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We derive the decay rate of a gauged Q-ball into fermions, applying the leading semiclassical
approximation. We find that more particles come out from the surface of a gauged Q-ball, compared to the
case of a global Q-ball, due to the electric repulsion. We show, however, that the decay rate of a gauged
Q-ball is bounded from above due to the Pauli blocking at the surface of the Q-ball, just as in the case
of a global Q-ball. We also find that there is a further suppression due to the Coulomb potential
outside the Q-ball, which we find to play the role of a potential barrier for the fermions coming from the
inside the Q-ball.
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I. INTRODUCTION

It is known that in the minimal supersymmetric standard
model (MSSM), the baryon asymmetry in our universe can
be generated by Affleck-Dine mechanism [1,2], which
produces a scalar field condensate with baryon number. In
many models, such as the gauge mediated SUSY breaking
models, the spatial inhomogeneities of this condensate due
to quantum fluctuations grow and fragment into nontopo-
logical solitons called Q-balls [3–5], which are defined as
spherical solutions in a global Uð1Þ theory which minimize
the energy of the system with a fixed Uð1Þ charge [6]. In
this case, the baryon number generated in Affleck-Dine
mechanism is confined inside Q-balls, so that the baryon
asymmetry in the universe is generated by baryons emitted
by the decay of the Q-balls.
The Q-balls decay into other particles was first studied

by Cohen et al. [7], who considered the Yukawa theory and
calculated the neutrino pair production rate by leading
semiclassical approximation treating the Q-ball as the
classical background scalar field, where the Q-ball con-
figuration was approximated as a step function. More
realistic configurations are considered in Refs. [8,9]. In
particular, the production rates of quarks and gravitinos
from the Q-balls in supersymmetric theories were derived
in Ref. [9], which can be used to estimate the baryon-to-
dark matter ratio in gauge mediated SUSY breaking
models, where the gravitino is dark matter.
While the Q-ball is a nontopological soliton resulting

from globalUð1Þ symmetry, its generalization to localUð1Þ
symmetry was also proposed. The lowest-energy configu-
ration with a fixed local Uð1Þ charge is called a gauged
Q-ball [10], which consists not only of the scalar field, but
also of theUð1Þgauge field. The properties of gaugedQ-ball
solutions have been studied analytically and numerically in
the literature [10–17], but their decay into other particles has
not been considered. In this paper, we derive the decay rate

of the gauged Q-ball into fermions, applying the leading
semiclassical approximation used in Ref. [7] to the gauged
Q-ball. We assume that the scalar field in the Q-ball couples
to fermions by Yukawa interaction. Since the gauged Q-ball
can be interpreted as the electrically charged Q-ball, the
decay rate into particles with the charge of the same sign
is expected to be enhanced, compared to the case of a global
Q-ball, and we show that this is indeed the case. We also
show that, on the other hand, the decay rate of the gauged
Q-ball is bounded fromabovedue to the Pauli blocking at the
surface of the Q-ball, just as is pointed out in the case of
the global Q-ball [7], and even more suppressed due to the
Coulomb potential outside the Q-ball since it plays the role
of a potential barrier for the fermions coming from the
inside, as we will see later.
The paper is organized as follows. In Sec. II, we review

some basic properties of gauged Q-ball. In Sec. III, we
present the theoretical setup for gauged Q-balls coupled to
the massless fermions and calculate the gauged Q-ball
decay rate into massless fermions by using the leading
semiclassical approximation. Section IV is devoted to the
conclusions.

II. GAUGED Q-BALL

We consider a theory of a complex scalar field ϕ coupled
to a Uð1Þ gauge field Aμ. The Lagrangian density is written
as follows,

L ¼ ðDμϕÞ�Dμϕ − VðϕÞ − 1

4
FμνFμν; ð1Þ

Dμ ≡ ∂μ þ ieAμ; ð2Þ

where VðϕÞ is a scalar potential and Fμν ¼ ∂μAν − ∂νAμ.
We introduce the following ansatz on ϕ,
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ϕðx; tÞ≡ ϕðrÞe−iωt; ð3Þ

which is the same parametrization as that of a global Q-ball.
For the gauge field, we find spatially symmetric solution
with no magnetic field, or no electric current:

A0 ¼ A0ðrÞ; ð4Þ

Ai ¼ 0: ð5Þ

The equations of motion are then given by

d2ϕ
dr2

þ 2

r
dϕ
dr

þ ϕh2 −
dV
dϕ

¼ 0; ð6Þ

d2h
dr2

þ 2

r
dh
dr

− e2ϕ2h ¼ 0; ð7Þ

where we redefined the gauge field to absorb ω as
h≡ −ωþ eA0. We set boundary conditions as

