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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of coannihilating
dark matter. We explore the possible failure of this assumption and find a new conversion-driven freeze-out
mechanism. Considering a representative simplified model inspired by supersymmetry with a neutralino-
like and sbottomlike particle we find regions in parameter space with very small couplings accommodating
the measured relic density. In this region freeze-out takes place out of chemical equilibrium and dark matter
self-annihilation is thoroughly inefficient. The relic density is governed primarily by the size of the
conversion terms in the Boltzmann equations. Due to the small dark matter coupling the parameter region is
immune to direct detection but predicts an interesting signature of disappearing tracks or displaced vertices
at the LHC. Unlike freeze-in or superWIMP scenarios, conversion-driven freeze-out is not sensitive to the
initial conditions at the end of reheating.
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I. INTRODUCTION

The origin and the nature of dark matter (DM) in the
Universe is one of the most pressing questions in particle
physics and astrophysics. Despite impressive efforts to
uncover its interactions with the Standard Model (SM) of
particle physics in (in)direct detection and accelerator-
based experiments, DM remains elusive and, so far, our
understanding is essentially limited to its gravitational
interactions (see e.g., [1,2]). It is therefore of utmost
interest to investigate mechanisms for the generation of
DM in the early Universe that go beyond the widely studied
paradigm of thermal freeze-out, and that can point towards
nonstandard signatures.
In this spirit we subject the well-known coannihilation

scenario [3] to further scrutiny and investigate the impor-
tance of the commonly made assumption of chemical
equilibrium (CE) between DM and the coannihilation
partner. This requires solving the full set of coupled
Boltzmann equations, which has been performed in the
context of specific supersymmetric scenarios [4,5]. Here we
consider a simplified DM model and explore the break-
down of CE in detail to find a new, conversion-driven
solution for DM freeze-out which points towards a small
interaction strength of the DM particle with the SM bath.
While the smallness of the coupling renders most of the
conventional signatures of DM unobservable, new oppor-
tunities for collider searches arise. In particular we find that
searches for long-lived particles at the LHC are very
powerful tools for testing conversion-driven freeze-out.
The structure of the paper is as follows. We begin

by introducing a simplified model for coannihilations in

Sec. II. In Sec. III we present the Boltzmann equations
which govern the DM freeze-out and investigate
conversion-driven solutions before we confront the regions
of parameter space which allow for a successful generation
of DM with LHC searches in Sec. IV. Finally, we
summarize our results and conclude.
In the appendixes we provide further details and results.

In particular, we discuss the appearance of divergences in
the conversion rates in Appendix A, describe our treatment
of Sommerfeld enhancement in Appendix B and justify the
assumption of kinetic equilibrium by providing solutions
of the full momentum-dependent Boltzmann equation in
Appendix C.

II. SIMPLIFIED MODEL FOR
COANNIHILATION

While the precise impact of the breakdown of CE
between DM and its coannihilation partner will in general
depend on the details of the considered model, the key
aspects of the phenomenology can be expected to be
universal. As a representative case we choose a simplified
model for DM interacting with quarks. We extend the
matter content of the SM minimally by a Majorana fermion
χ, being a singlet under the SM gauge group, and a scalar
quark partner ~q, mediating the interactions with the SM and
acting as the coannihilation partner. The interactions of the
new particles among themselves and with the SM are given
by [6]

Lint ¼ jDμ ~qj2 − λχ ~q q̄
1 − γ5
2

χ þ H:c:; ð1Þ
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where q is a SM quark field; Dμ denotes the covariant
derivative, which contains the interactions of ~q with the
gauge bosons as determined by its quantum numbers;
and λχ is a Yukawa coupling. Here we choose q ¼ b
and Y ¼ − 1

3
. For the coupling λχ ¼ 1

3

ffiffiffi
2

p
e

cos θW
≈ 0.17 our

simplified model makes contact with the Minimal
Supersymmetric SM (MSSM) where ~b can be identified
with a right-handed sbottom and χ with a binolike
neutralino. However, here we will not consider the
MSSM but vary λχ freely.

1 Note that choosing a top-partner
mediator instead yields similar results although quantitative
differences arise due to the large top mass.
On top of the gauge and Yukawa interactions described

above a Higgs-portal interaction given by

Lh ¼ λhh†h ~b
† ~b ð2Þ

is also allowed. This interaction does not involve χ directly
and has no impact on the conversion rates χ ↔ ~b, that
are responsible for establishing CE. Nevertheless, it can
modify the annihilation rate of ~b. Since the additional
contributions involving the scalar coupling compete with
QCD processes, i.e., ~b ~b† → gg, they are subleading unless
λh is very large. Even in this case we do not expect

qualitative differences, and therefore neglect this contribu-
tion in the following.

III. FREEZE-OUT WITHOUT CHEMICAL
EQUILIBRIUM

For coannihilation to be effective the coannihilating
particles—here χ and ~b—have to be in thermal contact
through efficient conversion rates χ ↔ ~b. For couplings λχ
of the order of the electroweak coupling strength, con-
version rates are much larger than the Hubble rateH during
freeze-out, guaranteeing CE, i.e.,

nχ
neqχ

¼ n ~b

neq~b
; ð3Þ

where n (neq) is the (equilibrium) number density. While
CE holds the results are not sensitive to the size of the
conversion rates and the Boltzmann equations can be
reduced to a single equation that does not contain con-
version terms [8]. This approach is solved in standard
tools [9–11].
For smaller couplings, however, CE can break down

and the full coupled set of Boltzmann equations has to be
solved [4,5]. In our case

