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Second-order cosmological perturbations. II. Produced by scalar-tensor
and tensor-tensor couplings
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We study the second-order perturbations in the Einstein-de Sitter Universe in synchronous coordinates.
We solve the second-order perturbed Einstein equation with scalar-tensor and tensor-tensor couplings
between 1st-order perturbations, and obtain, for each coupling, the solutions of scalar, vector, and tensor
metric perturbations, including both the growing and decaying modes for general initial conditions. We
perform general synchronous-to-synchronous gauge transformations up to 2nd order, which are generated
by a l1st-order vector field and a 2nd-order vector field, and obtain all the residual gauge modes of the
2nd-order metric perturbations in synchronous coordinates. We show that only the 2nd-order vector field
is effective for the 2nd-order transformations that we consider because the 1st-order vector field was
already fixed in obtaining the 1st-order perturbations. In particular, the 2nd-order tensor is invariant under

2nd-order gauge transformations using £2* only, just like the 1st-order tensor is invariant under 1st-order

transformations.
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I. INTRODUCTION

Metric perturbations of Lemaitre-Robertson-Walker
spacetimes within general relativity are the theoretical
foundation of cosmology. In the past, the linear perturba-
tions of scalar type [1-8] have been used in the calculation
of cosmic microwave background (CMB) and well tested in
the measurements of CMB anisotropies and polarization
[9,10]. As predicted by generic inflation models, besides
the scalar metric perturbation, the tensor perturbation is
also generated during the inflationary stage [11-21].
However, the magnetic polarization C?? induced by the
tensor perturbations [22-28] has not been detected by the
current CMB observations, and only some constraint in
terms of the tensor-scalar ratio of metric perturbations is
given as r <0.1 over very low frequencies 107!8 ~
1071 Hz [9,10]. This constraint on the ratio has been
inferred from CMB anisotropies formed at a redshift at
z ~ 1100 in the matter era, which is in a rather late stage of
the expanding Universe. Furthermore, it has been also
based on the formulations of linear metric perturbations.
On the other hand, recently LIGO collaboration announced
its direct detections of gravitational waves emitted from
binary black holes [29], but did not detect relic gravitational
waves (RGW), only gave constraints on the spectral energy
density of RGW in a band 10-2000 Hz [30], less stringent
than that from the CMB measurements. By estimations
[31], it is still possible for the current LIGO to detect RGW
around frequencies ~10% Hz if the running spectral index
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of the primordial RGW is large. In regard to these
observational constraints from CMB measurements and
LIGO, one would like to explore other possibilities that
might affect the tensor cosmological perturbation signifi-
cantly during the course of cosmic expansion.

To the linear level, the wave equation of RGW depends
upon the scale factor a(z) only, and is homogeneous
because the anisotropic stress as its source is negligibly
small except for neutrino free-streaming during radiation
era [32,33]. Thus, the other thing that will affect RGW is
the nonlinear couplings of metric perturbations themselves.
To explore their impacts upon RGW, one needs to study the
cosmological perturbations up to 2nd order, to see how
nonlinear gravity changes the tensor perturbation. As is
known, in perturbation formulations, there are three types
of metric perturbations: scalar, vector, and tensor. The
2nd-order Einstein equation contains the couplings of 1st-
order metric perturbations serving as a part of the source for
the 2nd-order perturbations. For the Einstein-de Sitter
mode filled with irrotational dust, the 1st-order vector
metric perturbation can be set to zero as it is a residual
gauge mode. As a result, the couplings of 1st-order metric
perturbations consist of scalar-scalar, scalar-tensor, and
tensor-tensor. So far, the 2nd-order perturbations have
found their applications in detailed calculations of CMB
anisotropies and polarization [34,35], in the estimation
of the non-Gaussianality of primordial perturbation [36],
and in relic gravitational waves [37,38]. In the literature
[39-48], the studies of 2nd-order metric perturbations have
been mostly on the scalar-scalar coupling, whereas the
couplings involving the lst-order tensor have not been
sufficiently investigated, such as the scalar-tensor and the
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tensor-tensor. Ref. [44] derived the equation of 2nd-order
density perturbation with the tensor-tensor coupling. In our
previous work [49], we have solved the 2nd-order per-
turbed Einstein equation with the scalar-scalar coupling in
the Einstein-de Sitter model, and obtained all the solutions
of the 2nd-order scalar, vector, and tensor perturbations,
under general initial conditions.

In this paper, we shall extend the study to the cases of
scalar-tensor and tensor-tensor couplings. We shall derive
the corresponding solutions of 2nd-order scalar, vector, and
tensor metric perturbations with general initial conditions.
In addition, we shall perform 2nd-order gauge transforma-
tions, and identify the residual gauge modes of the
2nd-order metric perturbations in synchronous coordinates.

In Sec. II, we briefly review the necessary results of
Ist-order perturbations, which are used in calculations of
the 2nd order later.

In Sec. III, We split the 2nd-order perturbed Einstein
equations as the set of equations of the energy constraint,
momentum constraint, and evolution, each containing the
scalar-tensor and tensor-tensor couplings, respectively.

In Sec. IV, we derive the solutions of 2nd-order metric
perturbations with the scalar-tensor coupling.

In Sec. V we obtain the solutions of 2nd-order metric
perturbations with the tensor-tensor coupling.

In Sec. VI we derive the 2nd-order gauge modes.

We work within the synchronous coordinates, and, for
simple comparisons with literature, use notations mostly as
in Refs. [47,49]. We use a unit in which the speed of light
isc=1.