ϕð∞Þ ¼ 0;
dϕ
dr

ð0Þ ¼ 0; ð8Þ

A0ð∞Þ ¼ 0;
dA0

dr
ð0Þ ¼ 0; ð9Þ

especially to avoid singularities at r ¼ 0.
As a scalar potential, we choose a logarithmic potential

VðϕÞ ¼ m4
ϕ lnð1þ jϕj2=m2

ϕÞ, which is motivated by gauge
mediation models. For e ¼ 0, the solution becomes a
global Q-ball, which is called a gauge-mediation-type
Q-ball [18,19]. It is known that this type of Q-ball with
sufficiently large charge has the following approximate
analytic solution:

ϕðrÞ ¼
�
ϕ0 sinωr=ωr; ðr ≤ R≡ π=ωÞ
0; ðr > RÞ : ð10Þ

The angular frequency ω is equal to dE=dQ, which is true
for general Q-ball solutions, and has the following charge
dependence,

ω ¼ dE
dQ

∝ Q−1=4; ð11Þ

which will be useful later. The second derivative of ϕ
becomes singular at r ¼ R, which for actual Q-balls,
becomes a peak of ϕ00ðrÞ. We define the size of a gauged
Q-ball,which is the casee ≠ 0, as the pointwhereϕ000ðrÞ ¼ 0
aswell, even if theprofile is somewhat pushedoutward by the
electric repulsion, as shown in Fig. 1, where the solutions are
obtained by treating ϕð0Þ and A0ð0Þ as input parameters and
finding the configurations which vanish at infinity. Indeed,
we can see that ϕ00ðr ¼ RÞ becomes singular for a large
gauged Q-ball, just as for the global Q-ball, even when the
Coulomb potential has a non-negligible effect on the profile.
Later we consider the case of large gauged Q-balls when we
discuss the saturation of fermion production, where speci-
fying the size of a Q-ball becomes important.
The energy and charge of the gauged Q-ball are given by

E¼
Z

d3x
�
1

2
ð∇ϕÞ2þ1

2
ð∇A0Þ2þ

1

2
ϕ2ðω−eA0Þ2þVðϕÞ

�
;

ð12Þ

Q ¼
Z

d3xðω − eA0Þϕ2; ð13Þ

and the relation ω ¼ dE=dQ holds, just as in the case of a
global Q-ball, whose proof is given in Ref. [12].
We presentω ¼ dE=dQ as a function ofQ in Fig. 2 (left).

We can see that in contrast to the behavior of ω for global
Q-balls, which is denoted by a dashed line,ω increases as the
chargegrows, due to electric repulsionWe also plotCoulomb
energy at the surface of Q-ball, e2Q=4πR by a dotted line,
whose contribution also becomes large as charge grows.

FIG. 1. Examples of profile of the gauged Q-ball of gauge mediation type. The dimensionful parameters are in units ofmϕ. The dashed
line denotes the global Q-ball with the same charge. We see that the profile of ϕ is pushed outward due to the electric repulsion. We can
also see that ϕ00ðr ¼ RÞ becomes singular for a large gauged Q-ball, just as for a global Q-ball, even when the Coulomb potential has a
non-negligible effect on the profile.
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However, we see that the Coulomb energy stays smaller than
ω, due to the growth ofω, and also ofR by electric repulsion,
which we illustrate in Fig. 2 (right).

III. GAUGED Q-BALL DECAY RATES
INTO FERMIONS

In this section, we derive the decay rate of the gauged
Q-ball into fermions, by using the leading semiclassical
approximation, where we treat the gauged Q-ball as the
classical background. We calculate the production rate of
the fermions in the presence of it.
We consider the following Lagrangian,

Lfermion ¼ χ†iσ̄μð∂μ þ iqχeAμÞχ þ η†iσ̄μð∂μ þ iqηeAμÞη
− ðgϕ�χηþ H:c:Þ; ð14Þ

where χ, η areWeyl fermions, which couple toϕ byYukawa
interaction, and σ̄μ ¼ ð1;−σiÞ, where σi are the Pauli
matrices.1 We note that qχ þ qη ¼ 1 must be satisfied due
to the charge conservation. Here we simply set ðqχ ; qηÞ ¼
ð1; 0Þ, which assigns the same sign of charge to χ.
The equations of motion are written as

iσ̄μð∂μ þ iqχeAμÞχ − gϕη† ¼ 0; ð15Þ

iσμð∂μ − iqηeAμÞη† − gϕ�χ ¼ 0: ð16Þ

Since ϕ is time dependent, the following modes mix with
each other.