dYχ

dx
¼ 1

3H
ds
dx

�
hσχχviðY2

χ − Yeq2
χ Þ þ hσχ ~bviðYχY ~b − Yeq

χ Y
eq
~b
Þ

þ Γχ→ ~b

s

�
Yχ − Y ~b

Yeq
χ

Yeq
~b

�
−
Γ ~b

s

�
Y ~b − Yχ

Yeq
~b

Yeq
χ

�
þ hσχχ→ ~b ~b†vi

�
Y2
χ − Y2

~b

Yeq2
χ

Yeq2
~b

��
ð4Þ

dY ~b

dx
¼ 1

3H
ds
dx

�
1

2
hσ ~b ~b†viðY2

~b
− Yeq2

~b
Þ þ hσχ ~bviðYχY ~b − Yeq

χ Y
eq
~b
Þ

−
Γχ→ ~b

s

�
Yχ − Y ~b

Yeq
χ

Yeq
~b

�
þ Γ ~b

s

�
Y ~b − Yχ

Yeq
~b

Yeq
χ

�
− hσχχ→ ~b ~b†vi

�
Y2
χ − Y2

~b

Yeq2
χ

Yeq2
~b

��
; ð5Þ

where Y ¼ n=s is the comoving number density, s the
entropy density and x ¼ mχ=T. We take the internal
degrees of freedom gχ ¼ 2 and g ~b ¼ 3. Y ~b represents the
summed contribution of the mediator and its antiparticle.
Since the cross sections are averaged over initial state
degrees of freedom, this leads to the factor 1=2 in the
respective Boltzmann equation, Eq. (5). Equally, Γχ→ ~b is
understood to contain the conversion into both.
Apart from the familiar annihilation and coannihilation

terms displayed in the first lines of Eqs. (4) and (5) three

additional rates for the conversion processes enter in the
second lines. The first term includes all the scattering
processes which convert DM in its coannihilation partner.
The scattering rate is given by

Γχ→ ~b ¼ 2
X
k;l

hσχk→ ~blvineqk ; ð6Þ

where k, l denote SM particles. The factor of two arises
from annihilation into the mediator and its antiparticle.
Neglecting quantum statistical factors and assuming
Boltzmann distributions the thermal average for scattering
reads [8]

1For a realization of small λχ in extensions of the MSSM
see [7].
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hσijvineqi neqj
¼ T

gigj
256π5

Z
pijpabffiffiffi

s
p jM̄j2K1

� ffiffiffi
s

p
T

�
dsd cos θ; ð7Þ

where Ki denotes a modified Bessel function of the second
kind. Here gi are the internal degrees of freedom of species
i, and pij and pab denote the absolute value of the three-
momentum of the initial and final state particles in the
center-of-mass frame, respectively. In certain scattering
processes soft- or t-channel divergences can appear in the
thermal averages. We discuss these issues and how we
resolve them in detail in Appendix A. The next term in the
second lines of Eqs. (4) and (5) captures the conversion
induced by the decay and inverse decay of ~b. This rate
is controlled by the thermally averaged decay width Γ ~b.
The thermally averaged decay rate is given by

Γ ~b ≡ Γ
�
1

γ

�
¼ Γ

K1ðm ~b=TÞ
K2ðm ~b=TÞ

; ð8Þ

where γ is the Lorentz factor. Finally, the last term takes
the scattering processes in the odd sector into account.
We include all diagrams that are allowed at tree level and
use FEYNRULES [12] and CALCHEP [13] to generate the
squared matrix elements jM̄j2; see Tables I and II for a

summary of the included processes. We take into account
the Sommerfeld enhancement of the ~b ~b† annihilation rates
as detailed in Appendix B.
A first naive estimate that allows us to determine the

ballpark of the parameters where conversion processes
become relevant follows from demanding

Γ ~b

Yeq
~b

Yeq
χ
∼H; ð9Þ

for temperatures relevant to the freeze-out dynamics
(mχ=T ∼ 30). Using as a representative benchmark mχ ¼
500 GeV and a value of the mediator mass that allows for
coannihilations (m ~b ¼ 510 GeV) this relation indicates
λχ ∼Oð10−7Þ. The order of magnitude is largely insensitive
to the precise choice of masses, as long as coannihilations
can occur.
For such a small coupling a clear hierarchy emerges

between the different rates; see the left panel of Fig. 1. The
annihilations χχ → SM SM and χχ → ~b ~b† that are propor-
tional to λ4χ and thermally suppressed by neqχ are exceed-
ingly small and cannot compete with the Hubble expansion.
Even though the coannihilation rate χ ~b → SM SM, which
scales as σχ ~bv ∝ λ2χg2 (where g is a SM gauge coupling) is
enhanced relative to this by many orders of magnitude it is
also negligible compared to H. In contrast, the leading
contribution to ~b ~b† → SM SM is set by the gauge inter-
actions of ~b and, therefore, the rate remains comfortably
larger than H until T ≈mχ=30. The most important

annihilations, especially for very small λχ are the ~b
annihilations into gluons. Since the interaction rates are
suppressed exponentially by the masses of external par-
ticles, it is clear that the conversion processes containing
external gluons dominate over the rates containing weak
scale particles. The conversion rates are close to the Hubble
rate and, for this choice of couplings, just about sufficient
to make conversion processes relevant for the freeze-out.
Taking these rates and solving the Boltzmann equations

we find the results presented in the right-hand side of Fig. 1.
We solve the system of coupled equations from x ¼ 1 up to
x ¼ 1000.2 The χ abundance leaves its equilibrium value
already at rather high temperatures, well before the freeze-
out of a typical thermal relic or the ~b freeze-out. The slow
decline of the χ abundance after this point is due to the
close-to-inefficient conversion terms which remove over-
abundant χ’s.
In Fig. 2 we show the dependence of the final freeze-out

density on the coupling λχ (red solid line). For large enough

TABLE II. List of all considered conversion processes.
Processes marked with � have soft divergences; processes with
�� can have t-channel divergences.

