation-matter tran-
sitions as special cases of an equation of state transition
between two spacetime-dependent speed of sound fluid
epochs. In the transition model we consider, it occurs
instantaneously when the local energy density drops to a
critical value (at different values of synchronous gauge time
(t) in different parts of space). At the transition spatial
hypersurface we require that the equation of state and speed
of sound change discontinuously from the value appro-
priate to the pretransition fluid to that appropriate to the
posttransition fluid. We consider a transition at ¢ = fyp
from an R fluid characterized by the variables p,g, pyr,
c,r>, to an M fluid characterized by the variables p,u, Pou
csy”, with a jump in the pressure at the transition.

Since spatial gradients in the local energy density are of
first order in the perturbations, the spatially homogeneous
local energy density spatial hypersurfaces and the synchro-
nous gauge constant time hypersurfaces coincide at lowest
order. We may therefore match the scale factor and the
spatially homogeneous part of the energy density at the

PHYSICAL REVIEW D 96, 103534 (2017)

_C<M>[1_(A3f(lf)‘(zi)3){§_\/;Z}tan—l\/ZH. (149)

corresponding synchronous gauge constant time spatial
hypersurface,

ay(tyr) = ag(tur), (150)
Pom(tur) = Por(tur)- (151)

Joining conditions for the inhomogeneities are derived in
Sec. VI A of Ref. [38]. For our purposes here we only need

Ay (tyr) = Ag(tur),

(ﬁ) (1) = (ﬁ) (twr).  (153)

B. Determining the constants of integration

(152)

Using the joining conditions for the scale factor and the
background energy density, Egs. (150) and (151), at the two
transitions, we have, from Eqgs. (68), (96), (126), and (133),
to leading order in ¢,

h = hg/age®, (154)
hR = hM,/aM s (155)

where apq, and a,, g are the values of the scale factor at the
reheating and radiation-matter transitions and A, hg, and hy,
are the constants in Eqgs. (96), (126), and (133). We note
that at the reheating transition the radiation epoch variable
xg, Eq. (127), is given by

a 1
xg(tro) = hL: = hgg

(156)

while at the radiation-matter transition the matter epoch
variable x;,;, Eq. (139), is

2
ayr  Apmr

Xy (tyr) = = xg*(tmr)- (157)

Using the joining conditions of Egs. (152) and (153) at
the reheating transition, we find, from Eqgs. (115), (116),
(129), and (132), that to leading order in e the radiation
epoch constants of integration are given by
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c(®) _ﬂ<ﬂ)’/2 (A-1D(A+3) CDE
" 9% VAR + DA + 2) hedxe (tro) {1 = xp2(tre) )

2
mp

X F(=1/2+b,-1/2 = b;=1/2; x*(tge)) exp < —i(A + 1)tan~! F);Riw , (158)
Xr” (ko)

o -

ﬂ(@)l/z (A—1)(A+3) CDE

e \m,> V2AA+ 1)(A +2) he’xg (tro) {1 = xp* (ro) }

2
X F(14b,1=b;5/2;xz*(tge)) exp § —i(A + 1)tan™! IJ;Ri(tR(D) , (159)
xr” (ko)

where

C_l = (4b2 - I)XRZ(IRQ))F(I + b, 1-— b,S/Z,XRz(th>))F(1/2 + b, 1/2 - b, 1/2;xR2(tR(D))

+ : (b* = 1)xp?(tge)F(—=1/2 4+ b, —1/2 = b; —1/2; xg*(tre) ) F (2 + b.2 — b;7/2; xg* (1)) (160)

5
l)_l/2 = ElxR3(th>) + 2h\/ 1 —XRZ(IR¢){1 + 2xR2(tR(I))}a (161)

and

E = A(A+2)e1h7 " xp” (1ge) + 2A(A + 2)xg% (treo)\/ 1 — x&*(1re) {1 + 2x8*(tro) }

+6{\/1 = xg*(1ge) — i(A + 1)xg(1ze)}. (162)

where b is defined in Eq. (130) and ¢; in Eq. (109).
Using the joining conditions of Eqs. (152) and (153) at the radiation-matter transition, we find, from Egs. (129), (132),

(148), and (149), that the matter epoch constants of integration c¢M) and
(M)
3
o) = (0 % (163)