χ ∝ e−ikþt; ð17Þ

η† ∝ eiðω−kþÞt ≡ eik−t: ð18Þ

If we denote the fourier modes in time as ~χ ¼ ~χðk; rÞ;
~η ¼ ~ηðk; rÞ, then the equations of motion become

ðkþ þ iqχeA0 − iσ · ∇Þ~χ − gϕðrÞ~η† ¼ 0; ð19Þ

ð−k− − iqηeA0 þ iσ ·∇Þ~η† − gϕðrÞ~χ ¼ 0: ð20Þ

First, we consider the case when χ, η are free fields,
whose equations of motion are

ðkþ − iσ ·∇Þ~χ ¼ 0; ð21Þ

ð−k− þ iσ · ∇Þ~η† ¼ 0: ð22Þ

Then, we can write the following expansion of χ; η†,

χ ¼
X
j;m

Z
∞

0

dkþ½ainðkþ; j; mÞe−ikþtuð1Þð−kþ; j; m; rÞ

þ aoutðkþ; j; mÞe−ikþtuð2Þð−kþ; j; m; rÞ
þ terms for antiparticle�; ð23Þ

η† ¼
X
j;m

Z
∞

0

dk−½ð−1Þm−c†inðk−; j;−mÞ

× eik−tuð1Þð−k−; j; m; rÞ
þ ð−1Þm−c†outðk−; j;−mÞeik−tuð2Þð−k−; j; m; rÞ
þ terms for antiparticle�; ð24Þ

using the solution of ðkþ iσ ·∇ÞuðiÞ ¼ 0, which is
defined as

FIG. 2. The plots of ω ¼ dE=dQ and R as functions of Q. We plot those for global Q-balls by dashed lines, for comparison. We see
that ω and R become large as the charge grows, due to the electric repulsion. We also present the Coulomb energy at the surface,
e2Q=4πR, which is denoted by a dotted line in the left figure.

1Here and throughout, we implicitly use the standard way of
treating the spinor indices (see Ref. [20] for example), using the ϵ
matrix (ϵ12¼−ϵ21¼ϵ21¼−ϵ12¼1, ϵ11 ¼ ϵ22 ¼ ϵ11 ¼ ϵ22 ¼ 0)
to transform row into column and vice versa, for instance. The
contraction is defined as χη ¼ ðϵαβχβÞηα.
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uðiÞðk;j;m;rÞ≡ kffiffiffi
π

p ½hðiÞl0 ðkrÞΦðj;m;l0Þ

þ ihðiÞl ðkrÞΦðj;m;lÞ�; ði¼1;2Þ ð25Þ

where ðl; l0Þ≡ ðjþ 1=2; j − 1=2Þ and hðiÞl denote spherical
Hankel functions. Φðj; m; lÞ and Φðj; m; l0Þ are the Pauli
spinors, which are defined as follows:

Φðj; m; l≡ jþ 1=2Þ≡
0
B@

ffiffiffiffiffiffiffiffiffiffiffi
j−mþ1

p ffiffiffiffiffiffiffiffiffiffi
2ðjþ1Þ

p Ym−1=2
l

−
ffiffiffiffiffiffiffiffiffiffiffi
jþmþ1

p ffiffiffiffiffiffiffiffiffiffi
2ðjþ1Þ

p Ymþ1=2
l

1
CA; ð26Þ

Φðj;m; l0 ≡ j − 1=2Þ≡
0
@

ffiffiffiffiffiffiffi
jþm

p ffiffiffiffi
2j

p Ym−1=2
l0ffiffiffiffiffiffiffi

j−m
p ffiffiffiffi

2j
p Ymþ1=2

l0

1
A: ð27Þ

We also used η† ¼ iσ2ðηαÞ�, iσ2uð1;2Þðk; j; m; rÞ� ¼
ð−1Þmþuð2;1Þðk; j;−m; rÞ, where m� ≡m� 1=2.
One may expect that the fermions outside the gauged

Q-ball are described by the solutions above, but the
Coulomb field A0, which behaves as ∼1=r outside the
Q-ball, cannot be neglected compared to the fermions,
which become spherical waves ∼eikr=r, which are asymp-
totic forms of the spherical Hankel functions. However, as
we derive in theAppendix,A0 only gives an additional phase
factor eiqχ;ηe