I1. FIRST-ORDER PERTURBATIONS

In this section, we introduce notations and outline the
results of Ist-order perturbations, which will be used in
later sections. We consider the universe filled with the
irrotational, pressureless dust with the energy-momentum
tensor T = pU!U*, where p is the mass density,
Ut = (a',0,0,0) is 4-velocity such that U*U, = —1.
As in paper I [49], we take the perturbations of velocity
to be U* = U@# = 0. The nonvanishing component is
T% = g72p and Ty, = a’p, where p is written as

1
p:p<o>(1+5<l>+§5<2>>, (1)

where p(©) is the background density, 5(1), 5) are the 1st,

2nd-order density contrasts. The spatial flat Robertson-
Walker (RW) metric in synchronous coordinates

ds* = g, dxtdx’ = a*(7)|—d7* + y,dx'dx’],  (2)

where 7 is conformal time, a(z) o z? for the Einstein-de
Sitter model, y; j 1S written as
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.1 e
Yij = 0ij + 7’5,‘) +§7’l('j>, (3)

5}) and yg) are the 1st- and 2nd-order metric

perturbations, respectively. From (3), one has ¢/ = a=2y%/
with y = & — i/ - %;,(2)1'/ + y<1)ik}/,(€1>j, where 6V is
used to raise the 3-dim spatial indices of perturbed metric,

such as y(V* and y2* We use the superscripts or subscripts
u, vetc. todenote 0, 1, 2, 3, and i, j etc. to denote 1, 2, or 3.
The perturbed Einstein equation is

where y

Gf = 82GT\Y, (4)

where A = 1, 2 denotes the perturbation order, and we shall
study up to 2nd order. For each order of (4), the (00)
component is the energy constraint, (0i) components are the
momentum constraints, and (ij) components contain the
evolution equations. The set of (4) are complete to determine
the dynamics of gravitational systems, and also imply
TW@Wr = 0,; i.e, the conservation of energy and momentum

of matter by the structure of general relativity.
(1)

The first-order metric perturbation y;;" can be written as

}’g}) = -2¢(Vs;; ‘H(S})’ (5)
where ¢! is the trace part of scalar perturbation, and ;(fjl) is

traceless and can be further decomposed into a scalar and a
tensor

1 T(1

)(gj) = Dij)(”(l) +)(ij( >’ (6)
where (1) is a scalar function, D;; = 8,0, —16;;V*, and
D; Mll(” is the traceless part of the scalar perturbation, and
)(;(1) is the tensor part, satisfying the traceless and trans-

verse conditions: y (D, = 0, 81')(;(1) = 0. In this paper, we
do not consider the Ist-order vector perturbation since the
matter is an irrotational dust. However, as shall be seen
later, the 2nd-order vector perturbation will appear. Thus,
the 2nd-order perturbation is written as

vy = 2025, + 2} (7)

ij
with the traceless part
2 102 T2
)(z('j> = D;'® ‘H(ij( : "’)(ij( g (8)
where the vector mode satisfies a condition
ooy, =0, (9)

which can be written in terms of a curl vector
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Y =244, =04+ 0,4, 9A=0.  (10)
Since the 3-vector A; is divergenceless and has only two
independent components, the vector metric perturbation

)(fj(z) has two independent polarization modes, correspond-

ingly. We remark that the 2nd-order vector mode ;(ilj(z) of
the metric perturbation is inevitably produced from the
interaction of the lst-order perturbations even though the
matter is irrotational dust.

The Ist-order perturbations are well known, and we have
calculated the Ist-order perturbations in detail in our
previous work of Ref. [49]. In this paper, we shall list
the 1st-order results, and details can be seen in Ref. [49].
The 1st-order density contrast is

2 6
5 :%V2¢+ with V2¢——5(()lg), (11)
70

(1)

where &, is the initial value of the growing mode at

time 70, @ is the corresponding gravitational potential.
=% 2 V2g + X will denote the initial value of 5. And

the solutions of two scalar perturbations are

5 2 X
P (x.7) = S (x) +;—8V2¢(X)+ S() (12)
Dl,jX”(l>(X’T) = —T; (go(x),,-j —;5ijv2¢(x)>
6V2D; X
_13/(")' (13)

The 1st-order gravitational wave equation is

oy, 4
2" +?Iu - Vi, =0, a9
The solution is
T(1 1 ik p ;
)(ij( )(X’T) - (27)3/? / ket Z €ij (k)i (2),
s=+,X
Kk = kk, (15)

with two polarization tensors in Eq. (15) satisfying

During the matter dominant stage the mode is given by
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a3V

s s
where the coefficients d;, d, are determined by the initial
condition during inflation and by subsequent evolutions
through the reheating, radiation dominant stages [11,21].
Here cosmic processes, such as neutrino free-streaming
[32,33], QCD transition, and e™ e~ annihilation [50] only
slightly modify the amplitude of RGW and will be
neglected in this study. For RGW generated during infla-

HY (k) + dy () H (k).

(16)

s
tion [11,14-17], the two modes h(z) with s = +, X are
usually assumed to be statistically equivalent, the super-
script s can be dropped.
Thus, the Ist-order metric perturbation is given by
[47,49]:

10 7,'2 6 T(1)

(1 _ —
gfﬂ,ij—ljv Xi+xy . (7)

Vij = _?(péij -

which will appear as the coupling terms in the equations of

the second-order perturbation }/g) .

III. THE SECOND-ORDER CONSTRAINTS
AND EVOLUTION EQUATIONS

According to Ref. [49], by using the 2nd-order perturbed

Einstein equation G,(f,) = 8nGTﬁ) , and the 2nd-order

density contrast

2 1 1 I, 1y 1, (i
60 =5y v v+ (" )
Lowiwi oo 1 i)
B (R A ST S (M (T
— 7V ey (18)

following the conservation of energy 7%, with 582), y&j

ygj)- being the initial values at 7, one has the 2nd-order

(1)

energy constraint involving the couplings ¢y,; ' and
(1)

X;(l.j as

2. _logoe 0 0 1 e

;‘ﬁs(z) - gv b5 +p‘/’s(z) ~ 12 P05 = Esto- (19)

and the momentum constraint:

@ 1o e 1 iey
2¢, t);+ Dz/)(() +§)(S(t),~j = M@, (20)

and the evolution equation:
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(e 4y @) 1 2y l12) Liotoy 4 1or\ L[ 1oy 4 ) T
<¢s<t> +‘¢s(t>>5if+‘f’s<t>wu 2<Dlﬂf o T3 Duﬂf <z>>+§ Ty 2 ) 3 (2 s = Vi

