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We give final shape to a recent formalism for deriving the functional forms of the primordial power
spectra of single-scalar potential models and theories which are related to them by conformal trans-
formation. An excellent analytic approximation is derived for the nonlocal correction factors which are
crucial to capture the “ringing” that can result from features in the potential. We also present the full
algorithm for using our representation, including the nonlocal factors, to reconstruct the inflationary
geometry from the power spectra.
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I. INTRODUCTION

The simplest models of primordial inflation are based on
general relativity (for a spacelike metric gμνðxÞ) plus a
single, minimally coupled scalar φðxÞ,

L ¼ R
ffiffiffiffiffiffi−gp

16πG
−
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
− VðφÞ ffiffiffiffiffiffi

−g
p

: ð1Þ

A key prediction is the generation of tensor [1] and scalar
[2] perturbations. These are the first observable quantum
gravitational phenomena ever recognized as such [3–5].
They are also our chief means of testing the viability of
scalar potential models [6–8], and of reconstructing VðφÞ
[9–11].
Reconstruction is simplest in terms of the Hubble

representation [12] using the Hubble parameter HðtÞ and
first slow roll parameter ϵðtÞ of the homogeneous, isotropic
and spatially flat background geometry of inflation,1

ds2 ¼ −dt2 þ a2ðtÞdx⃗ · dx⃗ ⇒ HðtÞ≡ _a
a
> 0;

ϵðtÞ≡ −
_H
H2

< 1: ð2Þ

Let tk stand for the time of first horizon crossing, when
modes of wave number k obey k≡HðtkÞaðtkÞ. The tensor

and scalar power spectra take the form of leading slow roll
results at t ¼ tk, multiplied by local slow roll corrections
also at t ¼ tk, times nonlocal factors involving times near
t ¼ tk [18,19],

Δ2
hðkÞ ¼

16

π
GH2ðtkÞ × CðϵðtkÞÞ × exp½τ½ϵ�ðkÞ�; ð3Þ

Δ2
RðkÞ ¼

GH2ðtkÞ
πϵðtkÞ

× CðϵðtkÞÞ × exp½σ½ϵ�ðkÞ�: ð4Þ

The local slow roll correction CðϵÞ is,

CðϵÞ≡ 1

π
Γ2

�
1

2
þ 1

1 − ϵ

�
½2ð1 − ϵÞ� 2

1−ϵ ≈ 1 − ϵ: ð5Þ

The nonlocal correction exponents, τ½ϵ�ðkÞ and σ½ϵ�ðkÞ,
vanish for _ϵ ¼ 0 and effectively depend on the geometry
only a few e-foldings before and after tk [18,19].
The purpose of this paper is to rationalize and simplify

our formalism for evolving the norms of the mode
functions, rather than the mode functions [20], and then
to derive an excellent analytic approximation for the
nonlocal correction exponents τ½ϵ�ðkÞ and σ½ϵ�ðkÞ. We also
demonstrate how this approximation can be used to
reconstruct the inflationary geometry from the power
spectra, even for models which possess features. These
topics represent Secs. II–IV, and V, respectively. In Sec. VI
we discuss some of the many applications [21,22] this
formalism facilitates.
We shall often employ the alternate time parameter

provided by n≡ ln½aðtÞ=ai�, the number of e-foldings
since inflation’s onset. This is superior to the co-moving
time t by virtue of being dimensionless and relating
evolution to the size of the universe. We shall abuse the
notation slightly by writing HðnÞ and ϵðnÞ, instead of the
correct but cumbersome expressions HðtðnÞÞ and ϵðtðnÞÞ.
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1The connection to the potential representation is [13–17],

φ0ðtÞ ¼ φ0ðtiÞ �
Z

t

ti

dt0Hðt0Þ
ffiffiffiffiffiffiffiffiffi
ϵðt0Þ
4πG

r
⇔ tðφÞ;

VðφÞ ¼ ½3 − ϵðtÞ�H2ðtÞ
8πG

����
t¼tðφÞ

:
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Which time parameter pertains should be clear from
context, and from our exclusive use of l, m, and n to
stand for e-foldings. Over-dots represent time derivatives
and primes stand for n derivatives,

ϵ ¼ −
_H
H2

¼ −
H0

H
⇔ H ¼ Hi

1þ R
t
ti
dt0ϵðt0Þ

¼ Hi exp

�
−
Z

n

0

dmϵðmÞ
�
: ð6Þ

We caution readers against confusing n with the common
parameter N ≡ ne − n, the number of e-foldings until the
end of inflation (at n ¼ ne). Figure 1 illustrates the differ-
ence for a model with ne ≃ 225 total e-foldings and
features in the range 52 < N < 54 before the end of
inflation.2

II. OUR FORMALISM IN GENERAL

The tree order tensor power spectrum is obtained by
evolving the graviton mode function uðt; kÞ past the time of
first horizon crossing [9–11],

Δ2
hðkÞ ¼

k3

2π2
× 32πG × 2 × lim

t≫tk
juðt; kÞj2: ð7Þ

We do not possess exact solutions for uðt; kÞ for realistic
geometries ϵðtÞ, but we do know the evolution equation,
the Wronskian and the form at asymptotically early times
[9–11,23],

üþ 3H _uþ k2

a2
u ¼ 0; u _u� − _uu� ¼ i

a3
;

uðt; kÞ →
exp½−ik R t

ti
dt0
aðt0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ka2ðtÞ
p : ð8Þ

Because the power spectrum depends upon the norm-
squared, rather than the rapidly-varying phase, it is better
to convert (8) into a nonlinear evolution equation for
Mðt; kÞ≡ juðt; kÞj2 [20],

M̈ þ 3H _M þ 2k2

a2
M ¼ 1

2M

�
_M2 þ 1

a6

�
;

Mðt; kÞ → 1

2ka2ðtÞ : ð9Þ

If necessary, the mode function can be easily recovered
[19],

uðt; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðt; kÞ

p
exp

�
−
i
2

Z
t

ti

dt0

a3ðt0ÞMðt0; kÞ
�
: ð10Þ

Relation (9) can be improved by changing to the
dimensionless time parameter n ¼ ln½aðtÞ=ai�,
�
M0

M

�0
þ 1

2

�
M0

M

�
2

þ ð3 − ϵÞM
0

M
þ 2k2

H2a2
−

1

2H2a6M2
¼ 0:

ð11Þ

A further improvement comes by factoring out an (at this
stage) arbitrary approximate solution, M0ðt; kÞ, to derive a
damped, driven oscillator equation (with small nonlinear-
ities) for the residual exponent [18],

FIG. 1. The left hand graph shows one model’s scalar power spectrum as a function of n, the number of e-foldings from the beginning
of inflation to first horizon crossing. The right hand graph shows the same power spectrum versus N, the number of e-foldings until the
end of inflation. Early times correspond to small n and large N, whereas late times correspond to large n and small N. Recall that
nþ N ¼ ne, where ne is the total number of e-foldings during inflation.

