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We examine the Hamiltonian dynamics of bouncing Bianchi IX cosmologies with three scale factors in
Hořava-Lifshitz (HL) gravity. We assume a positive cosmological constant plus noninteracting dust and
radiation as the matter content of the models. In this framework the modified field equations contain
additional terms which turn the dynamics nonsingular. The six-dimensional phase space presents (i) two
critical points in a finite region of the phase space, (ii) one asymptotic de Sitter attractor at infinity and (iii) a
two-dimensional invariant plane containing the critical points; together they organize the dynamics of the
phase space. We identify four distinct parameter domains A, B, C andD for which the pair of critical points
engenders distinct features in the dynamics, connected to the presence of centers of multiplicity 2 and
saddles of multiplicity 2. In the domain A the dynamics consists basically of periodic bouncing orbits, or
oscillatory orbits with a finite number of bounces before escaping to the de Sitter attractor. The center with
multiplicity 2 engenders in its neighborhood the topology of stable and unstable cylinders R × S3 of orbits,
where R is a saddle direction and S3 is the center manifold of unstable periodic orbits. We show that the
stable and unstable cylinders coalesce, realizing a smooth homoclinic connection to the center manifold, a
rare event of regular/nonchaotic dynamics in bouncing Bianchi IX cosmologies. The presence of a saddle
of multiplicity 2 in the domain B engenders a high instability in the dynamics so that the cylinders emerging
from the center manifold about P2 towards the bounce have four distinct attractors: the center manifold
itself, the de Sitter attractor at infinity and two further momentum-dominated attractors with infinite
anisotropy. In the domain C we examine the features of invariant manifolds of orbits about a saddle of
multiplicity 2 P2. The presence of the saddle of multiplicity 2 engenders bifurcations of the invariant
manifold as the energy E0 of the system increases relative to the energy Ecr2 of P2: (i) for E0 < Ecr2 the

invariant manifold has the topology S3; (ii) for E0 ¼ Ecr2 two points of S3 pinch into the point P2, so that
the invariant manifold contains infinitely many orbits homoclinic to P2; (iii) for E0 > Ecr2 the center

manifold bifurcates into a 3-torus; (iv) for E0 sufficiently large the 3-torus bifurcates into three S3, an
invariant manifold multiply connected. Such structures were not yet observed in the literature. The domain
D is not examined as most of its features are present already in the previous domains.
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I. INTRODUCTION

Although general relativity is the most successful theory
that currently describes gravitation, it presents some intrin-
sic crucial pathologies when one tries to construct a
cosmological model of a proper theory of gravitation. In
cosmology, the ΛCDM model gives us important predic-
tions concerning the evolution of the Universe and about its
current state [1–4]. However, let us assume that the initial
conditions of our Universe were fixed when the early
Universe emerged from the semi-Planckian regime and
started its classical expansion. Evolving back such initial
conditions using the Einstein field equations, we see that
our Universe is driven towards an initial singularity where
the classical regime is no longer valid [5].

Notwithstanding the cosmic censorship conjecture [6],
there is no doubt that general relativity must be properly
corrected or even replaced by a completely new theory, let us
say a quantum theory of gravity. This demand is in order to
solve the issue of the presence of the initial singularity
predicted by classical general relativity at the beginning of
the Universe.
One of the most important characteristics of our Universe

supported by observational data is its homogeneity and
isotropy at large scales. However, when we consider a
homogeneous and isotropic model filled with baryonic
matter, we find several difficulties by taking into account
the primordial state of our Universe. Among such diffi-
culties, we can mention the horizon and flatness problems
[1–4]. Although the inflationary paradigm [7] allows one to
solve problems like these, inflationary cosmology does not
solve the problem of the initial singularity.*ivano@cbpf.br
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On the other hand, since 1998 [8] observational data have
beengiving support to the highly unexpected assumption that
our Universe is currently in a state of accelerated expansion.
In order to explain this state of late-time acceleration,
cosmologists have been considering the existence of some
field—known as dark energy—that violates the strong
energy condition. Although it poses a problem to quantum
field theory on how to accommodate its observed value with
vacuum energy calculations [9], the cosmological constant
seems to be the simplest and most appealing candidate for
dark energy. Therefore, nonsingular models which provide
late-time acceleration should be strongly considered.
During recent decades, bouncing models [10–13] have

been considered in order to solve the problem of initial
singularity predicted by general relativity. Suchmodels (as in
[14–16]) might provide attractive alternatives to the infla-
tionaryparadigmonce they can solve thehorizon and flatness
problems, and justify the power spectrum of primordial
cosmological perturbations inferred by observations.
In 2009, Hořava proposed a modified gravity theory by

considering a Lifshitz-type anisotropic scaling between
space and time at high energies [17]. In this context, it has
been shown [18,19] that higher spatial curvature terms can
lead to regular bounce solutions in the early Universe.
Since its proposal, several versions of Hořava-Lifshitz (HL)
gravity have emerged.
In the case of a four-dimensional (1þ 3) spacetime, the

basic assumption which is required by all the versions of
Hořava-Lifshitz theories is that a preferred foliation of
spacetime is a priori imposed. Therefore it is natural to
work with the Arnowitt-Deser-Misner (ADM) decompo-
sition of spacetime

ds2 ¼ N2dt2 − ð3ÞgijðNidtþ dxiÞðNjdtþ dxjÞ; ð1Þ
where N ¼ Nðt; xiÞ is the lapse function; Ni ¼ Niðt; xiÞ is
the shift; and ð3Þgij ¼ ð3Þgijðt; xiÞ is the spatial geometry. In
this case the final action of the theory will not be invariant
under diffeomorphisms as in general relativity. Nevertheless,
an invariant foliation preserving diffeomorphisms can be
assumed. This is achieved if the action is invariant under the
symmetry of time reparametrization together with time-
dependent spatial diffeomorphisms. That is,

t → t̄ðtÞ; xi → x̄iðt; xiÞ: ð2Þ
It turns out that the only covariant object under spatial
diffeomorphisms that contains one time derivative of the
spatial metric is the extrinsic curvature Kij,

Kij ¼
1

2N

�∂ð3Þgij
∂t −∇iNj −∇jNi

�
; ð3Þ

where ∇i is the covariant derivative built with the spatial
metric ð3Þgij. Thus, to construct the general theory which is of
second order in time derivatives, one needs to consider the
quadratic termsKijKij andK2, whereK is the trace ofKij, in

the extrinsic curvature. By taking these terms into accountwe
obtain the following general action,

SHL ∝
Z

N
ffiffiffiffiffiffiffi
ð3Þg

q
½ðKijKij − λK2 − ð3ÞRÞ

−UHLðð3Þgij; NÞ�d3xdt; ð4Þ
where ð3Þg is the determinant of the spatial metric and λ is a
constant which corresponds to a dimensionless running
coupling. As in general relativity the term KijKij − K2 is
invariant under four-dimensional diffeomorphisms, we
expect to recover the classical regime for λ → 1. That is
why it is a consensus that λ must be a parameter sufficiently
close to 1. In general, Uðð3Þgij; NÞ can depend on the spatial
metric and the lapse function because of the symmetry of the
theory. It is obvious that there are several invariant terms that
one could include in U. Particular choices resulted in
different versions of Hořava-Lifshitz gravity.
Motivated by condensed matter systems, Hořava pro-

posed a symmetry on U that substantially reduces the
number of invariants [17]. In this case, U depends on a
superpotential W given by the Chern-Simons term, the
curvature scalar and a term which mimics the cosmological
constant. It has been shown [20] that this original
assumption has to be broken if one intends to build a
theory in agreement with current observations.
The simplification N ¼ NðtÞ was also originally pro-

posed by Hořava [17]. This condition defines a version
of Hořava-Lifshitz gravity called “projectable.” As
∂N=∂xi ≡ 0, the projectable version also reduces the
number of invariants that one can include in U. The
linearization of this version assuming a Minkowski back-
ground provides an extra scalar degree of freedom which is
classically unstable in the IR when λ > 1 or λ < 1=3, and is
a ghost when 1=3 < λ < 1 [21]. Although some physicists
argue that higher order derivatives can cut off these
instabilities, it has been shown [20,22–24] that a perturba-
tive analysis is not consistent when λ → 1 and the scalar
mode gets strongly coupled. That is because the strongly
coupled scale is unacceptably low. In this case, higher order
operators would modify the graviton dynamics at very low
energies, being in conflict with current observations.
Besides pure curvature invariants of ð3Þgij, one may also

include invariant contractions of ai ≡ ∂ðlnNÞ=∂xi in U.
This assumption defines the so-called nonprojectable
version of Hořava-Lifshitz gravity. Connected to the lowest
order invariant aiai, there is a parameter σ which defines a
“safe” domain of the theory [21,25]. In fact, in this case
there is also an extra scalar degree of freedom when one
linearizes the theory in aMinkowski background. However,
when 0 < σ < 2 and λ > 1 this mode is not a ghost or
classically unstable (as long as detailed balance is not
imposed). Although the nonprojectable version also exhib-
its a strong coupling [20,25,26], it has been argued that its
scale is too high to be phenomenologically accessible from
gravitational experiments [21].
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In this paper we adhere to a particular version of non-
projectable Hořava-Lifshitz gravity, in which the potential
UHL is given by

UHL ¼ σaiai þ α21
ð3ÞR2 þ α22

ð3ÞRi
j
ð3ÞRj

i þ α31
ð3ÞR3

þ α32
ð3ÞRð3ÞRi

j
ð3ÞRj

i þ α33
ð3ÞRi

j
ð3ÞRj

k
ð3ÞRk

i ; ð5Þ
where ð3ÞRij is the spatial Ricci tensor and αij are coupling
constants. To complete the above Hořava-Lifshitz action we
add the remaining action

S ∝
Z

N
ffiffiffiffiffiffiffi
ð3Þg

q
½−2Λ − 2Lm�d3xdt; ð6Þ

with a cosmological constant Λ and where Lm is the
Lagrangian density of the matter content of the model,
which we take as dust and radiation.
In the next section we analyze the structure of the phase

space of a nonsingular Bianchi IX cosmological model
with three scale factors—sourced with dust, radiation and a
cosmological constant—which arises from nonprojectable
Hořava-Lifshitz gravity.
A similar model was previously considered by Misonoh

et al. [27] and analyzed numerically. However, their work
did not contemplate the full Hamiltonian formulation of the
phase space of the system and its basic and fundamental
structures that organize the dynamics in the whole phase
space. The connection of the authors’ results with ours are
discussed in the paper. For future reference we mention
here that the parameters of the potential VHL used in [27],
Eq. (2.6), are related to the corresponding parameters of our
paper according to

g2 ¼ α31; g3¼ α22; g5¼ α31; g6 ¼ α32; g7¼ α33:

The choice g1 ¼ −1 in [27] is equivalent to include ð3ÞR in
the expression ðKijKij − λK2 − ð3ÞRÞ of Eq. (4) of our
paper; for λ ¼ 1 this expression constitutes the gravitational
action of general relativity in the ADM formalism. The
parameter g8 multiplies an expression that is zero in the
case of the spatially homogeneous Bianchi IX metric;
therefore this term was not included in UHL, Eq. (5) above.
Concerning g4 and g9 we did not consider HL potential
terms containing covariant spatial derivatives of the three-
dimensional Ricci tensor ð3ÞRij. The noncanonical variables
ða; βþ; β−Þ of [27] are related to the canonical variables
ðx; y; zÞ, defined in Sec. IV, by

a ¼ 2x; βþ ¼ ðln zÞ=6; β− ¼
ffiffiffi
3

p
ðln yÞ=6:

II. THE MODEL

The fundamental symmetry assumed in Hořava-Lifshitz
gravity provides enough gauge freedom to choose

N ¼ NðtÞ; Ni ¼ 0: ð7Þ

Let us then consider a general Bianchi IX spatially
homogeneous geometry with three scale factors in comov-
ing coordinates,

ds2 ¼ N2dt2 þ hijωiωj; ð8Þ
where t is the cosmological time and

hij ¼ diagð−M2;−Q2;−R2Þ;

hij ¼ diag

�
−

1

M2
;−

1

Q2
;−

1

R2

�
: ð9Þ

ðMðtÞ; QðtÞ; RðtÞÞ are the scale factors of the model in the
Bianchi IX 1-form basis ωi (i ¼ 1, 2, 3) which satisfy

dωi ¼ 1

2
ϵijkωj ∧ ωk; ð10Þ

where d denotes the exterior derivative. In the basis ωi we
have

Kij ¼
1

2N
_hij ¼

1

N
ð−M _M;−Q _Q;−R _RÞ;

and

Kij ¼ himhjnKmn ¼
1

N

�
−

_M
M3

;−
_Q

Q3
;−

_R
R3

�
: ð11Þ

For future reference the nonvanishing spatial components
of ð3ÞRi

j are given by

ð3ÞR1
1 ¼ −

1

M2
þ 1

2

�
−

M2

Q2R2
þ Q2

M2R2
þ R2

M2Q2

�

ð3ÞR2
2 ¼ −

1

Q2
þ 1

2

�
M2

Q2R2
−

Q2

M2R2
þ R2

M2Q2

�

ð3ÞR3
3 ¼ −

1

R2
þ 1

2

�
M2

Q2R2
þ Q2

M2R2
−

R2

M2Q2

�

so that

ð3ÞR ¼ − 1

2M2Q2R2
½M4 þQ4 þ R4 − ðR2 −Q2Þ2

− ðR2 −M2Þ2 − ðM2 −Q2Þ2�; ð12Þ

ð3ÞRi
j
ð3ÞRj

i ¼
1

4ðMQRÞ4 ½3M
8−4M6ðQ2þR2Þ

−4M2ðQ2−R2Þ2ðQ2þR2Þþ2M4ðQ2þR2Þ2
þðQ2−R2Þ2ð3Q4þ2Q2R2þ3R4Þ�; ð13Þ

and

ð3ÞRi
j
ð3ÞRj

k
ð3ÞRk

i ¼
1

8ðMQRÞ6 f½ðM
2 −Q2Þ2 − R4�3

þ ½ðM2 − R2Þ2 −Q4�3
þ ½ðQ2 − R2Þ2 −M4�3g; ð14Þ
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which are the key terms to evaluate the potential UHL.
Therefore, the Lagrangian of the total action resulting from
(4)–(6) is given, up to a constant volume integral, by

L ∝ K − V

where the kinetic part K is given by

K ¼ MQR
N

�
ð1 − λÞ

�
_M2

M2
þ

_Q2

Q2
þ

_R2

R2

�

− 2λ

�
_M _Q
MQ

þ
_Q _R
QR

þ
_M _R
MR

��
; ð15Þ

and the potential part V is

V ¼ NðMQRÞ½ð3ÞRþ 2ΛþUHL�

þ 2N

�
E0 þ

Er

ðMQRÞ1=3
�
; ð16Þ

where E0 and Er are constants, corresponding to the
separately conserved total energy of dust and radiation,
respectively. UHL was fixed in (5).
By defining then the canonical momenta as

pM ¼ ∂L
∂ _M

; pQ ¼ ∂L
∂ _Q

; pR ¼ ∂L
∂ _R

; ð17Þ

the total action can be reexpressed as

S ∝
Z �X

i

_qipi − NH
�
dt ð18Þ

so that δS=δN ¼ 0 results in the first integral of motion, the
conserved Hamiltonian constraint

H ¼ 1

4ð3λ − 1Þ
�
ð2λ − 1Þ

�
Mp2

M

QR
þQp2

Q

MR
þ Rp2

R

MQ

�

− 2λ

�
pMpQ

R
þ pMpR

Q
þ pQpR

M

��
þ 2ΛMQR

þ 2E0 þ
2Er

ðMQRÞ13 þMQR½ð3ÞRþ UHL� ¼ 0: ð19Þ

From the point of view of dynamical systems we may
consider E0 in (19) as the total conserved energy of the
Hamiltonian dynamics so that we will refer to it as the total
energy of the system. We also assume a positive cosmo-
logical constant Λ > 0.

From (19) we derive the equations of motion

_M ¼ ð1 − 2λÞMpM þ λðQpQ þ RpRÞ
2QRð1 − 3λÞ

_Q ¼ ð1 − 2λÞQpQ þ λðMpM þ RpRÞ
2MRð1 − 3λÞ

_R ¼ ð1 − 2λÞRpR þ λðMpM þQpQÞ
2QMð1 − 3λÞ

_pM ¼ ð1 − 2λÞ½M2p2
M þQ2p2

Q þ R2p2
R� − 2λQRpQpR

4ð3λ − 1ÞM2QR

− ΛQRþ QREr

3ðMQRÞ43

þQR½ð3ÞRþ U� þMQR
∂
∂M ½ð3ÞRþ UHL�

_pQ ¼ ð1 − 2λÞ½M2p2
M þQ2p2

Q þ R2p2
R� − 2λMRpMpR

4ð3λ − 1ÞMQ2R

− ΛMRþ MREr

3ðMQRÞ43 þMR½ð3ÞRþ U�

þMQR
∂
∂Q ½ð3ÞRþUHL�

_pR ¼ ð1 − 2λÞ½M2p2
M þQ2p2

Q þ R2p2
R� − 2λMQpMpQ

4ð3λ − 1ÞMQR2

− ΛMQþ MQEr

3ðMQRÞ43 þMQ½ð3ÞRþ U�

þMQR
∂
∂R ½ð3ÞRþ UHL�: ð20Þ

The above equations were derived for the most general
case in which λ is an additional free parameter of the model.
From a dynamical system point of view, this would be
interesting in order to study the role of λ in the phase space
dynamics. However, in order to recover general relativity in
the IR, not only σ → 0, but also λ → 1 [21]. In fact, in the
framework of Hořava-Lifshitz, λ must be sufficiently close
to 1 in order to guarantee that no serious Lorentz invariance
violation occurs. Therefore, in order to simplify our
analysis, in the remaining sections of the paper we will
be restricted to the case λ ¼ 1.

III. THE SKELETON OF THE PHASE SPACE

In order to have an overall view of the phase space of the
system, in the present section we will examine the basic
structures that organize the dynamics of the phase space.
The first of these is the invariant plane defined by

pM ¼ pQ ¼ pR; M ¼ Q ¼ R; ð21Þ

so that the Hamiltonian (19) for the dynamics in the
invariant plane reduces to
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HI ¼
3

8

p2
M

M
þ VðMÞ − 2E0 ¼ 0. ð22Þ

where

VðMÞ ¼ 3

2
M − 2ΛM3 −

3

4

A2

M
þ 3

8

A3

M3
; ð23Þ

A2 ¼ 3α21 þ α22 þ
8Er

3
; ð24Þ

A3 ¼ 9α31 þ 3α32 þ α33: ð25Þ

From the expression of VðMÞ we see that the bounce
condition implies A3 > 0, so that we will restrict ourselves
to this case in the paper, corresponding to a well-behaved
dynamics. Furthermore in order to have a de Sitter attractor
at infinity, corresponding to a possible exponentially
expanding phase for orbits of the system, we will fixΛ > 0.
The critical points of the phase space are defined as

equilibrium points of the dynamics (20), and given by

pM ¼ pQ ¼ pR ¼ 0; M ¼ Q ¼ R ¼ M0; ð26Þ

where M0 is a positive constant satisfying

M6
0 −

M4
0

4Λ
−
A2M2

0

8Λ
þ 3A3

16Λ
¼ 0; ð27Þ

so that the right-hand side of (20) vanishes. Obviously the
critical points belong to the invariant plane. From (22) we
obtain that the energy of a critical point M0 is given by

Ecr ¼
3

4
M0 − ΛM3

0 þ
3

16

A3

M3
0

−
3

8

A2

M0

: ð28Þ

By fixing A3 > 0 and Λ > 0 as postulated above, a careful
analysis of (27) shows that we have at most two critical
points, or one critical point or no critical point depending on
the values ofΛ,A2 andA3. Each critical point corresponds to
a real positive root of (27) with Ecr > 0 in (28).
Figure 1 illustrates the invariant plane and the critical

points in the finite region of the phase space for the
parameters Λ ¼ 1, A2 ¼ 0.05 and A3 ¼ 0.005. The graph
is made in the canonical variables ðx; pxÞ of the invariant
plane to be introduced in Sec. IV. In these coordinates the
critical points are given by P1 ¼ ð0.2348551826828089; 0Þ
andP2 ¼ ð0.51007113736321; 0Þ. Dashed and dotted orbits
shown in the invariant plane correspond to the energiesE0 ¼
0.250 and E0 ¼ 0.185, respectively. The energy of the
critical point P2 is E0 ¼ 0.2201517192605279 and corre-
sponds also to the separatrix (solid line) which is a homo-
clinic connection of P2 to itself. The separatrix divides the
invariant plane into three disconnected regions: region ðIÞ, of
bounded periodic orbits corresponding to eternal oscillating
universes, and regions ðIIÞ and ðIIIÞ of one-bounce

universes emerging from the de Sitter repeller and tending
to a de Sitter attractor at infinity. The scale factor approaches
the de Sitter asymptotic configurations as x ∼ expðt ffiffiffiffiffiffiffiffiffi