Initial state Final state Symbol Scaling

χ b ~b g�, γ�, Z, H Γχ→ ~b λ2χ
g, γ, Z��, H�� b̄

W− t̄, ū��, c̄��
t��, u, c Wþ

~b χ b Γ ~b λ2χ
χ χ ~b ~b† hσχχ→ ~b ~b†vi λ4χ

TABLE I. List of all included coannihilation processes. We use
the abbreviations q ¼ all quarks, l ¼ all leptons and V ¼ g, γ, Z,
W. The ~b annihilation into bb̄ also has contributions scaling with
λ2χ and λ4χ .

Initial state Final state Scaling

χ χ b b̄ λ4χ
χ ~b b g, γ, Z, H λ2χ

W− t, u, c

~b ~b† V V λ0χ
q q̄
Z H
l l

~b ~b b b λ4χ

2Due to efficient annihilations, the ~b abundance is very close to
equilibrium at early times. For numerical convenience, it is
sufficient to track its deviation from equilibrium starting from
x ∼ 15.
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coupling, the solution coincides with the result that would
be obtained when assuming CE (blue dotted line). The relic
density is in this case largely set by the strength of ~b self-
annihilation into gluons. When lowering the value of λχ ,

conversions χ ↔ ~b become less efficient and one obtains
a relic density that lies above the value expected for CE.
For the benchmark scenario shown in Fig. 2, the freeze-out
density matches the value determined by Planck [14] for a
coupling of λχ ≈ 2.6 × 10−7.

Above we assumed that both χ and ~b have thermal
abundances for T ≫ mχ. While this assumption is certainly

well justified for ~b, one may question the dependence on
the initial condition for χ due to its small coupling to the

thermal bath. We check the dependence on this assumption
by varying the initial abundance at T ¼ mχ within the range
ð0–100Þ × Yeq

χ . The evolution of the abundances for our
benchmark point are shown in Fig. 3, for early times
(x < 20). We find that all trajectories converge before
x≲ 5, thereby effectively removing any dependence of
the final density on the initial condition at x ¼ 1. The
dependence of the final freeze-out density on the initial
condition is also indicated in Fig. 2 by the area shaded in
red, and is remarkably small. Therefore, conversion-driven
freeze-out is largely insensitive to details of the thermal
history prior to freeze-out and in particular to a potential
production during the reheating process. Note that this
feature distinguishes conversion-driven freeze-out from
scenarios for which DM has an even weaker coupling
such that it was never in thermal contact (e.g., freeze-in
production [15]). Thus, while requiring a rather weak
coupling, the robustness of the conventional freeze-out
paradigm is preserved in the scenario considered here.

FIG. 1. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative to the
Hubble rate as a function of x ¼ mχ=T for mχ ¼ 500 GeV, m ~b ¼ 510 GeV, λχ ≈ 2.6 × 10−7. Right panel: Evolution of the resulting

abundance (solid curves) of ~b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

FIG. 2. Relic density as a function of the coupling λχ , for
mχ ¼ 500 GeV, m ~b ¼ 510 GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red line
shows the full solution including all conversion rates; the gray
dashed line corresponds to the solution when only decays are
considered. The shaded areas highlight the dependence on initial
conditions, Yχð1Þ ¼ ð0–100Þ × Yeq

χ ð1Þ. The central curves cor-
respond to Yχð1Þ ¼ Yeq

χ ð1Þ.

FIG. 3. Dependence on the initial conditions for Yχ at x ¼ 1.
We show solutions for the choices Yχð1Þ ¼ ½0; 1; 100� × Yeq

χ ð1Þ,
and otherwise the same parameters as in Fig. 1.
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As discussed before, conversions χ ↔ ~b are driven by
two types of processes, decay and scattering. It turns out
that quantitatively both are important for determining the
freeze-out density. To illustrate the importance of scattering
processes, we show the freeze-out density that would be
obtained when only taking decays into account by the gray
dashed line in Fig. 2. Furthermore, the gray shaded area
indicates the dependence on initial conditions that would
result neglecting scatterings. We find that scattering proc-
esses, which are active at small x, are responsible for
wiping out the dependence on the initial abundance in the
full solution of the coupled Boltzmann equations.
While Eqs. (4) and (5) do not require chemical equilib-

rium to hold, they rely on the implicit assumption of kinetic
equilibrium, i.e., the assumption that the momentum
dependence of the distribution functions is proportional
to a thermal distribution. For the freeze-out of weakly
interacting massive particles, this assumption is typically
well justified because scattering processes are enhanced
compared to annihilations by a Boltzmann factor of order
emχ=T . However, in the present scenario, the small coupling
λχ renders elastic scatterings of the form χb ↔ χb ineffi-
cient. Instead, the leading processes to establish kinetic
equilibrium are the inelastic conversion processes dis-
cussed above. Since their rate is, by definition, comparable
to the Hubble rate in the interesting regime of parameters,
one may wonder whether the treatment based on integrated
Boltzmann equations is justified for χ. In order to check this
point, we solved the full, momentum-dependent Boltzmann
equation for χ, taking the leading decay and scattering
processes into account. We find that, while the distribution
function can indeed deviate from the thermal distribution at
intermediate times, the final relic abundance differs only
mildly from the integrated treatment (below the 10% level).
The main reason is that the collision operator does not
depend strongly on the momentum mode, such that all
modes behave in a similar way. For a detailed discussion
we refer to Appendix C.
Let us briefly comment on possible refinements. Apart

from quantum statistics, also thermal effects could play a
role at small x. In particular, the thermal mass for the
b-quark can lead to a thermal blocking of the decay at high
temperatures and for very small mass splitting. Since a
consistent inclusion of this effect would require us to take
also further thermal processes into account, and since
(hard) scatterings dominate for small x, we do not expect
these corrections to significantly affect our conclusion.
Additionally, bound state effects could play a role for the ~b
annihilation [16–20].