2 +A(A +2) 2’

are given by

M) = (B [—%(bz — Dy (tyrr) {1 = xas () YEQ2 + b2 = b:7/2; X3y (tuig))
+ 1—12{27 — (A2 +2A + 18)xM(tMR)}F(1 +b,1-— b;5/2;xM(tMR))}
+¢” E (452 = Dy~ 2 (taar) {1 = 0 () }F(1/2 4 b 1/2 = b 1/2: 5 (11))

— %(A2 +2A =N xy V2 (tyg)F(=1/2 4+ b, —1/2 — b; —1/2;xM(tMR))} , (164)
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—(b2 - 1){1 —xM(tMR)}{3 — xp(tyr) — 3\/1 _xM(tMR)tan‘l\/ Xur (ty1r) }

Xp(tur) 1 —xp(tur)

X F(24D0,2=b;7/2;xy(tyr)) — {9/xM(tMR) — (A% 4+2A 4 27) + (A® +2A + 6)x,(tyir)/9

—{9/xp(tyr) — (A2 +2A +18)/3} - xM(tMR)tan‘l

xF(1+b,1- b;5/2;xM(tMR>)]

Xy (tur)
Xy (thr) 1 —xp(thg)

+ CER) {(4112 — Dy () {1 = XM(fMR)}{_3 + 2 (tur)

Xy (tyr)

L—2xp(tyr),  _
+3 tan~!
\/ Xu(tyr) 1 —xp(tyr)

{3(A2 +2A = 9) — (A2 + 24 — 21)xy (tyrg)

1
_i_i
9% (1y1r)
1-— t
—-3(A2+24-9) M
X (tmr)

C. Large-scale approximation

We have ignored small-scale processes like the production
of entropy at reheating. Our expressions are therefore only
relevant for large-scale perturbations. From Eq. (8) we see
that the ratio of the Hubble length to a length scale which
characterizes the perturbations is \/A(A + 2)/(aH); small-
scale perturbations are those for which this ratio is > 1. In
this subsection we approximate the expressions for the
constants of integration by discarding the contribution from

|
(A-1)(A+3)

P -

}F(1/2+b, 1/2=b;1/2;xp(tmr))

Xy (tur) . .
1_xM@W?}F04/2+b~4/2—b~4/zxMoMm>.

(165)

small-scale perturbations at the reheating and radiation-

matter transitions.
At reheating we have, from Eq. (127),

VAALY) A(A+2)
m—xle(lm)) m, (166)

so large-scale perturbations at reheating correspond to small
xg(tge)- Expanding Eqgs. (158) and (159) in this limit we find
for the radiation epoch constants of integration

e—i(A+1)7[/2

(A-1)(A+3)

21(1671)1/2
9¢\m,*)  \/2A(A+1)(A+2) P*h*xg’(1go)

1+ =D D)+ {F A+ A +2) - o)+ |

(167)

—i(A+1)x/2

w 2 <16ﬂ>1/2
¢ =—(—%
9 \m,? V2AA+ 1)(A +2) Phexg*(1go)

X [1 + {%A(A +2) - ?—(l)}sz(th,) + {%A(A +1)(A+2) - %}xR3(tR¢) + -

] (168)

we note that the ¢; dependent contribution to these expressions are a subleading term.
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At the radiation-matter transition the relevant ratio of
length scales is, from Eq. (139),

AA+2) \/xM(tMR)A(A+2), (169)

a(typ)H(tyg) 1 —xp(tyg)

so large-scale perturbations at this transition correspond to
small x,,(tyg). Expanding Eqs. (164) and (165), and
using Egs. (167) and (168) as well as the relation
a(tyr) > a(tge), we find for the matter epoch constants
of integration

= (185 _4-ia+
2e \m,* V2AA +1)(A +2)
o-i(A+D)n/2 170
X — + s,
R’ xg%(1go)
2 _ %xMS/z(tMR)cW) L (171)

VII. MATTER EPOCH “NEWTONIAN” SPATIAL
HYPERSURFACE AND POWER SPECTRA

Often, theoretical expressions characterizing large-scale
structure (for instance, the fractional mass perturbation and
the peculiar velocity perturbation power spectra) are given
in the coordinate system in which the time derivative of the
trace of the metric perturbation has been removed on a
given “observational” hypersurface; this is what is known
as the instantaneously Newtonian synchronous coordinate
system, Sec. V of Ref. [62]. In this section we construct this
instantaneously Newtonian coordinate system (this is a
generalization to the closed model of the flat model
construction of Sec. VD of Ref. [62] so we can be brief;
also see Sec. VII A of Ref. [38]), and record the power
spectra of fractional energy density and peculiar velocity
perturbations in this coordinate system. In this section we
also record the matter epoch gauge-invariant fractional
energy density power spectrum.