Λ=3
p Þ

and px ∼ expðt ffiffiffiffiffiffiffiffiffiffiffi
4Λ=3

p Þ for times going to �∞. As will be
shown in the paper some parametric configurations may also
present velocity-dominated attractors at infinity.
Finally we should mention that the phase space of the

dynamical system (20) presents two invariant submanifolds
defined by

M ¼ Q; pM ¼ pQ; ð29Þ
and

Q ¼ R; pQ ¼ pR: ð30Þ
The denomination invariant submanifolds are derived

from the fact that each of them is mapped onto itself by the
general Hamiltonian flow (20), in other words, is invariant
under the flow. In particular the invariant plane (21)
corresponds to the intersection of these two submanifolds
and satisfies obviously this property.
The nature of the critical points is characterized by

linearizing the dynamical equations (20) about the critical
point. Defining

X ¼ ðM −M0Þ; W ¼ ðpM − 0Þ; ð31Þ
Y ¼ ðQ −M0Þ; K ¼ ðpQ − 0Þ; ð32Þ
Z ¼ ðR −M0Þ; L ¼ ðpR − 0Þ; ð33Þ

as small, we obtain from (20)

FIG. 1. The invariant plane. Herewe fixed the parametersΛ ¼ 1,
A2 ¼ 0.05 and A3 ¼ 0.005. Dashed, solid and dotted lines corre-
spond to E0 ¼ 0.250, E0 ¼ 0.2201517192605279 and E0 ¼
0.185, respectively. The second value of the energy is the energy
of the critical point P2, and the solid line constitutes a homoclinic
connection of P2 to itself. The critical points are given by P1 ¼
ð0.2348551826828089; 0Þ and P2 ¼ ð0.51007113736321; 0Þ.
The graph was made in the canonical variables ðx; pxÞ introduced
in Sec. IV.
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0
BBBBBBBBBB@

_X
_Y
_Z
_W
_K
_L

1
CCCCCCCCCCA

¼

0
BBBBBBBBBB@

0 0 0 α −α −α
0 0 0 −α α −α
0 0 0 −α −α α

δ γ γ 0 0 0

γ δ γ 0 0 0

γ γ δ 0 0 0

1
CCCCCCCCCCA

0
BBBBBBBBBB@

X

Y

Z

W

K

L

1
CCCCCCCCCCA
; ð34Þ

where

α ¼ 1

4M0

; ð35Þ

δ ¼ 1

M3
0

�
−
8Er

9
− 3α22 þ 7α21

�
−

3

M0

þ 1

4M5
0

ð27α33 − 45α31 þ 17α32Þ; ð36Þ

γ ¼ 1

4M3
0

�
−
8Er

9
þ 5α22 − 17α21

�
þ 3

2M0

þ 1

8M5
0

ð−21α33 þ 99α31 þ α32Þ − 2ΛM0: ð37Þ

The nature of the critical points M0 is determined by the
characteristic polynomial associated with the linearization
matrix in (34). We obtain

PðLÞ ¼ ðL − L1ÞðLþ L1ÞðL − L2Þ2ðLþ L2Þ2; ð38Þ

with roots

L1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αð2γ þ δÞ

p
; L2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αðδ − γÞ

p
; ð39Þ

where the second pair has multiplicity 2.
We see that the characterization of the critical points M0

and of the structure of the phase in its neighborhood of the
critical points is highly complex, depending on the domains
of the parameters appearing in the Hamiltonian (19).
With view to a numerical illustration we give here L1 and

L2 in terms of the parameters,

L1 ¼ � 1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Λþ A2

M4
0

−
3A3

M6
0

s
; ð40Þ

L2 ¼ �
ffiffiffi
2

p

4M3
0

ffiffiffi
3

p
�
225

2
A3 − 144ð9α31 þ 2α32Þ −M2

0

× ð51A2 þ 54M2
0 − 128Er − 288α21 − 24ΛM4

0Þ
�

1=2
;

ð41Þ

with L2 having multiplicity 2. As we are restricting
ourselves to the case of two critical points, namely Λ>0
and A3 > 0, four main configurations are present. Let P1

and P2 denote the two critical points in the invariant plane.
The following possible configurations are then
(A) P1 is a center-center-center and P2 is a saddle-

center-center;
(B) P1 is a center-saddle-saddle and P2 is a saddle-

center-center;
(C) P1 is a center-saddle-saddle and P2 is a saddle-

saddle-saddle;
(D) P1 is a center-center-center and P2 is a saddle-

saddle-saddle.
In the above we must remark that the denomination “center-
center-center” actually denotes the topology of a center
times a center with multiplicity 2, and “saddle-saddle-
saddle” denotes the topology of a saddle times a saddle
with multiplicity 2, and so on.
For an illustration of the parameter domains correspond-

ing to such configurations let us fix A2 ¼ 0.05, A3 ¼ 0.005
and Λ ¼ 1. Furthermore, we will also fix Er ¼ 0.1. We
obtain for the four configurations
(A) P1 is a center-center-center and P2 is a saddle-center-

center: α21<−0.0609122þ81.5854α31þ18.1301α32
and α21<0.0000442278þ17.2962α31þ3.8436α32,

(B) P1 is a center-saddle-saddle andP2 is a saddle-center-
center: α21>−0.0609122þ81.5854α31þ18.1301α32
and α21<0.0000442278þ17.2962α31þ3.8436α32,

(C) P1 is a center-saddle-saddle andP2 is a saddle-saddle-
saddle: α21>−0.0609122þ81.5854α31þ18.1301α32
and α21>0.0000442278þ17.2962α31þ3.8436α32,

(D) P1 is a center-center-center and P2 is a saddle-saddle-
saddle: α21<−0.0609122þ81.5854α31þ18.1301α32
and α21>0.0000442278þ17.2962α31þ3.8436α32,

which are illustrated in Fig. 2. We must observe that the
domains (A), (B), (C) and (D) do not overlap by definition,

0.01
0.

0.0131

0.01
0. 0.0132

0.5

0.

0.5

21

A

DC

B

FIG. 2. The parameter space ðα31; α32; α21Þ and the four three-
dimensional domains corresponding to the configurations (A),
(B), (C) and (D) of the critical points.
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and consequently the shaded surfaces shown in Fig. 2 do
not belong to any of the four domains.
As we will see the high instability of the dynamics in the

cases (B)–(D) is connected with the presence of saddles
with multiplicity 2, discussed in the following sections.

IV. THE DYNAMICS ABOUT THE
CRITICAL POINTS: THE CASE OF
A CENTER-CENTER-CENTER AND

A SADDLE-CENTER-CENTER

We now describe the topology and the invariant mani-
folds of the dynamics in the linear neighborhood of the
critical points. We will then apply this analysis to the
parameter domain (A), corresponding to the case of a
center-center-center P1 and a saddle-center-center P2. To
start let us introduce the canonical transformation with the
generating function

G ¼ ðMQRÞ1=3px þ
M
Q

py þ
MQ
R2

pz; ð42Þ

where px, py and pz are the new momenta, resulting in

x ¼ ðMQRÞ1=3; y ¼ M
Q

; z ¼ MQ
R2

; ð43Þ

and

pM ¼ 1

3

QR

ðMQRÞ2=3 px þ
1

Q
py þ

Q
R2

pz;

pQ ¼ 1

3

MR

ðMQRÞ2=3 px −
M
Q2

py þ
M
R2

pz;

pR ¼ 1

3

MQ

ðMQRÞ2=3 px −
2MQ
R3

pz: ð44Þ

Here, the variable x is obviously the average scale factor of
the model. In these new canonical variables the equations
of the invariant plane reduce to

y ¼ 1; z ¼ 1; py ¼ 0 ¼ pz: ð45Þ
The new variables ðx; pxÞ are then seen to be defined on the
invariant plane. These variables were used in constructing
Fig. 1 displaying the invariant plane in the parameter
domain (A).
In the newvariables ðx;px;y;py;z;pzÞ the full Hamiltonian

(19) assumes the form

H ¼ −
p2
x

24x
þ p2

yy2

2x3
þ 3p2

zz2

2x3
þ x

2z
4
3

−
x

yz
1
3

−
xy

z
1
3

− xz
2
3 þ xz

2
3

2y2
þ 1

2
xy2z

2
3 þ 2x3Λþ 2E0 þ

2Er

x

þ x3UHLðx; y; zÞ ¼ 0: ð46Þ
These new canonical variables are very useful since they

separate the degrees of freedom of the system about the

critical points into the expansion/contraction mode ðx; pxÞ,
connected to the invariant plane, and the modes ðy; pyÞ and
ðz; pzÞ that—in the case of a center-center-center or a
saddle-center-center—are pure rotational modes about the
critical point. These variables allow us to describe the
topology of the general dynamics in a linear neighborhood
of the critical points as well as to examine the nonlinear
extension of invariant manifolds about the critical points as
we proceed to show.
To see this we expand the Hamiltonian (46) in a linear

neighborhood of the critical point ðx ¼ M0; px ¼ 0;
y ¼ 1; py ¼ 0; z ¼ 1; py ¼ 0Þ, resulting in the quadratic
form

HL ¼ 2ðE0 − EcrÞ −
�

p2
x

24M0

− qxðx −M0Þ2
�

þ
�
1

2

p2
y

M3
0

þ 3qðy − 1Þ2
�
þ
�
3

2

p2
z

M3
0

þ qðz − 1Þ2
�
¼ 0;

ð47Þ

where

qx ¼ 6ΛM0 þ
1

4M3
0

ð3α22 þ 9α21 þ 8ErÞ

−
1

4M5
0

ð9α33 þ 27α32 þ 81α31Þ; ð48Þ

q¼ 1

4M3
0

ð9α31−α32−3α33Þþ
1

3M0

ðα22−3α21Þþ
M0

3
:

ð49Þ

In deriving (47) the equations defining the critical points
(27) and their respective energy (28) were used. At this
point it is worth mentioning that, in terms of the parameters
qx and q, the four parametric domain configurations given
in the previous section can be simply characterized as

ðAÞ P1∶ ðqx < 0; q > 0Þ; P2∶ ðqx > 0; q > 0Þ;
ðBÞ P1∶ ðqx < 0; q < 0Þ; P2∶ ðqx > 0; q > 0Þ;
ðCÞ P1∶ ðqx < 0; q < 0Þ; P2∶ ðqx > 0; q < 0Þ;
ðDÞ P1∶ ðqx < 0; q > 0Þ; P2∶ ðqx > 0; q < 0Þ:

The quadratic Hamiltonian (47) is obviously separable
and can be reexpressed as

HL ¼ 2ðEcr − E0Þ þ Ex − E1 − E2 ¼ 0 ð50Þ

where

Ex ¼
p2
x

24M0

− qxðx −M0Þ2; ð51Þ
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E1 ¼
1

2

p2
y

M3
0

þ 3qðy − 1Þ2; ð52Þ

E2 ¼
3

2

p2
z

M3
0

þ qðz − 1Þ2 ð53Þ

are constants of motion of the linearized motion about the
critical point M0 in the sense that they have zero Poisson
brackets with the Hamiltonian HL. Two additional con-
stants of the linearized motion are also present,

C1 ¼
�

1

2M3
0

pypz þ qYZ

�
; ð54Þ

C2 ¼
�
Ypz −

1

3
Zpy

�
; ð55Þ

where in the above Y ≡ ðy − 1Þ and Z≡ ðz − 1Þ. They are
not all independent but related by

