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Analytic approximation for the primordial spectra of single scalar potential
models and its use in their reconstruction
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We give final shape to a recent formalism for deriving the functional forms of the primordial power
spectra of single-scalar potential models and theories which are related to them by conformal trans-
formation. An excellent analytic approximation is derived for the nonlocal correction factors which are
crucial to capture the “ringing” that can result from features in the potential. We also present the full
algorithm for using our representation, including the nonlocal factors, to reconstruct the inflationary

geometry from the power spectra.
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I. INTRODUCTION

The simplest models of primordial inflation are based on
general relativity (for a spacelike metric g,,(x)) plus a
single, minimally coupled scalar ¢(x),

R\/—g 1
e X =IO =)

A key prediction is the generation of tensor [1] and scalar
[2] perturbations. These are the first observable quantum
gravitational phenomena ever recognized as such [3-5].
They are also our chief means of testing the viability of
scalar potential models [6-8], and of reconstructing V(¢)
[9-11].

Reconstruction is simplest in terms of the Hubble
representation [12] using the Hubble parameter H(¢) and
first slow roll parameter e(¢) of the homogeneous, isotropic
and spatially flat background geometry of inflation,'

ds? = —d* + @(di-di = H(=2>0,
a

e()=—-—<1. (2)

Let 7, stand for the time of first horizon crossing, when
modes of wave number k obey k = H(t;)a(t;). The tensor
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'The connection to the potential representation is [13—17],
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and scalar power spectra take the form of leading slow roll
results at t = f;, multiplied by local slow roll corrections
also at t = 1, times nonlocal factors involving times near
=1, [18,19],

83(K) = T2 GHA(1) x Cle(n)) x explelel (k). ()
8500 = T s clelu) xexplofdl(). - @)

The local slow roll correction C(e) is,

1,1 1 2
C(e) _”F (2+ { _€> R(1-¢)f=~1-e (5
The nonlocal correction exponents, z[e|(k) and ole](k),
vanish for ¢ = 0 and effectively depend on the geometry
only a few e-foldings before and after 7, [18,19].

The purpose of this paper is to rationalize and simplify
our formalism for evolving the norms of the mode
functions, rather than the mode functions [20], and then
to derive an excellent analytic approximation for the
nonlocal correction exponents z[¢](k) and o[e](k). We also
demonstrate how this approximation can be used to
reconstruct the inflationary geometry from the power
spectra, even for models which possess features. These
topics represent Secs. I[I-1V, and V, respectively. In Sec. VI
we discuss some of the many applications [21,22] this
formalism facilitates.

We shall often employ the alternate time parameter
provided by n=1n[a(¢)/a;], the number of e-foldings
since inflation’s onset. This is superior to the co-moving
time ¢ by virtue of being dimensionless and relating
evolution to the size of the universe. We shall abuse the
notation slightly by writing H(n) and e(n), instead of the
correct but cumbersome expressions H(t(n)) and e(¢(n)).

© 2017 American Physical Society
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The left hand graph shows one model’s scalar power spectrum as a function of 7, the number of e-foldings from the beginning

of inflation to first horizon crossing. The right hand graph shows the same power spectrum versus N, the number of e-foldings until the
end of inflation. Early times correspond to small n and large N, whereas late times correspond to large n and small N. Recall that
n+ N = n,, where n, is the total number of e-foldings during inflation.

Which time parameter pertains should be clear from
context, and from our exclusive use of Z, m, and n to
stand for e-foldings. Over-dots represent time derivatives
and primes stand for n derivatives,

H H e H,
H* H 1 [rdre(r)

— H,exp [— A "dme(m)] (6)

We caution readers against confusing n with the common
parameter N = n, — n, the number of e-foldings until the
end of inflation (at n = n,). Figure 1 illustrates the differ-
ence for a model with n, =225 total e-foldings and
features in the range 52 < N < 54 before the end of
inflation.”

II. OUR FORMALISM IN GENERAL

The tree order tensor power spectrum is obtained by
evolving the graviton mode function u(z, k) past the time of
first horizon crossing [9-11],

k3
AZ(k) = ¥Re 327G x 2 x lim|u(t, k)|?. (7)

1

We do not possess exact solutions for u(t, k) for realistic
geometries €(¢), but we do know the evolution equation,
the Wronskian and the form at asymptotically early times
[9-11,23],

*Because only the last few e-foldings before horizon crossing
affect the power spectrum, the features would not have been
changed by starting inflation much later so that n, = 60.

k2
a

. . i
un® — uut = —3»
a
: t_dr
exp[-ik [} pica)
-

u(t k) 2ka* (1)

(8)

Because the power spectrum depends upon the norm-
squared, rather than the rapidly-varying phase, it is better
to convert (8) into a nonlinear evolution equation for
M(t, k) = |u(t, k)| [20],

it +3mit+ X =L (ip o L
at 2M at)’
1
Mt k) > ———. 9
( >_’2ka2(r) ©)

If necessary, the mode function can be easily recovered
[19],

u(t, k) = \/M(t,k)exp[—%[tWﬂ(ﬂ’k)]. (10)

Relation (9) can be improved by changing to the
dimensionless time parameter n = In[a(t)/a;],

M '+1 M 2+(3 )M’+ 2k? 1 0
—_— j— —_ —€ —_— — p—
M 2\ M M H?*a* 2H?*aM?