IV. VIABLE PARAMETER SPACE

We will now explore the parameter space consistent with
a relic density that matches the DM density measured by
Planck, Ωh2 ¼ 0.1198� 0.0015 [14]. In the considered

scenario, for small couplings, ~b ~b† annihilation is the only
efficient annihilation channel. Hence the minimal relic
density that can be obtained for a certain point in the
mχ-m ~b plane is the one for a coupling λχ that just provides

CE (but is still small enough so that χχ- and χ ~b-annihilation
is negligible). The curve for which this choice provides
the right relic density defines the boundary of the valid
parameter space and is shown as a black, solid curve in
Fig. 4. Below this curve a choice of λχ sufficiently large to
support CE would undershoot the relic density. In this
region a solution with small λχ exists that renders the
involved conversion rates just large enough to allow for the
right portion of thermal contact between ~b and χ to provide
the right relic density. The value of λχ ranges from 10−7 to
10−6 (from small to large mχ). These values lie far beyond
the sensitivity of direct or indirect detection experiments.
For the solutions providing the right relic density, during

typical freeze-out (i.e., when T ∼mχ=30) the conversion
rates have to be on the edge of being efficient; cf. Eq. (9).
From this simple relation (and assuming that the decay
width, Γ ~b, is similar in size as the other conversion rates) we

can already infer that the decay length of ~b is of the order of
1–100 cm for a DM particle with a mass of a few hundred
GeV predicting the signature of disappearing tracks or
displaced vertices at the LHC.

FIG. 4. Viable parameter space in the plane spanned by mχ and
Δmχ ~b ¼ m ~b −mχ . We adjust λχ such that Ωh2 ¼ 0.12. Above the
thick black curve CE holds, while below this curve CE breaks
down and the freeze-out is conversion driven. The corresponding
coupling λχ=10−7 (decay length cτ) of the mediator is denoted
by the thin green (gray) dotted lines. The blue dashed (dotted-
dashed) curve shows our estimates for the limits from R-hadron
searches at 8 (13) TeV. The constraint from monojet searches is
shown as the red double-dotted-dashed curve.
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The decay length in our model is shown as the gray
dotted lines in Fig. 4. It ranges from 25 cm to below 2.5 cm
for increasing mass difference (the dependence on the
absolute mass scale is more moderate).
In proton collisions at the LHC pairs of ~b’s could

be copiously produced. They will hadronize to form
R-hadrons [21] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced vertices
and (disappearing) highly ionizing tracks provide promis-
ing discovery channels. Similar searches have, e.g., been
performed for a gluino R-hadron (decaying into energetic
jets) [22] or a purely electrically charged heavy stable
particle [23,24] but have not been performed for the model
under consideration (see also [25,26] for a recent account
on simplified DM models providing displaced vertices).
However, some constraints on the model can already be
derived from existing searches.
Searches for detector-stable R-hadrons [27–30] can be

reinterpreted for finite decay lengths by convoluting the
signal efficiency with the fraction of R-hadrons that decay
after traversing the relevant parts of the detector. This
reinterpretation provides limits down to a decay length
of cτ≃ 0.1 m for an R-hadron mass around 100 GeV and
can be used to estimate excluded parameter regions in
our model.
To this end we compute the weighted fraction of

R-hadrons that decay after traversing the relevant parts
of the detector in a Monte Carlo simulation as follows. For
a given R-hadron in an event i this fraction is

F i
pass ¼ e−l=ðcτβγÞ; ð10Þ

where l ¼ lðηÞ is the travel distance to pass the respective
part of the detector which depends on the pseudorapidity η
while γ is the Lorentz factor according to the velocity β.
We use a simple cylindrical approximation for the CMS
tracker3 with a radius and length of 1.1 m and 5.6 m,
respectively. For the weighting we compute4

F̄ pass ¼
P

iF
i
passPi

onPi
offP

iP
i
onPi

off
; ð11Þ

where Pi
on and Pi

off are the probabilities of the respective
event to be triggered and pass the selection cuts, respectively,
and the sum runs over all generated events. We
use the tabulated probabilities Pi

on, Pi
off for leptonlike heavy

stable charged particles following the prescription in [31]

(see also [32] for details of the implementation of isolation
criteria and validation). We expect this to be a good
approximation as the selection criteria for leptonlike
heavy stable charged particles and R-hadrons are
identical and differences in the overall detector efficiency
cancel out in Eq. (11). We simulate events with
MADGRAPH5_AMC@NLO [33], performing showering
and hadronization with PYTHIA 6 [34].
We use the cross section predictions from NLLFAST [35]

and rescale the signal by F̄ pass. The 95% C.L. exclusion
limits are then obtained from a comparison to the respective
cross section limits from searches for (top-squark)
R-hadrons presented in [27]. The results are shown in
Fig. 5. We show limits for two models regarding the
hadronization and interaction of the R-hadron with the
detector material, the generic model [36,37] and Regge
(charge-suppressed) model [38,39] as the red solid and blue
dashed line, respectively.
In addition to the results for the 8 TeV LHC we show

results from an analogous reinterpretation of the prelimi-
nary results from 12.9 fb−1 of data from the 13 TeV LHC
run [28]. Since the tabulated probabilities in [31] are only
provided for 8 TeV we use these also for the analysis of the
13 TeV simulation assuming a similar detector efficiency
for R-hadrons in both runs.
The fraction of R-hadrons passing the tracker is expo-

nentially suppressed for small lifetimes, significantly
weakening the respective sensitivity. However, there are
two competing factors that nevertheless result in mean-
ingful limits for cτ smaller than the detector size. On the
one hand, for small masses the production cross section
rises quickly. On the other hand, for smaller masses a larger

FIG. 5. Regions excluded at 95% C.L. by a reinterpretation of
the searches for detector stable top-squark R-hadrons with CMS
at the 8 TeV and 13 TeV LHC (tracker-only analysis).