2Q logð2krÞ to the spherical waves at infinity. Thus,
we can still identify incoming and outgoing wave solutions
as in the previous paragraph, only corrected by the phase
factors.
The coefficients aout, c

†
out can be written as superposi-

tions of reflecting, and transmitting solutions as follows,

aoutðkþ; j; mÞ ¼ Rχðkþ; jÞainðkþ; j; mÞ
þ Tχðkþ; jÞð−1Þm−c†inðk−; j;−mÞ; ð28Þ

ð−1Þm−c†outðk−; j;−mÞ ¼ Tηðk−; jÞainðkþ; j; mÞ
þ Rηðk−; jÞð−1Þm−c†inðk−; j;−mÞ;

ð29Þ

whose coefficients must satisfy the following conditions,

jTχðkþ; jÞj2 ¼ jTηðk−; jÞj2; ð30Þ

jRχðkþ; jÞj2 þ jTχðkþ; jÞj2 ¼ 1; ð31Þ

jRηðk−; jÞj2 þ jTηðk−; jÞj2 ¼ 1; ð32Þ

due to the anticommutation relations of the creation and
annihilation operators.
If we define the vacuum j0ini by ainj0ini ¼ cinj0ini ¼ 0

at infinity, we see that the number of outgoing χ becomes

h0inja†outðkþ; j; mÞaoutðk0þ; j0; m0Þj0ini
¼ jTχðkþ; jÞj2δðkþ − k0þÞδj;j0δm;m0 ; ð33Þ

using Eq. (28), and by summing over the states, the
production rate dQi=dt is calculated as follows,

dQi

dt
¼

X
j¼1=2

Z
ω

0

dk
2π

ð2jþ 1ÞjTiðk; jÞj2; ði ¼ χ; ηÞ;

ð34Þ

where we averaged the particle number over time using
δð0Þ ¼ T=2π. This is the decay rate of the gauged Q-ball
into the particle species i. Note that η with momentum kη
must be produced by the same amount as χ with momen-
tum ω − kη, using Eq. (30), which is due to the relation
dE=dQ ¼ ω of the gauged Q-balls.
The coefficients Ri, Ti are determined by matching with

the interior solutions, where ϕ; A0 ≠ 0. The solutions are
written as

~χ ¼ fχðrÞΦðj; m; l0Þ þ igχðrÞΦðj; m; lÞ; ð35Þ

~η† ¼ fηðrÞΦðj;m; l0Þ þ igηðrÞΦðj; m; lÞ; ð36Þ

where, again, we expanded the solutions by the Pauli
spinors. We numerically solve for fi, gi, using Eqs. (19)
and (20), under the following boundary conditions,

f0ið0Þ ¼ g0ið0Þ ¼ 0; ð37Þ

which regularize the solutions at r ¼ 0.
In Fig. 3, we present the results for the production rates.

Since the gauged Q-ball has electric charge, the decay rate
into particles with the charge of the same sign is expected to
be enhanced by the electric repulsion, compared to that of
the global Q-ball with the same charge. In the figure, we

FIG. 3. The production rates of fermions from gauged Q-balls.
We can see the enhancement due to the electric repulsion. The
dashed line indicates the saturated rates for global Q-balls. We
can see that for global Q-balls, the production rates saturate as the
charge grows, while for gauged Q-balls the saturation is unclear
from the figure.
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can see that this is indeed the case, where more fermions are
produced for larger gauge coupling e2.
On the other hand, since χ is fermion, the flux coming

out of the surface of the Q-ball must have an upper bound
due to the Pauli blocking. For the global Q-ball, it is
obtained by integrating the fully occupied phase space
ð0 < kþ < ωÞ, at the surface of the Q-ball [7]:

�
dQ
dt

�
sat

≡ ω3R2

24π
; ð38Þ

which is called the saturated rate. The gauge-mediation-
type global Q-balls have the following properties:

ω ∝ Q−1=4; ð39Þ
R≃ π=ω; ð40Þ

Thus, we see that the saturated rate has charge dependence
of Q−1=4, which is illustrated by a dashed line in the figure.
The production rate saturates when the Yukawa interaction
becomes strong enough, or when gϕ0=ω ≫ 1. Here ϕ0

denotes the maximal value of ϕ. If the Q-ball becomes
large, gϕ0=ω becomes large so that the interaction effec-
tively becomes strong, which is the reason why the
production rate saturates as the charge grows.
For gauged Q-balls, however, ω becomes large as the

charge grows, as pointed out in the previous section, hence
gϕ0=ω does not necessarily become large for a large
charge. But if we consider a gauged Q-ball with a certain
charge and a large Yukawa coupling so that gϕ0=ω ≫ 1, we
find that the production rate indeed saturates, as shown in
Fig. 4. We took a gauged Q-ball with large charge, in order
to identify the size of the Q-ball as clearly as possible (see
Fig. 1), so that we can compare the production rate to the
saturated rate defined by

