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The Starobinskymodel of modified gravity suggested to explain dark energymay also be considered in the
astrophysical context. Recently it has been pointed out that in contracting regions curvature oscillations
around the general relativity (GR) value may lead to the production of high energy particles that contribute
to the cosmic ray flux. We revisit these calculations in the Einstein frame and show that the continuous
approximation for thematter density used in the original calculations is not valid.We show that this problem is
generic inFðRÞ-gravity models introduced to describe the dark energy.We go beyond the approximation and
find the rate of particle production to be negligible.
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I. INTRODUCTION

Theories of modified gravity have been suggested as
models capable of explaining the accelerated expansion of
the present Universe. The model of FðRÞ gravity proposed
by Starobinsky [1] successfully describes an evolution of
the late-time Universe imitating the cosmological constant.
The corresponding action for gravity reads

S ¼ −
M2

P

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ FðRÞÞ; ð1Þ

where the reduced Planck mass MP is expressed via
the Newtonian gravitational constant GN as follows
MP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π=GN

p ¼ 2.4 × 1018 GeV, and

FðRÞ ¼ λR0

��
1þ R2

R2
0

�−n
− 1

�
−

R2

6m2
: ð2Þ

Here m is the maximal mass of additional scalar degrees
of freedom, scalaron, that appears in FðRÞ gravity, and
parameter R0 fixes the scale of energy density associated
with the cosmological constant ρΛ at present, when the
Hubble parameter equals H0 ¼ 1.45 × 10−42 GeV,1

R0 ¼ −
2

λ

ρΛ
M2

P
¼ −

6ΩΛH2
0

λ
; ð3Þ

with ΩΛ ≡ ρΛ=ρc and critical energy density ρc determined
by the Friedman equation,

3M2
PH

2
0 ¼ ρc: ð4Þ

The main question is how to distinguish FðRÞ gravity
from the cosmological constant and other dark energy
models. One way is to probe the dark energy equation of

state: FðRÞ gravity may predict dark energy with a time-
dependent and even phantom pressure-to-density relation
(see, e.g., [2–4] for reviews). Another way is to look for
possible observable effects in astrophysics.
FðRÞ gravity is equivalent to the usual gravity and an

additional scalar field with a nontrivial potential and
coupling to matter fields. In papers [5,6] it was pointed
out that, in space regions with rising matter density,
growing curvature oscillations decay into high energy
particles, thus contributing to the cosmic ray spectrum.
These oscillations are oscillations of the classical scalaron
field. In this paper we address a question: where do these
scalaron oscillations come from? Usually, a scalar field
oscillates around minimum if for some reason it is shifted
or pushed from the vacuum. In papers [5,6] the initial
amplitude of the oscillations is arbitrary while actually
there is no arbitrariness because the history of the expand-
ing Universe exactly defines the initial conditions for the
scalaron field. Namely, the scalaron, being massive in the
early Universe, decays to the standard model particles
providing the absence of scalaron excitations at the present
time. However, scalarons may be produced through the
quantum processes [7]. We show below that numerical
estimates in [5,6], performed for the adopted there initial
conditions, correspond to a very unrealistic situation of
huge number density (and noticeable energy density) of the
present scalaron configuration.
Actually, as it was noticed in [5], the oscillations arise

even if the field is adiabatically settled in the vacuum
because the scalaron minimum itself moves with rising
density. However, this oscillation source leads to para-
metrically smaller amplitudes than those considered in
[5,6] for relatively large densities. For matter densities
close to the present dark energy (and for parameters in a
particular region) the oscillations might contribute a notice-
able amount to the energy density of the Universe (this1This simple relation is valid for λ ≫ 1.
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situation, if realistic, needs a special study). However, this
energy density does not release as high energy particles.
We revisit calculations of [5,6] and obtain that the used
approximation of homogeneous matter and the scalaron
field does not work in the region where significant particle
production was predicted. We go beyond these approx-
imations and estimate the realistic flux of produced cosmic
rays to be negligible. Although we study only a particular
model of FðRÞ gravity, the considered effects are expected
to be generic for the FðRÞ models aimed at describing the
dark energy [3]. Such models provide the scalaron potential
whose form depends on the background matter density.
This leads to the scalaron oscillations entering the highly
nonlinear regime in which the homogeneous description
can be invalid.