(11)

A further improvement comes by factoring out an (at this
stage) arbitrary approximate solution, M(t, k), to derive a
damped, driven oscillator equation (with small nonlinear-
ities) for the residual exponent [18],
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M=Myxeh =

/
1
W =20+ w?h =S, =Pl —1=h. (12)
w

Here the frequency w(n, k) and the tensor source S, (n, k)
are,

1
= =
Y= HaM,
"\’ o\ ? 4>
Si=-2(Z) +(Z) +2¢-(3-¢p _ ot
n <w> +<w> +2¢ - (3-¢€) +H2a2 0}

(13)

It is an amazing fact that an exact Green’s function exists
for the left-hand side of Eq. (12), valid for any choice of the
approximate solution M [18],

_ %gkin { A " dtwl(e, k)] . (14)

This permits us to solve (12) perturbatively 7 = h; + h, +
-+ by expanding in the nonlinear terms,

hy(n, k) = A dmG,(n;m)S,y(m, k), (15)

hy(n, k) = /On dmG,(n;m)

Lo 21 2
X {Z[hl(m,k)] —E[w(m,k)hl(m,k)] }
(16)

The tree order scalar power spectrum is obtained by
evolving the ¢ mode function v(z, k) past the time of first
horizon crossing [9-11],

k3
AR (k) = 5 x 4xG x lim|u(s. k). (17)

>t

Just as for its tensor cousin, we lack exact solutions for
v(1, k) for realistic geometries €(7), but we do know the
evolution equation, the Wronskian and the form at asymp-
totically early times [9-11,23],

2

) €\.  k e i
v+<3H+—)v+—20—0, vt — 0t = —,
€ a €a

exp[—ik [ %]

R = a0

(18)

Converting to the norm-squared N (t,k) = |v(t,k)|?
gives [19],
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. N 21 (a1
N+<3H+E>N+7N—W<N “rﬁ),

N(t k) - (19)

2ke(t)a*(t)

The scalar mode function mode can be recovered from

N(z,k) [19],

i [t t
0.0 = N3 [ oinn)
(20)

Converting from comoving time ¢ to n = In[a(t)/a;]
gives,

N/ ! 1 N/ 2 e/ N/ 2k2
(W) +5<W) * (3_€+Z>W+H2—az
1 —
C22H2aON?
Factoring out by an arbitrary approximate solution N (z, k)

produces another damped, driven oscillator equation for the
residual exponent,

N:N()Xe_%g =

0. (21)

Q/ 1
I =g t¥g=S,+ 9 - Q' —1-g. (22)
Here the frequency Q(n, k) and the scalar source S (n, k)
are,

1

Q=——, 23

eHa* N 23)

Q\’/ Q2 , e\ 2 e’

5= 2(2) () v (o) ()
4k

+ Q2. (24)

Making the replacement @ — Q in (14) gives an exact
Green’s function which is valid for any choice of N,

G, (n:m) = %sm { / "aea(e, k)]. (25)

0
And we can of course develop a perturbative solution to
2 g=g+gp+- -

gi(n ) = A " dmG,(n:m)S,(m. k). (26)

g(n, k) = An dmG ,(n;m)

{3, 07 = 20m. k) (07 .
(27)
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III. CHOOSING M (t.k) AND N (t.k)
EFFECTIVELY

The formalism of the previous section is valid for all
choices of the approximate solutions M (7, k) and N (1, k).
Of course the correction exponents i(n, k) and g(n, k) will
be smaller if the zeroth order solutions are more carefully
chosen. In previous work we used the instantaneously
constant ¢ solutions [18,19],

_z(t k)H(u(1), z(1, k)
Minst<t7 k) = 2ka? l) ’
_z(t k) H(v(1), z(1, k)
Ninst<t7 k) = 2ke(t)a2(t) ’ (28)
where we define,
M=, =
z(t, k) = k (29)

[1—e(n)]H(1)a(r)’

However, the choice (28) has the undesirable effect of
complicating the late time limits. The physical quantities
M(t,k) and N (1, k) freeze in to constant values soon after
first horizon crossing, but continued evolution in e(¢)
prevents M(t, k) and N(,k) from approaching con-
stants. Hence the residual exponents h(n, k) and g(n, k)
must evolve so as to cancel this effect.

We can make the late time limits simpler by adopting a
piecewise choice for the approximate solutions,

MO(t1 k) = e(tk - t)Minst(tf k) + ‘9(t - tk)Minst(t’ k)’
(30)

No(t. k) = 0t = ) Ning (1. k) + 0(1 = 1) Ning (2. k).
(31)

By M, (t, k) and Ny, (t, k) we mean the solutions which
would pertain for the ersatz geometry,

a(n) = a(n) = aze®", H(n) = He ", &(n) = ¢.