112 292, )I2) @ _
_ZDkl)( (1) 5,1 +§V2)(S(t).l] ——szu S(t) = SS(t)ij? (21)
where
_ 3T tayi S Ty v 2, T(1)ij v T(1)ijk 273 G T 2 () 6
Eyq =187 M "(ﬂ,ij+§)( ( )'](p,ij_ﬁ(p,ijv)( (1)ij ~ 367 ()i (ﬂuk—3 240 ])(0:/ _pés(;)o+1§¢s(,)o
5 T ga2yu _ Lo ki I T)go2ypu 12 1) g-ayu
+ogxw VXY -5 VX v?(kz =3l VX = S50 VX (22)
274 3 273 TO
2 2 2 2
_ T T Y Tk TOY T T2k o Tk, T D T
Mm);:gw"’xk” 3<p ik +E O ey quo"+§rp"’xkl,,- +30"%,
9 6 Tayg- 6 T()yg- 3 T)yg-ayk _ 3 T
4)(kl$/)v XM~ _3)(jk(,1 \ 2X'“+T_3)(k1,j)v ZX’H*';)(M( 'v 2X,j _7_3)(@' Xk, (23)
2
T Ty 2t Ty 27 y T(1y 10+ 5
Ssyij = —grp’k’xkf "5, —g(pjﬁ‘xk} S - 3 otV +3x” V2¢—§rﬂklxkl( "5, +§xij( )V2¢+§¢,kuﬂ<”"’5i}-
10 4oty 100 4 1 T W) T T T (1
0 g0 0w T D it <ﬂ“x1, R P
5 0,705 w1 T T kT T2 kT T2 T, Tk T()
—§¢~ Akij 3‘/’ Xkji +glij,k Vg _g)(ki,j Vg _gﬂfkj,i Vg + 6 C” )(kz, + 6 P Xiai
2
T kmi,T( 33 3 m 3 Ty 9, Tay
- 12fﬂk l)(krfll)(sl] 2 4Zk1 'v- XM —z_lklmv XM bij 3)(k1( v 2X’kl‘sij __4XZij( )
18 +1 18 T 3 T 3 T 3 T 6 Ta 6 T
+kal )Vy- 2X + )y- 2Xk Xk)(kj(z) __Xk)(kz<j) + 2 Xk)(z,<k) __3 l]lkv 2xkl _ 3 l”kv 2y .kl
6 T()x7-2y ki 6 T -2 Ky 3 T(1 2.kl 3 T —2 ki
+ 3Z,,kzv XM+ 3 klz}v X z)(kn V- X + kzj V- X (24)

The subscript “s(7)” denotes those contributed by the scalar-tensor coupling. It is seen that E(;) contains the initial values

5%)0, ¢§%t))0, )(:(%U etc. at 75. Also we notice that neither the tensor )(T(()z) nor the vector )(L(()Zi), appears in the energy

constraint (19). We also observe that M, ; on the rhs of (20) has a nonvanishing curl, etki OkMy(p)j # 0, and, to balance that,
1(2)

a vector perturbation Xy(r);; Must be introduced on the lhs of the equation. Note that, Sy ,;; plays a role of source of

evolution, and the 2nd-order scalar, vector, and tensor perturbations, all appear in the evolution equation (21).
Similarly, by using the subscript “T” to denote the 2nd-order terms contributed by the tensor-tensor coupling, one has the
energy constraint:

200 g 6 01 e
;¢T _gv or +?¢T _ED])(T.U = Er, (25)
the momentum constraint:
Lo i 1 1oy
2¢Tj + 2Du}(r + SATij = Mr;, (26)

and the evolution equation:

Liior (4 1o\ 1 T [ 4 Tor TC
<)(Ti$j) +;ZTi<j) "‘5 )(Ti(j) +;)(T£;) _vzﬂ(n(j)

5 + v2 le _sztj)(T >_STij’ (27)

2\ 4 2) 2 1 4

[\

—11)1;(”(
4 kAT
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where

(1)

T(1y 1 ”
(1) ljv )(u (l)tj,k)(ij.k

1 I 2 e T(1 1
Er=—--x (1)”)(,'; __)(T(l>”)(ij( )2

24 37 6 8
1 T 1 ST U Tty 2.2, 6 L0
_EXT(l)/.kaj(’i) —;){T“)’){U( ) JFT_MO( )JZo,;(j ) _?5;0) —i-?(ﬁ(m)’ (28)

; Ui Tay
Myp; = k()(k]z klj))_i)(,j() Zik()’ (29)

(1) Tkt T(1) ki, T(1) T(1).k T(1).0

T T(1)
(1) ki, T(1) Zkl,ij —X T )(Ukl +)(Zl )(k]

Tk 1 T
Sty =2 ~g# Tk LV 8y 4 g TR ) 4 TRy LG — 2

Tk T 1 T Ty 3 m T I T m 1 Ty 2 T
_)(i,l( >)(jk( : _E)(,i( ) kl(j) + g4 Tk, )(kl(m)élj Z)(mgk))( M kl5u +2Z Ta )kl)(kz( ) b;j +;)( T )kl)(kl( )‘Sljv
(30)
where E; contains the initial values 5(TZO), ¢§~20), )(;(g; j> etc. at 7.

In the following, we shall solve the set of equations with scalar-tensor couplings and tensor-tensor couplings respectively.

IV. 2ND-ORDER PERTURBATIONS WITH THE SOURCE ¢y, "
A. Scalar perturbation (,bs(ft))
Combing the constraint equations [Eq. (19) +§ &/ ffo d7’ Eq. (20)] gives

6

2.0 2 1 ”
9+ 300 = By g | oMY -3 VT
7o

Substituting the known E ) and M, ’< 0J into the above, usmg the Ist-order GW equation (14) to replace V2 Y contained in

M7

s> One has the first-order differential equation of q’)s( ;) s the following:

2 2
) Tk, T () Kl ) T i, T\ T
Cb )+ ¢ *(0 Xkl +3)(k1 + - <3¢ s(1)0 _§(/7 ])(olj ) ]2C
5 Ty K 6 T<1) R (T
T a3k V=X Xow VX +z[v X4 V)(kz ; (31)
T TO 10

where the constant

2 2 1
T T (1 2
c=% 3 P*V?y, Okl ) 4 6)(0’((1’)"('0 -3 (pk’)(()k( y —|—§gokl 2V2¢ §v2v2;(ﬂ(<,)>0

3
+ v2 Yo V72X 4 Syt o2 xkim, (32)
(7
depending on the initial values of metric perturbations at 7. The solution of Eq. (31) is

2 2 2 2
@ _ (o Ll 7w ;710 T2 g [T T 3T ooy )
¢s(z) - <¢S(t)0 _gés(t)o_*f/" "Xoij ) 60C+ 9 ¥ U _ﬁﬂﬂkl A} e dT/JF%(V 2X M) [0 74 V)(kl dr’

3 T W(X)

Dy-2xH +5, (33)

3 5
=307 (V 2Xkl)/ v)(kz +m)(21(])v_zx'kl
7o

where integration by parts has been used, and W(x) is a time-independent function. By letting qﬁﬁ%t)) (79) = gbﬁt))o att = 73 in
(33), W(x) is fixed as following
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3 Ty Kl To (2)
Wx) = Lz VX +35()0+6OC (34)

As we have checked, the solution (33) can be also derived by the trace part of the evolution equation (21) together with the
energy constraint (19).