II. SCALARON DENSITY IN
CONTRACTING OBJECTS

Classical oscillations of the scalaron field ϕ may be
described in terms of the scalaron condensate, and the
number density of scalarons nϕ is defined through the
amplitude of oscillations as [8]

nϕ ¼ ωhϕ2i: ð5Þ

Here ϕ is a canonically normalized scalaron field, and ω
is the energy of each particle in the condensate, i.e., the
scalaron effective mass. It depends on the surrounding
matter density ρm as [7]2

ω ¼ H0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nλð2nþ 1Þp

�
ρm
ρc

�
nþ1

�
λ

2ΩΛ

�
nþ1=2

: ð6Þ

While an astrophysical object (i.e., halo) contracts, ρm
grows. In [5,6] matter density ρm changes linearly with time
as ρm ¼ ρm0ð1þ t=tJÞ for t < tJ with tJ being the Jeans
time of contraction.
The scalaron field is related to the scalar curvature and

may be defined through the derivative F0ðRÞ≡ dF=dR as

ϕ¼
ffiffiffi
6

p

2
MP logð1þF0ðRÞÞ≈

ffiffiffi
6

p

2
MPF0ðRÞ: ð7Þ

The equations of motion for action (1) provide the equation
of motion for the scalaron. It is convenient to write this
equation in terms of dimensionless variables, which first
was done in [9]. Later calculations in [5,6] are performed in
terms of variable ξ connected with the scalaron field ϕ as
follows:

ξ¼−
1

2λn

�
ρm0

M2
PR0

�
2nþ1

F0ðRÞ¼−
1

2λn

�
λρm0

2ΩΛρc

�
2nþ1

F0ðRÞ:

ð8Þ

The equation of motion for ξ that defines the time
dependence of the scalaron field reads [5]

ξ00 þ ρm
ρm0

− y ¼ 0; ð9Þ

where y ¼ yðξÞ is obtained from the equation3

1

y2nþ1
−gy¼ ξ; g≡ H2

0

2nλm2

�
ρm0

ρc

�
2nþ2

�
λ

2ΩΛ

�
2nþ1

:

ð10Þ

Primes in (9) correspond to the derivatives with respect
to dimensionless time τ≡m

ffiffiffi
g

p
t, and numerically g ≪ 1.

The scalaron field ϕ may be expressed in terms of
function ξ by using (7) and (8),

ϕ ¼
ffiffiffi
6

p
λnMP

�
2ΩΛρc
λρm0

�
2nþ1

ξ: ð11Þ

As is shown in the paper [5] when initial conditions
expected in general relativity are imposed, y ¼ 1 (which
implies the scalaron is in the minimum of the potential), the
amplitude of ξ oscillations becomes

δξ ¼ ðκ − y00Þð2nþ 1Þ3=2;

κ ¼
ffiffiffiffiffiffiffiffi
6λn

p �
ρm0

ρc

�
−n−1=2

�
λ

2ΩΛ

�
−n−1=2

: ð12Þ

Here (in the limit of small g) y00 is proportional to the
derivative of curvature R and is considered as a free
parameter in [5]. Since the case of y00 ¼ κ is recognized
in [5] as fine-tuning, the initial amplitude is found to be
of order δξ ¼ κð2nþ 1Þ3=2. Putting all things together we
obtain the initial energy density of the scalaron condensate,

ρϕðt¼ 0Þ¼ hϕ2iω2ðt¼ 0Þ

¼ 9λ2n2ð2nþ1Þ2M2
PH

2
0

�
2ΩΛ

λ

�
4nþ2

�
ρc
ρm0

�
4nþ1

:

ð13Þ

Accounting for the Friedman equation (4) we estimate for
the set of parameters considered in [5] (n ¼ 2, λ ¼ 1,
κ ¼ 0.04) the initial scalaron energy density

ρϕðt ¼ 0Þ ¼ 1.5 × 10−4ρc; ð14Þ

2This dependence is valid until ω ≪ m. In the opposite limit
ω ≈m.

3Here we use the value of R0 defined by (3); in [5] it is taken
approximately as R0 ¼ −1=t2U with tU being the Universe age.
This results in different dependence of g on λ and ΩΛ, as
compared to [5], which is not important, however.
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which actually exceeds the radiation energy density at
present. However, one cannot expect such a large contri-
bution of scalarons because less than one particle inside the
horizon may be created in the present (or recent) Universe;
see [7]. Scalarons created in the very early Universe were
very heavy (with mass m) and hence decayed to the
Standard Model particles. So the initial conditions in [5]
seem to be irrelevant.