(32)
Here and henceforth An = n — ny, stands for the number of

e-foldings from horizon crossing. To be explicit about the
overlined quantities,

_ H(w,2) - TH(ve,z) . ellmean
My =————, inst = "~7 =3 = .
=z N e | T 1—e
(33)

With the choice (30)—(31) the approximate solutions
rapidly freeze in to constants,

PHYSICAL REVIEW D 96, 103531 (2017)

| 12
llmM()(t, k) = ? X C(€k),

1 2
. 2
};%NO(L k) = W X C(ek). (34)

This establishes the forms (3)—(4) for the power spectra and
fixes the nonlocal correction exponents to,

zle](k) = —llimg(t, k), olel(k) = —llimh(t, k).

2 1 1

(35)

It remains to specialize the sources to (30)—(31). First
note the simple relation between the scalar and tensor
frequencies,

x@.

(36)

Q(n, k) = 0(n, —n)w(n, k) + 0(n — ny)w(n, k)

This means the scalar source (24) consists of the tensor
source (13) minus a handful of terms mostly involving

e(n),

S,(n, k)
= S,(n. k) —20(ny — n) [(%/)/ +% (%/)2 +(3- e)%/]

/

+28(n — ny) € 20(n — ny)
€

x{<3—e+%>%}+w2<z—§—l>]. (37)

To obtain an explicit formula for the tensor source we
first note that the tensor frequency is,

o(n, k) =0(n, —n) %]_([1@_’;)) +0(n—ny) 27_((1(1/_]“6;)) X g
(3%)

Hence the n derivative of its logarithm is,

o' e H rH/
ge(nk—n)[—l_e—ﬁ} —l—H(n—nk)[Ae—ﬁ},

(39)

where Ae = e(n) — ¢, and H = H(vy, z). Before horizon
crossing v =4+ is time dependent and z=k/[(1—¢)Ha]
so we have,

1
2
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, ¢ , ¢ The analogous result after horizon crossing is much
1/7(1—6)2’Z 1_6_1—6Z simpler,
Hl / /
SN S A+{l—e— }B, (40) K
H  (1-¢) - = (1-¢)B, (42)

CH

where A and B involve derivatives of H(v, z) with respect
to v and ¢ = In(z),

specialized to Z.
A=0,In[H(v, )], B=09,In[H(v,e)]. (41)

w/ / 6// €/2 6// 26/2 , 6// 6/2
<E) Tl oo [(1 ST —e>3}A‘ [ Tt —e)z][”

€/2 26’ €/ €/
- l—e— Do |l1-e-
(1_6)4c+(1_€)2{ 71 ] { 71 ]5’

requires three second derivatives of In[H],

C= 02 1In[H(v, )], D =9.0,In[H(v,€")]. £=0:In[H(v, e%)].

Bessel’s equation and the Wronskian of H,(,U(e‘f ) imply,

21 —€)?E+ (1-€)*B2 = (3 —¢)? +4(1 —€)?e* — (2(1 _ €)>2 =0.

H
Substituting relations (39), (40), (43), and (45) in the definition of the tensor source (13) gives,3
2¢" A AB 2D
t<tk:>Sbef0re: ¢ 1+7+B 1- —82—7—25
1 - 1 - 1-—e¢ 1—¢

_|_2€/2 11 A 2+A+ C —|—2D_|_5
(1-¢)? 273 1- l—¢ (1-¢€¢)? 1-¢ ’

The analogous result after horizon crossing is,

— k? 1 —¢.\2] [H?
t>tk:>Safter:2A€[3_€k+(l_ek)8]+4|:m_< 7:[]() :||:m—1:|

There is also a jump at horizon crossing so that the complete result is,
2¢ { A

Sh:9(nk—n)sbefore_5(n_nk)1_e 1—¢€

:| + 9(” - nk)Safter~

This result incidentally allows us to write the equations obeyed by the instantaneously constant e solutions (28),

M; st>’ I(Mf ,)2 M, 2k 1 1
ins + = 7 inst +(3-¢ inst + 1 7
<M1n§1 2 Mim[ ( ) Minst H2 2 2H2 6M12nst D) before
( :m[)l - (N:mt> + <3 et ) ./\/:m[ n 2k? 1
Nm%t 2 Nmst € Nmst H2a2 262H2 4 6/\/‘12“51
1 AR WAV ¢
= ESbefore - (z) - 5 <z) - (3 - 6) E .

Note that the right-hand sides vanish for constant e.

103531-5
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Taking the derivative of @’/ before horizon crossing,

(43)

(44)

(45)

(46)

(47)

(48)
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FIG. 2. The left-hand graph shows the local slow roll correction factor C(e) (solid blue), which was defined in expression (5). Also
shown is its global approximation of 1 — € (dashed yellow) over the full inflationary range of O < ¢ < 1. The right-hand graph shows
C(e) (solid blue) versus the better approximation of 1 — 0.55¢ (large dots) relevant to the range 0 < ¢ < 0.02 favored by current data.