3We considered the tracker-only and tracker þmuon-system
analysis of [27] finding the higher sensitivity for the former one.

4For simplicity we display the formula for one R-hadron
candidate per event; for events with two candidates we follow the
prescription in [31] [with the replacement Pi

off → F i
passPi

off in the
respective sum in the numerator of Eq. (11)].
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fraction of R-hadrons is significantly boosted, enhancing
the travel distance in the detector. However, this (latter)
effect does not significantly enhance the sensitivity as the
signal efficiency for largely boosted R-hadrons decreases
rapidly (as tracks become indistinguishable from minimal
ionizing tracks for β → 1).
Note that the above CMS analysis has been interpreted

for R-hadrons containing top squarks. As discussed in [39]
the expected energy loss for an R-hadron containing
sbottoms is smaller. This results in an efficiency around
30–40% smaller relative to the case of the top squark and
therefore in slightly weaker limits on the sbottom mass; see
e.g., [29]. However, we use the above limit taking the result
for the Regge model (that provides the weaker limits) as a
realistic estimate of the LHC limits for the (sbottomlike)
mediator in our model considering the fact that the
uncertainties in the hadronization are of similar size as
the difference between the sbottom and top-squark case.
The resulting limits from the 8 TeV [27] and 13 TeV [28]

LHC data are superimposed in Fig. 4. For mass splittings
belowmb (below gray dashed curve) the two-body decay is
not allowed and the R-hadrons can be considered detector
stable. Towards large mass splittings (smaller lifetimes)
the limits fall off significantly, providing no constraint
above Δmχ ~b ≃ 13 GeV.
In addition, a large number of experimental results for a

sbottom-neutralino simplified model assuming a prompt
sbottom decay exist; see e.g., [40–43]. While most of these
searches are not applicable to nonprompt decays, monojet
searches, targeting small mass splittings, have been per-
formed that do not rely on the prompt decay of the mediator
[44,45]. We superimpose the (stronger) limit from [45] that
uses 3.2 fb−1 of 13 TeV data.

V. CONCLUSION

In this work we have considered the possibility that the
common assumption of chemical equilibrium during DM
freeze-out does not hold. For definiteness, we have focused
on a simplified model with particle content inspired by
supersymmetry, comprising a neutral Majorana fermion as
the DM candidate and a colored scalar particle that
mediates a coupling to bottom quarks. For small mass
splitting between the mediator and the DM particle, the
freeze-out is dominated by self-annihilation of the media-
tor. This process can be efficient enough to deplete the DM
density below the observed value, thus giving rise to a
portion of parameter space in which thermal freeze-out
cannot account for all of the DM abundance. In this work
we have demonstrated that this conclusion hinges on the
assumption of chemical equilibrium, and that the freeze-out
process can account for the DM density determined by
Planck when relaxing this assumption. This occurs when
the DM particle interacts very weakly with both the SM and
the mediator, such that conversion processes have to be
taken into account explicitly. We find that this opens up

new regions in parameter space which lead to characteristic
signatures of long-lived particles at collider experiments.
R-hadron searches performed at the 8 and 13 TeV LHC
runs already constrain part of the parameter space pro-
viding conversion-driven freeze-out. A dedicated search
for disappearing R-hadron tracks and displaced vertices
targeting decay lengths in the range 1–100 cm is expected
to probe an even larger portion of the allowed parameter
space.
The mechanism discussed here is distinct from the

freeze-in scenario [15], for which the DM particle was
never in thermal equilibrium, and which would require a
much smaller coupling strength than considered here.
On the other hand, it shares some similarities with the
superWIMP scenario (see e.g., [46]), but also differs in
various respects. In particular, the relic density is set by the
interplay of conversion and annihilation processes during
freeze-out, unlike for superWIMPs, where DM is produced
from the late decay of a heavier state that undergoes a
standard thermal freeze-out. In addition, for the mechanism
considered here, the lifetime of the coannihilation partner is
short enough such that constraints from Big Bang nucleo-
synthesis are generally avoided, provided that the decay
rate gives a sizable contribution to conversion. Unlike both
freeze-in and superWIMP scenarios in the considered
mechanism the final relic density is insensitive to the
initial condition of the abundance at the end of the reheating
process.
We expect that conversion-driven freeze-out can be

realized generically in DM models featuring strong coan-
nihilations. If the coannihilation partner is not colored but
only electrically charged, one may expect signatures related
to leptonlike highly ionizing tracks. Finally, it is possible
that the efficient self-annihilation of the coannihilation
partner is itself driven by a new interaction beyond the SM
[47]. In this case the mechanism described here can be
relevant even if the coannihilating state is a SM singlet with
macroscopic decay length, potentially leading to displaced
vertex signatures.
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APPENDIX A: DIVERGENCES IN
CONVERSION RATES

Due to the inclusion of scattering processes, two issues
arise in the thermal averages. Since we do not consider
loop corrections to the two-body decay or 1 → 3 processes
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~b → χbg, we cannot use them to cancel soft contributions
from g ~b ↔ bχ scatterings (of course, the γ scattering also
has this problem, as noted by � in Table II). Instead, we
regularize these processes by imposing a cut on the
minimal process energy of smin ¼ ðm ~b þmcutÞ2, with
fiducial value mcut ¼ 0.5 GeV. We checked that our
numerical results are stable when varying mcut over a
wide range (see Fig. 6), indicating that the bulk of the
scattering processes occurs at energies above the b mass.
On top of this, we find that in processes of the type
~bb̄ ↔ χH the b-quark in the t-channel is allowed to go on-
shell for some center-of-mass energies (the affected
processes are marked with �� in Table II). This corre-
sponds to a double counting of the on-shell two-body
decay. We choose to suppress the on-shell part by
introducing a large Breit-Wigner width for the b-quark,
taking Γb ¼ mb in our numerical calculations. Since this
issue occurs only in processes involving weak scale
particles (H, W, Z) and the scattering rate is dominated
by gluons the precise value for the width does not have
an appreciable impact on the results.