III. RELEVANT INITIAL CONDITIONS
FOR SCALARON FIELD

When density changes in a contracting object, the form
of the scalaron potential changes: its minimum goes closer
to ϕ ¼ 0 and its mass rises. The initial condition y00 ¼ 0 in
[6] implies that the scalaron at t ¼ 0 is put into the moving
minimum with zero “velocity.” But actually we should
expect that at t < 0 (i.e., before the contraction starts) there
were no excitations and the scalaron was in the vacuum
state. Also we should propose that in the real situation the
contraction starts in a smooth way providing the adiabatic
evolution near t ¼ 0 [7] and oscillations should be excited
with the minimal possible amplitude. In what follows it is
convenient to introduce dimensionless time τ ¼ t=ðκtJÞ,
where tJ is the Jeans time, and new variables

ξ̄ ¼ ξ − ξmin; ð15Þ
where

ξmin ¼ ð1þ κτÞ−ð2nþ1Þ: ð16Þ
So the adiabatic solution of the scalaron equation of
motion derived in [5],

ξ̄00 þ Ω2ξ̄ ¼ −ξ00min; ð17Þ
with such (zero) initial conditions that at t ¼ 0 one has
ξ̄ ¼ 0, ξ̄0 ¼ 0 looks to be the closest to the realistic physical
situation. Here we use notations of paper [5],

Ω≡ ð1þ κτÞnþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p ; ð18Þ

and primes correspond to derivatives with respect to τ.4

Note that the source in the right-hand side of (17) even
with zero initial conditions leads to oscillations of ξ̄. The
adiabatic solution of (17) may be obtained by the standard
technique in the form

ξ̄ ¼ −ξ1
Z

ξ2ξ
00
mindτ þ ξ2

Z
ξ1ξ

00
mindτ; ð19Þ

where

ξ1 ¼
1ffiffiffiffi
Ω

p sin
Z

Ωdτ; ξ2 ¼
1ffiffiffiffi
Ω

p cos
Z

Ωdτ: ð20Þ

The solution (19) may be rewritten in the form [cf. Eq. (12)
of Ref. [5]]

ξ̄ ¼ αðτÞ sin
�Z

Ωdτ þ δðτÞ
�
: ð21Þ

After some calculations one finds the amplitude αðτÞ of
generated oscillations in the limit of small κ ≪ 1,

αðτÞ≃ Cnκ
2ð1þ κτÞ−nþ1

2 ;

Cn ¼ 2ðnþ 1Þð2nþ 1Þ2: ð22Þ
This result corresponds to the initial amplitude of

oscillations equal to α0 ¼ Cnκ
2, not of order κ as it is

proposed in [5]. We obtain a parametrically smaller
amplitude for matter densities much larger than the critical
one ρm0 ≫ ρc, which are relevant for the astrophysical
processes (star and galaxy formation). In the Appendix we
find the oscillation amplitude for a more realistic Tolman
model of spherical contraction in the expanding Universe.
If the initial conditions are set in the early Universe, well
before the moment when the contraction starts, one obtains
a much stronger (exponential) suppression of the scalaron
oscillations for small enough κ. The evolution of the
scalaron turns to be adiabatic in this limit.
However, for matter densities close to the critical one

(cosmological processes), ρm0 ∼ ρc, the amplitude of oscil-
lations may still be large [see Eq. (11)], providing a
significant contribution to the energy density of the
Universe (13) for some choice of parameters: e.g., n ¼ 2
and λ ≈ 1. In this region of model parameter space the
detailed analysis of theoretical consistency and phenomeno-
logical and cosmological viability of the FðRÞ model is
needed.
As noted in [5,6] scalaron oscillations may produce

massless particles. But when ξ > 0 [regular region; see
Eqs. (10) and (9)] the process cannot be efficient because
of a very small effective scalaron mass. We show this using
the approximation of the decaying scalaron condensate,
which works perfectly well in the regular region. The
scalaron density for the amplitude (22) is of order

ρ ∼M2
PH

2
0

�
ρm0

ρc

�
−6n−2

: ð23Þ

We use the scalaron decay width to (massless) gauge
bosons from [10], Γ ∼ ω3=M2

P, and estimate the energy
density of particles created by scalaron oscillations during
the Universe lifetime as