4E1E2 ¼ 12C2
1 þ 6C2

2: ð56Þ

We introduce a third constant of motion defined by

C3 ¼ ðE1 − E2Þ; ð57Þ

that together with C1 and C2 satisfy the algebra

½C1;C2�¼−
1

3
C3; ½C2;C3�¼−4C1; ½C3;C1�¼−

6q
M3

0

C2:

ð58Þ

We are now ready to describe the topology of the six-
dimensional phase space in the linear neighborhood of the
critical points. In the remainder of this section we will
restrict ourselves to the parameter domain (A) for which
both critical points P1 and P2 have q > 0; cf. (49).
Let us consider the case Ex ¼ 0 corresponding to

ðx ¼ M0; px ¼ 0Þ. The motion about the critical points
in this case corresponds to periodic orbits of the isotropic
harmonic oscillator

HL ¼ E1 þ E2 ¼ 2ðE0 − EcrÞ: ð59Þ

In fact, by a proper canonical rescaling of the variables in
(59), we can show that these energy surfaces are hyper-
spheres and that the group generated by the constants of
motion (54), (55) and (57) is homomorphic to the unitary
unimodular group with the topology of S3 [28,29]. These
energy surfaces are denoted the center manifold S3 of
unstable periodic orbits, a structure that extends to the
nonlinear phase space domain about the critical points.
Now due to the separate conservation of E1 and E2 in

(59) we can show that the center manifold in the linear

neighborhood of the critical points is foliated by Clifford
two-dimensional surfaces in S3 [30], namely, 2-tori T E0

contained in the energy surface E0 ¼ const. The Clifford
surfaces as well as the S3 manifold containing them depend
continuously on the parameter E0. These 2-tori will have
limiting configurations which are periodic orbits, whenever
E1 ¼ 0 or E2 ¼ 0.
From Eq. (59) we have that ðE0 − EcrÞ < 0 is a

necessary condition for the dynamics in the rotational
sector (59), defining a condition for the existence of the
center manifold S3E0

of periodic orbits. For E0 ¼ Ecr the
center manifold reduces to the critical point. By continuity
as ðEcr − E0Þ increases, the nonlinear extension of the
center manifold maintains the topology of S3 but will no
longer be decomposable into E1 and E2. A detailed
description of the center manifold and its nonlinear
extension will be the object of the next section.
The second possibility to be considered is the motion in

the sector ðx; pxÞ. In the parameter domain (A) the case of
Ex demands a separate analysis for the two critical points,
since we have qx > 0 for the critical point P2 so that Ex
corresponds to the energy associated with the motion in the
saddle sector. We recall that this is related to the fact that the
pair of eigenvalues (40) is real for P2.
We should remark that for the critical point P1, in which

qx < 0, Ex is positive definite and corresponds to the
rotational energy in the additional rotational sector ðx; pxÞ
of the dynamics about P1 so that the general motion about
P1 will have the topology S1 × S3. All the orbits of the
dynamics about P1 will be oscillatory, corresponding to
perpetually nonsingular bouncing universes.
In the following our focus will be on the phenomena

connected to the saddle-center-center critical point P2

present in the phase space of the model. The general
dynamics in the linear neighborhood of P2 is more complex
and comes from the presence of the saddle sector associated
with qx > 0, as we now discuss.
If Ex ¼ 0we have two possibilities. The first is ðx ¼ M0;

px ¼ 0Þ which corresponds to the motion in the center-
center (S3) sector already examined.
The second possibility is px ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24M0qx
p ðx −M0Þ

which defines the linear stable VS and linear unstable
VU manifolds of the saddle sector. VS and VU limit regions
I (Ex < 0) and regions II (Ex > 0) of motion on hyper-
bolae that are solutions of the separable saddle sector
Ex ¼ p2

x=24M0 − qxðx −M0Þ2. Note that the saddle sector
depicts the neighborhood of P2 in Fig. 1, with VS and VU
tangent to the separatrices at P2. The direct product of
T E0

⊂ S3 with VS and VU generates, in the linear neigh-
borhood of P2, the structure of stable (T E0

× VS) and
unstable (T E0

× VU) three-dimensional surfaces that coa-
lesce into the two-dimensional tori T E0

for times going to
þ∞ and −∞ respectively. The energy on any orbit on these
tubes is the same as that of the orbits on the tori T E0

.
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These three-dimensional tubes are contained in the
four-dimensional tubes which are respectively the product
of VS and VU times the center manifold S3E0

, in the five-
dimensional energy surfaceH ¼ 0 (46) with E0 − Ecr < 0.
They constitute a boundary for the general dynamical flow
and are defined by Ex ¼ 0 in the linear neighborhood of P2.
Depending on the sign of Ex the motion will be confined
inside the four-dimensional tube (for Ex < 0) and will
correspond to a flow separated from the flow outside the
tube (for Ex > 0). The extension of structure of the four-
dimensional tubes away from the neighborhood of the
center manifold S3E0

are now to be examined and our basic
interest will reside in the stable and unstable pair, S3E0

× VS

and S3E0
× VU, that leave the neighborhood of P2 towards

the bounce.
In the two following sections the nature of the center

manifolds about critical points with a center-center sector
and the typical phase space dynamics of the system are
analyzed, for the parameter domain (A). The examination
of some fundamental results are extended for general cases
so that they can be applied in the remaining sections of
the paper.

V. THE CENTER MANIFOLD AND THE
BOUNCING OSCILLATORY DYNAMICS

One of the main important uses of the canonical
coordinates (42) is to give an exact analytical form of
the center manifold as well as a sufficiently accurate
numerical description of the phase space dynamics in
extended regions away from the critical points. As we
will see the center manifold is a fundamental structure
connected with the whole oscillatory motion in the
phase space.
We start by examining the nonlinear extension of the

center manifold about the saddle-center-center critical
point P2 restricted to the parametric domain (A) (the same

analysis applies to the center manifold about the center-
center-center critical point P1). In the canonical variables
ðy; z; py; pzÞ the equation of the center manifold is obtained
by substituting ðx ¼ xcr2 ; px ¼ 0Þ in (46), yielding the
exact expression

HC ¼ y2p2
y

2x3cr2
þ 3z2p2

z

2x3cr2
þ xcr2
2z4=3

−
xcr2
yz1=3

−
xcr2y

z1=3

− xcr2z
2=3 þ xcr2z

2=3

2y2
þ 1

2
xcr2y

2z2=3 þ 2x3cr2Λ

þ x3cr2UHLðxcr2 ; y; zÞ þ
2Er

xcr2
þ 2E0 ¼ 0; ð60Þ

where xcr2 is the average scale factor of the saddle-center-
center critical point P2. The domain of E0 defining the
center manifold satisfies the constraint E0 < Ecr as already
discussed. For E0 ¼ Ecr the center manifold reduces to the
critical point. In this section we are restricted to the
parameter domain (A) and, for illustrative purposes, we
will initially adopt the parameters

Λ ¼ 0.001; Er ¼ 10;

α31 ¼ 10−4; α32 ¼ 10−5; α33 ¼ 0.00092;

α21 ¼ −100; α22 ¼ 580=3: ð61Þ

For this parameter configuration the critical point P2 is
given by ðxcr2 ¼ 14.14213521493478; px ¼ 0; y ¼ 1;
py ¼ 0; z ¼ 1; pz ¼ 0Þ with a corresponding critical
energy Ecr2 ¼ 9.89949505925050. The center manifold
(60) is illustrated in Fig. 3 where we display its sections
ðpz ¼ 0; z ¼ 1Þ and ðpy ¼ 0; y ¼ 1Þ about P2 for several
decreasing values of E0 ¼ 9.89, 9.0, 6.0, 5.0, illustrating
the S3 topology of (60) and its deformation as the parameter
ðEcr − E0Þ increases.

FIG. 3. Section pz ¼ 0; z ¼ 1 (left) and section py ¼ 0; y ¼ 1 (right) of the center manifold S3 (60), for E0 ¼ 9.89, 9.0, 6.0, 5.0, about
the critical point P2, with parameters (61) in (A). The energy of P2 is Ecr2 ¼ 9.89949505925050.
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The center manifold (60) is the locus of unstable
periodic orbits or of oscillatory orbits of the system and
organizes the finite phase space dynamics. In the case of
the center manifold about the saddle-center-center P2, let
us consider for simplicity the section ðy ¼ 1; py ¼ 0Þ of
Fig. 3 (right) for the energy E0 ¼ 9.8994. This section has
the topology of S1 and is a solution of the constraint (60),
HCðy¼1;py¼0;z;pz;E0Þ¼0, with ðEcr−E0Þ≃9.5×10−5.
The points of this section are initial conditions for
perpetually bouncing orbits, propagated forward or back-
ward in time, as can be verified numerically. Let us take for
instance the point ðz ¼ 1; pz ¼ 0.598741056178016Þ as
initial condition on S1. The result of the dynamics is a
perpetually bouncing universe illustrated in Fig. 4. In
Fig. 4 (left) we can see that the orbit undergoes a long
time oscillation on the center manifold, namely at
(x ¼ xcr ¼ 14.14213521493478; px ¼ 0), with short inter-
vals of escaping from this neighborhood towards the
bounces at xb ≃ 4.565245, with a period between the
bounces of Δt≃ 855.975.
The oscillatory behavior of the modes ðz; pzÞ is

illustrated in Fig. 4 (right) showing long time oscillations
about the center manifold with short intervals in which the
orbit visits the bounce and returns again to the neighbor-
hood of the center manifold. We note that the frequency of
the mode pzðtÞ increases substantially at the bounces.
Analogous behavior is present in the variable zðtÞ, as
expected. These patterns were verified for a long time
evolution. Actually in all our numerical treatment the
Hamiltonian constraint (46) is conserved within a numeri-
cal error ≤ 10−13 for the whole computational domain.
These orbits constitute a set of perpetually bouncing
periodic orbits present in the dynamics of the model.
In summary, as discussed already in the previous section,

the orbits ðxðtÞ; pxðtÞ; yðtÞ; pyðtÞ; zðtÞ; pzðtÞÞ emerge from
the S3 center manifold towards the bounce, generating the
four-dimensional stable and unstable cylinders R × S3, the

motion along the cylinders being obviously oscillatory. For
simplicity we restricted our numerical illustration to the
motion in the invariant submanifold ðy ¼ 1; py ¼ 0Þ with
initial conditions taken on the one-dimensional manifold
S1 ⊂ S3 defined by HCðy ¼ 1; py ¼ 0; z; pzÞ ¼ Ecr − E0

where E0 ¼ 9.8994, corresponding to an energy of rota-
tional motion in the sector ðz; pzÞ of ≃1.52 × 10−4. In fact
the orbits discussed above are strictly periodic bouncing
orbits and therefore are not orbits homoclinic to the center
manifold in which case they would take an infinite time to
return to the center manifold.
Finally for future reference we will introduce a new

quantity of the dynamics, the square of the shear tensor σαβ
associated to the four-velocity vector Vα ¼ δα0 of a comov-
ing observer with the matter content of the model. In the
coordinate system of the metric (8) for the gauge N ¼ 1we
obtain, after a straightforward calculation, that