2Because only the last few e-foldings before horizon crossing
affect the power spectrum, the features would not have been
changed by starting inflation much later so that ne ≃ 60.
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M ¼ M0 × e−
1
2
h ⇒

h00 −
ω0

ω
h0 þ ω2h ¼ Sh þ

1

4
h02 − ω2½eh − 1 − h�: ð12Þ

Here the frequency ωðn; kÞ and the tensor source Shðn; kÞ
are,

ω≡ 1

Ha3M0

⇒

Sh ¼ −2
�
ω0

ω

�0
þ
�
ω0

ω

�
2

þ 2ϵ0 − ð3 − ϵÞ2 þ 4k2

H2a2
− ω2:

ð13Þ

It is an amazing fact that an exact Green’s function exists
for the left-hand side of Eq. (12), valid for any choice of the
approximate solution M0 [18],

Ghðn;mÞ ¼ θðn −mÞ
ωðm; kÞ sin

�Z
n

0

dlωðl; kÞ
�
: ð14Þ

This permits us to solve (12) perturbatively h ¼ h1 þ h2 þ
� � � by expanding in the nonlinear terms,

h1ðn; kÞ ¼
Z

n

0

dmGhðn;mÞShðm; kÞ; ð15Þ

h2ðn; kÞ ¼
Z

n

0

dmGhðn;mÞ

×

�
1

4
½h01ðm; kÞ�2 − 1

2
½ωðm; kÞh1ðm; kÞ�2

	
:

ð16Þ

The tree order scalar power spectrum is obtained by
evolving the ζ mode function vðt; kÞ past the time of first
horizon crossing [9–11],

Δ2
RðkÞ ¼

k3

2π2
× 4πG × lim

t≫tk
jvðt; kÞj2: ð17Þ

Just as for its tensor cousin, we lack exact solutions for
vðt; kÞ for realistic geometries ϵðtÞ, but we do know the
evolution equation, the Wronskian and the form at asymp-
totically early times [9–11,23],

v̈þ
�
3H þ _ϵ

ϵ

�
_vþ k2

a2
v ¼ 0; v _v� − _vv� ¼ i

ϵa3
;

vðt; kÞ →
exp½−ik R t

ti
dt0
aðt0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kϵðtÞa2ðtÞ
p : ð18Þ

Converting to the norm-squared N ðt; kÞ≡ jvðt; kÞj2
gives [19],

N̈ þ
�
3H þ _ϵ

ϵ

�
_N þ 2k2

a2
N ¼ 1

2N

�
_N 2 þ 1

ϵ2a6

�
;

N ðt; kÞ → 1

2kϵðtÞa2ðtÞ : ð19Þ

The scalar mode function mode can be recovered from
N ðt; kÞ [19],

vðt; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðt; kÞ

q
exp

�
−
i
2

Z
t

ti

dt0

ϵðt0Þa3ðt0ÞN ðt0; kÞ
�
:

ð20Þ
Converting from comoving time t to n ¼ ln½aðtÞ=ai�

gives,�
N 0

N

�0
þ 1

2

�
N 0

N

�
2

þ
�
3 − ϵþ ϵ0

ϵ

�
N 0

N
þ 2k2

H2a2

−
1

2ϵ2H2a6N 2
¼ 0: ð21Þ

Factoring out by an arbitrary approximate solutionN 0ðt; kÞ
produces another damped, driven oscillator equation for the
residual exponent,

N ¼ N 0 × e−
1
2
g ⇒

g00 −
Ω0

Ω
g0 þΩ2g ¼ Sg þ

1

4
g02 − Ω2½eg − 1 − g�: ð22Þ

Here the frequency Ωðn; kÞ and the scalar source Sgðn; kÞ
are,

Ω≡ 1

ϵHa3N 0

; ð23Þ

Sg ¼ −2
�
Ω0

Ω

�0
þ
�
Ω0

Ω

�
2

þ 2ϵ0 −
�
3 − ϵþ ϵ0

ϵ

�
2

− 2

�
ϵ0

ϵ

�0

þ 4k2

H2a2
−Ω2: ð24Þ

Making the replacement ω → Ω in (14) gives an exact
Green’s function which is valid for any choice of N 0,

Ggðn;mÞ ¼ θðn −mÞ
Ωðm; kÞ sin

�Z
n

0

dlΩðl; kÞ
�
: ð25Þ

And we can of course develop a perturbative solution to
(22) g ¼ g1 þ g2 þ � � �,

g1ðn; kÞ ¼
Z

n

0

dmGgðn;mÞSgðm; kÞ; ð26Þ

g2ðn; kÞ ¼
Z

n

0

dmGgðn;mÞ

×

�
1

4
½g01ðm; kÞ�2 − 1

2
½Ωðm; kÞg1ðm; kÞ�2

	
:

ð27Þ
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III. CHOOSING M0ðt;kÞ AND N 0ðt;kÞ
EFFECTIVELY

The formalism of the previous section is valid for all
choices of the approximate solutionsM0ðt; kÞ andN 0ðt; kÞ.
Of course the correction exponents hðn; kÞ and gðn; kÞ will
be smaller if the zeroth order solutions are more carefully
chosen. In previous work we used the instantaneously
constant ϵ solutions [18,19],

Minstðt; kÞ≡ zðt; kÞHðνðtÞ; zðt; kÞÞ
2ka2ðtÞ ;

N instðt; kÞ≡ zðt; kÞHðνðtÞ; zðt; kÞÞ
2kϵðtÞa2ðtÞ ; ð28Þ

where we define,

Hðν; zÞ≡ π

2
jHð1Þ

ν ðzÞj2; νðtÞ≡ 1

2
þ 1

1 − ϵðtÞ ;

zðt; kÞ≡ k
½1 − ϵðtÞ�HðtÞaðtÞ : ð29Þ

However, the choice (28) has the undesirable effect of
complicating the late time limits. The physical quantities
Mðt; kÞ and N ðt; kÞ freeze in to constant values soon after
first horizon crossing, but continued evolution in ϵðtÞ
prevents M0ðt; kÞ and N 0ðt; kÞ from approaching con-
stants. Hence the residual exponents hðn; kÞ and gðn; kÞ
must evolve so as to cancel this effect.
We can make the late time limits simpler by adopting a

piecewise choice for the approximate solutions,

M0ðt; kÞ ¼ θðtk − tÞMinstðt; kÞ þ θðt − tkÞM̄instðt; kÞ;
ð30Þ

N 0ðt; kÞ ¼ θðtk − tÞN instðt; kÞ þ θðt − tkÞN̄ instðt; kÞ:
ð31Þ

By M̄instðt; kÞ and N̄instðt; kÞ we mean the solutions which
would pertain for the ersatz geometry,

āðnÞ ¼ aðnÞ ¼ akeΔn; H̄ðnÞ ¼ Hke−ϵkΔn; ϵ̄ðnÞ ¼ ϵk:

ð32Þ
Here and henceforth Δn≡ n − nk stands for the number of
e-foldings from horizon crossing. To be explicit about the
overlined quantities,

M̄inst ≡ z̄Hðνk; z̄Þ
2kā2

; N̄ inst ≡ z̄Hðνk; z̄Þ
2kϵkā2

; z̄≡ eð1−ϵkÞΔn

1 − ϵk
:

ð33Þ

With the choice (30)–(31) the approximate solutions
rapidly freeze in to constants,

lim
t≫tk

M0ðt; kÞ ¼
H2

k

2k3
× CðϵkÞ;

lim
t≫tk

N 0ðt; kÞ ¼
H2

k

2ϵkk3
× CðϵkÞ: ð34Þ

This establishes the forms (3)–(4) for the power spectra and
fixes the nonlocal correction exponents to,

τ½ϵ�ðkÞ ¼ −
1

2
lim
t≫tk

gðt; kÞ; σ½ϵ�ðkÞ ¼ −
1

2
lim
t≫tk

hðt; kÞ:

ð35Þ

It remains to specialize the sources to (30)–(31). First
note the simple relation between the scalar and tensor
frequencies,

Ωðn; kÞ ¼ θðnn − nÞωðn; kÞ þ θðn − nkÞωðn; kÞ ×
ϵk
ϵðnÞ :

ð36Þ

This means the scalar source (24) consists of the tensor
source (13) minus a handful of terms mostly involving
ϵðnÞ,

Sgðn; kÞ

¼ Shðn; kÞ − 2θðnk − nÞ
��

ϵ0

ϵ

�0
þ 1

2

�
ϵ0

ϵ

�
2

þ ð3 − ϵÞ ϵ
0

ϵ

�

þ 2δðn − nkÞ
ϵ0

ϵ
− 2θðn − nkÞ

×

��
3 − ϵþ ω0

ω

�
ϵ0

ϵ
þ ω2

�
ϵ2k
ϵ2

− 1

��
: ð37Þ

To obtain an explicit formula for the tensor source we
first note that the tensor frequency is,