IV. SIMPLE ANALYTIC APPROXIMATIONS 111101Gh(n; m) = lilr(}Gg(n; m) = Go(n; m)
The exact analytic results of the previous section O(n—m) . , N
are valid for all single-scalar models of inflation. :T[e "t ]

However, they can be wonderfully simplified by
exploiting the fact that the first slow roll parameter
is very small. The 95% confidence bound on the
tensor-to-scalar ration of r <0.12 [24,25] implies
€ < 0.0075. This suggests a number of approximations.
First, the local slow roll correction factor C(ey),
defined in (5), may as well be set to unity. From
Fig. 2 we see that the bound of e < 0.0075 implies 1 2 1
1.0000 < C(€;) < 0.9959. This is not currently G(x) == (x +x*)sin [— — 2 arctan (—)] (50)
resolvable. 2 * *

Anoth llent imation is taki =0 in th

nothel exce et approximation 15 kg = © M B¢ From the graph in Fig. 3 we see that G(e?") suppresses
tensor and scalar Green’s functions of expressions (14) e . .

and (25) contributions more than a few e-foldings before horizon

crossing.

x sin[—2{e™A" — arctan(e™2%)}|1],  (49)

where Am =m —n;, and AZ =¢ — n;. Note that this
expression is valid before and after horizon crossing. An
important special case of (49) is when n becomes large,
which gives the function G(e*™) we define as,

FIG. 3. The left-hand graph shows the ¢ = 0 Green’s function G(e") given in expression (50). The right-hand graph shows the
coefficient of &’(n) in the small e form (58) for S),(n, k). This function & (x) is defined by expressions (52), (54), and (59). The solid
blue curve gives the exact numerical result while the large dots give the approximation resulting from the series expansion on the right-
hand side of expression (54).
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We can also take ¢ = 0 in H and the derivatives of it in

expressions (41) and (44). This leads to exact results for H,

B, and £ in terms of the parameter x = ",

lim?H =M (x) = x + 2%, (51)
) —1—3x2
imB = Bo(x) = 7 (52)
) 4x>

The three derivatives with respect to v do not lead to simple
expressions even for € — 0, but they can be well approxi-
mated over the range we require by short series expansions
in powers of x?,

15x% + 1.8x* — 1.5x6 + .63x®

li = , 54
. X2+ 6.1x* —3.7x0 + 1.6x8
Ei%c = Co(x) = (1 4 x2)2 ’ (55)
. —3x% — 6.8x* +5.5x° — 2.6x8
llil(}'D = Do(x) = (1 + x2)2 (56)

We can express the ratio of H/H in terms of the deviation
Ae(n) =e(n) — ¢,

7 . .
72 1 =exp {2/ dmAe(m)] 1= 2/ dmAe(m).
ny ny

(57)

All of this gives an approximation for the tensor
source (48),

PHYSICAL REVIEW D 96, 103531 (2017)
Sp(n,k)==20(—An)[e"E,(eA") + €%E,(e2") +€'E3(e2M)]

+256(An)e’E (1) +20(An) {Ae(n)

442287\ [n 2
+ (—1 o ) Ak dmAe(m)}i1 eI (58)

where the three coefficient functions are,

&1(x) = =1 = Ay(x) — By(x). (59)

£2(0) = 5~ Ao(x) = Colx) = 2Dy(x) = £9(x)

~ S+ Agl) + o) (60)

E3(x) = =1 + Ag(x)By(x) + B3(x) + 2Dy (x) + 2&(x).
(61)

Figures 3 and 4 show the various coefficient functions.

The smallness of ¢ means that the factors of 1/e which
occur in the scalar source (37) are hugely important. By
comparison we can ignore the Sj,(n, k) terms and simply
write,

Sy(n, k) = —20(=An) K%) *% <€€>2 * 3%}

L 25(An) & — 20(an) & — 2 (62)
o e £ e

Because € < 0.0075 we expect S, to be more than 100
times as strong as S,.

The approximations (49), (58), and (62) are valid so long
as € is small. If we additionally ignore nonlinear terms in
the equations for h(n,k) and g(n, k), the correction
exponents of expressions (3)—(4) become,

FIG. 4. The coefficients of [¢'(n)]? (left) and €’ (n) (right) in the small € form (58) for S;,(n, k). In each case the solid blue curve gives
the exact numerical result, while the large dots give the result of using the series approximations on the far right of (54)—(56) in

expressions (60) and (61).
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FIG. 5. The left-hand figure shows the Hubble parameter and the right shows the first slow roll parameter for a model with features.

This model which was proposed [28,29] to explain the observed features in the scalar power spectrum at £ ~ 22 and ¢ = 40 which are
visible in the data reported from both WMAP [27,30,31] and PLANCK [32,33]. Note that the feature has little impact on H(n) but it
does lead to a distinct bump in ¢(n). Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of
e-foldings until the end of inflation as N = n, — n, where n, is the total number of inflationary e-foldings.

) = [ anler s () + L PE() + ¢ mEs(e]G(e)

0

—emei)6) - [ an{actu+ (7257 [ amac 290

Ny

olel(k) = Ank dn [8% In[e(n)] + % (0, In[e(n)])* + 30, ln[e(n)]} G(e”m)

— 0, In[e(n)]G(1) + / ® dnd, In[e(n)]

ny

Recall that An = n — ny, Ae(n) =e(n) — ¢, the Green’s
function G(e”") was defined in (50), and the coefficient
functions &, (e”"), &;(e”") and E;(eA") were given in
expressions (59)—(61).