B. Scalar perturbation )(H((t)

The expression & [T d7’ Eq. (20) gives

1 12

1
v2¢ +- D,,;((()> /dT/M] -+ 2V bt 3D
70

Substituting M,; of (23) and qﬁ of Eq. (33) into the above yields

2 2
2 T _ _ 2T T 4 T
A=z T v2c sy 2{_ o 4 o 3€0k1/ PV ]
70

T T(1y T(1
+V2y-2 |:T2§0 kg2, + Zkl(m)(P _ T(p,k%d( ) + Z‘P’kl)(kl< )}

2
15 972 9
Ly-2 {_F)(Zl(l)v_zx’kl_E(v_zxﬂ)/ V)(k, \ar +1_0 o\ 2Xkl)/ vzle(l)dr/}
7o 7o
18
+V- Zv-Z{ V2 VXM gy XA (V) / Vi Va ] —~ V2w, (36)
7o

where the constant

7= )0 L y2(as 28 i, T | gy (g kg %, T ki g b TV 9k, T
= Xs(1)0 S0 T3 @ on] )(kz 2)(0k1mf/’ 700" ¥ ol @
212 T()goayu —2v-2 gkl I8 T(1) ooy kim
+V 1_3)(0k1 V=X +VEEve __v)(md VX _?kal,mv X ) (37)
0 &) 0

depending on the initial values of metric perturbations at 7. Thus, the scalar perturbation D; j)(‘s‘(%) is obtained:

277 T 4 T T
D)y =D, Z+10D V=2C + DV~ 2[—?(pkl)(kl()+ﬁ¢’kl/ Py N
To

o T(1) T
+ Dijv 2y 2[ KIN72 Zkz + 2)(kl<m)‘/’k1m _ T‘/"klﬂsz( ) 120 kl)(kz( )}

15 972 9 T
+D,;V2 {_ ﬁlz(l)v_zx'kl _E(v—zx,kl)/ il v2) Zkz Dar + T (V‘szkl)/ T’Vz)(le“)dr’}
7 7o

18T

36 6
+Dijv—2v—2 [T_3v2le(l)v 2okl 22 5 v 2xokim (v—zx,kl)/ il v 22 Zkl ] _T_3Dijv_2W' (38)

To

We remark that the solution (38) can be also obtained by the traceless part of the evolution equation (21) together with the
momentum constraint (20). Our result (38) contains the nonzero initial values (through 7)) and decaying modes, and applies
to general situations.
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C. Vector perturbation ;{j(t()zl J)

The time integral of the momentum constraint (20) from 7, to 7 is
@ g e Lo I i
2453(,)’/- + —vzls(t)’j + E)(S(t). / dT/M ;i + 2¢ —|— V2 Xs(i 0/ + EXS 10ij° (39)

3 %

Using M ,; of (23) and Eq. (14), one has

2 2
4 4 T( T Ty, T TQ 7 T
/ di' M), = / [—_a((/’kl)(kz )+ Vz(w v ))]df’+—8,~(rp'“m())—g)(k,-( V2t~ 3rpk’xk,<z)
Ty T

> 2
T T 2 10 T( T T
+€(pk%l<]> ‘g‘ﬂ Ty +§(p,k)(kj( )4 { Dy (gl 4 610](] 12k 4 T { (pkl)(()k(]) 60(p,kl T
0 Tay 2 . T g 3 T(1Ygoav 6 Ta 3 Tay
+§ kXij _gg”kZij } +/ [8,- (73)(” \V/ 2x,k1) 3ij1 V 2x0kl _ 3ij< Xk | de!
70
3 T 3 7
+ 3){k1(1)v 2kl _ _SXOk(lj)v 2k (40)

Plugging the solutions of ¢§% of (33) and )( t ) of (38) into (39), we directly read y ((>) as

1(2).i of 27 T 27 T 7 Ty T T 27° T
£, =Q,~+/ {_38 (T ))_l_?vZ((p.k)(kj( ) d7/+§3j(¢,kzxkl(>)_§xkj< Ik — : 27 iy T
7o

2 22
T Ty 2t 4 oTay 4 27 T m 2T Tay 4 T
+ 3 klxkl(j) -3 (Pk)(kj( ) +§(p )(k, +V 23 [ 5 kzvz)(kl( ) _ 3)(kl(m)(pkl +2 3 (pklxkl( )y _gfﬂkl)(kz( )
T 12 ! 6 12 i 6 i 6
T / [— S VXM oV x4 0,9 2( A S x[}”x»“)]dr + iy VXN
7o
(6 o Thoo 6 Tu -
-0,V 2<T_3v2)(kz( v X4 3 klmv 2xH (41)

where the constant vector

2 2 22
1@ T Ty , T T( 27} T(1) T 2t Ty 4 T
0; =Xy~ 3 010 ai )+gxozf»)vzco*k+ L0 ol =3 0 o)+ 50 0~ 50 0k
— 2 2 T 2 T 4 T
+V 23; w2 Okl) +_0 ()(p.klm__o(pkl Ok(l> +2 (pkl)(Ok(l)
3 3 3 3
6 T T oo 6 T(1) o2 kim
_;SXOH/V 2K 4 9,V 2<8V2)(0k(1)v 2X’kl+;(3))(0k(l,3nv 2xkim ) (42)

1(2)

S(0)ij from Eq. (41), one has to remove &’ as follows.

depending on the initial values at 7. To get y
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Writing )(sléi)j = As(ij t+ Asn)ji In terms of a 3-vector Ay as Egs. (10), (41) yields