ωðn; kÞ ¼ θðnk − nÞ 2ð1 − ϵÞ
Hðν; zÞ þ θðn − nkÞ

2ð1 − ϵkÞ
Hðνk; z̄Þ

×
H̄
H
:

ð38Þ

Hence the n derivative of its logarithm is,

ω0

ω
¼ θðnk − nÞ

�
−

ϵ0

1 − ϵ
−
H0

H

�
þ θðn − nkÞ

�
Δϵ −

H̄0

H̄

�
;

ð39Þ

where Δϵ ≡ ϵðnÞ − ϵk and H̄ ≡ Hðνk; z̄Þ. Before horizon
crossing ν¼ 1

2
þ 1

1−ϵ is time dependent and z¼k=½ð1−ϵÞHa�
so we have,
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ν0 ¼ ϵ0

ð1 − ϵÞ2 ; z
0 ¼ −

�
1 − ϵ −

ϵ0

1 − ϵ

�
z

⇒ −
H0

H
¼ −

ϵ0

ð1 − ϵÞ2Aþ
�
1 − ϵ −

ϵ0

1 − ϵ

�
B; ð40Þ

where A and B involve derivatives of Hðν; zÞ with respect
to ν and ζ ¼ lnðzÞ,

A≡ ∂ν ln½Hðν; eζÞ�; B≡ ∂ζ ln½Hðν; eζÞ�: ð41Þ

The analogous result after horizon crossing is much
simpler,

−
H̄0

H̄
¼ ð1 − ϵkÞB̄; ð42Þ

where B̄ means B with ν specialized to νk and eζ

specialized to z̄.
Taking the derivative of ω0=ω before horizon crossing,

�
ω0

ω

�0
¼ −

ϵ00

1 − ϵ
−

ϵ02

ð1 − ϵÞ2 −
�

ϵ00

ð1 − ϵÞ2 þ
2ϵ02

ð1 − ϵÞ3
�
A −

�
ϵ0 þ ϵ00

1 − ϵ
þ ϵ02

ð1 − ϵÞ2
�
B

−
ϵ02

ð1 − ϵÞ4 C þ 2ϵ0

ð1 − ϵÞ2
�
1 − ϵ −

ϵ0

1 − ϵ

�
D −

�
1 − ϵ −

ϵ0

1 − ϵ

�
E; ð43Þ

requires three second derivatives of ln½H�,
C≡ ∂2

ν ln½Hðν; eζÞ�; D≡ ∂ζ∂ν ln½Hðν; eζÞ�; E ≡ ∂2
ζ ln½Hðν; eζÞ�: ð44Þ

Bessel’s equation and the Wronskian of Hð1Þ
ν ðeζÞ imply,

2ð1 − ϵÞ2E þ ð1 − ϵÞ2B2 − ð3 − ϵÞ2 þ 4ð1 − ϵÞ2e2ζ −
�
2ð1 − ϵÞ

H

�
2

¼ 0: ð45Þ

Substituting relations (39), (40), (43), and (45) in the definition of the tensor source (13) gives,3

t < tk ⇒ Sbefore ¼
2ϵ00

1 − ϵ

�
1þ A

1 − ϵ
þ B

�
þ 2ϵ0

�
1 −

AB
1 − ϵ

− B2 −
2D
1 − ϵ

− 2E
�

þ 2ϵ02

ð1 − ϵÞ2
�
−
1

2
þ 1

2

�
2þ A

1 − ϵ
þ B

�
2

þ A
1 − ϵ

þ C
ð1 − ϵÞ2 þ

2D
1 − ϵ

þ E
	
: ð46Þ

The analogous result after horizon crossing is,

t > tk ⇒ Safter ¼ 2Δϵ½3 − ϵk þ ð1 − ϵkÞB̄� þ 4

�
k2

H̄2a2
−
�
1 − ϵk
H̄

�
2
��

H̄2

H2
− 1

�
: ð47Þ

There is also a jump at horizon crossing so that the complete result is,

Sh ¼ θðnk − nÞSbefore − δðn − nkÞ
2ϵ0

1 − ϵ

�
1þ A

1 − ϵ
þ B

�
þ θðn − nkÞSafter: ð48Þ

3This result incidentally allows us to write the equations obeyed by the instantaneously constant ϵ solutions (28),

�
M0

inst

Minst

�0
þ 1

2

�
M0

inst

Minst

�
2

þ ð3 − ϵÞM
0
inst

Minst
þ 2k2

H2a2
−

1

2H2a6M2
inst

¼ 1

2
Sbefore;

×

�
N 0

inst

N inst

�0
þ 1

2

�
N 0

inst

N inst

�
2

þ
�
3 − ϵþ ϵ0

ϵ

�
N 0

inst

N inst
þ 2k2

H2a2
−

1

2ϵ2H2a6N 2
inst

¼ 1

2
Sbefore −

�
ϵ0

ϵ

�0
−
1

2

�
ϵ0

ϵ

�
2

− ð3 − ϵÞ ϵ
0

ϵ
:

Note that the right-hand sides vanish for constant ϵ.
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IV. SIMPLE ANALYTIC APPROXIMATIONS

The exact analytic results of the previous section
are valid for all single-scalar models of inflation.
However, they can be wonderfully simplified by
exploiting the fact that the first slow roll parameter
is very small. The 95% confidence bound on the
tensor-to-scalar ration of r < 0.12 [24,25] implies
ϵ < 0.0075. This suggests a number of approximations.
First, the local slow roll correction factor CðϵkÞ,
defined in (5), may as well be set to unity. From
Fig. 2 we see that the bound of ϵ < 0.0075 implies
1.0000 < CðϵkÞ < 0.9959. This is not currently
resolvable.
Another excellent approximation is taking ϵ ¼ 0 in the

tensor and scalar Green’s functions of expressions (14)
and (25),

lim
ϵ¼0

Ghðn;mÞ ¼ lim
ϵ¼0

Ggðn;mÞ≡G0ðn;mÞ

¼ θðn −mÞ
2

½eΔm þ e3Δm�
× sin½−2fe−Δl − arctanðe−ΔlÞgjnm�; ð49Þ

where Δm≡m − nk and Δl≡ l − nk. Note that this
expression is valid before and after horizon crossing. An
important special case of (49) is when n becomes large,
which gives the function GðeΔmÞ we define as,

GðxÞ≡ 1

2
ðxþ x3Þ sin

�
2

x
− 2 arctan

�
1

x

��
: ð50Þ

From the graph in Fig. 3 we see that GðeΔnÞ suppresses
contributions more than a few e-foldings before horizon
crossing.

FIG. 2. The left-hand graph shows the local slow roll correction factor CðϵÞ (solid blue), which was defined in expression (5). Also
shown is its global approximation of 1 − ϵ (dashed yellow) over the full inflationary range of 0 ≤ ϵ < 1. The right-hand graph shows
CðϵÞ (solid blue) versus the better approximation of 1 − 0.55ϵ (large dots) relevant to the range 0 ≤ ϵ < 0.02 favored by current data.