�
dQ
dt

�ðgaugedÞ

sat
≡ ~ω3R2

24π
; ð41Þ

where we replaced ω in Eq. (38) by ~ω≡ ω − e2Q=4πR,
which is the maximal momentum of fermions at the surface
of the gauged Q-ball. However, we note that the actual
saturated rate is somewhat larger than the one predicted by
the above classical formula, whose reason is as follows.
Since the classically emitted fermions are “accelerated,” or
the momentum is increased by the Coulomb potential
outside (∼1=r), the observed fermions must have momen-
tum of e2Q=4πR < k < ω at infinity. However, as we see in
Fig. 5, fermions with momentum of 0 < k < e2Q=4πR are
also observed, which leads to the disagreement in Fig. 4.
The production of fermions with momentum of

0 < k < e2Q=4πR can be understood as a quantum tun-
neling effect. If the Yukawa interaction becomes strong, the
fermion fields mainly feel ϕ inside the Q-ball, which we
confirmed numerically as well, and feel the Coulomb

potential suddenly at r ¼ R. This situation is approximately
the same as the case where the fermions produced
by ϕ come out as a saturated flux with momentum of
0 < k < e2Q=4πR and bump into the barrier of the
Coulomb potential at r¼RþΔR (ΔR ≪ R), where again
the validity of the approximation is confirmed numerically.
This means the production of fermions with momentum of
0 < k < e2Q=4πR at infinity is due to the tunneling effect,
and in particular must be suppressed compared to the
saturated rate,

�
dQ
dt

�ð0Þ

sat
≡ ω3R2

24π
; ð42Þ

FIG. 4. The production rate from a gauged Q-ball as a function
of gϕ0=ω. we see that the production rate saturates for
gϕ0=ω ≫ 1. We took a gauged Q-ball with large charge, in
order to identify the size of the Q-ball as clearly as possible, so
that we can compare the production rate to the classically defined
saturated rate, which is illustrated by a dotted line. We note that
the actual saturated rate is larger than the classical formula, since
the fermions with classically forbidden momenta are produced at
infinity by quantum tunneling, where Coulomb potential outside
effectively becomes potential barrier for fermions coming from
inside. We can see that the production rate is suppressed
compared to the saturated rate when the Coulomb barrier outside
does not exist.

FIG. 5. The production rate as a function of momentum.We can
see that the fermions with classically forbidden momenta are
produced by quantum effect at infinity.
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when the Coulomb barrier outside does not exist. This can
also be confirmed in Fig. 4. Thus, we conclude that the
decay rate of the gauged Q-ball is bounded from above,
due to the Pauli blocking at the surface of the Q-ball, and
further suppressed due to the Coulomb potential outside
the Q-ball, which effectively becomes a potential barrier for
the fermions coming from the inside.
Finally, we present the behavior of production rates

when gϕ0=ω ≪ 1 in Fig. 6. Here we consider the gauged
Q-balls of weak Coulomb potential with e2Q=4πR ≪ ω
and normalize the production rates by the classical satu-

rated rates ðdQ=dtÞðgaugedÞsat , defined by Eq. (41). Since the

saturated rates have the value between ðdQ=dtÞðgaugedÞsat and

ðdQ=dtÞð0Þsat , we see that the normalized rate must saturate
close to unity for e2Q=4πR ≪ ω, which is indeed the case in
the figure. Even for such aweak Coulomb potential, we note
that there are some differences in the production rates when
gϕ0=ω ≪ 1, depending on the gauge coupling e2 and the
charge Q. The production rates (normalized) are enhanced
as e2 or Q grows, as shown in the figure. In Ref. [9], it was
pointed out that for the global Q-ball, the production rate
(normalized) is enhanced if ϕ has a large value near the
surface. A similar explanation can be valid for the gauged
Q-ball as well, since the electric repulsion deforms the
profile and pushes the charge toward the surface.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we derived the decay rate of the gauged
Q-ball into fermions, using the semiclassical method in
Ref. [7]. We assume that the scalar field that forms the
gauged Q-ball couples to fermions by Yukawa interaction.
Since the gauged Q-ball is electrically charged, the decay

rate into particles with the charge of the same sign is
expected to be enhanced, compared to the case of the global