As; =V7?Q; + V72 / ‘

To

2’[/ T 21/ T
[_ ?8 (@ kl){m( )) + ?vz ((p'k)(k.j(l>):| dv

2 2 2 2
ks Ty, T TU 2t T T Ty 2t 4 L Ta
Vi {3 8j(‘p’kl)(k1( )) _ 3ij( )vz(p,k -3 ‘p’kl)(kj(J) 3 ‘p’k[)(sz,) -3 @ ){k]( ) g‘ﬂ'klkj( )}
_ _ 2T T( ’L' m 2t T 4 T
V-2V 28j[ 5 PV Y 1 _ 3)(“("1)¢k1 3 gokl)(kl( ) _gfﬂk[)(kz( )

o 12 / 6 12 6 ,
+ V‘Z/ [_ 173)(;‘(’1) V-2xok _ 73 kj( Xk +8 V- 2( X le(rln) V-2 kim +173)(1?1(1>X'kl)]d71
To

6 6
+V- 2|: kl] v 2kl _ ajv—z <T_3v2)(le(l)v—2X,kl+ X lemv 2Xklm>:| (43)
Thus, the vector perturbation is obtained:

727
ok =920, + / 00t ) = V200, ad + V- 2{ 0,0, ™)

3
2 2
Ty T T 272 T 27 4 <1
) (3 €”kl)(kz<,) _g)(kj( )v2¢k : (pkl)(k](l) —?(p ij() +§(p,k)(k]< )} +V2Y- 288 [ €”kl)(kz()
272 72 () 12

4 T ! 6 !
-5 v ){kl -3 )(klmfﬂklm _g(p,kz)(:l(l)} + v—z/ [8, (_TTXkTifll) V-2x ki _ﬁ)(kTi(l)X'k>
7o
6 6
) 8 V- 2( X le(m) V-2xkim 73 kl( )Xu)] dr + V-2 {81» <;)(szfil)v_2X"kl>
6
—aia,.v-2< VZy (Dyg-2xk + )(, Dy- 2X"lm>} + (i < j). (44)

Actually, this vector mode y’ (()) can be also derived from the curl portion of the momentum constraint (20) itself without

explicitly using the solutions of (33) and 12) of (36). The result (44) explicitly demonstrates that the 2nd-order vector
P y g s( e P y

perturbation exists, whose effectlve source is the couphng of 1st-order perturbations, even though the matter source for the
vector mode is zero in the synchronous gage, To; =0, T;; = 0.

D. Tensor perturbation ;(ST(t()Zl J)

Next consider the traceless part of the evolution equation (21):

T ( 2 2y 2 ey 4 1oy
)ij - Z = Vs = 2Ssij — <2Dij¢s( +3 VZDM t)) (Dzﬂ( 0 T Dt/)( r)) ()(s(;)-- +;)(s(t>ij>’

where S‘S(t),- j 1s the traceless part of Sy, as the following:
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S = —?(p ) - %fﬂ i)+ %qo’k’x;“)’é,-j + %){fj(“’vzfp + %{Ij(”v% + 23()(/)*"’)(:,“)6@,- 130 ol
_ 130(p5< T 1304)v 2,T0) +%2(pk%<kl) N 32¢kl){2'l(ilj) s P42 05, %z(pkzngk) 13240“)(;(,1;3
1 5¢ )(uk) %‘P’k)(kTi,<1> g(p ij(l) + 6Z’Jk V2 k %)(Z,-f})vzfﬂ‘k _%)(](ij;)v2(pk +z - (ﬂfl)(sz(,) 4 62(pk1)(le(l)
_ 79_2 (p,klmkalF;) 5, — % )(le(l)IV‘z Xkl 5, — T% X;F;)v—z X Klm 5, — %vzx;(l)v—z Xkl 5, — 24 XxlTj(l)’

18 T1yomwvik 18 Ty 3 Ty 3 3 1 6T 6 T(1)o-
+F)(ki( )V 2X’j +7Zkf( )V ZXJ' _73X’k}(kj(.,i) _73X )(kt</) + X sz<k) _; 1, lkv XM *)(li.,.(ik)v 2xH
6 Tg-2xkl 6 T -2k | Dy- szz 3 T - 2Xkl 46
+T3)(ij,kl klzj klz + kl/ (46)
|
One can substitute the known ¢(2) )(” 2) . X L2 nto T@)" 4 T 2 T
> Dty > Xty X5 T 225w = Y Xsig = (7). (51)
Eq. (45), and solve for y ((>) But the following calculation
is simpler and will yield the same result. Applying '@/ to ~ With the source
(45) yields: I e kl
Jsij (X, )_2S ij +VIVTES kll]—l—é AV Sy
(2 2 —2Q.k -2 Gk
_ <2Di,-¢§< 41 V2D,,x” t))) ( DY Dlﬂl(t))) —2v-2sk Vs (52)

22 Gkl
— _3DUV 2V ZSS(t)kl' (47)
Substituting Eq. (47) into the rhs of Eq. (45), one has

T(
)

" T
)(s(z)+)( vzs

% g2kl 1@y 4 L@y
= ZSS(,),/—3DUV 2V 2S5(t)kl_ (){ i +;,{’ >

Applying & to (48) and together with Eq. (10) leads to an
equation of Ag);:

. 4
0 =287, —2V280 ., — V2 <A’S’(,)i +TA;<,),.). (49)

Thus, from Egs. (10) and (49), one has
Ly 4 Loy
- <)(s(r)ij +;Zs(z)ij>

4 4
_ " ! " !/
=9 (A + ‘Asmi) ‘51'( i T —Asm,)

k k kil
= -2VRSK -2V AV YRS

(50)

J

Substituting (50) into the rhs of Eq. (48), we obtain the

equation for )(j(g)zl)]

where the known symmetric and traceless S‘S(,) ij 1s given by
(46). Itis checked that J (;);;(x, 7) is traceless and transverse.