FIG. 3. The left-hand graph shows the ϵ ¼ 0 Green’s function GðeΔnÞ given in expression (50). The right-hand graph shows the
coefficient of ε00ðnÞ in the small ϵ form (58) for Shðn; kÞ. This function E1ðxÞ is defined by expressions (52), (54), and (59). The solid
blue curve gives the exact numerical result while the large dots give the approximation resulting from the series expansion on the right-
hand side of expression (54).
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We can also take ϵ ¼ 0 in H and the derivatives of it in
expressions (41) and (44). This leads to exact results forH,
B, and E in terms of the parameter x≡ eΔn,

lim
ϵ¼0

H≡H0ðxÞ ¼ xþ x3; ð51Þ

lim
ϵ¼0

B≡ B0ðxÞ ¼
−1 − 3x2

1þ x2
; ð52Þ

lim
ϵ¼0

E ≡ E0ðxÞ ¼
4x2

ð1þ x2Þ2 : ð53Þ

The three derivatives with respect to ν do not lead to simple
expressions even for ϵ → 0, but they can be well approxi-
mated over the range we require by short series expansions
in powers of x2,

lim
ϵ¼0

A≡A0ðxÞ≃ 1.5x2 þ 1.8x4 − 1.5x6 þ :63x8

1þ x2
; ð54Þ

lim
ϵ¼0

C≡ C0ðxÞ≃ x2 þ 6.1x4 − 3.7x6 þ 1.6x8

ð1þ x2Þ2 ; ð55Þ

lim
ϵ¼0

D≡D0ðxÞ≃ −3x2 − 6.8x4 þ 5.5x6 − 2.6x8

ð1þ x2Þ2 : ð56Þ

We can express the ratio of H̄=H in terms of the deviation
ΔϵðnÞ≡ ϵðnÞ − ϵk,

H̄2

H2
− 1 ¼ exp

�
2

Z
n

nk

dmΔϵðmÞ
�
− 1≃ 2

Z
n

nk

dmΔϵðmÞ:

ð57Þ

All of this gives an approximation for the tensor
source (48),

Shðn;kÞ≃−2θð−ΔnÞ½ϵ00E1ðeΔnÞþ ϵ02E2ðeΔnÞþ ϵ0E3ðeΔnÞ�

þ2δðΔnÞϵ0E1ð1Þþ2θðΔnÞ
�
ΔϵðnÞ

þ
�
4þ2e2Δn

1þe2Δn

�Z
n

nk

dmΔϵðmÞ
	

2

1þe2Δn
; ð58Þ

where the three coefficient functions are,

E1ðxÞ ¼ −1 −A0ðxÞ − B0ðxÞ; ð59Þ

E2ðxÞ ¼
1

2
−A0ðxÞ − C0ðxÞ − 2D0ðxÞ − E0ðxÞ

−
1

2
½2þA0ðxÞ þ B0ðxÞ�2; ð60Þ

E3ðxÞ ¼ −1þA0ðxÞB0ðxÞ þ B2
0ðxÞ þ 2D0ðxÞ þ 2E0ðxÞ:

ð61Þ

Figures 3 and 4 show the various coefficient functions.
The smallness of ϵ means that the factors of 1=ϵ which

occur in the scalar source (37) are hugely important. By
comparison we can ignore the Shðn; kÞ terms and simply
write,

Sgðn; kÞ≃ −2θð−ΔnÞ
��

ϵ0

ϵ

�0
þ 1

2

�
ϵ0

ϵ

�
2

þ 3
ϵ0

ϵ

�

þ 2δðΔnÞ ϵ
0

ϵ
− 2θðΔnÞ ϵ

0

ϵ

2

1þ e2Δn
: ð62Þ

Because ϵ < 0.0075 we expect Sg to be more than 100
times as strong as Sh.
The approximations (49), (58), and (62) are valid so long

as ϵ is small. If we additionally ignore nonlinear terms in
the equations for hðn; kÞ and gðn; kÞ, the correction
exponents of expressions (3)–(4) become,

FIG. 4. The coefficients of ½ε0ðnÞ�2 (left) and ε0ðnÞ (right) in the small ϵ form (58) for Shðn; kÞ. In each case the solid blue curve gives
the exact numerical result, while the large dots give the result of using the series approximations on the far right of (54)–(56) in
expressions (60) and (61).
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τ½ϵ�ðkÞ≃
Z

nk

0

dn½ϵ00ðnÞE1ðeΔnÞ þ ½ϵ0ðnÞ�2E2ðeΔnÞ þ ϵ0ðnÞE3ðeΔnÞ�GðeΔnÞ

− ϵ0ðnkÞE1ð1ÞGð1Þ −
Z

∞

nk

dn

�
ΔϵðnÞ þ

�
4þ 2e2Δn

1þ e2Δn

�Z
n

nk

dmΔϵðmÞ
	
2GðeΔnÞ
1þ e2Δn

; ð63Þ

σ½ϵ�ðkÞ≃
Z

nk

0

dn

�
∂2
n ln½ϵðnÞ� þ

1

2
ð∂n ln½ϵðnÞ�Þ2 þ 3∂n ln½ϵðnÞ�

�
GðeΔnÞ

− ∂nk ln½ϵðnkÞ�Gð1Þ þ
Z

∞

nk

dn∂n ln½ϵðnÞ�
2GðeΔnÞ
1þ e2Δn

: ð64Þ

Recall that Δn≡ n − nk, ΔϵðnÞ≡ ϵðnÞ − ϵk, the Green’s
function GðeΔnÞ was defined in (50), and the coefficient
functions E1ðeΔnÞ, E2ðeΔnÞ and E3ðeΔnÞ were given in
expressions (59)–(61).
How large τ½ϵ�ðkÞ and σ½ϵ�ðkÞ are depends on what the

inflationary model predicts for derivatives of ϵðnÞ.4 For
example, the slow roll approximation of monomial infla-
tion gives,

VðφÞ ¼ Aφα ⇒ ϵðnÞ≃ ϵi
1 − 4

α ϵin
: ð65Þ

For these models the various tensor and scalar contributions
are small,

VðφÞ ¼ Aφα ⇒ ϵ00 ≃ 32

α2
ϵ3; ϵ02 ≃ 16

α2
ϵ4; ϵ0 ≃ 4

α
ϵ2;

ð66Þ

⇒

�
ϵ0

ϵ

�0 ≃ 16

α2
ϵ2;

�
ϵ0

ϵ

�
2 ≃ 16

α2
ϵ2;

ϵ0

ϵ
≃ 4

α
ϵ:

ð67Þ

The data disfavors monomial inflation [24–26], but
τ½ϵ�ðkÞ and σ½ϵ�ðkÞ will be small for any model which
has only slow evolution of ϵðnÞ. Much larger effects occur
for models with “features,” which are transient fluctuations
above or below the usual smooth fits [27]. Features imply
short-lived changes in ϵðnÞ, which do not have much effect
on HðnÞ but can lead to large values of ϵ0ðnÞ and ϵ00ðnÞ.
Figure 5 shows HðnÞ and ϵðnÞ for a model that was
proposed [28,29] to explain a deficit at l ≈ 22, and an
excess at l ≈ 40, in the data reported by both WMAP
[27,30,31] and PLANCK [32,33]. In the range 171 < n <
172.5 the scalar experiences a step in its potential which has
little effect on HðnÞ but leads to a noticeable bump in ϵðnÞ.
Figure 6 shows the scalar power spectrum for the model

of Fig. 5. The left-hand graph compares the exact result to
the local slow roll approximation, without including the
nonlocal corrections from σ½ϵ�ðkÞ. Not even the main
feature is correct, and the secondary oscillations are
completely absent. There is also a small systematic offset

FIG. 5. The left-hand figure shows the Hubble parameter and the right shows the first slow roll parameter for a model with features.
This model which was proposed [28,29] to explain the observed features in the scalar power spectrum at l ≈ 22 and l ≈ 40 which are
visible in the data reported from both WMAP [27,30,31] and PLANCK [32,33]. Note that the feature has little impact on HðnÞ but it
does lead to a distinct bump in ϵðnÞ. Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of
e-foldings until the end of inflation as N ¼ ne − n, where ne is the total number of inflationary e-foldings.