Q-ball. We found that indeed more particles come out from
the surface of the gauged Q-ball, compared to the case of
the global Q-ball, due to the electric repulsion.
For global Q-balls, it is known that there is an upper

bound on the flux of fermions coming out of the surface of
the Q-ball, due to the Pauli blocking, which is called the
saturated rate. We found that the production rates from
each gauged Q-ball also saturate when the Yukawa inter-
action becomes strong, just as in the case of the global
Q-ball. However, the saturated rate is somewhat larger than
the one predicted by the classical formula, which is
obtained by integrating the fully occupied phase space
ð0 < kþ < ω − e2Q=4πRÞ, at the surface of the Q-ball. The
disagreement arises since the fermions with classically
forbidden momenta are produced by the quantum effect.
We found that the production can be interpreted as a
tunneling effect, where the fermions, which are mainly
produced by ϕ due to the strong Yukawa interaction, come
out as a saturated flux, and immediately bump into the
Coulomb barrier and tunnel through it. The production
must be suppressed compared to the saturated rate when
the Coulomb barrier outside does not exist, which is also
confirmed.
We also found the enhancement of the production rates

(normalized) for gϕ0=ω ≪ 1 when e2 or Q becomes large,
which can be explained by the analogy to the case of the
global Q-ball, where the production rate enhances if ϕ has a
large value near the surface, since the electric repulsion
deforms the profile of the gauged Q-ball and pushes the
charge outward.
In our previous works, we considered the elecrically

charged Q-ball dark matter scenarios [21–23]. In this
scenario, the Q-balls formed after the Affleck-Dine mecha-
nism can become electrically charged if the flat direction
consists of baryonic and leptonic components and only
the leptonic component decays off while the baryonic

FIG. 6. The production rates as a function of gϕ0=ω, normalized by the classical saturated rates. We find the enhancement of the
production rates for gϕ0=ω ≪ 1 when e2 or Q becomes large, which can be explained by the analogy to the case of the global Q-ball,
where the production rate enhances if ϕ has a large value near the surface, since the electric repulsion deforms the profile of the gauged
Q-ball so that the charge is pushed outward.
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component is stable. This is possible if the energy of
outgoing particle is smaller than the baryon mass, but larger
than the lepton mass. Then, we also implicitly assumed that
the decay of the leptonic component is sufficiently fast, so
that the electrically charged Q-balls are formed in the early
universe. From the result of this paper, we can gain some
insight on that matter. While we discussed small Q-balls
with charge of 103 to 106, for the convenience in the
numerical calculations, the Q-balls in the cosmological
context, are usually very large, with charge of 1020 to 1030.
Thus, it is likely that gϕ0=ω ≫ 1 unless the Yukawa
coupling g is extremely small, which means that the
production rates of leptons are saturated. It was also pointed
out in Ref. [21] that the electric charge of the Q-ball can
grow only until Q ∼Oð100Þ due to the Schwinger effect,
etc., and especially the size and the maximal momentum of
outgoing particle at the surface are nearly the same as the
case of the global Q-ball. Thus, the saturated rate almost
does not change from that for the global Q-ball. In all, the
decay rate of the leptonic component is approximately
written by the saturated rate for the global Q-ball, which is
typically known to be of the order of GeV; thus, we can
conclude that the decay is sufficiently fast, and our previous
assumption was reasonable.
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APPENDIX: FERMIONS OUTSIDE
THE GAUGED Q-BALL

It is known that the equations of motion for fermions in
the presence of the Coulomb potential of the form ∼1=r
have analytic solutions. Thus, we can give analytic forms
for the solution outside the gauged Q-ball. In this appendix,
we present the solutions and their asymptotic behaviors,
where we especially show that the solutions become
spherical waves with some additional phase factors.
The radial parts of Eq. (19), which are the equations of

motion for χ, are given by

�
kþ − qχ

e2Q
r

�
fχ þ

� ∂
∂rþ

3=2þ j
r

�
gχ ¼ 0; ðA1Þ

�
kþ − qχ

e2Q
r

�
gχ −

� ∂
∂rþ

1=2 − j
r

�
fχ ¼ 0; ðA2Þ

using σ ·∇Φðj; m; j� 1=2Þ ¼ Φðj; m; j ∓ 1=2Þð∂=∂rþ
ð1� ðjþ 1=2ÞÞ=rÞ, and the solutions are written as the
following forms.