σ2 ≡ 2

3
σαβσαβ ¼

3ðzpzÞ2 þ ðypyÞ2
3x6

; ð62Þ

in the new canonical variables (42)–(44). We can see that
σ2, which is a measure of the anisotropy of the motion, is
basically associated with the rotational modes of the system
and has a smooth behavior. This is illustrated in Fig. 5
where we display σ2 versus t for the perpetually bouncing
orbit of Fig. 4 in the parameter domain (A), showing a
relatively large amplification as the orbit visits a neighbor-
hood of the bounces.
On the other hand the parameter σ2 can play a role in the

recognition and characterization of patterns in the phase
space dynamics, connected to the presence of a saddle-
saddle-saddle critical point. It will constitute an important
numerical indicator of the existence of highly anisotropic
momentum attractors in the parameter domain (B), as
discussed later, where the dynamics is highly unstable
due to the presence of a saddle of multiplicity 2.
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FIG. 4. Left: The evolution of the scale factor xðtÞ for a periodic orbit having infinite bounces, with parameters (61) in (A) and initial
conditions on a S1 section of the center manifold. Right: The evolution of the oscillatory mode pzðtÞ. We note that the frequency of the
mode increases substantially as the orbit bounces.
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To complete the present section we now examine a new
set of parameters in (A), for which a distinct dynamical
pattern connected to the saddle-center-center P2 is present,
namely, the presence of oscillatory orbits that escape to the
de Sitter attractor at infinity after a finite number of
bounces. The parameters are

Λ ¼ 1; Er ¼ 0.1;

α31 ¼ 0.002; α32 ¼ 0; α33 ¼ −0.013;

α21 ¼ 0; α22 ¼ −13=60: ð63Þ

For this parameter configuration the saddle-center-center
P2 has coordinates ðxcr2¼0.51007113736321;px¼0;y¼1;
py¼0;z¼1;pz¼0Þ, with the corresponding critical energy
Ecr2 ¼ 0.22015171926053. The initial conditions of the
orbits are taken on the S1 section ðy ¼ 1; py ¼ 0Þ of the
center manifold S3 about P2, defined by the constraint
HCðy¼1;py¼0;z;pz;E0Þ¼0, for the energy E0¼0.2201.
We take, for instance, ðz ¼ 1.017048758412991; pz ¼
0.0023417842316Þ. We evolve this initial condition forward
in time, along a neighborhood of the unstable cylinder
emanating from the center manifold towards the bounce
as illustrated in Fig. 6. The evolution of the scale factor
xðtÞ is displayed in Fig. 6 where we see that the orbit
undergoes six bounces before escaping to the de Sitter
attractor at infinity. We should note that, contrary to the
set of perpetually bouncing periodic orbits examined pre-
viously, these orbits are nonperiodic but oscillatory, since
the values of the coordinate xb of the bounces actually
vary between ≃ð0.162626; 0.163973Þ, with time intervals
between the six bounces being respectively Δ ¼
½15.0; 17.7; 15.2; 16.5; 15.2�. The evolution of the oscillatory
modespzðtÞ and zðtÞ of the orbit of Fig. 6 is shown in the left
and right panels of Fig. 7, respectively. The frequency of the
oscillatory modes increases substantially at the bounces.
As the orbit approaches the de Sitter attractor the variables
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0.
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2

FIG. 5. Plot of the evolution of the anisotropy parameter σ2

related to the periodic orbit with infinite bounces displayed in
Fig. 4, showing a relatively large amplification in the oscillations
when the orbit visits a neighborhood of the bounces.
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FIG. 6. The evolution of the scale factor xðtÞ for an orbit with
parameters (63) in (A) exhibiting six bounces before the orbit
escapes to the de Sitter attractor at infinity.
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FIG. 7. The evolution of the oscillatory modes pzðtÞ (left) and zðtÞ (right) of the orbit of Fig. 6. The frequency of the modes increases
substantially in the neighborhood of the bounces. As the orbit approaches the de Sitter attractor the variables approach the constant
values ðz ∼ 1; pz ∼ 0Þ as expected.
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approach the constant values ðz ∼ 1; pz ∼ 0Þ as expected. In
fact we must remark that in our numerical evaluations the
Hamiltonian constraint (46) is conserved, with a numerical
error≤10−13 for thewhole computational domain. In the case
of the six-bounce orbit of Figs. 6, 7 the Hamiltonian
constraint is violated when t≃ 110.4, when we stop com-
putation. At this time pz ¼ 0 and z≃ 1, with x sufficiently
large and px ≃ 0.
The evolution of the anisotropy parameter for these

orbits is illustrated in Fig. 8 where we plot σ2 for the whole
time domain until the orbit reaches the de Sitter attractor.
The figure at the bottom amplifies the final part of the
signal, showing that the shear is zero at the de Sitter
attractor, as should be expected.
Finally it is worth remarking that the six-bounce orbits of

Figs. 6, 7, when propagated backward in time from their
initial conditions (namely, about a neighborhood of the stable
cylinder) towards the bounce, would undergo just one
bounce before escaping to the de Sitter attractor at infinity.
The sets of orbits discussed in the present section

characterize the oscillatory and periodic modes present
in the phase space dynamics of the system. We should
mention that they can be related to the results of Misonoh
et al. [27] modulo their use of the noncanonical variables
ða; βþ; β−Þ and of a distinct parametrization, where

a ¼ 2x; βþ ¼ ðln zÞ=6; β− ¼
ffiffiffi
3

p
ðln yÞ=6: ð64Þ

In these variables the shear parameter is expressed

σ2 ¼ 4ð _βþ2 þ _β−
2Þ:

We remark that, without loss of generality and for numeri-
cal simplicity, the dynamics was restricted to the invariant
submanifold ðy ¼ 1; py ¼ 0Þ.
Now we are led to examine the nonlinear extension of the

stable and unstable two-dimensional cylinders R × S1. In
order to realize this construction numericallywe do notmake
use here of the displacing (in the direction of the unstable
cylinder) of initial conditions taken on the invariant center

manifold, as the shooting method in [32], but instead we
make use of the instability of the motion on the center
manifold which computationally conserves the Hamiltonian
constraint (46) for all t, within an error ≤10−13.
In Fig. 9 we illustrate the unstable WU (gray) and stable

WS (black) cylinders, each spanned by 26 orbits, emerging
from the center manifold section S1 towards the bounce,
for a time domain corresponding to just one bounce, so
that both cylinders cross just once the surface of section
Σ∶ðx ¼ xb; px ¼ 0Þ, where xb is the scale factor of the
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FIG. 8. Left: Plot of the evolution of the shear parameter σ2 for the orbit of Fig. 6. Right: Amplification of the final part of the signal
showing that the shear becomes zero as the orbit reaches the de Sitter attractor.

FIG. 9. A numerical illustration of the unstable cylinder
(gray) and the stable cylinder (black), both spanned by 10 orbits
with initial conditions taken on a circle in the domain ðz; pzÞ of
the center manifold for E0 ¼ 9.8994, emerging towards the
bounce. The parameter configuration is given in (61). This
numerical simulation was implemented for a time domain
corresponding to just one bounce, with initial conditions
(x0 ¼ 14.142135621521241, px0 ¼ 0, y0 ¼ 1, py0 ¼ 0), the
ðz; pzÞ coordinates being a solution of the constraint (60).
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bounces. This numerical simulation was implemented for
initial conditions (x0¼xcr2¼14.142135621521241, px0¼0,
y0 ¼ 1, py0 ¼ 0) taken on S1, with the ðz; pzÞ coordinates
being a solution of the Hamiltonian constraint (60), for the
parameters (61). Actually the stable WS and unstable WU
cylinders, emerging from the center manifold defined for
E0 ¼ 9.8994, are a nonlinear extension of (T E0

× VS) and
(T E0

× VU), withT E0
⊂ S3 defined in a linear neighborhood

of P2. These cylinders are actually composed of orbits that
have the same energy ðEcr2 − E0Þ ∼ 10−5 of the center
manifold and coalesce to it as t → �∞.
WS and WU emanate from the center manifold towards

the bounce at x ¼ xb and are guided by the separatrix
dividing the regions I and II of the invariant plane
(cf. Fig. 1). We emphasize that, in the domain (A), the
separatrix ðxðtÞ; pxðtÞÞ guiding the cylinders is actually a
structure inside the cylinders about which rotational motion
of the two degrees of freedom ðy; pyÞ and ðz; pzÞ takes
place [28,29]. It is worth noticing that the projection of the
figure in the plane ðx; pxÞ shadows the separatrix homo-
clinic to P2 in the invariant plane. These facts will be
crucial in the characterization of the regular/nonchaotic
dynamics of the system as discussed in the next section.

VI. ON REGULARITY AND CHAOS IN THE
INVARIANT SUBMANIFOLDS

Aswe have seen in the previous section the stableWS and
unstable WU cylinders emerging from the center manifold
aboutP2 are four-dimensional surfaces so that they separate
the five-dimensional energy surface defined by the
Hamiltonian constraint (46) into two dynamically discon-
nected pieces, a fact that is fundamental to the characteri-
zation of either chaos or regular motion in the system. The
occurrence of the transversal crossing of the stable cylinder
and the unstable cylinder in the neighborhood of the bounce
would constitute a topological characterization of chaos in
the dynamics, a phenomenon that eventually leads to the
formation of Poincaré’s homoclinic tangles [33,34].
Let us consider the first transverse intersection of the

cylinders: a part of the flow inside of the unstable cylinder
will enter in the interior of the stable cylinder and will be
forever separated from the part of the flow that remains
outside the stable cylinder. The part that remained inside
the stable cylinder will proceed along the stable cylinder
towards the center manifold about P2 from where it will
reenter the unstable cylinder and proceed eventually to a
second bounce; by a new intersection a part of these orbits
will again enter the stable cylinder and proceed back
towards the neighborhood of the center manifold, and so
on. The other part of the flow outside the stable cylinder
will return to the neighborhood of the center manifold and
there it either escapes towards the de Sitter attractor at
infinity or returns again towards the bounce outside the
unstable cylinder. The recurrence of this process constitutes

an invariant characterization of chaos in the dynamics of
the system, generating horseshoe structures that appear in
Poincaré maps of the system (with surface of sections Σ
taken at the bounce x ¼ xb; px ¼ 0); cf. for instance
[28,29]. If we consider the transversal crossing in a section,
say at the bounce ðx ¼ xb; px ¼ 0Þ, it is not difficult to see
that the intersection is a S2. Therefore the intersection
manifold will be a three-dimensional tube of flow (with the
topology R × S2) which is contained both in the four-
dimensional stable cylinder and in the four-dimensional
unstable cylinder; the intersection manifold is homoclinic
to the center-center manifold S3. We must recall that the
cylinders are actually composed of orbits that have the
same energy ðEcr − E0Þ of the center manifold and coa-
lesce to it as t → �∞.
Another possibility is that the cylinders coalesce with

each other: this rare situation characterizes the absence of
chaos in the model and in this sense the dynamics is said to
be regular/nonchaotic. Interestingly enough this is the case
for the parameter domain (A) where the dynamics of the
cylinders are regular as we now show. We have not found
any numerical evidence of the breaking of this regular
behavior, contrary for instance to the dynamics of Bianchi
IX universes in bouncing braneworld cosmologies [29,34].
To start let us consider the parameter configuration