4A related issue is the accuracy of the approximations (63)–
(64). If we ignore nonlinear effects the fractional error in both
cases is proportional to ϵ. Because ϵ < 0.0075 the percentage
error is less than 1%. If additional accuracy were necessary it
would be easy to improve the approximations (63)–(64) by
including the next term in the small ϵ expansion.
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before and after the features. The right hand graph shows
the effect of adding σ½ϵ�ðkÞ with our approximation
(64). The agreement is almost perfect, with the small
remaining deviations attributable to nonlinear effects.
The small offset of the left hand graph (before and after
the features) is due to the local slow roll approximation
missing the steady growth which ϵðnÞ needs to reach the
threshold of ϵ ¼ 1 at which inflation ends. We conclude:
(1) The nonlocal correction σ½ϵ�ðkÞ fixes the systematic

underprediction of the local slow roll approximation
when ϵðnÞ is growing steadily;

(2) The nonlocal correction σ½ϵ�ðkÞ makes large and
essential contributions when features are present;
and

(3) The nonlocal correction σ½ϵ�ðkÞ is well approxi-
mated by (64).

Figure 7 shows the tensor power spectrum for the model
of Fig. 5. The left-hand graph compares the exact result
with the local slow roll approximation. The prominent
features of the scalar power spectrum which can be seen in
Fig. 6 are several hundred times smaller, inverted and phase
shifted, but they can just be made out. The right-hand graph
compares our approximation (63) for τ½ϵ�ðkÞ with the exact
result. The agreement is again almost perfect, with the
small deviations actually attributable to numerical rough-
ness in the interpolation of the exact computation, rather
than to any problem with our approximation (63).
Correlating tensor features with their much stronger scalar

FIG. 7. These graphs show the tensor power spectrum for the model of Figure 5. The left-hand figure compares the exact result (solid
blue) with the local slow roll approximation Δ2

hðkÞ ≈ 16
π GH

2
kCðϵkÞ (yellow dashed). The solid blue line on the right-hand graph shows

the logarithm of the ratio of Δ2
hðkÞ to its local slow roll approximation. The yellow dashed line gives the nonlocal corrections of

expression (63). Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of e-foldings until the
end of inflation as N ¼ ne − n, where ne is the total number of inflationary e-foldings.

FIG. 6. These graphs show the scalar power spectrum for the model of Fig. 5. The left-hand figure compares the exact result (solid
blue) with the local slow roll approximation Δ2

RðkÞ ≈ GH2
k=πϵk × CðϵkÞ (yellow dashed). The right-hand figure compares the exact

result (solid blue) with the much better approximation (yellow dashed) obtained from multiplying by exp½σ½ϵ�ðkÞ�, using our analytic
approximation (64) for σ½ϵ�ðkÞ�. Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of e-
foldings until the end of inflation as N ¼ ne − n, where ne is the total number of inflationary e-foldings.
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counterparts might be possible in the far future and would
represent an impressive confirmation of single-scalar infla-
tion [21].

V. RECONSTRUCTING THE GEOMETRY

We have so far considered the problem of using the
inflationary geometry to predict the power spectra. Here we
wish to consider the inverse problem of using Δ2

RðkÞ and
Δ2

hðkÞ to reconstruct HðnÞ and ϵðnÞ. (The scalar and its
potential can be derived from HðnÞ and ϵðnÞ by the
formulae given in footnote 1.) It is well to begin by setting
down a few general principles:
(1) Although Δ2

RðkÞ is measured to 3-digit accuracy, the
tensor power spectrum has yet to be resolved. When
Δ2

hðkÞ is finally detected it will take a number of
years before much precision is attained. Therefore,
reconstruction should be based on Δ2

RðkÞ, with
Δ2

hðkÞ used only to fix the integration constant
which gives the scale of inflation.

(2) The first slow roll parameter is so small that there
is no point in using the exact expression (4) for
Δ2

RðkÞ. Figure 2 shows that we can ignore the local
slow roll correction factor CðϵkÞ. Although the
nonlocal correction exponent σ½ϵ�ðkÞ must be in-
cluded, Fig. 6 shows that the approximation (64)
almost perfect.

(3) The fact that ϵðnÞ is small and smooth, with small
transients, motivates a hierarchy between H, ϵ and
ϵ0=ϵ based on calculus,

HðnÞ ¼ Hi exp

�
−
Z

n

0

dmϵðmÞ
�
;

ϵðnÞ ¼ ϵi exp

�Z
n

0

dm
ϵ0ðmÞ
ϵðmÞ

�
: ð68Þ

Hence HðnÞ is insensitive to small errors in
ϵðnÞ, and ϵðnÞ is insensitive to small errors in
∂n ln½ϵðnÞ�.

We begin by converting from wave number k to nk, the
number of e-foldings since the beginning of inflation that k
experienced first horizon crossing. It is also desirable to
factor out the scale of inflation Hi ≡Hð0Þ,

hðnÞ≡HðnÞ
Hi

; δðnkÞ≡ πΔ2
RðkÞ

GH2
i

: ð69Þ

(Hi is the single number which would come from the tensor
power spectrum.) Based on the three principles we base
reconstruction on the formula,

δðnÞ≃ h2ðnÞ
ϵðnÞ × exp

�X5
i¼1

expiðnÞ
�
; ð70Þ

where the five exponents follow from our approximation
(64) for σ½ϵ�ðkÞ,

exp1ðnÞ ¼ −∂n ln½ϵðnÞ� ×Gð1Þ; ð71Þ

exp2ðnÞ ¼
Z

n

0

dm∂2
m ln½ϵðmÞ� ×Gðem−nÞ; ð72Þ

exp3ðnÞ ¼
1

2

Z
n

0

dm½∂m ln½ϵðmÞ��2 ×Gðem−nÞ; ð73Þ

exp4ðnÞ ¼ 3

Z
n

0

dm∂m ln½ϵðmÞ� × Gðem−nÞ; ð74Þ

exp5ðnÞ ¼ 2

Z
∞

n
dm∂m ln½ϵðmÞ� × Gðem−nÞ

1þ e2ðm−nÞ : ð75Þ

FIG. 8. Numerical values of exponents 1, 2, and 4 for the model of Fig. 5. The left-hand graph gives separate results for expression (71)
in dashed blue, expression (72) in dot-dashed yellow, and expression (74) in solid green. The right-hand graph shows the sum of all three
exponents. Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of e-foldings until the end
of inflation as N ¼ ne − n, where ne is the total number of inflationary e-foldings.
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To just reconstruct the Hubble parameter there is no need
to include the correction exponents (71)–(75). Using only
the leading slow roll terms gives,

δðnÞ≃ h2ðnÞ
ϵðnÞ ⇒ h2ðnÞ≃ 1

1þ R
n
0

2dm
δðmÞ

: ð76Þ

Even for the power spectrum of Fig. 6 the reconstruction of
hðnÞ given by expression (76) is barely distinguishable
from the left-hand graph of figure 5.
Not all the exponents (71)–(75) are equally important.

Figures 8 and 9 show that the set of exp1ðnÞ, exp2ðnÞ, and
exp4ðnÞ are about ten times larger than exp3ðnÞ and

exp5ðnÞ for the model of Fig. 5. That reconstructing
features indeed requires the three large exponents is
apparent from Fig. 10. Taking the logarithm of (70) and
moving the three large exponents to the left gives,

½1þ Gð1Þ∂n� ln½ϵðnÞ�

−
Z

n

0

dm½∂2
m þ 3∂m� ln½ϵðmÞ� ×Gðem−nÞ

≃ − ln½δðnÞ� þ 2 ln½hðnÞ� þ exp3ðnÞ þ exp5ðnÞ: ð77Þ
This becomes a linear, nonlocal equation for ln½ϵðnÞ� if we
drop exp3ðnÞ and exp5ðnÞ and use expression (76) for the
Hubble parameter,

FIG. 9. Numerical values of exp3ðnÞ and exp5ðnÞ for the model of Fig. 5. The left-hand graph gives separate results for expression (73)
in dashed blue, and expression (75) in solid yellow. Note that exp5ðnÞ is responsible for correcting the small, systematic underprediction
of the slow roll approximation before and after the feature. The right hand graph shows the sum. Recall that n is the number of e-foldings
from the start of inflation and that it relates to the number of e-foldings until the end of inflation as N ¼ ne − n, where ne is the total
number of inflationary e-foldings.