fχðrÞ ¼
eikþr

r

�
rs0Cþ

�
1F1ðs0 þ iqχe2Q; 2s0 þ 1;−2ikþrÞ þ

s0 þ iqχe2Q

jþ 1=2 1F1ðs0 þ 1þ iqχe2Q; 2s0 þ 1;−2ikþrÞ
�

þ r−s0C−

�
1F1ð−s0 þ iqχe2Q;−2s0 þ 1;−2ikþrÞ þ

−s0 þ iqχe2Q

jþ 1=2 1F1ð−s0 þ 1þ iqχe2Q;−2s0 þ 1;−2ikþrÞ
��

;

ðA3Þ

gχðrÞ ¼ i
eikþr

r

�
rs0Cþ

�
1F1ðs0 þ iqχe2Q; 2s0 þ 1;−2ikþrÞ þ

s0 þ iqχe2Q

jþ 1=2 1F1ðs0 þ 1þ iqχe2Q; 2s0 þ 1;−2ikþrÞ
�

− r−s0C−

�
1F1ð−s0 þ iqχe2Q;−2s0 þ 1;−2ikþrÞ þ

−s0 þ iqχe2Q

jþ 1=2 1F1ð−s0 þ 1þ iqχe2Q;−2s0 þ 1;−2ikþrÞ
��

;

ðA4Þ

where s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1=2Þ2 − ðqχe2QÞ2

q
, and we used the confluent hypergeometric function, which is defined as follows:

1F1ða; b; zÞ≡
X∞
k¼0

aðaþ 1Þ � � � ðaþ k − 1Þ
bðbþ 1Þ � � � ðbþ k − 1Þ

zk

k!
ðA5Þ

Using the following asymptotic form of the confluent hypergeometric function,

1F1ða; b; zÞ ∼ ΓðbÞ
�
ezza−b

ΓðaÞ þ ð−1Þ−az−a
Γðb − aÞ

�
; jzj ≫ 1; ðA6Þ
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we find that the solutions behave as

fχ ∼
�
Cþ

s0 þ iqχe2Q

jþ 1=2

�
ð−1Þs0 ð−iÞ

−s0þiqχe
2QΓð2s0 þ 1Þ

Γðs0 þ 1þ iqχe2QÞ
�

þ C−
−s0 þ iqχe2Q

jþ 1=2

�
ð−1Þ−s0 ð−iÞ

s0þiqχe2QΓð−2s0 þ 1Þ
Γð−s0 þ 1þ iqχe2QÞ

��
×
e−ikþrþiqχe2Q logð2krÞ

r

þ
�
Cþ

�
ð−1Þs0 i

−s0−iqχe2QΓð2s0 þ 1Þ
Γðs0 þ 1 − iqχe2QÞ

�
þ C−

�
ð−1Þ−s0 i

s0−iqχe2QΓð−2s0 þ 1Þ
Γð−s0 þ 1 − iqχe2QÞ

��
×
eikþr−iqχe

2Q logð2krÞ

r
; ðA7Þ

gχ ∼
�
Cþ

s0 þ iqχe2Q

jþ 1=2

�
ð−1Þs0 ð−iÞ

−s0þiqχe
2QΓð2s0 þ 1Þ

Γðs0 þ 1þ iqχe2QÞ
�

þ C−
−s0 þ iqχe2Q

jþ 1=2

�
ð−1Þ−s0 ð−iÞ

s0þiqχe2QΓð−2s0 þ 1Þ
Γð−s0 þ 1þ iqχe2QÞ

��
× ðþiÞ e

−ikþrþiqχe2Q logð2krÞ

r

þ
�
Cþ

�
ð−1Þs0 i

−s0−iqχe2QΓð2s0 þ 1Þ
Γðs0 þ 1 − iqχe2QÞ

�
þ C−

�
ð−1Þ−s0 i

s0−iqχe2QΓð−2s0 þ 1Þ
Γð−s0 þ 1 − iqχe2QÞ

��
× ð−iÞ e

ikþr−iqχe2Q logð2krÞ

r
; ðA8Þ

at infinity, consisting of incoming and outgoing waves with additional phase factors, e�iqχe2Q logð2krÞ.