ρp ∼
ρΓ
H0

¼ H4
0

�
ρm0

ρc

�
−3nþ1

; ð24Þ

which in any case means less than one particle in a horizon-
size region. The reason here is clear, since ω ∼H0, the

4We treat maximal scalaron mass m as being very large
compared to the scale of cosmological constant, so the parameter
g used in [5] may be set to zero in this case.
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scalarons are stable at the cosmological time scale,
Γ ∼H0ðH0=MPÞ2 ≪ H0. A similar result has been obtained
in [6].
Only if ξ becomes negative (in a spike region as it is

called in [6]) may its effective mass increase because the
scalaron potential at negative ϕ may be very steep. One
observes from (12), (15), (16), (22) that the spike region
can be reached on the Jeans time scale only for matter
densities ρm close to ρc, and hence is relevant only for the
recent cosmic structure formation.
In Sec. IV we estimate the flux of particles produced by

scalaron oscillations in the spike region (ξ < 0).

IV. PARTICLE PRODUCTION IN
THE SPIKE REGION

Hereafter we consider the case of matter densities ρm
close to ρc, which may help ξ to reach negative values. In
this region of parameters the time of contraction is very
large, of order of the Universe age, and the contraction has
been started not long ago. So we are interested in the
evolution only until tJ, and for that time one has Ωκt≲ 1
[see Eq. (18)], and ξ reaches negative values only once
or twice each time producing a spike in the solution for
curvature [5,6]. Below we estimate the particle production
during one spike.
Homogeneous oscillations of the classical scalaron field

may produce nonconformal particles, and production of
scalars minimally coupled to gravity is the most efficient
[11]. The scalaron is coupled to scalar field h through the
kinetic mixing in Lagrangian [11]

Lint ¼
hffiffiffi
6

p
MP

∂μϕ∂μh: ð25Þ

This coupling modifies the equation of motion for h,

∂μ∂μhþ
�

ϕ̈ffiffiffi
6

p
MP

þm2
h

�
h ¼ 0; ð26Þ

wheremh is the scalar mass. The scalaron field here plays a
role of the external force producing particles h. The number
of produced particles may be estimated by making use of
the Bogoliubov transformations. From Eq. (26) one obtains
for the Fourier mode hk of 3-momentum k,

ḧk þ ðk2 þm2
effðtÞ þm2

hÞhk ¼ 0; ð27Þ
where m2

effðtÞ ¼ ϕ̈=ð ffiffiffi
6

p
MPÞ.

Note that the spikes correspond to the negative values ofϕ
and in that region the scalaron mass is maximal, so one has
ϕ̈ ¼ −m2ϕ during the spike. The maximum value of jϕmj
may be extracted from the maximum jξmj estimated in [5],

jϕmjffiffiffi
6

p
MP

¼ N
H0

m

�
ρm0

ρc

�
−n
z−n1 ;

N ¼
ffiffiffi
λ

2

r �
2ΩΛ

λ

�
nþ1=2

: ð28Þ

Here z1 ≡ 1þ t1=tJ where t1 corresponds to the moment
when ξ crosses zero for the first time: αðτ1Þ ¼ ξminðτ1Þ. Note
that for the case we consider the variable z is in the interval
1 < z1 < 2, so we put it to be z1 ¼ 1 hereafter having in
mind an upper bound. Then the maximum possible value of
m2

effðtÞ is

M2 ¼ NmH0

�
ρm0

ρc

�
−n
: ð29Þ

If we approximate the spike by the Gaussian form with
height of M and width of 1=m, we obtain formally that the
spectrum has a cutoff at high momenta of order m. The
calculation shows that high energy particles with number
density of order np ∼M4=m are produced by spike, in
agreement with the statement of Ref. [5].
Since production of such energetic particles in a slow

and smooth process of contraction looks very surprising
from any point of view, it is needed to check the validity
of all approximations in use. The approximation that is
certainly doubted is the homogeneous energy-momentum
tensor for the background matter. If one considers a set of
discrete particles instead of a continuous medium, one
obtains that they produce the scalaron field like point
sources. Every particle produces the field ξ ∝ e−ωr=r like
the usual massive scalar with mass ω. If the average
distance d between particles is large, d ≫ 1=ω, then the
scalaron field is strongly inhomogeneous and approxima-
tion used for the energy-momentum tensor is not valid.
In this case we expect that the energetic particle

production may still take place only in the small vicinities
of the point sources, i.e., in very small spherical regions
of radius 1=m. Therefore, the total number of produced
particles is suppressed by a very small number n=m3 where
n is the matter number density. For the energy density we
get the estimate