(61) used in part of the numerical experiments of the
previous sections. For these parameters the saddle-center-
center critical point P2 is characterized by Ecr2 ¼
9.89949493727457 and ðxcr2¼14.1421356215212;px¼0;
y¼1;py¼0;z¼1;pz¼0Þ. The total energy of the system is
taken as E0 ¼ 9.8994 so that the energy available to the
rotational degrees of freedom of the center manifold
is ðEcr2 − E0 ∼ 10−4Þ.
The results of the previous sections showed that two

four-dimensional cylinders, one stableWS and one unstable
WU, both with the topology R × S3, emerge from a
neighborhood of the center manifold about P2. The center
manifold S3 encloses the critical point P2 and tends to it as
E0 → Ecr2 . At this limit the cylindersWS andWU reduce to
the separatrix S which makes a homoclinic connection to
itself in the invariant plane. The separatrix is a structure
inside the cylinders, about which the flow with the
oscillatory degrees of freedom ðy; py; z; pzÞ proceeds,
guiding both cylinders towards the bounce. Their first
encounter, with either a transversal crossing or a smooth
coalescence, is expected to occur in a neighborhood of the
bounce ðxb ¼ 4.565245; px ¼ 0Þ where xb is the scale of
the bounce for the orbits at px ¼ 0. In order to examine this
first encounter we will adopt the four-dimensional Poincaré
surface of section [35] Σ∶ðx ¼ xb; px ¼ 0Þ.
For the sake of numerical simplicity here our simulations

will be restricted to the dynamics on the two four-
dimensional invariant submanifolds (29) and (30) of the
six-dimensional phase space which, in the canonical
variables (43) and (44), are expressed
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IS1∶ y ¼ 1; py ¼ 0; ð65Þ

IS2∶ y ¼ z; py ¼ 3pz: ð66Þ

In the first simulation we take ðx0 ¼ xcr2 ; px0 ¼ 0Þ, and
fix the initial conditions on the four-dimensional invariant
submanifold IS1, namely, with ðy ¼ 1; py ¼ 0Þ; such

initial conditions are obviously to be taken in the sector
ðz; pzÞ of the center manifold S3, which has the topology
of S1 and is defined by the Hamiltonian constraint (46)
Hðx¼xcr2 ;px¼0;y¼1;py¼0;z;pz;E0¼9.8994Þ¼0. By
performing the evolution of 173 initial conditions in the
above set, the exact dynamics actually evolves a four-
dimensional invariant subset ðx; px; z; pzÞ of the full

FIG. 10. Poincaré maps of the first coalescence of the stable cylinder (black dots) and unstable cylinder (gray diamonds) in the surface
of section Σb∶ðx ¼ xb; px ¼ 0Þ at the first bounce xb ¼ 4.565245 (left), and in the surface of section Σ2 ¼ ðx ¼ 7; px ¼ 15.413Þ (right)
shown in the plane ðz; pzÞ, for E0 ¼ 9.8994. Both cylinders were spanned by 346 orbits, with initial conditions taken on a circle in the
domain ðz; pzÞ of the center manifold. Initial conditions and parameters are the same as in Fig. 9.

FIG. 11. Poincaré map of the first coalescence of the stable cylinder (black dots) and unstable cylinder (gray diamonds) in the surface
of section Σ1 ¼ ðx ¼ xb; px ¼ 0Þ (at the first bounce xb ¼ 4.56523) shown in the plane ðz; pzÞ (top left); ðz; pyÞ (top right); ðy; pyÞ
(bottom left); and ðy; pzÞ (bottom right) forE0 ¼ 9.8994. Both cylinderswere spannedby 173orbits,with initial conditions taken on a circle
in the domain ðz; pzÞ of the center manifold. Here we fixed Λ ¼ 0.001, Er ¼ 10, α21 ¼ −100, A2 ¼ −80, α31 ¼ 10−4, α32 ¼ 10−5,
A3 ¼ 10−5 so that Ecrit¼9.899494937274579. The IS1 initial conditions are x¼14.142135621521241, px0 ¼ 0, y0 ¼ z0, py0 ¼ 3pz0 .
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six-dimensional phase space as expected due to our
restriction to the four-dimensional invariant submanifold
ðy ¼ 1; py ¼ 0Þ; in this particular simulation we have that,
under the exact dynamics, no motion is present in the sector
ðy; pyÞ. We generate one two-dimensional stable WS and
one two-dimensional unstableWU cylinder of orbits which
initially move towards the first bounce. As mentioned we
adopt the surface of section Σb∶ðx ¼ xb; px ¼ 0Þ, where
xb ≃ 4.565245 is the scale factor of the bounce. The points
ðzb; pzbÞ resulting from the section of both cylinders (WS in
black and WU in gray) by the surface of section Σb are
displayed in Fig. 10 (left), corresponding actually to the
Poincaré maps of both cylinders on Σb. This first Poincaré
map at the bounce is numerical evidence of the coalescence
of one cylinder into the other and gives a clear picture of the
regular (nonchaotic) motion in the dynamics of the cylin-
ders. We also display in Fig. 10 (right) the Poincaré maps of
the cylinders in another surface of section Σ2 ¼ ðx ¼ 7;
px ¼ 15.413Þ, showing also the coalescence of the two
cylinders into one another at a time after the first bounce.
From these Poincaré maps we see the coalescence of the

stable cylinder (black dots) and unstable cylinder (gray
diamonds) in two sections in the phase space. In fact, it can
be shown that this coalescence is maintained for any section

of the phase space crossed by orbits in the stable or unstable
manifold. This is an integrability signature of the dynamics
showing a feature of no chaos in the model. Although the
numerical simulations shown here were done for the
parameters (61) we have checked that this integrability
pattern is maintained in general for all parameter configu-
rations of the domain (A) in which P1 is a center-center-
center and P2 is a saddle-center-center provided by a proper
choice of the coupling constants in the potential UHL.
To complete our analysis we have also considered the case

of the second invariant submanifold IS2. Again we obtain
here numerical evidence of the regularity of the dynamics as
given in Figs. 11 and 12. Here we plot the Poincaré maps in
the surface of section Σb∶ðx ¼ xb; px ¼ 0Þ at the first
bounce [corresponding to the points ðyb; pyb ; zb; pzbÞ] of
the stable cylinder (black dots) and the unstable cylinder
(gray diamonds) as shown in Fig. 5, and in the surface of
section Σ2 ¼ ðx ¼ 7; px ¼ 15.4131Þ [corresponding to the
points ðyb; pyb ; zb; pzbÞ] as shown in Fig. 6. These Poincaré
maps show clearly the coalescence of the stable cylinder
(black dots) and unstable cylinder (gray diamonds) in two
arbitrary sections in the phase space, in common with the
case of the first invariant submanifold IS2. As in the previous
experiments we verified numerically that this coalescence is

FIG. 12. Poincaré map of the first coalescence of the stable cylinder (black dots) and unstable cylinder (gray diamonds) in the surface
of section Σ2 ¼ ðx ¼ 7; px ¼ 15.4131Þ shown in the plane ðz; pzÞ (top left); ðz; pyÞ (top right); ðy; pyÞ (bottom left); and ðy; pzÞ (bottom
right) for E0 ¼ 9.8994. Both cylinders were spanned by 173 orbits, with initial conditions taken on a circle in the domain ðz; pzÞ of
the center manifold. Here we fixed Λ ¼ 0.001, Er ¼ 10, α21 ¼ −100, A2 ¼ −80, α31 ¼ 10−4, α32 ¼ 10−5, A3 ¼ 10−5 so that
Ecr ¼ 9.899494937274579. The IS1 initial conditions are x ¼ 14.142135621521241, px0 ¼ 0, y0 ¼ z0, py0 ¼ 3pz0 .
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maintained for any surface of the section of the phase space
crossed transversally by the stable and the unstable mani-
folds. This is a regular signature of the dynamics showing a
feature of no chaos in the model. Furthermore we also
checked that this regular (nonchaotic) pattern of the dynam-
ics, obtained for the invariant submanifold IS2 with the
parameters (61), is maintained in general for parameter
configurations (A) in which P1 is a center-center-center
and P2 is a saddle-center-center.
The patterns of the phase space dynamics of a general

Bianchi IX cosmological model discussed in the previous
sections are fundamentally connected to the general poten-
tial UHL (5) of a nonprojectable version of Hořava-Lifshitz
gravity which, among other characteristics, allows for the
presence of nonsingular bounces in the orbits of the model
due to curvature dependent potentials.
The rich dynamics of the model is mainly due to the

number of parameters introduced via the HL potential
which in turn demands a careful classification of the pairs
of critical points in the finite region of the phase space. In
the domain of parameters (A) examined in Secs. IV, V and
VI the critical points are a center-center-center and a
saddle-center-center so that the phenomena in phase space
are of the same nature as the ones discussed in [27–29].
Now in the following two sections we will examine the
parameter domains (B) and (C) in which some features of
the phase space dynamics—mainly connected to the
presence of a saddle with multiplicity 2—are new and,
to our knowledge, not yet seen in the literature.