FIG. 10. Various choices for the left-hand side of the first pass reconstruction equation for the model of Fig. 5. The left-hand graph
shows the first pass source − ln½δðnÞ� þ 2 ln½hðnÞ� in solid blue with ln½εðnÞ� overlaid in dashed yellow. The poor agreement between the
two curves is why using just ln½εðnÞ� as the left hand side of the first pass reconstruction fails to converge when features are present. The
right-hand graph shows the much better agreement between the same source (solid blue) and ln½εðnÞ� − exp1ðnÞ − exp2ðnÞ − exp4ðnÞ
(dashed yellow). Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of e-foldings until
the end of inflation as N ¼ ne − n, where ne is the total number of inflationary e-foldings.
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½1þ Gð1Þ∂n� ln½ϵðnÞ�

−
Z

n

0

dm½∂2
m þ 3∂m� ln½ϵðmÞ� ×Gðem−nÞ

≃ − ln½δðnÞ� − ln

�
1þ

Z
n

0

2dm
δðmÞ

�
: ð78Þ

The linearity of Eq. (78) means that it can be solved by a
Green’s function, in spite of being nonlocal. The required
Green’s function becomes a symmetric function of its
arguments if we note from Fig. 3 and expression (50) that
Gðen−nkÞ is essentially zero more than about N ∼ 4 e-
foldings before horizon crossing. The Green’s function
equation is,

½1þ Gð1Þ∂n�GðnÞ

−
Z

n

−N
dmð∂2

m þ 3∂mÞGðmÞ ×Gðem−nÞ ¼ δðnÞ: ð79Þ

We can solve (78) by integrating against the source on the
right-hand side,

ln½ϵðnÞ� ¼
Z

∞

0

dmGðn −mÞ × SourceðmÞ: ð80Þ

This might be regarded as the first pass of an iterative
solution to (77). After the first pass solution of (78) one
would use the resulting ln½ϵðnÞ� to construct hðnÞ and to
evaluate exp3ðnÞ and exp5ðnÞ on the right-hand side of
(77). Then the same Green’s function solution (80) could be
used with this more accurate source to find a more accurate
ln½ϵðnÞ�, which would lead to a more accurate source, and
so on.
We are not able to solve (79) exactly owing to the factor

of Gðem−nÞ inside the integral. Consideration of Fig. 3

suggests that this troublesome factor might be approxi-
mated as a square wave of width Δ ¼ 0.8,

Gðem−nÞ ≈ Gð1Þθðn −m − ΔÞ: ð81Þ

Making the approximation (81) leads to a still-nonlocal
equation,

ð∂n þ 3ÞG0ðn − ΔÞ − αG0ðnÞ ¼
δðnÞ
Gð1Þ ; α≡ 3 −

1

Gð1Þ :

ð82Þ

The “retarded” solution to (82) which avoids exponentially
growing terms is,

G0ðnÞ ¼
e3ðnþΔÞ

Gð1Þ
X∞
l¼0

1

l!
½αe−3Δðnþ ðlþ 1ÞΔÞ�l

× θðnþ ðlþ 1ÞΔÞ: ð83Þ

Figure 11 shows the result of using just G0ðnÞ to reconstruct
ln½ϵðnÞ� with the source taken as the right-hand side of (78).
Further improvement requires a better approximation for

the Green’s function GðnÞ. It is instructive to take the
Laplace transform, restoring the second argument of the
Green’s function,

Ĝðs;mÞ≡
Z

∞

0

dne−snGðn −mÞ: ð84Þ

The Laplace transform of the Green’s function Eq. (79) is,

½1þGð1Þs − ðsþ 3Þs × IðsÞ�Ĝðs;mÞ ¼ e−ms; ð85Þ

where we define,

FIG. 11. These graphs show numerical reconstructions of ln½ϵðnÞ� for the power spectrum of Fig. 6. The solid blue line of the left hand
graph shows the exact result while the yellow dashed line gives the result of integrating G0ðn −mÞ—using the first six terms of the sum
over l in expression (83)—against the first pass source on the right-hand side of (78). The right-hand graph shows the result of adding
the first order improvement G1ðn −mÞ—computed using the first four terms of the sum over m in expression (92). Recall that n is the
number of e-foldings from the start of inflation and that it relates to the number of e-foldings until the end of inflation as N ¼ ne − n,
where ne is the total number of inflationary e-foldings.
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IðsÞ≡
Z

∞

0

dle−sl ×Gðe−lÞ: ð86Þ

The problem of approximating Gðn −mÞ is therefore
related to the one of approximating (86), and of recognizing
the resulting inverse Laplace transform of Ĝðs;mÞ. Making
the approximation (81) in (86) gives,

I0ðsÞ ¼
Gð1Þ
s

½1 − e−0.8s�: ð87Þ

Figure 12 reveals that this is indeed a good approximation.
Figure 12 also shows that the small residual is well fit by
the function,

I1ðsÞ ¼
0.154

ðsþ 8.97Þ2 sin½1.76ð1 − e−0.262ðs−3.78ÞÞ�: ð88Þ

To obtain the first correction to G0ðn −mÞ we begin by
expanding Ĝðs;mÞ in powers of I1ðsÞ,

Ĝðs;mÞ≃ e−ms

Gð1Þ½ðsþ 3Þe−Δs − α� − sðsþ 3ÞI1ðsÞ
; ð89Þ

¼ e−ms

Gð1Þ½ðsþ 3Þe−Δs − α� þ
sðsþ 3ÞI1ðsÞe−ms

G2ð1Þ½ðsþ 3Þe−Δs − α�2 þ…;

ð90Þ

≡ Ĝ0ðs;mÞ þ Ĝ1ðs;mÞ þ… ð91Þ

We can recognize the inverse Laplace transform by
expanding I1ðsÞ,

a
ðsþ eÞ2 sin½b − be−cðsþdÞ�

¼ a
ðsþ eÞ2

�
sinðbÞ

X∞
m¼0

ð−1Þm
ð2mÞ! ½be

−cðsþdÞ�2m

− cosðbÞ
X∞
m¼0

ð−1Þm
ð2mþ 1Þ! ½be

−cðsþdÞ�2mþ1

	
: ð92Þ

Figure 11 shows the effect of using G0ðn−mÞþG1ðn−mÞ
to solve Eq. (78) approximately for ln½ϵðnÞ�.
Figure 11 shows that additional improvements are

needed before our technique gives good results for
∂n ln½ϵðnÞ� when features are present. However, our results
for ϵðnÞ are already reasonable, and those for hðnÞ are
staggeringly accurate. For the model of Fig. 5 the largest
percentage error on in reconstructing ϵðnÞ is 2.2%, and the
percentage error for hðnÞ never exceeds 0.04%. This seems
considerably better than the general slow roll approxima-
tion [34], or techniques based on local expressions [35]. A
recent proposal based on inverse-scattering [36] reports
percentage errors of hðnÞ of as much as 2% for flat
potentials, and up to 9% when features are present.
It is significant that our Green’s function Gðn −mÞ

depends only on the difference of its arguments, and we
just need it over a range of about ten e-foldings. Further, its
Laplace transform is defined by relations (85)–(86).
Figure 12 shows that there is only a single, simple pole
on the real axis, somewhat below s ¼ 3. If nothing else
worked we could therefore evaluate Iðs0 þ iωÞ numeri-
cally for some s0 > 3 and then numerically compute the
inverse Laplace transform,

Gðn −mÞ ¼ 1

2πi

Z
∞

−∞
dωeðs0þiωÞnĜðs0 þ iω;mÞ: ð93Þ

No matter how time-consuming the computation proved, it
would only need to be done once.