The differential equation (51) is inhomogeneous, and its
solution is given by

T2 ! 3 ikx (7 biij (1)
XS(r)u< 7) = (2”)3/2/033]“3kx<1s(t)ij(5)+s3/2 ; (s)

by;
+ o H (s )>, (53)

where s = kr,
I s(t)ij(s)

1 sin s s ) cosy\ -
= (coss——)/ dyy? (smy—l——) Jij ()
s N 1 y
1 0SS s siny\ -
- <sm s +—> / dyy? <cos y ——> Jsij(¥)5
Ky s 1 y

(54)

|

with J(,;; being the Fourier transformation of the source
Js(0)ij- In (53) the two terms associated with b;; and b,;;

are of the same form as the 1st-order solution 1;(1)()(, 7)
in (15) and (16) and correspond to the homogeneous
solution of (51). These two terms are kept in order to
allow for a general initial condition at time 7. In particular,
the coefficients by;; and b,;; are to be determined by the
2nd-order tensor modes of precedent Radiation
Dominated stage.
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Thus, all the 2nd-order metric perturbations due to
scalar-tensor coupling have been obtained. By (18), the
corresponding 2nd-order density contrast is

(2) _ <(2) 2) _ 42
O = 0o 3 <¢s(t) ¢s(1‘)0>
+ ()(T(l)ijDij)(H(l) T(1 )’]Dlj 0( )>’ (55)

which can be expressed as

2
O __ T, 2 T 9 (y-axu
53([)__20 33(P 107)@[ dT_ZO%(v X )
3 9
/ OV Ve W= VX
7o
9 -2 v.kl

0

after using the given (;55%2), D", 5T,

V. 2ND-ORDER PERTURBATIONS

WITH THE SOURCE y;, Uy "

Now we turn to the set of Egs. (25)—(27) with the source
of the form of )(Zl(l);(;(l), and derive the solution of the

second-order perturbations. The procedures involved are
similar to those in Sec. IV.

A. Scalar perturbation ¢(Tz )

Combing the constraint equations, i.e, (25) +3d' [T dz
(26), using the 1st-order GW equation (14), one has the
following differential equation of ¢(Tz ).

3
o7 +;¢(Tz)
" Tk

U oy, T _ U vy, Ty, 7 ’Zsz(l)Z
=y T(W)ijy, [\ o, R A —
3){ Zz] 27'_/’{ Xl] +6[0 T/ dT

I iy ta
<3¢T0_6T0) 2 0( ”)(01‘5‘ )> _EK (57)

2 6 1 T
X¥(2> -y +1—OV‘2K—T—3V_2B + V=2 [—EZT( )kl)(kl( =

PHYSICAL REVIEW D 96, 103523 (2017)

where the constant

L rrem T(1)

1
K =-2V2¢) - gvzvzﬁf%z) t5%0 T Xokm

3 Thkm T( Dklgn T( I Tay Taym
_1)(0() )(0/((1,;)11 )(0 2 0k1)+410k(1))( g )

(58)

depends on the initial metric perturbations at z,. The
solution of Eq. (57) is

2 2y 1o 1 1wy Ta = B(x)
o = (08-S + g0 ) - e+ 2

6 60
Ty '
_ lZT(l)iij“) + = a2 a7
6 Y 30 J,, 7
Ty /
oz | PR, (59)
where integration by parts has been used, and B(x) is fixed
by setting T = 7, and ¢(Tz) (19) = gz’)(Tzo) as
B(x) = D62 + B g, (60)
- 3770 60

Notice that the solution (59) can be also derived by the trace
part of the evolution equation (27) together with the energy
constraint (25).

B. Scalar perturbation ;(H(

The expression §/ fro dr' Eq. (26) gives the following
equation:

1
2

T . 1
_ / deM, + 29+ VAR (61)

7o

v2¢T + Dl] T( )

Substituting M; of (29) and ¢<T2 ) of Eq. (59) into Eq. (61)
yields:

2 (oYK 1 . , ,
g/ Xl i(/ d’r'-l-?/ 1/4)(2—1(1))(T(1)kld1/]
7o

7o

3 3 3 , 71 / ,
+V2y-2 {EXT 1)klm kn(11)+ y (>klm)(kl(m>+4)(kl() T(l)kl+6/ _/)(le(l))(T(l)kldT/i|’ (62)
70 T

4

where the constant
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Y= )( Y V- (25T0 <1)i])(<?” )+ V- 2V—2< %0

depending on the initial values of metric perturbations at z,. Thus, the scalar perturbation D; ])(u(

D,;/\? = b, Y—|—1

53

1 Ty '
+6/ ?)(kl( )ZT(I)kldT/:|'
70

We have checked that when B(x) satisfies Eq. (60), at the

initial time 7 = 7(, one has )(”( ) = ;(%> Notice that the
solution (64) can also be derived by the traceless part of
the evolution equation (27) together with the momentum

constraint (26).

C. Vector perturbation ;{#ij(.z)

The time integral of the momentum constraint (26) from
7o to 7 is

1 10
2¢T/+ V2 Tj +§ZTi(j)
1 i
/ dt'My; + 2¢T0/ JF V2 TOJ JFE)(%IZJ) . (65)
7o
Using M7; in (29), one has
T 1 [~
/ diMy; = E/ P;(x,7)dd —;(T(l)kl;(zlf})
7o To
K T(
+ 0() )(Ok(l/)’ (66)
where
T kKT
Pi(x,7) = 2T )kl)(]k(l) -l-)(]( ) )(kl( Y (67)

Plugging the solutions ¢T of (59) and )( ) of (64) into
(65), after calculations similar to Sec. IV.C, the vector
perturbation is obtained:

3 Tykm T(1)

6 1 2 71 ]
0D V2K - 3 DyV B + Dy [—5;( (kL) ——/ Sa 2
70

) 3
1/4)(le( ))( (1) kldT/:| + Dl_jv—zv—z [_

PHYSICAL REVIEW D 96, 103523 (2017)

Zowm 470 o m)(gk(l mT 310 2 (-)rkl - %X(Tk(zl)llg(l)/ko ,
(63)
is determined,
s K gyt
> TR STk Ty 3 T gy
(64)

)(TU V 2(N,,+N,,)+V 2/1[61P1+8]P1]d7/

70

oo m o T
_al_ajv 2y 2[2)( )kz)(n(1>+){()k1, Zkz()

Jm

, 2o, T Tk
+ i A TOM 4 8/ e £ dr’}, (68)
To

where the constant 3-vector

1(2).i o T(Wklm T Dklm  T(1
M=+ 09 (10 el + 5

I Ty Taym

+ EZOk(z ))(o( ) ) (69)

depending on the initial values at 7. Notice that the
solution (68) can be also derived by the traceless part of
the evolution equation (27) together with the momentum
constraint (26).