APPENDIX B: SOMMERFELD ENHANCEMENT

In the presence of light degrees of freedom nonpertur-
bative corrections to the annihilation rates are known to
become relevant in the nonrelativistic limit [49,50].
Between pairs of color charged particles the exchange of
gluons generates a potential which modifies the wave
function of the initial state particles and leads to a non-
negligible correction of the tree-level cross section [51–54].
To leading order the effect of the QCD potential can be

described by a Coulomb-like potential [55]

VðrÞ ≈ αs
2r

½CQ − CR − CR0 � ðB1Þ

where CR and CR0 denote the Casimir coefficients of the
incoming particles while CQ is the Casimir coefficient of
the final state. For a general Coulomb potential with
VðrÞ ¼ α=r the s-wave Sommerfeld correction factor S0
is given by [51]

S0 ¼ −
πα=β

1 − eπα=β
; ðB2Þ

where β ¼ v=2 and the total annihilation cross section
of particles moving in this potential is given by
σSomm ¼ S0 · σtree.

5 For final states which are exclusively
in a singlet, i.e., ZZ,WþW−, γγ, or an octet representation,
i.e., γg, Zg, the enhancement is given by Eq. (B2) with
α ¼ −4=3αs or α ¼ 1=6αs, respectively. The gg final state
is slightly more complicated since it can be in a singlet
or octet representation. After summing over the different
contributions the total Sommerfeld correction factor for this
case reads [51]

S0 →
2

7
S0

				
α¼−4=3αs

þ 5

7
S0

				
α¼1=6αs

: ðB3Þ

Since this channel dominates the annihilation rates by
orders of magnitude, we only take the correction for
annihilation to gluons into account.

APPENDIX C: KINETIC EQUILIBRIUM

In this section we compare solutions of the differential,
momentum-dependent Boltzmann equation for χ with the
integrated Boltzmann equation used in the main text. The
latter relies on the assumption of kinetic equilibrium. This
assumption may be questionable for the range of param-
eters we are interested in, because the leading interactions
of χ are the conversion processes that become inefficient
around the time of freeze-out.
If a particle X is in kinetic equilibrium with the thermal

bath of SM particles at temperature T, its distribution
function is given by

fXðp; tÞ ¼ feqX ðp; TÞ
YXðtÞ
Yeq
X ðTÞ

; ðC1Þ

where fXðp; tÞ is the phase-space density. We assume that
due to efficient coupling to the SM, the mediator ~b is in
kinetic equilibrium for all relevant times. When dropping
the assumption of kinetic equilibrium for χ, the uninte-
grated Boltzmann equation for fχ,

FIG. 6. Dependence of the final DM density on the regulari-
zation parameter mcut ∈ ½0.1; 0.5; 5� GeV, for mχ ¼ 500 GeV,
m ~b ¼ 510 GeV.

5In principle the Sommerfeld factors have to be determined
separately for each partial wave. For the model considered here
the total Sommerfeld effect can be approximated to good
accuracy by applying the s-wave correction to the full cross
section.
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ð∂t −Hp∂pÞfχðp; tÞ ¼
1

Eχ
C½fχ �; ðC2Þ

has to be solved; see e.g., [48,56]. The collision operator C
determines the differential interaction rate of each momen-
tum mode of χ. Introducing the notation

xðt; pÞ ¼ mχ=T; qðt; pÞ ¼ p=T; ðC3Þ

the Liouville operator on the left-hand side of Eq. (C2) can
be brought into the form

ð∂t −Hp∂pÞ ¼
H

1 − x
3heff

dheff
dx

�
x∂x þ

x
3heff

dheff
dx

q∂q

�

≈Hx∂x: ðC4Þ

In the last line we assume heff to be constant during freeze-
out which is approximately satisfied above temperatures of
OðGeVÞ. Here we adapt the notation of [8] for the effective
degrees of freedom geff and heff associated with the energy
and entropy densities, respectively.

1. Collisional operator for conversion

For the purpose of comparing the integrated with the
differential Boltzmann equation, we focus on the dominant
interaction processes that drive the distribution function
towards kinetic equilibrium. For the parameter range we are
interested in, these are conversion processes, in particular
(inverse) decays χb ↔ ~b, and, for earlier times, also
inelastic scatterings χA ↔ ~bB. We neglect the small con-
tributions from χχ annihilation, χ ~b coannihilation and
elastic scattering χb ↔ χb. Note that if we would take
these additional processes into account, one expects them
to drive the distribution function closer to its equilibrium
shape. Therefore the following analysis may be regarded
as a conservative estimate of the deviations from kinetic
equilibrium.
With these assumptions Eq. (C2) becomes a linear

differential equation and the remaining contributions to
C½fχ � are the (inverse) decay χb ↔ ~b,

C12½fχ � ¼
1

2

Z
dΠbdΠ ~bð2πÞ4δ4

�X
pi

�
jM̄j2½f ~b − fχfb�;

ðC5Þ

and the inelastic scatterings χA ↔ ~bB,

C22½fχ � ¼
1

2

Z
dΠAdΠ ~bdΠBð2πÞ4δ4

�X
pi

�
jM̄j2

× ½f ~bfB − fχfA�; ðC6Þ

where dΠX ¼ gXd3pX=ðð2πÞ3EXÞ. Apart from the different
integrations, the terms in brackets differ from those in the

case of the integrated Boltzmann equation. For the decay
term we find

f ~b − fχfb ¼ feq~b
Y ~b

Yeq
~b

− fχf
eq
b ¼ feqb

�
feqχ

Y ~b

Yeq
~b

− fχ

�
; ðC7Þ

using the relation of detailed balance for the equilibrium
distributions. A similar simplification can be performed for
inelastic scattering such that C factorizes into