ρ ∼
M4n
m3

¼ N2ρm0

H2
0

m0m

�
ρm0

ρc

�
−2n

; ð30Þ

where m0 is the mass of the particle populating the con-
tracting object (region). For the interesting astrophysical
objects and any regions dominated by baryons one puts
m0 ∼ 1 GeV. Then for the close to critical density and
the scalaron mass m ∼ 1013 GeV we obtain ρ ∼
10−92 GeV=cm2 s which is too small a number to talk about.
Note in passing, though we discussed the particle pro-

duction from one spike, the consideration of a sequence
of several spikes does not significantly change the result.
Another comment concerns the contractionof the darkmatter
dominated region. To the case of particlelike dark matter
(e.g., weakly interaction massive particles) the estimate (30)
is applicable with m0 referring to the dark matter particle
mass. Say, for the galactic dark matter particle heavier than
1 eV the size of its wave packet (de Broglie wavelength
corresponding to the average velocity 10−3) is smaller than
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the distance between particles; hence the homogeneous
description fails. This problem is expected to be generic
for FðRÞ gravity models constructed to describe the dark
energy. Typically, the effective scalaron mass can vary with
the backgroundmatter density bymany orders ofmagnitude.
This happens because FðRÞ functions contain two different
mass scales: the present day Hubble parameter and the
maximal scalaron mass, which must be introduced to avoid
singularities [12]. The latter is bounded from below as
m≳ 105 GeV [13]. Therefore, the scalaron degree of free-
dom can possess the similar dynamics including the non-
linear oscillations (spike region). In this region the validity of
the homogeneous description is questioned. Note that the
same problem is also inherent in chameleon models [14,15].
The case of the homogeneous oscillating scalar field (e.g.,

axionlike) playing the role of the dark matter is actually
inconsistent with the stability of the studied in [5,6] FðRÞ-
gravity (2). This model is known to be well defined only for
R≳ R0 [12]. For lower values of R the scalaron degree of
freedom behaves as a tachyon. If the scalar field condensate
dominates, then the trace of the energy momentum tensor
oscillates reaching negative values, bringing the curvature to
the region of instability. The same problem arising at the
stage of inflaton oscillations was considered in detail in [12]
(see Sec. IV. A of that paper). This problem can be avoided
with an appropriate choice of the function FðRÞ. However,
we expect the scalaron dynamics to be strongly affected by
the oscillating condensate. The corresponding effects need a
special study that is beyond the scope of this paper. To
conclude, the homogeneous approximation for the matter, as
well as the results of [5,6] for the efficient cosmic ray
production in the spike region, are invalid for a generic dark
matter model of this type.
To summarize, we have shown that contracting objects

made of baryons or dark matter particles in FðRÞ gravity do
not contribute to the cosmic ray spectrum via the decay of
the scalaron oscillations.
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APPENDIX: THE REALISTIC MODEL FOR THE
JEANS CONTRACTION DURING THE

STRUCTURE FORMATION

A structure formation process starts at the matter
dominated stage. In the linear regime small perturbations
grow as δρ=ρ ∝ a ∝ t2=3. When δρ=ρ reaches unity, the
nonlinear contraction starts. For the spherically symmetric
perturbations, the smooth transition between these two
regimes may be approximately described by the Tolman
solution [16],

t ¼
ffiffiffi
3

8

r
tJðζ þ sin ζÞ; ρm ¼ 8ρm0

ð1þ cos ζÞ3 : ðA1Þ

Here tJ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρm0

p
. The moment t ¼ 0 corresponds to

the time when the density starts to grow. This solution
has two singularities: in the past and in the future. The
singularity in the past corresponds to the big bang while
the singularity in the future at ζ ¼ π=2 is never reached for
real objects. Clearly, the solution is valid only for t≲ tJ.
The motivated initial conditions on the scalaron field

must follow from the fact that all scalarons (if ever
produced) had been decayed well before the matter
dominated stage started. Therefore, the scalaron had been
placed to the minimum and moved together with it
adiabatically before the Jeans contraction started. Here
we show that the resulting amplitude of scalaron oscil-
lations is strongly suppressed compared to the case when
the vacuum initial conditions are set at the moment when
the contraction starts.
We numerically solve both Eqs. (9) and (10) for the