D. Tensor perturbation x;i](.z)

Next consider the traceless part of the evolution
equation (27):

TRy 4 Ty TR
)(Ti(j) +;)(Ti(j) _vzﬂ(ri(j>
=287 - <2Du¢r +3 szu)(T )>

4 12 4 1oy
- (DUZT() + - DU){w )> - <)(Ti<j) +;)(Ti8‘> ;

(70)

where
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. 1
Stij = Stij = 3051
Ty Ty 1 e T(1Y T
=7, (1) ij( ) __)(T(l)kl)(kl( )5ij +y T(1 )klxll(]k)

3
T T
y T m _ —yTa )kl)(l](k;

Zkl,lj
T(1)k, T(1 Tk T L Tk T
( M —)(i,l( )(jk() e )(klij

T
+x T >kl)(l](lk)

I Tq
T(1)kl, mZkz(m)5 _ meE’k)ZT(i)mk,zcsij
xRV )(kz Oij- (71)

By calculations similar to Sec. IV.D, Eq. (70) is written as

Ty 4 Tey T(2
)(Ti(j) +;)(Ti(j) _vz)(Ti(j) = Jr1ij(%,7), (72)

where the source

- 2v—2s;‘ki, ;—2V- 23;;]..1.. (73)

The differential equation (72) is inhomogeneous, and its
solution is given by

T2 1 ikx (7 Clij
115 %.0) = i [ e (Tnto) + )

+ c;;g 5 (s )>, (74)

where s = kr,

- 1 sins s . cosy\ -
ITij(s)z?<coss—T>[ dyy? (smy—l—T)JT,-j(y)
1/ . coss s siny\ -
- (sms —l——>/ a’yy2 <cosy——> JTij(y)’
s ) 1 Yy

(75)

with Jo; ; being the Fourier transformation of the source
Jrij- In (74) cy;; and c,;; terms represent a homogeneous
solution, which should be determined by the initial con-
dition at 7.

Thus, all the 2nd-order metric perturbations produced by
tensor-tensor coupling have been obtained. Consequently,
by (18), the corresponding 2nd-order density contrast

;oTa T(ij T
(J{T(l)])(ij( ) _Zo( ”J(o;ﬁ >)’

(76)

1
2 2 2
6% = 60 +3(0" — bio) +5

which can be written as

PHYSICAL REVIEW D 96, 103523 (2017)

2
2) T 3 1 T(1Y ’
or __2_OK+T_38_W 7/4)(/(1 xT W Har
2 TZZZ(I)/)(T(I)’H /
— | = dr. 77
+ 10/ = dr (77)

So far, the 2nd-order metric perturbations have been
obtained using the scalar-scalar, scalar-tensor, and tensor-
tensor couplings. We can qualitatively assess which cou-
pling is dominant during MD stage. By the solution (20)
in the paper I [49] of the 1st order of perturbations,
the scalar is o2, increasing with time, the tensor by

(19) in the paper I [49] is o<r‘7H )(kf) T‘EH (kr) whose

amplitude is decreasing with time. So, the scalar-scalar
terms are increasing as 7%, the tensor-tensor terms are

decreasing quickly, and the tensor-scalar terms behave as
«z'2H\Y (k).'/2H'? (kt), which are decreasing over the
2 2

whole range at a slower rate than the tensor-tensor terms.
Thus, qualitatively speaking, the scalar-scalar terms
are dominant over the tensor terms during evolution.
Therefore, the corresponding solutions of metric perturba-
tions also share these generic features.

In applications, one has to deal with the second-order
degrees of gauge freedom in these solutions, which is
discussed in the latter section.

VI. THE 2ND-ORDER GAUGE
TRANSFORMATIONS

Consider the coordinate transformation up to 2nd order
[47,49]:

oo B E Dy % fnga 4 %gw, (78)

where &) is a Ist-order vector field, £2 is a 2nd-order
vector field, and can be written in terms of their respective
parameters

EA0 — (4), (79)

Wi = gigA) 4 g (80)

with A = 1, 2 and a constraint 9;d")’ = 0. The 1st order
gauge transformations between two synchronous coordi-
nate systems for the Einstein-de Sitter model with a(z) o 7?
are listed in (179)-(183) in Ref. [49]. The general
2nd-order synchronous-to-synchronous gauge transforma-
tions of metric perturbations are given by (201), (207)-
(209) of Ref. [49], which are valid for general cosmic
expansion stages. In the following we apply them to the
case of a(z) o 72. So far in our paper, the perturbations of
4-velocity of dust have been taken to be UV# = U@k = 0,
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It is proper to require also the transformed 3-velocity
perturbations

oWi =0, (81)
o®i =0, (82)

in the new synchronous coordinate [41,49]. Under the

constraints (81), the 1st-order vector field 5(”/‘ is [49]
A
a(l) = TT s (83)
pY = c(x),, (84)
dV = 0. (85)

In the above, A(!) is an arbitrary constant, and C()(x) is an
arbitrary function. The 1st-order residual gauge transfor-
mations are [49]

PHYSICAL REVIEW D 96, 103523 (2017)

and (82), the 2nd-order vector field £2# is given as the
following:

A®
al? = — (89)
= Cl¥(x),, (90)
d? = c;?(x), (91)

where A% is an arbitrary constant, C!l(?)(x) is an arbitrary

function, CiMz)(x) is an arbitrary curl vector; all of them

shall be linearly depending on ;(iTJ-(l) at some fixed time.

Accordingly, by the general formulas (201), (207)—(209) in
Ref. [49] of the 2nd-order residual gauge transformation of
metric perturbations, keeping only the scalar-tensor terms,
one obtains:

_2 Ty 2
P = ¢(())+3C” kl;(,d)+ A®) 4= Lvacie)n,  (92)

- AL
§U =g+ 25+ vClVx). (86) D) = Dijy) = Dy V-2V =2[oCl(kmy [0
2 /(1)K 2Dk, T(1)
D'V =D, 4V — 2D, CH )(x), (87) +6)(kl vie ]+2D Ve Y]
ij ij.
—2D;,Cll®), (93)
_T() _T()
(A B o _ o 20, T2 I
. . Xs(1)ij :Zs(r)ij_za'v (i V€ +2)(k e
We shall first give the 2nd-order gauge transformations for Ok T()
the scalar-tensor coupling. From the general formulas +C; )(kl )—l—@@ V=2V—2(4y Mgzl
(194), (199), and (200) of Ref. [49], keeping only the . T 12 ) )
Ty , . + 6l k,(,,))—c,.‘j)jt(u—”), (94)
xij -linear- dependent terms and using the conditions (81)
|
_ 8 2
xlﬁfﬁ,:ﬂﬁ?/— T—3A(1)%?j<l)+—2A(1>X”( + 2l I w22l Vg2, [ o cliDEg2, T
+ 2 VR 2y KOk 4l 04, T 4 4l )+2c”( VL T
B Yaullt )kl T +2C” klv 5 + clia kszkl ] 88V 2V 2[ My2clia )kt 3l (1) kim kl(rln)]’
(95)

where the constants A(), ) (x), ¢V (x) are all inde-
pendent of the tensor )(iij. As Eq. (95) tells, the trans-
formation of 2nd-order tensor involves only the vector field
&M independent of £(2)