C½fχ � ¼ ~Cðq; xÞ
�
feqχ

Y ~b

Yeq
~b

− fχ

�
Eχ : ðC8Þ

As before, we neglect quantum statistical factors in the
calculation. The unintegrated Boltzmann equation (C2) can
hence be written in the form

Hx∂xfχðq; xÞ ¼ ~Cðq; xÞ
�
feqχ

Y ~b

Yeq
~b

− fχ

�
: ðC9Þ

This ordinary differential equation together with the boun-
dary condition

fχðq; x0Þ ¼ feqχ ðq; x0Þ ¼ exp


−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ x20

q �
ðC10Þ

can be solved with separation of variables and variation of
constants. The result reads (cf. [48])

fχðq; xÞ ¼ feqχ ðq; xÞ Y ~b

Yeq
~b

−
Z

x

x0

dðfeqχ ðq; yÞY ~bðyÞ=Yeq
~b
ðyÞÞ

dy

× exp

�
−
Z

x

y

~Cðq; zÞ
zHðzÞ dz

�
dy: ðC11Þ

2. Simplifications for the numerical solution

In order to trace the evolution of the number density

nχðxÞ ¼
4πgχm3

χ

x3

Z
q2

ð2πÞ3 fχðq; xÞdq; ðC12Þ

the phase-space density fχðq; xÞ has to be computed for a
large number of momentum modes q and temperature
parameters x providing a sufficiently accurate numerical
approximation. This is a computationally expensive task. In
the following we therefore introduce analytic simplifica-
tions of the collision operators.
For the two-body decay we can find the analytic

result for the collision operator, neglecting the b-quark
mass,

~C12 ¼
2g ~bgbjMj2T
16πpχEχ

ðe−pmin=T − e−pmax=TÞ; ðC13Þ
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where

jMj2 ¼ λ2χ
gχgb

ðm2
~b
−m2

χÞ; ðC14Þ

pmin =max ¼
m2

~b
−m2

χ

2m2
χ

ðEχ ∓ pχÞ ðC15Þ

and gχ ¼ 2, gb ¼ 6, g ~b ¼ 3. The factor of 2 in the
numerator of Eq. (C13) accounts for the two different
processes when considering the mediator and its antipar-
ticle, which is not included in g ~b.
For the inelastic scattering we consider the process

χb ↔ ~bg. Neglecting, again, the bottom mass we can
express the collision operator as

~C22 ¼
2gqT

16π2pχEχ

Z
∞

m2
~b

ðs −m2
χÞσðsÞ

× ðe−pminðsÞ=T − e−pmaxðsÞ=TÞds ðC16Þ
where

σðsÞ ¼ 1

4jpχ ·pqj
Z
dΠ ~bdΠgð2πÞ4δðpχ þpq −p ~b −qgÞjMj2

ðC17Þ

and

pmin =maxðsÞ ¼
s −m2

χ

2m2
χ

ðEχ ∓ pχÞ: ðC18Þ

Note that while ~C12 is an analytic function, ~C22 has to be
numerically evaluated. We choose to precompute ~C22 on a
two-dimensional grid in x and q ¼ pχ=T and use an
interpolation for the numerical evaluation of Eq. (C11).
We provide most of the discussion for the case when taking
into account the decay term only, which is expected to
capture the main effects. We comment on the effect of
scatterings at the end of this section.

3. Iterative solution of the coupled system

The solution Eq. (C11) of the Boltzmann equation for
fχðq; xÞ requires as an input the evolution of the mediator
abundance, Y ~bðxÞ. The latter can be obtained by solving the
corresponding integrated Boltzmann equation, which in
turn involves YχðxÞ, that is determined by integrating
fχðq; xÞ over all momentum modes. Therefore the equa-
tions for fχðq; xÞ and Y ~bðxÞ form a coupled set of
equations.
Here we solve this coupled set of differential equations in

an iterative process. We start with an initial “guess” for
Y ~bðxÞ, which we take to be the solution when assuming
kinetic equilibrium (see below for a discussion of different

choices). We then solve for fχðq; xÞ on a momentum grid,
and numerically compute YχðxÞ using Eq. (C11) as
described in the last subsection. With this solution for
YχðxÞ we recalculate Y ~bðxÞ using the integrated Boltzmann
equation. We subsequently iterate between solving for
fχðq; xÞ and Y ~bðxÞ, until we encounter sufficient conver-
gence. In order to solve the differential Boltzmann equation
in an acceptable time, we neglect the bottom mass and
choose heff and geff to be evaluated at x ¼ 50 and constant
for all times. We do not expect a strong dependence on
these simplifications.
The resulting evolution of the abundance YχðxÞ for the

benchmark pointmχ ¼ 500 GeV,m ~b ¼ 510 GeV is shown
in Fig. 7 (upper panel) as a red solid curve. We compare the
result to the solution of the coupled integrated Boltzmann
equation (red dotted curve) obtained under the same
approximations. We adjust the coupling λχ ¼ 4.03×10−7

so as to obtain the measured DM relic density for the
solution of the coupled integrated Boltzmann equation. The
lower panel of Fig. 7 shows the ratio of the differential and
integrated solutions for YχðxÞ. While the dark matter
abundance differs by up to a factor of two at intermediate
times, the final relic abundance agrees well with the
corresponding result when assuming kinetic equilibrium,
with deviations below the 10% level.
The main reason is that, for the process and the

kinematical situation that is relevant here, the collision
term does not depend strongly on the momentummode; see
Fig. 8 (dotted-dashed lines). In the same figure, we also