[1] I. Affleck and M. Dine, Nucl. Phys. B249, 361 (1985).
[2] M. Dine, L. Randall, and S. D. Thomas, Nucl. Phys. B458,

291 (1996).
[3] A. Kusenko and M. Shaposhnikov, Phys. Lett. B 418, 46

(1998).
[4] S. Kasuya and M. Kawasaki, Phys. Rev. D 61, 041301

(2000).
[5] S. Kasuya and M. Kawasaki, Phys. Rev. D 62, 023512

(2000).
[6] S. Coleman, Nucl. Phys. B262, 263 (1985).
[7] A. G. Cohen, S. R. Coleman, H. Georgi, and A. Manohar,

Nucl. Phys. B272, 301 (1986).
[8] T. Multamaki and I. Vilja, Nucl. Phys. B574, 130 (2000).
[9] M. Kawasaki and M. Yamada, Phys. Rev. D 87, 023517

(2013).
[10] K. Lee, J. A. Stein-Schabes, R. Watkins, and L. M. Widrow,

Phys. Rev. D 39, 1665 (1989).
[11] V. Benci andD. Fortunato, J.Math. Phys. 52, 093701 (2011).
[12] I. E. Gulamov, E. Y. Nugaev, and M. N. Smolyakov, Phys.

Rev. D 89, 085006 (2014).

[13] C. H. Lee and S. U. Yoon, Mod. Phys. Lett. A 06, 1479
(1991).

[14] H. Arodz and J. Lis, Phys. Rev. D 79, 045002 (2009).
[15] V. Dzhunushaliev and K. G. Zloshchastiev, Central Eur.

J. Phys. 11, 325 (2013).
[16] T. Tamaki and N. Sakai, Phys. Rev. D 90, 085022 (2014).
[17] Y. Brihaye, V. Diemer, and B. Hartmann, Phys. Rev. D 89,

084048 (2014).
[18] G. Dvali, A. Kusenko, and M. Shaposhnikov, Phys. Lett. B

417, 99 (1998).
[19] M. Laine and M. Shaposhnikov, Nucl. Phys. B532, 376

(1998).
[20] S. P. Martin, Adv. Ser. Dir. High Energy Phys. 21, 1 (2010);

18, 1 (1998).
[21] J. P. Hong, M. Kawasaki, and M. Yamada, Phys. Rev. D 92,

063521 (2015).
[22] J. P. Hong, M. Kawasaki, and M. Yamada, J. Cosmol.

Astropart. Phys. 08 (2016) 053.
[23] J. P. Hong and M. Kawasaki, Phys. Rev. D 95, 123532

(2017).

JEONG-PYONG HONG and MASAHIRO KAWASAKI PHYSICAL REVIEW D 96, 103526 (2017)

103526-8

https://doi.org/10.1016/0550-3213(85)90021-5
https://doi.org/10.1016/0550-3213(95)00538-2
https://doi.org/10.1016/0550-3213(95)00538-2
https://doi.org/10.1016/S0370-2693(97)01375-0
https://doi.org/10.1016/S0370-2693(97)01375-0
https://doi.org/10.1103/PhysRevD.61.041301
https://doi.org/10.1103/PhysRevD.61.041301
https://doi.org/10.1103/PhysRevD.62.023512
https://doi.org/10.1103/PhysRevD.62.023512
https://doi.org/10.1016/0550-3213(85)90286-X
https://doi.org/10.1016/0550-3213(86)90004-0
https://doi.org/10.1016/S0550-3213(99)00827-5
https://doi.org/10.1103/PhysRevD.87.023517
https://doi.org/10.1103/PhysRevD.87.023517
https://doi.org/10.1103/PhysRevD.39.1665
https://doi.org/10.1063/1.3629848
https://doi.org/10.1103/PhysRevD.89.085006
https://doi.org/10.1103/PhysRevD.89.085006
https://doi.org/10.1142/S0217732391001597
https://doi.org/10.1142/S0217732391001597
https://doi.org/10.1103/PhysRevD.79.045002
https://doi.org/10.1103/PhysRevD.90.085022
https://doi.org/10.1103/PhysRevD.89.084048
https://doi.org/10.1103/PhysRevD.89.084048
https://doi.org/10.1016/S0370-2693(97)01378-6
https://doi.org/10.1016/S0370-2693(97)01378-6
https://doi.org/10.1016/S0550-3213(98)00474-X
https://doi.org/10.1016/S0550-3213(98)00474-X
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1103/PhysRevD.92.063521
https://doi.org/10.1103/PhysRevD.92.063521
https://doi.org/10.1088/1475-7516/2016/08/053
https://doi.org/10.1088/1475-7516/2016/08/053
https://doi.org/10.1103/PhysRevD.95.123532
https://doi.org/10.1103/PhysRevD.95.123532