VII. A SADDLE OF MULTIPLICITY 2 AND
THE pZ-MOMENTUM ATTRACTORS

Here our focus will be in the parameter domain (B) where
P1 is a center-saddle-saddle andP2 is a saddle-center-center.
The topology of the phase space in the neighborhood of P1

has the structure of a saddle of multiplicity 2 times S1, since
P1 in (B) has q < 0 and qx < 0 [cf. (48)]. This topological
feature induces a high instability in the phase space dynam-
ics. In order to better grasp such behavior we illustrate in
Fig. 13 the topology of the phase space about P1 with the
parameters

Λ ¼ 0.001; Er ¼ 1;

α31 ¼ 10−4; α32 ¼ 10−5; α33 ¼ −0.00092;

α21 ¼ 0; α22 ¼ −248=3; ð67Þ

with xcr1 ¼ 7.071067829543 and Ecr1 ¼ 9.192388160728.
While on the invariant plane the motion about P1 is that of
periodic orbits, outside the invariant plane the hyperbolic
motion is the origin of a high instability in the phase space
dynamics. Figure 13 displays the phase space section
(x ¼ xcr1, px ¼ 0, py ¼ 0) of the hyperbolic motion about
P1. In the figurewe note that the critical pointP1 is located at

the common vertex of cones into which the 4-hyperboloid
degenerates for E0 ¼ Ecr1.
Let us now discuss some new features in the dynamics of

orbits visiting a nonlinear neighborhood of P1 connected
with its character of a saddle of multiplicity 2.
For the parameters (67) adopted, let us consider

the saddle-center-center critical point P2∶ðx ¼ xcr2 ¼
14.14213562152124; px ¼ 0; y ¼ 1; py ¼ 0; z ¼ 1; pz ¼ 0Þ
with critical energy Ecr2 ¼ 9.89949493727457. We con-
struct the unstable cylinder WU (gray) that emerges from
the neighborhood of P2 towards the bounce, spanned by 26
orbits, with initial conditions taken on a circle in the
domain ðz; pzÞ of the center manifold about P2 with energy
E0 ¼ 9.8994. From the same initial conditions we generate
the stable cylinderWS (black) that also emerges towards the
bounce. These cylinders are illustrated in Fig. 14, from
which three distinct sets of orbits can be singled out.
According to the dynamics examined in previous sections,
these orbits would be expected to have two attractors, either
the center manifold itself or the de Sitter attractors at
infinity. These two sets of orbits (connected with the de
Sitter or the center manifold attractors) are seen in the
figure, the projection of which on the invariant plane
ðx; pxÞ “shadows” the separatrix of the invariant plane.
However in the present case (B), due to the high

instability connected to the saddle-saddle-saddle P1, we
observe a third set of orbits that visit a nonlinear neighbor-
hood of P1 and escape to two additional pz-momentum

FIG. 13. Numerical illustration of the phase space in a
neighborhood of the center-saddle-saddle P1, corresponding
to the parameter configuration (67). Here we display the
section ðx ¼ xcr1 ¼ 7.071067829543; px ¼ 0; py ¼ 0Þ of the
five-dimensional phase space for E0 ¼ Ecr1. The critical point
P1 is located at the common vertex of the cones into which the
4-hyperboloid degenerates for E0 ¼ Ecr. The high instability of
the dynamics outside the invariant plane is due to the presence of
a saddle of multiplicity 2 at P1.
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attractors with a very large anisotropy parameter at
x ¼ const, z ¼ const and pz → �∞ as can also be seen
in Fig. 14. Due to the high instability of the dynamics of
these orbits, the numerical evaluation for long times is quite
critical, demanding an accuracy which is in the available
limit of the codes used in this work. Let us consider, for
instance, an orbit on the unstable cylinder belonging to this
third set, generated from the initial conditions

x ¼ xcr2; px ¼ 0; y ¼ 1; py ¼ 0;

z ¼ 1.00075; pz ¼ 0.5954540145554457; ð68Þ

taken on the circle ðz; pzÞ of the section ðy ¼ 1; py ¼ 0Þ of
the center manifold about P2, for E0 ¼ 9.8994. We kept the
dynamics restricted to the time interval t ¼ ½0; 477.39� so
that the Hamiltonian constraint H (46) is still conserved,
namely, H ≤ 3.337 × 10−12. At t ¼ 477.39 we obtain
x≃ 4.51755, z≃ 0.201023 and pz ≃ 910.195, leading to
a value of the anisotropy parameter σ2 ≃ 3.93864 which is
larger than the initial anisotropy by eight orders of
magnitude. For t slightly larger than tf ¼ 477.39 the
conservation of H breaks up, with the value of pz
increasing exponentially. We therefore conclude that the

asymptotic configuration of the orbits of the third set,
shown in Fig. 14, escape to two pz-momentum attractors
with an infinitely large anisotropy parameter, at x ¼ const,
z ¼ const and pz → �∞. This is a direct consequence of
the dynamical instability associated with the saddle of
multiplicity 2 at P1, a feature not yet observed in the results
of the previous sections.
Finally we must note that in our present example the

dynamics of the orbits is restricted to the invariant sub-
manifold ðy ¼ 1; py ¼ 0Þ, so that the anisotropy parameter
reduces to σ2 ¼ ðz2p2

z=x6Þ; cf. (62).

VIII. THE CENTER MANIFOLD
ABOUT A SADDLE OF MULTIPLICITY 2:

PARAMETRIC BIFURCATION

Finally we discuss the phase space dynamics corre-
sponding to a system whose parameter configuration is in
the domain (C). As wewill see the skeleton of the dynamics
is dominated by the saddle-saddle-saddle critical point P2,
and the effect of the saddle with multiplicity 2 on the
dynamics about P2 is examined. We should mention that
the presence of a saddle of multiplicity 2 in physical
systems is rare (possibly absent in the case of cosmological
models) and therefore we are led to undertake a more
detailed examination of this case. Let us consider the
following parametric configuration in (C),

Λ ¼ 5=60; Er ¼ 0;

α31 ¼ 0.1; α32 ¼ 0; α33 ¼ 1;

α21 ¼ 1.4601; α22 ¼ 1=3; ð69Þ

for which we obtain the two critical points P1 and P2 with

xcr1 ¼ 0.715744514081549;

xcr2 ¼ 2.09499845891933;

corresponding to the two positive real roots of Eq. (27). For
P1 we obtain that the energy Ecr1 < 0 so that this critical
point is out of the physical phase space. Therefore in the
parameter configuration (69) the physical system has only
one critical point P2, the energy of which is

Ecr2 ¼ 0.00001411994285: ð70Þ

For P2 we also evaluate that

q ¼ −0.00267275969793;

qx ¼ 1.32604264858754; ð71Þ

characterizing P2 as a saddle-saddle-saddle [where a saddle
with multiplicity 2 is present; cf. (47)]. The critical point
P2, which is denoted a saddle-saddle-saddle, corresponds
actually to the topological product of a saddle times a

FIG. 14. Numerical illustration of the unstable cylinder (gray)
and stable cylinder (black), that emerge from a neighborhood of
P2 towards the bounce, spanned each by 26 orbits with initial
conditions taken on a circle in the domain ðz; pzÞ of the center
manifold about P2 for E0 ¼ 9.8994, corresponding to the
parameters (67). The projection of the figure in the plane
ðx; pxÞ “shadows” the separatrix of the invariant plane. Due to
the instability in the dynamics connected to the saddle with
multiplicity 2 in P1, parts of the orbits escape to two additional
pz-momentum attractors with an infinitely large anisotropy
parameter, at x ¼ const, z ¼ const and pz → �∞, as shown in
the figure.
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saddle with multiplicity 2. Therefore, to avoid a saturation
in the remaining text, we will sometimes refer to P2 simply
as a saddle with multiplicity 2. We now proceed to examine
the topology of the phase space about this critical point.
To start let us examine the possible linear motions

about P2. Let us consider the case Ex ¼ 0; cf. (51). The
first possibility corresponds to ðx ¼ xcr2 ; px ¼ 0Þ, imply-
ing that the motions are orbits on the three-dimensional
surfaces

�
1

2

p2
y

M3
0

− 3jqjðy − 1Þ2
�
þ
�
3

2

p2
z

M3
0

− jqjðz − 1Þ2
�

¼ 2ðEcr2 − E0Þ; ð72Þ

which depend continuously on E0. For ðEcr2 − E0Þ suffi-
ciently small so that (72) holds, these constant energy
surfaces have the structure of a 3-hyperboloid with the
constant of motions C1, C2 andC3, satisfying the algebra of
the three-dimensional hyperboloid group under the Poisson
bracket operation [cf. (58) with q < 0]. However, contrary
to the cases of the previous sections where the S3 center
manifold reduces to the critical point as E0 → Ecr2 , here the
3-hyperboloid invariant manifold consists of the critical
point from which emanate the saddle lines py ¼
� ffiffiffi

3
p

μðy − 1Þ and pz ¼ �ðμ= ffiffiffi
3

p Þðz − 1Þ with multiplicity

2, where μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqjM3

02

q
. Actually in the case of E0 ¼ Ecr2

the hyperbolic phase space dynamics about a neighborhood
of the critical point is analogous to that illustrated in
Fig. 13, where the 3-hyperboloid degenerates into two 3-
cones with a common vertex at the critical point. The
nonlinear extension of the center manifold, obtained as
ðEcr2 − E0Þ increases, exhibits a rich structure connected to

the presence of a saddle with multiplicity 2 and its
bifurcations, as we now proceed to discuss.
For the configurations analyzed in the previous sections,

for which P2 had q > 0, the existence of the center
manifold demanded that Ecr2 − E0 ≥ 0; for the equality
case the center manifold reduced to a point, the saddle-
center-center critical point. Now since q < 0 this restriction
no longer exists as can be clearly seen from (72). Our
analysis will contemplate separately the following energy
domains,

ðIÞ∶ ðEcr2 − E0Þ > 0;

ðIIÞ∶ Ecr2 − E0 ¼ 0;

ðIIIÞ∶ Ecr2 − E0 < 0: ð73Þ

In the energy domains (73) the three-dimensional center
manifold about P2 (containing a saddle of multiplicity 2) is
given by the Hamiltonian constraint,

HC ¼ p2
yy2

2x3cr2
þ 3p2

zz2

2x3cr2
þ xcr2

2z
4
3

−
xcr2
yz

1
3

−
xcr2y

z
1
3

− xcr2z
2
3 þ xcr2z

2
3

2y2
þ 1

2
xcr2y

2z
2
3 þ 2x3cr2Λ

þ 2E0 þ
2Er

xcr2
þ x3cr2UHLðxcr2 ; y; zÞ ¼ 0: ð74Þ

In the energy domain (I) the three-dimensional surface
(74) is a topological 3-sphere enclosing the saddle with
multiplicity 2 P2, as illustrated in Fig. 15, where we plot its
sections ðpz ¼ 0; z ¼ 1Þ (left) and section ðpy ¼ 0; y ¼ 1Þ
(right), for E0 ¼ 0 (solid), 0.00001 (dashed) and 0.000014
(dashed-dotted). As E0 ¼ Ecr2 the curves pinch at the
critical point P2, corresponding to ðy ¼ 1; py ¼ 0Þ (left

FIG. 15. Section ðpz ¼ 0; z ¼ 1Þ (left) and section ðpy ¼ 0; y ¼ 1Þ (right) of the three-dimensional center manifold (74) for E0 ¼ 0
(solid), 0.00001 (dashed) and 0.000014 (dashed-dotted), corresponding to the parameter configuration (69) with q < 0. For these
energies E0 < Ecr2 the manifold is topologically a 3-sphere enclosing the critical point P2 which is a saddle-saddle-saddle. As
E0 → Ecr2 the curves pinch at the critical point P2, corresponding to ðy ¼ 1; py ¼ 0Þ (left panel) and ðz ¼ 1; pz ¼ 0Þ (right panel).
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figure) and ðz ¼ 1; pz ¼ 0Þ (right figure). A larger dimen-
sional view of this case is also illustrated in Fig. 16 (top
left), where we plot the two-dimensional section py ¼ 0 of
the invariant three-dimensional center manifold (74) for
E0 ¼ 0, showing a topological S3 (with three lobes)
enclosing the saddle with multiplicity 2.
As E0 increases towards the value Ecr2 the closed

surface deforms, reaching the domain ðIIÞ∶ðE0 ¼ Ecr2Þ
when the closed surface pinches at the critical point