FIG. 7. Upper panel: Evolution for the resulting abundance of ~b
(blue) and χ (red) of the differential (solid) and integrated (dotted)
Boltzmann equation. The dashed curves denote the equilibrium
abundances. Lower panel: Ratio of the two abundances for χ. The
red solid line shows the converged result while the orange thick
and thin curves denote the first and the following iterations,
respectively. Only the decay term is considered.
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show the result for fχðq; xÞ at various times x (blue lines),
which indeed differs from an equilibrium distribution
(indicated by the red dashed lines) at intermediate times
(upper and middle panel in Fig. 8). Nevertheless, around
the time when the dark matter abundance freezes out, the
remaining decays of thermalized ~b tend to restore an
equilibrium distribution (lowest panel).
It is interesting to observe that the total abundance

obtained from the unintegrated Boltzmann equation is
slightly below the result when assuming kinetic equilibrium.
This can also be understood from Fig. 8. For high temper-
atures, the momentum modes obtained from the differential
solution essentially change only due to redshift. In contrast,
the kinetic equilibrium distribution populates somewhat
higher modes. By the time the conversion gets efficient,
the collision term is larger for smaller momentum modes.
Therefore, the conversion into ~b’s is stronger for the differ-
ential solution, rendering a slightly smaller abundance.
Let us now discuss the impact of the initial “guess” for

Y ~bðxÞ used for the iterative solution. We check that the
converged result is independent of the starting point of the
iteration by using two rather different initial abundances.
First, we use the equilibrium abundance Yeq

~b
ðxÞ as a starting

point. The results are shown in the left panel of Fig. 9. The
evolution of YχðxÞ obtained in the first iteration step is
shown by the thick orange line, and the successive
iterations are indicated by the thin orange lines. The final,
converged result (thick red line) agrees well with the result
obtained in Fig. 7. The same is true for Y ~bðxÞ (solid blue
line). On the other hand, we would like to point out that the
first iteration and the converged result are rather far apart.
This means that it is crucial to solve for the coupled set of

FIG. 8. Collision operator (normalized by the Hubble rate,
green dotted-dashed curves) and the phase-space distribution of
the differential (blue solid) and integrated (red dashed) solution as
a function of the momentum mode q for three different times,
x ¼ 15, 63 and 100. The phase-space distribution is normalized
to the integral over the differential solution, q2fχ=

R
q2fdiffχ dq.

Only the decay term is considered.

FIG. 9. Evolution of the abundance of ~b (blue solid) and χ (red solid) for two different choices of the starting point of the iteration,
shown in the two panels, respectively. Left panel: Initial mediator abundance set to the equilibrium abundance, Y ~bðxÞ ¼ Yeq

~b
. The thick

and thin orange solid curves denote the first and the following iterations, respectively. The orange dotted curve shows the integrated
solution obtained for Y ~bðxÞ ¼ Yeq

~b
. Right panel: Initial χ abundance set to the equilibrium abundance at relativistic temperatures,

YχðxÞ ¼ Yeq
χ ðx≲ 1Þ. The thick and thin orange solid curves denote the initial abundance and the following iterations, respectively. Only

the decay term is considered. As in Fig. 7 the dashed curves denote the equilibrium abundances.
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equations, allowing for deviations Y ~bðxÞ ≠ Yeq
~b
ðxÞ. For

curiosity, we note that if one would compare the differential
with the integrated result for YχðxÞ while fixing
Y ~bðxÞ ¼ Yeq

~b
ðxÞ, one would find an Oð10Þ difference in

the final abundance (see orange dotted versus solid line in
the left panel of Fig. 9), while the corresponding difference
for the converged results is below ∼10%. Hence, the partial
freeze-out of the mediator ~b and its subsequent decay into χ
are crucial for the conclusion that the impact of deviations
from kinetic equilibrium on the relic density is small.
Second, we consider an extreme possibility and initially

set YχðxÞ to be constant and equal to the relativistic
equilibrium density. In this case we start the iteration with

the computation of Y ~bðxÞ. The resulting iterative solutions
for YχðxÞ are shown in right panel of Fig. 9 (orange lines).
Again, the converged result for YχðxÞ (red solid line) and
Y ~bðxÞ (solid blue line) agree well with those shown
in Fig. 7.
The convergence of the final relic density for the three

different choices of initial abundances is shown in Fig. 10.
Indeed, the converged results agree, indicating that the
iterative scheme is stable and leads to a unique result.
Next wewant to check if the situation changes drastically

when including also 2 → 2 scattering processes. Due to
the increase in numerical complexity described above, we
consider the leading process χb ↔ ~bg expected to capture
the main effects. In order to estimate the physical con-
tributions from hard scatterings, we perform regularizations
on the level of the scattering cross section by introducing a
cutoff smin ¼ ðm ~b þ 1 GeVÞ2 and additionally a regulator
at the matrix element level of 1=t2 → 1=ðt2 þ ð1 GeVÞ4Þ.
In addition, we restrict the integration over the angle θt
between b and g in the center-of-mass frame to
cos θt ∈ ½−0.9; 0.9�.
Again, we solve the coupled system in an iterative

approach as described above, but taking scatterings into
account. As before, we then compare the converged result
for the final relic density with the corresponding result
obtained when assuming kinetic equilibrium. We find that
the relative deviations in the resulting relic density stay
below 10%. Furthermore, the deviation for YχðxÞ for
intermediate times becomes smaller. This is expected,
because scatterings increase the conversion rates at
smaller x.
Altogether, we find that the impact of deviations from

kinetic equilibrium on the final relic abundance is rather
mild, below the 10% level. This justifies using integrated
Boltzmann equations for YχðxÞ and Y ~bðxÞ.
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