A. Instantaneously ‘“Newtonian”
synchronous coordinates

The following derivation is a generalization of that of

Sec. VD of Ref. [62] so we will or_nit technical details here.
We choose coordinates 3 = (7, %'),

1=1—At(ty,X), (172)

= x' = fi(1,X), (173)
which are synchronous, and require that the time derivative
of the trace of the metric perturbation, Jy/(%), vanish on a
spatial hypersurface at the observational time 7 = 7. For
the coordinates X* to be synchronous we must require

PHYSICAL REVIEW D 96, 103534 (2017)

. N o [t dr L.
Fi(1.5) = HI(2)0,At(1y, ) / th,)erl(x);

in what follows we set @’ = 0. The fields in the two
coordinate systems are related by

(174)

[N X ,bb(t) X
3(8) = o(x) + 22 Aoy, ). (175)
(%) = ui(x) - azl(t) HI®)0,A1(1y. 7). (176)

i (8) = Iy () =22 A, D), (D
— Hy (X)f*;(x) = Hy (X)f5: (%), (177)

and from the last equation, and the matter epoch equa-
tions (53) and (54), we have

Oul(5) = ) + |25 (1) -

6 -
az(t)] At(ty, X)

2 .
Using the matter epoch (v = 0 = ¢,?) fluid equations of
motion in the unbarred coordinates, Sec. IIIB, it is
straightforwardly established that when 30}}(?1\,, =0,

Dob (1. &%) + i (1. 35) = 0, (179)
B8 e L A A AT
9p0(%) + 2H(1)000(%) = pr(fﬁ(x); (180)
p

these are the Newtonian matter epoch equations of motion,
Secs. IX B and X of Ref. [59]. Comparing the second one
of these to the matter epoch version of Eq. (9.19) of
Ref. [59], we find that the Newtonian gravitational potential
in these coordinates, @, obeys

Vo 4m .
P s, (181)
a  omy?

In spatial momentum space, the scalar parts of the above
equations are

P ()

5(A.B.C.1)=68(A,B.C.1)+"=~A1(A,B,C.ty),  (182)
P(t)
. A(A+2
%(A.B.C.7) = v(A.B.C.1) +((:;)AI(A,B, C.ty)
a
(183)

(where v = au), and
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A n s 24 A-1)(A+3
Boh(A, B, C,7) = h(A, B,C.1) + | —=p, (1) +2(3¢ At(A,B.C.1y). (184)
m, a*(1)
Defining the Newtonian hypersurface by requiring
doh(A.B.C.1y) =0, (185)

we find, in the matter epoch, from Eq. (184),

. 24 2A-1)(A+3)]!

A1(A,B.C,ty) = —h™ (A, B, C, ty) [’zpr(zN) + W} . (186)
mp a (tN>
Using the matter epoch solutions of Sec. VB we find
o M)
At(A,B, C, [N) = hM2[9 + 2<A - 1)(A + 3)-XM([N)]_1 (&) {3 - 2XM(ZN)} - 2#)(]‘/[(1‘]\/)
M
(M) o[ xm(ty)
+ M 89\ /xy (i) {1 = xag (i) } = {9 = 63y (1) Jran ™y [ =20 |, (187)
1= xp(ty)

where the variables and coefficients are defined in Sec. V B, and we have, for the Newtonian hypersurface fractional energy
density and peculiar velocity,

1 —xp(ty)

2A(A 4 2)eM)
( ) xy(ty)

Sy(AB.C.7y) = [942(A = 1)(A + 3)xy (t3)]

| c(M){6A(A+2) - 2(A = 1)(4 + )y (10) = 6404+ 2)y 120 g I_L”ZB)H (185)