How large 7[e](k) and ole](k) are depends on what the
inflationary model predicts for derivatives of e(n).* For
example, the slow roll approximation of monomial infla-
tion gives,

€

V(p) = Ap* = e(n) = (65)

1-2¢n’
a

For these models the various tensor and scalar contributions
are small,

32 16 4
V((ﬂ)ZA(pa = 6//2?63, 6/22¥€4, elzae’

(66)

*A related issue is the accuracy of the approximations (63)—
(64). If we ignore nonlinear effects the fractional error in both
cases is proportional to €. Because € < 0.0075 the percentage
error is less than 1%. If additional accuracy were necessary it
would be easy to improve the approximations (63)—(64) by
including the next term in the small ¢ expansion.

, 63
1+62An 1+e2An ( )
2G(emM)
—_— 64
1 4 241 (64)
[
(e')’ 16 , <€’>2 16 , e 4
= -] =€, — =€, —=—¢
€ a € a €
(67)

The data disfavors monomial inflation [24-26], but
z[e](k) and ole](k) will be small for any model which
has only slow evolution of e¢(n). Much larger effects occur
for models with “features,” which are transient fluctuations
above or below the usual smooth fits [27]. Features imply
short-lived changes in e(n), which do not have much effect
on H(n) but can lead to large values of €¢/(n) and €”’(n).
Figure 5 shows H(n) and e(n) for a model that was
proposed [28,29] to explain a deficit at £ ~22, and an
excess at £ =40, in the data reported by both WMAP
[27,30,31] and PLANCK [32,33]. In the range 171 < n <
172.5 the scalar experiences a step in its potential which has
little effect on H(n) but leads to a noticeable bump in e(n).

Figure 6 shows the scalar power spectrum for the model
of Fig. 5. The left-hand graph compares the exact result to
the local slow roll approximation, without including the
nonlocal corrections from o[e](k). Not even the main
feature is correct, and the secondary oscillations are
completely absent. There is also a small systematic offset
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FIG. 6. These graphs show the scalar power spectrum for the model of Fig. 5. The left-hand figure compares the exact result (solid
blue) with the local slow roll approximation A% (k) ~ GH2 /me; x C(e;) (yellow dashed). The right-hand figure compares the exact
result (solid blue) with the much better approximation (yellow dashed) obtained from multiplying by exp|[o|e](k)], using our analytic
approximation (64) for ¢[¢|(k)]. Recall that 7 is the number of e-foldings from the start of inflation and that it relates to the number of e-
foldings until the end of inflation as N = n, — n, where n, is the total number of inflationary e-foldings.

before and after the features. The right hand graph shows
the effect of adding ofe|(k) with our approximation
(64). The agreement is almost perfect, with the small
remaining deviations attributable to nonlinear effects.
The small offset of the left hand graph (before and after
the features) is due to the local slow roll approximation
missing the steady growth which e(n) needs to reach the
threshold of ¢ = 1 at which inflation ends. We conclude:
(1) The nonlocal correction cle](k) fixes the systematic
underprediction of the local slow roll approximation
when ¢(n) is growing steadily;
(2) The nonlocal correction ole](k) makes large and
essential contributions when features are present;
and

A7
16 GH?Z
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0.240

0.238
0.236
0.234 -

‘\_A n

172.5

1 n n n n 1 n n n n 1
171.0 171.5 172.0

0.232+

(3) The nonlocal correction ole](k) is well approxi-
mated by (64).

Figure 7 shows the tensor power spectrum for the model
of Fig. 5. The left-hand graph compares the exact result
with the local slow roll approximation. The prominent
features of the scalar power spectrum which can be seen in
Fig. 6 are several hundred times smaller, inverted and phase
shifted, but they can just be made out. The right-hand graph
compares our approximation (63) for z[e](k) with the exact
result. The agreement is again almost perfect, with the
small deviations actually attributable to numerical rough-
ness in the interpolation of the exact computation, rather
than to any problem with our approximation (63).
Correlating tensor features with their much stronger scalar

1(n)

0.0020f
0.0015F
0.0010

0.0005 |

~0.0005

-0.0010

FIG. 7. These graphs show the tensor power spectrum for the model of Figure 5. The left-hand figure compares the exact result (solid
blue) with the local slow roll approximation AZ (k) ~ 1 GH}C(e;) (yellow dashed). The solid blue line on the right-hand graph shows
the logarithm of the ratio of A%(k) to its local slow roll approximation. The yellow dashed line gives the nonlocal corrections of
expression (63). Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of e-foldings until the
end of inflation as N = n, — n, where n, is the total number of inflationary e-foldings.
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counterparts might be possible in the far future and would
represent an impressive confirmation of single-scalar infla-
tion [21].

V. RECONSTRUCTING THE GEOMETRY

We have so far considered the problem of using the
inflationary geometry to predict the power spectra. Here we
wish to consider the inverse problem of using A% (k) and
A?(k) to reconstruct H(n) and e(n). (The scalar and its
potential can be derived from H(n) and e(n) by the
formulae given in footnote 1.) It is well to begin by setting
down a few general principles:

(1) Although A% (k) is measured to 3-digit accuracy, the

tensor power spectrum has yet to be resolved. When
AZ(k) is finally detected it will take a number of
years before much precision is attained. Therefore,
reconstruction should be based on A%(k), with
AZ(k) used only to fix the integration constant
which gives the scale of inflation.