FIG. 12. The solid blue line of the left hand graph shows a numerical evaluation of the integral IðsÞ of expression (86). The 0th order
approximation I0ðsÞ of expression (87) is overlaid in large dots. The solid blue line of the right-hand graph shows the deviation
ΔIðsÞ≡ IðsÞ − I0ðsÞ. Our fit I1ðsÞ of expression (88) is overlaid in large dots.
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VI. EPILOGUE

As the title suggests, this paper gives final expression to
our formalism for finding the tree order power spectra by
evolving the norm-squared mode functions [20]. Considered
purely as a numerical technique this is more efficient than
evolving the mode functions because it avoids keeping track
of the rapidly fluctuating phase, and because it converges
about twice as fast. Nor is anything lost because the phase
can be recovered through expressions (10) and (20). Our
formalism applies not only to single-scalar inflation but also
to any conformally related model, such as fðRÞ inflation
[22], whose power spectra are numerically identical.
Section II reviews our formalism, and explains how to

factor out arbitrary approximate solutions (12) and (22).
Section III then specializes to what we believe are the best
choices (30)–(31) for these approximate solutions.Our results
(3)–(4) for the power spectra are exact at this stage, with the
nonlocal correction exponents τ½ϵ�ðkÞ and σ½ϵ�ðkÞ given
by (35).
SectionVmakes the approximation that ϵðnÞ is small, and

that nonlinear effects can be dropped in the Eqs. (12) and
(22) for the residuals. This results in wonderfully simple,
analytic approximations (63)–(64) for how the nonlocal
correction exponents depend upon ϵðnÞ. Figures 6 and 7
exhibit the accuracy of these formulas, even for the model of
Fig. 5 which has prominent features. Figure 6 also demon-
strates that the local slow roll approximation—Δ2

RðkÞ≈
GH2

k
πϵk

× CðϵkÞ—breaks down badlywhen features are present,

and that it systematically underestimates Δ2
RðkÞ even for

models without features. The unmistakable conclusions are
(1) That quantitative accuracy requires the nonlocal

correction exponents τ½ϵ�ðkÞ and σ½ϵ�ðkÞ; and
(2) That our approximations (63)–(64) are valid for any

model which is consistent with the bounds on r and
on the limits of possible features.

Section V explains how our approximation (64) can be
used to reconstruct the geometry from the power spectra.
(The scalar and its potential can be recovered from the
formulae of footnote 1.) Further improvements are needed
for accurate reconstructions for derivatives of the first slow
roll parameter, but the undifferentiated parameter is accu-
rate to �2.2% and our errors for the Hubble parameter
never exceed 0.04%. This seems much better than other
techniques [34–36].
Our formalism has many applications because it gives

explicit, analytic and accurate approximations for how the
power spectra depend functionally on the geometry of
inflation. For example, our expressions (3)–(4) imply an
exact relation for the tensor-to-scalar ratio,

rðkÞ ¼ 16ϵk exp½−σ½ϵ�ðkÞ þ τ½ϵ�ðkÞ�; ð94Þ
with no local, slow roll corrections. It should be an
excellent approximation to drop τ½ϵ�ðkÞ and employ the
analytic approximation (64) for σ½ϵ�ðkÞ.

We have already mentioned the necessity of including
the nonlocal correction exponent σ½ϵ�ðkÞ to correctly
describe features. Our analytic approximation (64) facili-
tates precision studies, limited by the accuracy of the data
rather than by the cumbersome connection to theory. For
example, the model of Fig. 5 was proposed [28,29] to
account for the deficit in the scalar power spectrum at
l ≈ 22, and the excess at l ≈ 40, which are visible in the
data reported from both WMAP [27,30,31] and PLANCK
[32,33]. From Fig. 6 we see that the resulting power
spectrum indeed has a deficit at n ≈ 172.3, followed by
an excess at n ≈ 172.8. However, there are weaker features
at n ≈ 173.2 and n ≈ 173.5. Do the data show any evidence
for these weaker features? If not, to what degree does their
absence rule out the model of Fig. 5? And what sort of
model do the data actually support?
A particularly exciting application of our formalism is to

exploit the control it gives over how the mode functions
depend upon ϵðnÞ to design a new statistic to cross-
correlate features in the power spectrum with non-
Gaussianity. This has already been proposed in the context
of models with variable speed of sound [37,38], and
developed numerically [39], but it can now be done
analytically for simple scalar potential models. Of course
the idea is that non-Gaussianity measures self-interaction,
which is what a step in the potential provides. There may be
an observable effect which is not resolvable by generic
statistics but could be detected by a precision search.
Another application concerns the far future, after the

tensor power spectrum has been well resolved. Our analytic
approximations (63)–(64) quantify how the same deriva-
tives of the first slow roll parameter lead to deviations from
the local slow roll predictions for the tensor and scalar
power spectra. Figure 6 shows that these deviations are
strongly present in Δ2

RðkÞ for models with features. The
associated tensor features are much weaker, but they can
just be made out in Fig. 7. Demonstrating this correlation in
the data would represent an impressive check on single-
scalar inflation.
In the even farther future it may be possible to resolve

one loop corrections [23]. Comparing these with theory
obviously requires a precision determination of the tree
order effect, which is of course possible once the model of
inflation has been fixed. However, one also needs to be able
to extract the potentially large factors of 1=ϵðnÞ from the ζ
propagator, and our formalism is ideal for that.

ACKNOWLEDGMENTS

This work was partially supported by the European
Union’s Seventh Framework Programme (FP7-REGPOT-
2012-2013-1) under grant agreement number 316165; by
the European Union’s Horizon 2020 Programme under
Grant Agreement No. 669288-SM-GRAV-ERC-2014-
ADG; by NSF Grant No. PHY-1506513; and by the
UF’s Institute for Fundamental Theory.

BROOKER, TSAMIS, and WOODARD PHYSICAL REVIEW D 96, 103531 (2017)

103531-14



[1] A. A. Starobinsky, Spectrum of relict gravitational radiation
and the early state of the universe, Pis’ma Zh. Eksp. Teor.
Fiz. 30, 719 (1979) [JETP Lett. 30, 682 (1979)].

[2] V. F. Mukhanov and G. V. Chibisov, Quantum fluctuation
and nonsingular universe. (In Russian), Pis’ma Zh. Eksp.
Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].

[3] R. P. Woodard, How far are we from the quantum theory of
gravity?, Rep. Prog. Phys. 72, 126002 (2009).

[4] A. Ashoorioon, P. S. Bhupal Dev, and A. Mazumdar,
Implications of purely classical gravity for inflationary
tensor modes, Mod. Phys. Lett. A 29, 1450163 (2014).

[5] L. M. Krauss and F. Wilczek, Using cosmology to establish
the quantization of gravity, Phys. Rev. D 89, 047501 (2014).

[6] D. Polarski and A. A. Starobinsky, Structure of primordial
gravitational waves spectrum in a double inflationary
model, Phys. Lett. B 356, 196 (1995).

[7] J. Garcia-Bellido and D. Wands, Constraints from inflation
on scalar-tensor gravity theories, Phys. Rev. D 52, 6739
(1995).

[8] M. Sasaki and E. D. Stewart, A general analytic formula for
the spectral index of the density perturbations produced
during inflation, Prog. Theor. Phys. 95, 71 (1996).

[9] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,
Theory of cosmological perturbations. Part 1. Classical
perturbations. Part 2. Quantum theory of perturbations. Part
3. Extensions, Phys. Rep. 215, 203 (1992).

[10] A. R. Liddle and D. H. Lyth, The cold dark matter density
perturbation, Phys. Rep. 231, 1 (1993).

[11] J. E. Lidsey, A. R. Liddle, E. W. Kolb, E. J. Copeland, T.
Barreiro, and M. Abney, Reconstructing the inflation
potential: An overview, Rev. Mod. Phys. 69, 373 (1997).

[12] A. R. Liddle, P. Parsons, and J. D. Barrow, Formalizing the
slow roll approximation in inflation, Phys. Rev. D 50, 7222
(1994).