3 _2xM(tN)) n C(M){g 1 —xp(ty)

xp(ty) xp(ty)

( xp(ty) )t 1—xM(tN)H’ (189)

where ¢™) is defined in Eq. (163) and the other expressions are defined in Sec. V B.

py(A, B, C,1y) = A(A+2)[9 +2(A — 1) (A + 3)xy(tp)] ™! le(m (

B. Power spectra
From Egs. (53), (133), and (139) we find, in the matter epoch,

(190)

The matter fractional energy density perturbation and peculiar velocity perturbation equal-time two-point correlation
functions are

(5u(A. B, C.1y)0 (A" B, C,1y)) = P(A.1)8s 45 pdc . (191)
(D (A, B, C,1y) 03, (A, B, C', 1y)) = P, (A, Ty)Su0p.50c.cs (192)

where, from the results of the previous subsection, the Newtonian hypersurface spectra are
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1)2(A + 3)? [ (A+2)+e1}2

P(A,7 , 193
(A1) ( ) A+1)(A+2) A(A+2)+4, (193)

o w A—1)2A(A 4+ 2)(A + 3)?
P,,(A)W<3>( )(+)(+2, (194)

where we have defined
4 1+QOZN|: Qo—l :|5/2 |: Qo—l i|
W, =— +6—-2|——— 195
e oy [N 1 + o) (195)
_6 1+QOZNfan_1 Qo—l
Qo—l ; 1+QOZN’
Qp)—1
W, =6|———]|, 196
? {90(14'11\/)} (196)
2 (2+Qo+39021\1) Qo—l 5/2 1+QOZN 2+Q0 +3QOZN 1 Qo—l
W =7 -3 t —_ (197)
45 QO -1 Qo(l + ZMR) 0 — 1 QO -1 1 + Q()ZN
1 /162\1/2 (1 2 Q

Ws = ( ”) L+ 2ro) L : (198)

2€ ap Z(QO - 1)(1 + ZMR)

W2 301

1
€ = W, W1 ( 99)
2(9 - 1)

=" 200

“ Q(1 +zy) (200)

¢, =9—=3cy, (201)

Q Q

dlzcz_(6+3 0+9 ()ZN)' (202)

a 2=

here zy, zyr, and zpe are the redshifts of the Newtonian
hypersurface, the radiation-matter transition, and the
reheating transition. The terms dependent on z;,; in the
expressions for W; and Wj; are the contributions of
the decaying solution.

We note that the matter epoch power spectrum for the
gauge-invariant variable A,;, Eq. (148), is

o (W) (A—1)2(A +3)

7\ ) AA+D(A+2)
with z, in the definitions of W and ¢ above replaced by z.
This is the generalization of the flat-space scale-invariant
spectrum [40] to the closed model [47]. In the small-scale
limit, which is the same as the flat-space limit, A is large
and becomes the usual flat-space Fourier wave number k

and this power spectrum reduces to P, « k, the standard
scale-invariant expression [40]. The full closed-space

PA(A. 1) (203)

power spectrum above is plotted in Fig. 1 of Ref. [53],
where it is compared to an almost scale-invariant flat-space
power spectrum.

VIII. CONCLUSION

Using Hawking’s prescription for the quantum state of
the universe as the initial conditions, we have shown that in
a closed, inflating universe model the late-time power
spectrum of gauge-invariant energy density inhomogene-
ities is not a power law. This power spectrum depends on
wave number in the way expected for a generalization to
the closed model of the standard flat-space scale-invariant
power spectrum [47]. The power spectrum we derive
appears to differ from a number of other closed inflation
models power spectra derived assuming different (presum-
ably non—de Sitter invariant) initial conditions.

Recent suggestions that dynamical dark energy might
provide a better fit to the observations requires consideration
of nonflat cosmological models. It is not yet clear if nonflat
ACDM, without dynamical dark energy, is able to accom-
modate these data. Also, even if the universe is flat, to
properly establish spatial flatness from the CMB anisotropy
data requires use of a physically consistent nonflat cosmo-
logical model, such as that developed here for the positive
curvature case. The power spectrum we have derived in this
model will also be needed for a proper analysis of CMB
anisotropy data in a mildly closed model, which not only
remains observationally viable but might be in better accord
with the low £ CMB anisotropy observations [53,54].
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