(2) The first slow roll parameter is so small that there

is no point in using the exact expression (4) for
A% (k). Figure 2 shows that we can ignore the local
slow roll correction factor C(e;). Although the
nonlocal correction exponent ole](k) must be in-
cluded, Fig. 6 shows that the approximation (64)
almost perfect.

(3) The fact that e(n) is small and smooth, with small

transients, motivates a hierarchy between H, ¢ and
¢’ /e based on calculus,

H(n) = H;exp [— A ’ dme(m)] :
e(n) = €, exp M dm 6'(’")].

e(m)

exp1,24
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Hence H(n) is insensitive to small errors in
e(n), and e(n) is insensitive to small errors in
0, In[e(n)].

We begin by converting from wave number k to ny, the
number of e-foldings since the beginning of inflation that k
experienced first horizon crossing. It is also desirable to
factor out the scale of inflation H; = H(0),

A% (k)
0 =R 69
S dm =T ()
(H,; is the single number which would come from the tensor
power spectrum.) Based on the three principles we base
reconstruction on the formula,

h:((n”)> X exp {2 exp,-(n)] ,

where the five exponents follow from our approximation
(64) for ole](k),

5(n) = (70)

expi(n) = =0, lle(w)] x G(1),  (71)
exp,(n) = A " dmd2, In[e(m)] x G(e™™),  (72)
exps(m) =5 [ " dmlo, nie(m)) x Glen ). (73)
expa(n) = 3 /0 dmd,, Infe(m)] x G(en=),  (74)
exps(n) =2 / ™ dma,, nfe(m)] % (75)

EXP142+4

0.4
02
A M I\vl\ n
170 172 V 174 176 178
—02}
-0.4
~06F

FIG. 8. Numerical values of exponents 1, 2, and 4 for the model of Fig. 5. The left-hand graph gives separate results for expression (71)
in dashed blue, expression (72) in dot-dashed yellow, and expression (74) in solid green. The right-hand graph shows the sum of all three
exponents. Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of e-foldings until the end
of inflation as N = n, — n, where n, is the total number of inflationary e-foldings.
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FIG.9. Numerical values of exp;(n) and exps(n) for the model of Fig. 5. The left-hand graph gives separate results for expression (73)
in dashed blue, and expression (75) in solid yellow. Note that exps(n) is responsible for correcting the small, systematic underprediction
of the slow roll approximation before and after the feature. The right hand graph shows the sum. Recall that 7 is the number of e-foldings
Jfrom the start of inflation and that it relates to the number of e-foldings until the end of inflation as N = n, — n, where n, is the total
number of inflationary e-foldings.

To just reconstruct the Hubble parameter there is no need
to include the correction exponents (71)—(75). Using only
the leading slow roll terms gives,

h*(n) 1

— 2 = —
5(n) = )= T

(76)

Even for the power spectrum of Fig. 6 the reconstruction of
h(n) given by expression (76) is barely distinguishable
from the left-hand graph of figure 5.

Not all the exponents (71)—(75) are equally important.
Figures 8 and 9 show that the set of exp; (n), exp,(n), and
exps(n) are about ten times larger than exps;(n) and

()
log| ——
&(n)

-4.0

‘ I I I I I n

170 172 174 176 178

exps(n) for the model of Fig. 5. That reconstructing
features indeed requires the three large exponents is
apparent from Fig. 10. Taking the logarithm of (70) and
moving the three large exponents to the left gives,

[1+G(1)9,] In[e(n)]
- A " dm(33, +30,,) Infe(m)] x G(e"~")

= —In[5(n)] + 2In[h(n)] + exps(n) + exps(n). (77)

This becomes a linear, nonlocal equation for In[e(n)] if we

drop exps(n) and exps(n) and use expression (76) for the
Hubble parameter,

(]
log| ——
&(n)

-4.0

e

L L L Il L L L Il L L L Il L L L Il L L L Il n
! 170 172 174 176 178

FIG. 10. Various choices for the left-hand side of the first pass reconstruction equation for the model of Fig. 5. The left-hand graph
shows the first pass source — In[5(n)] + 2 In[A(n)] in solid blue with In[e(n)] overlaid in dashed yellow. The poor agreement between the
two curves is why using just In[e(n)] as the left hand side of the first pass reconstruction fails to converge when features are present. The
right-hand graph shows the much better agreement between the same source (solid blue) and Inf[e(n)] — exp; (n) — exp,(n) — expy(n)
(dashed yellow). Recall that n is the number of e-foldings from the start of inflation and that it relates to the number of e-foldings until
the end of inflation as N = n, — n, where n, is the total number of inflationary e-foldings.
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[1+G(1)9,]Infe(n)]

_ / " dm|32, + 30,,) Infe(m)] x G(em")

0

= —In[5(n)] —1“[1 + A%]

(78)

The linearity of Eq. (78) means that it can be solved by a
Green’s function, in spite of being nonlocal. The required
Green’s function becomes a symmetric function of its
arguments if we note from Fig. 3 and expression (50) that
G(e"™) is essentially zero more than about N ~4 e-
foldings before horizon crossing. The Green’s function
equation is,

[1+G(1)9,]G(n)
- /_ N dm (32, +30,,)G(m) x G(e™™") = 6(n).  (79)

We can solve (78) by integrating against the source on the
right-hand side,

Infe(n)] = A ” dmG(n — m) x Source(m).  (80)

This might be regarded as the first pass of an iterative
solution to (77). After the first pass solution of (78) one
would use the resulting Infe(n)] to construct i(n) and to
evaluate exp;(n) and exps(n) on the right-hand side of
(77). Then the same Green’s function solution (80) could be
used with this more accurate source to find a more accurate
In[e(n)], which would lead to a more accurate source, and
SO on.