Tolman model of density evolution (A1). As it was done
in [5], we introduce the dimensionless parameter κ ¼
1=ðm ffiffiffi

g
p

tJÞ and present plots for several choices of κ; see
Fig. 1. The larger κ correspond to the smaller minimal
densities ρm0.
One observes in Fig. 1 that for relatively large realistic

values of κ we obtain a larger amplitude of oscillations than
for setting initial conditions at τ0 ¼ 0. But for small κ the
late time oscillation amplitude becomes negligible com-
pared to the case τ0 ¼ 0. For the case τ0 ¼ 0we obtain that
the final amplitude of induced oscillations behaves as κ2

similar to the results of Sec. III. From Fig. 1 (middle and
right panels) it is seen that for a more realistic choice of
τ0 ∼ −1=κ the amplitude drops with κ much faster.
The exponential damping of the discussed effect for the

small scale structures with densities much larger than the
critical one can be understood analytically. The solution (19)
of the linearized equation (17) can be rewritten in the form

ξ̄ ¼ AðτÞ sin
�Z

Ωdτ þ δðτÞ
�
; ðA2Þ

whereΩ is approximated asΩ ¼ ð1þ κ2τ2=6Þnþ1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
for τ < 1=κ.
The amplitude AðτÞ can be calculated as

AðτÞ ¼
����
Z

τ

−∞
dτ1ξ00minðτ1Þ

ei
R

τ1
0

Ωdτ2ffiffiffiffi
Ω

p
����: ðA3Þ

The oscillations are generated near τ ¼ 0. For τ > 1=κ
the impact of the source ξ00min becomes negligible so the
amplitude is actually the same as in the formal limit τ → ∞.
The latter is given by the integral
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A ¼
����
Z

∞

−∞
dτ1ξ00minðτ1Þ

ei
R

τ1
0

Ωdτ2ffiffiffiffi
Ω

p
����

¼
����
Z

∞

−∞
dτ1

ei
R

τ1
0

Ωdτ2PðκτÞ
ð1þ κ2τ2=6Þα

����; ðA4Þ

where PðκτÞ is some polynomial function,
α ¼ ð5nþ 7Þ=2. Calculating this integral with residues
one finds the main exponential dependence,

A ∝ e−
βðnÞ
κ ; βðnÞ ¼

ffiffiffiffiffiffi
6π

p
Γðnþ 2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Γðnþ 5=2Þ : ðA5Þ

Thus, for small κ oscillations are strongly suppressed,
in agreement with the numerical calculations presented
in Fig. 1.
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FIG. 1. These plots show the evolution of ξ − ξmin for κ ¼ 0.08 (left), κ ¼ 0.03 (middle), and κ ¼ 0.01 (right). The blue line
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DMITRY GORBUNOV and ANNA TOKAREVA PHYSICAL REVIEW D 96, 103527 (2017)

103527-6

https://doi.org/10.1134/S0021364007150027
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1140/epjc/s10052-012-2247-z
https://doi.org/10.1140/epjc/s10052-012-2247-z
https://doi.org/10.1103/PhysRevD.88.024035
https://doi.org/10.1103/PhysRevD.88.024035
https://doi.org/10.1134/S1063776115030085
https://doi.org/10.1134/S1063776115030085
https://doi.org/10.1016/j.physletb.2011.05.030
https://doi.org/10.1016/j.physletb.2011.05.030
https://doi.org/10.1088/1475-7516/2013/12/021
https://doi.org/10.1088/1475-7516/2013/12/021
https://doi.org/10.1016/j.physletb.2011.04.067
https://doi.org/10.1016/j.physletb.2011.04.067
https://doi.org/10.1088/1475-7516/2010/06/005
https://doi.org/10.1088/1475-7516/2010/06/005
https://doi.org/10.1088/1475-7516/2012/02/049
https://doi.org/10.1088/1475-7516/2012/02/049
https://doi.org/10.1088/0264-9381/30/21/214004
https://doi.org/10.1088/0264-9381/30/21/214004
http://arXiv.org/abs/1709.09071