M0¼ðx¼xcr2 ;px¼0;y¼1;py¼0;z¼1;py¼0Þ, as shown
in Fig. 16 (top right). In this case the center manifold is said
to undergo a bifurcation; the saddle with multiplicity 2 P2

now belongs to (74), being a common point of the lobes
and breaking the S3 topology, so that this manifold contains
infinitely many homoclinic orbits to the critical point.
As the energy parameter enters the domain III∶E0 > Ecr2

a further bifurcation occurs and the three-dimensional mani-
fold becomes topologically a 3-torus, as illustrated in Fig. 16

FIG. 16. The two-dimensional sections py ¼ 0 of the three-dimensional center manifold (74) for several significative energies:
(i) E0 ¼ 0 (top left): (74) has the topology of an S3 enclosing the saddle with multiplicity 2, a pattern which holds for the domain
0 ≤ E0 < Ecr2 ; (ii) E0 ¼ Ecr2 (top right): the saddle with multiplicity 2 now belongs to (74), being the one point connection of two
leaves of the manifold and breaking the S3 topology, so that this manifold contains infinitely many homoclinic orbits;
(iii) E0 ¼ 0.0000153 > Ecr2 (bottom left): showing the bifurcation of S3 into a three-dimensional torus, with the critical point outside
the 3-torus; (iv) for larger values, E0 ¼ 0.000025 (bottom right): the center manifold becomes multiply connected. The parameters of
this configuration are given in (69).
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(bottom left), showing the bifurcation of a S3 into a 3-torus.
The critical point is outside the 3-torus. Finally, for larger
values ofE0 in the domain ðIIIÞ the invariant center manifold
becomes multiply connected [Fig. 16 (bottom right)].
The above picture is in bold contrast to the case of a

center-center with multiplicity 2, examined in Secs. IV–V,
where the three-dimensional center manifold about this
critical point is defined for 0 ≤ E0 ≤ Ecr2 and reduces to a
single point (the critical point) for E0 ¼ Ecr2. For E0 > Ecr2
the center manifold does not exist.
A more extended examination of these structures and the

associated features of the whole phase space dynamics, as
well as its implications to cosmology, is beyond the scope
of the present paper and will be dealt with in a future work.
However we should mention that, to our knowledge, such
features have not yet been seen in the literature of
cosmological models.

IX. FINAL COMMENTS AND CONCLUSIONS

In this paper we examined the phase space dynamics of
general bouncing Bianchi IX cosmological models in
which nonsingular bounces are generated by extra higher
order spatial curvature terms in the framework of the
Hořava-Lifshitz gravity. The HL gravity action adopted
contains five independent parameters, apart from the λ
parameter that breaks the invariance under four-
dimensional diffeomorphisms present in classical general
relativity. In order to recover the classical regime, our
analysis was restricted to λ ¼ 1. In the UHLðð3ÞRÞ potential
considered in the paper the five independent parameters
were restricted by imposing A3 > 0 [cf. (25)] so that the
dynamics is nonsingular, implementing instead bounces in
the dynamics of the model. Furthermore in the class of
models analyzed we have restricted ourselves to an energy-
momentum tensor of dust and radiation, which are con-
served independently, plus a positive cosmological constant
Λ. The corresponding total energy of dust turns out to be a
constant of motion connected to the total conserved
Hamiltonian. As a consequence of A3 > 0 and Λ > 0
the model contains just two critical points P1 and P2 in
the finite region of the phase space. The nature of these
critical points determines the structure of the phase space
dynamics and of the attractors at infinity.
Our treatment in the paper is based strongly on the

Hamiltonian formulation, with a conserved Hamiltonian
constraint plus the associated Hamilton equations of
motion. By the use of appropriate canonical variables we
were able to make a global examination of the structures of
the phase space that organize the dynamics, as critical
points, center manifolds, homoclinic cylinders emanating
from the center manifolds and the attractors at phase space
infinity.
In Sec. III the nature of the critical points in the six-

dimensional phase space was examined by the linearization
of Hamilton equations about these points. In this context

we were able to classify the dynamics in four distinct
parameter domains according to the possible nature of the
critical points: domain (A), where the critical point P1 is a
center-center-center and the critical point P2 is a saddle-
center-center; domain (B), where P1 is a center-saddle-
saddle and P2 is a saddle-center-center; domain (C), where
P1 is a center-saddle-saddle and P2 is a saddle-saddle-
saddle; domain (D), where P1 is a center-center-center and
P2 is a saddle-saddle-saddle. In all four domains, with its
respective structures of critical points and of attractors at
infinity, the Bianchi IX models are nonsingular in the sense
that the spacetime curvature does not diverge and the
physical average scale factor xðtÞ never reaches zero. All
phase space orbits discussed in the paper are either periodic
(perpetually bouncing solutions), or oscillatory with an
eventual escape to one of the attractors at the infinity of
phase space, or orbits homoclinic to a center manifold.
The features of the parameter domain (A) were examined

in Secs. IV–VI. The critical points are a center-center-
center P1 and a saddle-center-center P2. We introduced a
new set of canonical variables ðx; px; y; py; z; pzÞ that
separate the degrees of freedom of the system into two
rotational modes ðy; pyÞ and ðz; pzÞ, about a linear neigh-
borhood of the center-center sector of both critical points
and an expansion/contraction mode ðx; pxÞ along the
saddle direction of P2 or a further rotational mode along
the additional center direction of P1. The rotational modes
for both critical points, connected to the presence of a
center of multiplicity 2, are defined on the center manifold
of unstable periodic orbits which has the topology S3. A
necessary condition for the existence of the center manifold
is ðEcr − E0Þ > 0, where Ecr is the energy of the critical
point and E0 is the total energy of the system. By continuity
as ðE0 − EcrÞ increases the nonlinear extension of the
center manifold maintains the topology of S3. In the case
of P2, together with the saddle variables ðx; pxÞ, S3 defines
the four-dimensional stable and unstable cylinders, with
topology R × S3 that coalesce to the center manifold as
t → �∞ respectively. Summing up, the topology of the
phase space about the center-center-center P1 is S1 × S3

and about the saddle-center-center P2 is R × S3. Therefore
in a neighborhood of P2 the variables ðx; pxÞ have a saddle
nature, while in the neighborhood of P1 they have a
rotational nature. With the use of the canonical variables
ðy; py; z; pzÞ we obtain an exact analytical form for the
center manifold as well as an accurate numerical descrip-
tion of the phase space dynamics in extended regions away
from the critical points.
In Sec. V we then considered two characteristic types of

orbits obtained from distinct sets of parameters in the
domain (A) and appropriate initial conditions on the center
manifold. The first case corresponds to perpetually bounc-
ing periodic orbits (propagated forward or backward in
time) and the second case corresponds to oscillatory orbits
that undergo a finite number of bounces before escaping to
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the de Sitter attractor at infinity. In both cases the frequency
of the oscillatory modes of the orbit increases substantially
as it visits the neighborhood of the bounces. We also
examined the evolution of the anisotropy parameter which
is connected with the rotational mode variables. We
obtained that the anisotropy is oscillatory and bounded,
increasing several orders of magnitude as the orbits visit a
neighborhood of the bounce. In particular the anisotropy of
the second set of orbits, with a finite number of bounces,
goes to zero as the orbits reach the de Sitter attractor. This
parameter will be useful in the recognition of the nature of
anisotropic momentum attractors that appear in the domain
parameter (B). Also, for the parameter domain (A), we
examined in Sec. VI the question of regular and/or chaotic
motion connected to the four-dimensional homoclinic
cylinder structures emanating from the center manifold
about P2. Contrary to the results of homoclinic chaos that
originated from the transversal crossings of homoclinic
cylinders in Bianchi IX bouncing brane cosmologies
[29,34], in the present set of Hořawa-Lifshitz Bianchi IX
bouncing cosmologies we obtained the smooth coalescing
of the stable and the unstable homoclinic cylinders,
characterizing thus a regular dynamics in the invariant
submanifolds of the model. This is a rare result of the
regularity of the dynamics in the presence of homoclinic
cylinders, not yet seen in the literature of cosmological
models.
Completely new distinct dynamical patterns appear in

connection with the critical points in the parameter domains
(B) and (C). In the case of (B) the two critical points are a
center-saddle-saddle P1 and a saddle-center-center P2. As
discussed in detail in Secs. IV–V, in a neighborhood of a
saddle-center-center P2 we have the general pattern of
stable and unstable cylinders of orbits emanating from the
center manifold about P2. However in the present case the
critical point P1 contains a saddle of multiplicity 2 which is
the source of a high instability in the dynamics, acting on
the cylinders as they visit a nonlinear neighborhood of P1.
In fact our numerical experiments showed that orbits of
stable and unstable cylinders emerging from the center
manifold about P2 towards the bounce can be classified in

three distinct sets according to their attractors: (i) orbits that
have the center manifold as an attractor, (ii) orbits that have
the de Sitter configurations at infinity as an attractor and
(iii) the two further attractors at pz → �∞. The momentum
attractors (iii) correspond to a configuration of infinite
anisotropy; this is a direct consequence of the dynamical
instability associated with the saddle of multiplicity 2 at P1,
a feature not observed in the results of the previous
sections.
In Sec. VIII we discussed the properties of the

center manifold about the saddle-saddle-saddle critical
point P2, in the case of the parameter configuration (C).
The presence of a saddle of multiplicity 2 in P2 engenders a
rich structure in the phase space not yet observed in
the literature. Contrary to the previous cases—where the
three-dimensional center manifold is only defined for
0 ≤ E0 ≤ Ecr2 and reduces to a single point (the critical
point) for E0 ¼ Ecr2—the center manifold is defined for all
E0 ≥ 0 and undergoes bifurcations with increasing E0. For
E0 < Ecr2 the topology of the center manifold is S3,
enclosing the critical point P2. For E0 ¼ Ecr2 it turns into
an S3 with two points identified with P2. In this case the
center manifold contains infinitely many orbits homoclinic
to the critical point P2. For E0 > Ecr2 the manifold turns
into a topological 3-torus. Finally for E0 sufficiently large
the center manifold becomes multiply connected with three
distinct lobes. The dynamics in the whole phase is highly
unstable and its detailed examination is beyond the scope of
the present paper. It will eventually be discussed in a future
publication.
Finally the fourth parameter domain (D) was not

examined since most of its features are present already
in the other domains.
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