It should be pointed out that the roles of £!) and &) are
different. When one sets £&@ = 0 in Eq. (78) [49,51], only
&M remains, which ensures g((){)) =0 and g(()l.) = 0 in a new
synchronous coordinate. Nevertheless, now one has no

(2)

freedom to make gy, @

=0 and g, =0, since &) has
already been used in obtaining gé})) = 0and g(()i.) = 0. Thus,
2nd-order transformations from synchronous to synchro-
nous can not effectively be made when one sets &2 = 0.
On the other hand, if one does not transform the 1st order,
but only transforms the 2nd-order metric perturbations
[52], one simply sets £ = 0 but £&2) # 0. Then (92)—(95)
reduce to
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(;35?[)) qb(()) += 2 S AC VZCH (96)
D,,;(Ll((f)) = DU;(H(IZ)> 2D;;C12, (97)

f%(i)zz)l :)(j_(g)zi)j - (Ci;‘a) + CjL.i(Z))’ (98)
Zaios = oy (%9)

From the transformation formula [)@) = pﬁz)

— L) p©
[49], the transformation of the 2nd-order density perturba-

tion is

)
_2) _ (2, A
Pty = Psiy T 61-_3'0(0)’ (100)

by which the transformation of the 2nd-order density
contrast is given by

50— 50 4 647 (101)

()

where A® shall be linear depending on xij = atsome fixed

time. These transformations by &) have the same structure
as the Ist-order gauge transformations [49].

By this result, we can identify the residual gauge modes
in the 2nd-order solutions for the scalar-tensor coupling.

In the solution of scalar ¢§%3) in (33), the constant terms

2 .
(ff’if,))o - %6@)0 -3oY )(OT,.E.U) are a residual gauge mode,
which can be changed by a choice of C!I). In the solution

of scalar Diﬂ!((tz)) in (38), the constant term DijZ is also a

gauge term that will be changed by Cll®) accordingly.

Similarly, in the solution of vector y <( ) in (44), the
constant term V~2(Q;; + Q;;) is a residual gauge mode
and can be removed by a choice of (ij(z) Cfl.(z)), but
other time-dependent terms in (44) are not gauge modes. In
contrast, the 2nd-order tensor is invariant under the trans-
formation by &2 as demonstrated by Eq. (99), and the
solution of tensor in Eq. (53) thus contains no gauge mode.

Next consider the case of tensor-tensor coupling, the
analysis is similar to the above paragraphs. In particular, the
2nd-order residual gauge transformation is effectively
implemented only by the 2nd-order vector field £2) even
given nonzero &), and the gauge transformations are
similar to (96)—(99) and (101)

2

¢T 7¢T + = AC + VZCH )(x), (102)

Du)?u( ) = - Dzﬂ(l]‘"( ) 2DijCH(2)(X)’ (103)

PHYSICAL REVIEW D 96, 103523 (2017)

_1(2 102 102 12
)(Ti(j) :)(T;j) - (Ci,j( )(X) + Cj.i( )(X))v (104)
_T(2 e
){Ti<j) :)(Ti<j)’ (105)
2
52 _ o) | A
S5y = 05y T 63 (106)

@

i

where A, Cl®(x),

T(1)_T(1) . .
tensor terms such as y,; 'y, * at some fixed time. By
(102)—(105), the residual gauge modes in the solutions of
2nd-order metric perturbations for the tensor-tensor cou-
pling can be identified similarly. For instance, the constant
terms in the solutions (59), (64), and (68) are residual gauge

(x) shall depend on tensor-

modes, and can be changed by choices of CII(?) and Cil(z)

respectively. Furthermore, Eq. (105) shows that )(;(jz)
generated by the tensor-tensor coupling is gauge invariant,
so that the solution of (74) in synchronous coordinates

contains no gauge mode.

VII. CONCLUSION

We have studied the 2nd-order cosmological perturba-
tions in the Einstein-de Sitter Universe in synchronous
coordinates. The scalar-tensor and tensor-tensor types of
couplings of 1st-order metric perturbations serve as a part
of effective source for the 2nd-order metric perturbations.
For each coupling, respectively, the 2nd-order perturbed
Einstein equation has been solved with general initial
conditions, and the explicit solutions of scalar, vector,
and tensor 2nd-order metric perturbations have been
obtained.

We have also performed general 2nd-order synchronous-
to-synchronous gauge transformations, which are gener-
ated by a Ist-order vector field and a 2nd-order vector
field. For the scalar-tensor and tensor-tensor couplings,
respectively, we have identified all the residual gauge
modes of the 2nd-order metric perturbations in synchro-
nous coordinates. By analysis, we point out that, holding
the 1st-order solutions fixed, only the 2nd-order trans-
formation vector field is effective in carrying out the 2nd-
order transformations. This is because of the fact that the
Ist-order vector field has been already determined in the
Ist-order transformations. In particular, the 2nd-order
tensor is found to be invariant under 2nd-order gauge
transformations just like the 1st-order tensor is invariant
under the Ist-order transformations.

Thus, together with the case of scalar-scalar couplings in
our previous work, we have obtained the full solution of the
2nd-order cosmological perturbations and all their residual
gauge modes of the Einstein-de Sitter Universe in syn-
chronous coordinates, where all the couplings of 1st-order
perturbations are included. As a possible application of the
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results of 2nd-order perturbations to CMB, one can use the

derived expressions yg;) + %75? into the Sachs-Wolfe term
of the Boltzmann equation of photon gas. The correspond-
ing spectra CfX of on CMB anisotropies and polarization
will contain the contributions from the 2nd-order effects
@)

ij

of y
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