We are not able to solve (79) exactly owing to the factor
of G(e™™") inside the integral. Consideration of Fig. 3

Log(eln))

—43f

FIG. 11.

" " " " 1 " " " 1 n
170 172 174 176
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suggests that this troublesome factor might be approxi-
mated as a square wave of width A = 0.8,

G(e"™) ~ G(1)8(n — m — A). (81)

Making the approximation (81) leads to a still-nonlocal
equation,

(9, +3)Go(n — A) — aGo(n) = % o= _ﬁ
(82)

The “retarded” solution to (82) which avoids exponentially
growing terms is,

}’l

Go(n

@Eﬂs

ae>(n+ (£ +1)48)]"

HA).

Figure 11 shows the result of using just Gy(n) to reconstruct
In[e(n)] with the source taken as the right-hand side of (78).

Further improvement requires a better approximation for
the Green’s function G(n). It is instructive to take the
Laplace transform, restoring the second argument of the
Green’s function,

( ( + (83)

A

G(s;m) = (84)

/oo dne™"G(n —m).
0

The Laplace transform of the Green’s function Eq. (79) is,

[14+G(1)s —(s+3)s xZ(s)]g (s m)=-e", (85)
where we define,
Log(eln])
-4.3;
[ 2
-4.4;
f .
451 H
1 1
1 \
1 1
46l / \
/ \
I, \\/" -
/
47k >
-
ST L L I L L L I L L L L n
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These graphs show numerical reconstructions of Infe(n)] for the power spectrum of Fig. 6. The solid blue line of the left hand

graph shows the exact result while the yellow dashed line gives the result of integrating Gy (n — m)—using the first six terms of the sum
over 7 in expression (83)—against the first pass source on the right-hand side of (78). The right-hand graph shows the result of adding
the first order improvement G, (n — m)—computed using the first four terms of the sum over m in expression (92). Recall that n is the
number of e-foldings from the start of inflation and that it relates to the number of e-foldings until the end of inflation as N = n, — n,

where n, is the total number of inflationary e-foldings.
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FIG. 12. The solid blue line of the left hand graph shows a numerical evaluation of the integral Z (s) of expression (86). The Oth order
approximation Z(s) of expression (87) is overlaid in large dots. The solid blue line of the right-hand graph shows the deviation
AZ(s)=Z(s) —Zy(s). Our fit Z,(s) of expression (88) is overlaid in large dots.

I(s) = / ® dtest x G(e?). (86)

0

The problem of approximating G(n —m) is therefore
related to the one of approximating (86), and of recognizing
the resulting inverse Laplace transform of G(s; m). Making
the approximation (81) in (86) gives,

@ [1— e8],

Zo(s) = <

(87)

Figure 12 reveals that this is indeed a good approximation.
Figure 12 also shows that the small residual is well fit by
the function,

0.154

R sin[1.76(1 — e~0-262(s=3.78))],
N .

Zi(s) = (88)

To obtain the first correction to Gy(n — m) we begin by
expanding G(s; m) in powers of Z(s),

Q(S; m) = G()[(s+3)e™™ —a —s(s + 3)I,(s)’ (89)
B oS N s(s +3)Z;(s)e™ i

G([(s+3)e ™ —a]  G*(D)[(s+3)e™> —a]> 7

(90)

= Go(s;m) + Gy (s;m) + (91)

We can recognize the inverse Laplace transform by
expanding Z(s),

sin[b — be=¢(s+4)]

(s +e)?
a ) = (=1
= in(b be—c(s+d)]2m
(s+e)2{s ( )mZ:O(2m)![ )
. -” (84 m+
_cos(b);)(zsnjl)'[b —c(s+d)]2 1}_ (92)

Figure 11 shows the effect of using Gy(n—m)+G,(n—m)
to solve Eq. (78) approximately for In[e(n)].

Figure 11 shows that additional improvements are
needed before our technique gives good results for
0, Infe(n)] when features are present. However, our results
for e(n) are already reasonable, and those for h(n) are
staggeringly accurate. For the model of Fig. 5 the largest
percentage error on in reconstructing ¢(n) is 2.2%, and the
percentage error for 2(n) never exceeds 0.04%. This seems
considerably better than the general slow roll approxima-
tion [34], or techniques based on local expressions [35]. A
recent proposal based on inverse-scattering [36] reports
percentage errors of h(n) of as much as 2% for flat
potentials, and up to 9% when features are present.