[13] N. C. Tsamis and R. P. Woodard, Nonperturbative models
for the quantum gravitational back reaction on inflation,
Ann. Phys. (N.Y.) 267, 145 (1998).

[14] T. D. Saini, S. Raychaudhury, V. Sahni, and A. A.
Starobinsky, Reconstructing the Cosmic Equation of State
from Supernova Distances, Phys. Rev. Lett. 85, 1162
(2000).

[15] S. Nojiri and S. D. Odintsov, Unifying phantom inflation
with late-time acceleration: Scalar phantom-non-phantom
transition model and generalized holographic dark energy,
Gen. Relativ. Gravit. 38, 1285 (2006).

[16] R. P. Woodard, Avoiding dark energy with 1/r modifications
of gravity, Lect. Notes Phys. 720, 403 (2007).

[17] Z. K. Guo, N. Ohta, and Y. Z. Zhang, Parametrizations of
the dark energy density and scalar potentials, Mod. Phys.
Lett. A 22, 883 (2007).

[18] D. J. Brooker, N. C. Tsamis, and R. P. Woodard, Precision
predictions for the primordial power spectra of scalar
potential models of inflation, Phys. Rev. D 93, 043503
(2016).

[19] D. J. Brooker, N. C. Tsamis, and R. P. Woodard, Effect of
features on the functional form of the scalar power spec-
trum, Phys. Rev. D 94, 044020 (2016).

[20] M. G. Romania, N. C. Tsamis, and R. P. Woodard, Comput-
ing the primordial power spectra directly, J. Cosmol.
Astropart. Phys. 08 (2012) 029.

[21] D. J. Brooker, N. C. Tsamis, and R. P. Woodard, Improving
the single scalar consistency relation, Phys. Lett. B 773, 225
(2017).

[22] D. J. Brooker, S. D. Odintsov, and R. P. Woodard, Precision
predictions for the primordial power spectra from fðRÞ
models of inflation, Nucl. Phys. B911, 318 (2016).

[23] R. P. Woodard, Perturbative quantum gravity comes of age,
Int. J. Mod. Phys. D 23, 1430020 (2014).

[24] P. A. R. Ade et al. (BICEP2 and Planck Collaborations),
Joint Analysis of BICEP2/Keck Array and Planck Data,
Phys. Rev. Lett. 114, 101301 (2015).

[25] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[26] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XX. Constraints on inflation, Astron. Astrophys.
594, A20 (2016).

[27] L. Covi, J. Hamann, A. Melchiorri, A. Slosar, and I.
Sorbera, Inflation and WMAP three year data: Features
have a future!, Phys. Rev. D 74, 083509 (2006).

[28] J. A. Adams, B. Cresswell, and R. Easther, Inflationary
perturbations from a potential with a step, Phys. Rev. D 64,
123514 (2001).

[29] M. J. Mortonson, C. Dvorkin, H. V. Peiris, and W. Hu, CMB
polarization features from inflation versus reionization,
Phys. Rev. D 79, 103519 (2009).

[30] J. Hamann, L. Covi, A. Melchiorri, and A. Slosar, New
constraints on oscillations in the primordial spectrum
of inflationary perturbations, Phys. Rev. D 76, 023503
(2007).

[31] D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar, and T.
Souradeep, Primordial features due to a step in the inflaton
potential, J. Cosmol. Astropart. Phys. 10 (2010) 008.

[32] D. K.Hazra,A.Shafieloo,G. F. Smoot, andA. A.Starobinsky,
Wiggly whipped inflation, J. Cosmol. Astropart. Phys. 08
(2014) 048.

[33] D. K.Hazra,A.Shafieloo,G. F. Smoot, andA. A.Starobinsky,
Primordial features and Planck polarization, J. Cosmol.
Astropart. Phys. 09 (2016) 009.

[34] K. Kadota, S. Dodelson, W. Hu, and E. D. Stewart,
Precision of inflaton potential reconstruction from CMB
using the general slow-roll approximation, Phys. Rev. D 72,
023510 (2005).

[35] J. D. Barrow and A. Paliathanasis, Reconstructions of the
dark-energy equation of state and the inflationary potential,
arXiv:1611.06680.

[36] J. Mastache, F. Zago, and A. Kosowsky, Inflationary
dynamics reconstruction via inverse-scattering theory, Phys.
Rev. D 95, 063511 (2017).

[37] A. Achcarro, J. O. Gong, G. A. Palma, and S. P. Patil,
Correlating features in the primordial spectra, Phys. Rev.
D 87, 121301 (2013).

[38] J. Torrado, B. Hu, and A. Achucarro, Robust predictions for
an oscillatory bispectrum in Planck 2015 data from transient
reductions in the speed of sound of the inflaton, Phys. Rev.
D 96, 083515 (2017).

[39] D. K. Hazra, L. Sriramkumar, and J. Martin, BINGO: A
code for the efficient computation of the scalar bi-spectrum,
J. Cosmol. Astropart. Phys. 05 (2013) 026.

ANALYTIC APPROXIMATION FOR THE PRIMORDIAL … PHYSICAL REVIEW D 96, 103531 (2017)

103531-15

https://doi.org/10.1088/0034-4885/72/12/126002
https://doi.org/10.1142/S0217732314501636
https://doi.org/10.1103/PhysRevD.89.047501
https://doi.org/10.1016/0370-2693(95)00842-9
https://doi.org/10.1103/PhysRevD.52.6739
https://doi.org/10.1103/PhysRevD.52.6739
https://doi.org/10.1143/PTP.95.71
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1016/0370-1573(93)90114-S
https://doi.org/10.1103/RevModPhys.69.373
https://doi.org/10.1103/PhysRevD.50.7222
https://doi.org/10.1103/PhysRevD.50.7222
https://doi.org/10.1006/aphy.1998.5816
https://doi.org/10.1103/PhysRevLett.85.1162
https://doi.org/10.1103/PhysRevLett.85.1162
https://doi.org/10.1007/s10714-006-0301-6
https://doi.org/10.1007/978-3-540-71013-4
https://doi.org/10.1142/S0217732307022839
https://doi.org/10.1142/S0217732307022839
https://doi.org/10.1103/PhysRevD.93.043503
https://doi.org/10.1103/PhysRevD.93.043503
https://doi.org/10.1103/PhysRevD.94.044020
https://doi.org/10.1088/1475-7516/2012/08/029
https://doi.org/10.1088/1475-7516/2012/08/029
https://doi.org/10.1016/j.physletb.2017.08.027
https://doi.org/10.1016/j.physletb.2017.08.027
https://doi.org/10.1016/j.nuclphysb.2016.08.010
https://doi.org/10.1142/S0218271814300201
https://doi.org/10.1103/PhysRevLett.114.101301
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1103/PhysRevD.74.083509
https://doi.org/10.1103/PhysRevD.64.123514
https://doi.org/10.1103/PhysRevD.64.123514
https://doi.org/10.1103/PhysRevD.79.103519
https://doi.org/10.1103/PhysRevD.76.023503
https://doi.org/10.1103/PhysRevD.76.023503
https://doi.org/10.1088/1475-7516/2010/10/008
https://doi.org/10.1088/1475-7516/2014/08/048
https://doi.org/10.1088/1475-7516/2014/08/048
https://doi.org/10.1088/1475-7516/2016/09/009
https://doi.org/10.1088/1475-7516/2016/09/009
https://doi.org/10.1103/PhysRevD.72.023510
https://doi.org/10.1103/PhysRevD.72.023510
http://arXiv.org/abs/1611.06680
https://doi.org/10.1103/PhysRevD.95.063511
https://doi.org/10.1103/PhysRevD.95.063511
https://doi.org/10.1103/PhysRevD.87.121301
https://doi.org/10.1103/PhysRevD.87.121301
https://doi.org/10.1103/PhysRevD.96.083515
https://doi.org/10.1103/PhysRevD.96.083515
https://doi.org/10.1088/1475-7516/2013/05/026