It is significant that our Green’s function G(n —m)
depends only on the difference of its arguments, and we
just need it over a range of about ten e-foldings. Further, its
Laplace transform is defined by relations (85)—(86).
Figure 12 shows that there is only a single, simple pole
on the real axis, somewhat below s = 3. If nothing else
worked we could therefore evaluate Z(sy + iw) numeri-
cally for some sy > 3 and then numerically compute the
inverse Laplace transform,

G(n—m) L/00 dwe ot NG (s, + iw;m).  (93)

271 ) _o

No matter how time-consuming the computation proved, it
would only need to be done once.
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VI. EPILOGUE

As the title suggests, this paper gives final expression to
our formalism for finding the tree order power spectra by
evolving the norm-squared mode functions [20]. Considered
purely as a numerical technique this is more efficient than
evolving the mode functions because it avoids keeping track
of the rapidly fluctuating phase, and because it converges
about twice as fast. Nor is anything lost because the phase
can be recovered through expressions (10) and (20). Our
formalism applies not only to single-scalar inflation but also
to any conformally related model, such as f(R) inflation
[22], whose power spectra are numerically identical.

Section II reviews our formalism, and explains how to
factor out arbitrary approximate solutions (12) and (22).
Section III then specializes to what we believe are the best
choices (30)—(31) for these approximate solutions. Our results
(3)—(4) for the power spectra are exact at this stage, with the
nonlocal correction exponents z[e|(k) and o[e](k) given
by (35).

Section V makes the approximation that e(n) is small, and
that nonlinear effects can be dropped in the Egs. (12) and
(22) for the residuals. This results in wonderfully simple,
analytic approximations (63)—(64) for how the nonlocal
correction exponents depend upon ¢(n). Figures 6 and 7
exhibit the accuracy of these formulas, even for the model of
Fig. 5 which has prominent features. Figure 6 also demon-

strates that the local slow roll approximation—A% (k) =
GH?

< C (e; )—breaks down badly when features are present,

and that it systematically underestimates A% (k) even for
models without features. The unmistakable conclusions are

(1) That quantitative accuracy requires the nonlocal

correction exponents z[¢|(k) and ole](k); and

(2) That our approximations (63)—(64) are valid for any

model which is consistent with the bounds on r and
on the limits of possible features.

Section V explains how our approximation (64) can be
used to reconstruct the geometry from the power spectra.
(The scalar and its potential can be recovered from the
formulae of footnote 1.) Further improvements are needed
for accurate reconstructions for derivatives of the first slow
roll parameter, but the undifferentiated parameter is accu-
rate to £2.2% and our errors for the Hubble parameter
never exceed 0.04%. This seems much better than other
techniques [34-36].

Our formalism has many applications because it gives
explicit, analytic and accurate approximations for how the
power spectra depend functionally on the geometry of
inflation. For example, our expressions (3)—(4) imply an
exact relation for the tensor-to-scalar ratio,

r(k) = 16¢; exp|—ole] (k) + z[e] (k)] (94)

with no local, slow roll corrections. It should be an
excellent approximation to drop z[e](k) and employ the
analytic approximation (64) for o[e](k).

PHYSICAL REVIEW D 96, 103531 (2017)

We have already mentioned the necessity of including
the nonlocal correction exponent cle](k) to correctly
describe features. Our analytic approximation (64) facili-
tates precision studies, limited by the accuracy of the data
rather than by the cumbersome connection to theory. For
example, the model of Fig. 5 was proposed [28,29] to
account for the deficit in the scalar power spectrum at
¢ ~ 22, and the excess at £ ~ 40, which are visible in the
data reported from both WMAP [27,30,31] and PLANCK
[32,33]. From Fig. 6 we see that the resulting power
spectrum indeed has a deficit at n = 172.3, followed by
an excess at n ~ 172.8. However, there are weaker features
atn =~ 173.2 and n = 173.5. Do the data show any evidence
for these weaker features? If not, to what degree does their
absence rule out the model of Fig. 57 And what sort of
model do the data actually support?

A particularly exciting application of our formalism is to
exploit the control it gives over how the mode functions
depend upon e(n) to design a new statistic to cross-
correlate features in the power spectrum with non-
Gaussianity. This has already been proposed in the context
of models with variable speed of sound [37,38], and
developed numerically [39], but it can now be done
analytically for simple scalar potential models. Of course
the idea is that non-Gaussianity measures self-interaction,
which is what a step in the potential provides. There may be
an observable effect which is not resolvable by generic
statistics but could be detected by a precision search.

Another application concerns the far future, after the
tensor power spectrum has been well resolved. Our analytic
approximations (63)—(64) quantify how the same deriva-
tives of the first slow roll parameter lead to deviations from
the local slow roll predictions for the tensor and scalar
power spectra. Figure 6 shows that these deviations are
strongly present in A% (k) for models with features. The
associated tensor features are much weaker, but they can
just be made out in Fig. 7. Demonstrating this correlation in
the data would represent an impressive check on single-
scalar inflation.

In the even farther future it may be possible to resolve
one loop corrections [23]. Comparing these with theory
obviously requires a precision determination of the tree
order effect, which is of course possible once the model of
inflation has been fixed. However, one also needs to be able
to extract the potentially large factors of 1/¢(n) from the ¢
propagator, and our formalism is ideal for that.
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