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False vacuum states are metastable in quantum field theories, and true vacuum bubbles can be nucleated
due to the quantum tunneling effect. It was recently suggested that an evaporating black hole (BH) can be a
catalyst of bubble nucleations and dramatically shortens the lifetime of the false vacuum. In particular,
in the context of the Standard Model valid up to a certain energy scale, even a single evaporating BH may
spoil the successful cosmology by inducing the decay of our electroweak vacuum. In this paper, we
reinterpret catalyzed vacuum decay by BHs, using an effective action for a thin-wall bubble around a BH to
clarify the meaning of bounce solutions. We calculate bounce solutions in the limit of a flat spacetime and
in the limit of negligible backreaction to the metric, where it is much easier to understand the physical
meaning, and compare these results with the full calculations done in the literature. As a result, we give a
physical interpretation of the enhancement factor: it is nothing but the probability of producing states with a
finite energy. This makes it clear that all the other states such as plasma should also be generated through
the same mechanism, and calls for finite density corrections to the tunneling rate, which tend to stabilize the
false vacuum. We also clarify that the dominant process is always consistent with the periodicity indicated
by the BH Hawking temperature after summing over all possible remnant BH masses or bubble energies,
although the periodicity of each bounce solution as a function of a remnant BH can be completely different
from the inverse temperature of the system, as mentioned in the previous literature.
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I. INTRODUCTION AND SUMMARY

The discovery of the Higgs boson has established the
Standard Model (SM) [1,2]. For the current center value of
the SM parameters, especially the measured top and Higgs
masses [3–7], the Higgs potential develops a lower energy
state than the electroweak vacuum at around the intermediate
scale well below the Planck [8–20]. This fact implies that the
quantum tunneling might lead to a disastrous decay of our
vacuum [21,22]. Fortunately, it is known that, for the current
favored value of SM parameters, its lifetime far exceeds the
present age of the Universe, and thus our electroweak
vacuum is believed to be metastable in the context of SM
valid up to a very high energy scale.
Though this argument guarantees the safety of our

vacuum in the present Universe, it does not mean that
our metastable vacuum can survive throughout the history
of the Universe. Thus, this scenario could in principle
contradict various cosmological phenomena which can
drive the vacuum decay. Many studies have been performed
from this viewpoint. For instance, in the early Universe, it is
believed that the Universe was filled with thermal plasma
composed of SM particles. Since the Higgs interacts with
SM particles including the Higgs itself, the thermal
fluctuations might activate the decay of our vacuum
[8,11,12,23], while these relativistic particles tend to
stabilize the Higgs at the same time. It has been shown
that this effect does not spoil our Universe for the best fit

values of SM parameters [14–16]. If we further go back
through the history of the Universe, we may encounter the
phase of inflation and the subsequent (p)reheating. Since
light fields with masses smaller than the Hubble parameter
acquire fluctuations proportional to the Hawking temper-
ature H=2π during inflation [24–29], the Higgs might
overcome the potential barrier via the Hawking-Moss
instanton [30], which may be interpreted as the thermal
hopping owing to the Hawking temperature. This obser-
vation puts a severe bound on the Hubble parameter of
inflation: H < Oð0.01ÞΛinst with Λinst being the instability
scale [14,31–44]. Although one might think that this
constraint can be ameliorated by introducing a small
coupling between the inflaton and the Higgs field, recent
studies reveal that the (p)reheating stage after inflation
could drive the catastrophic decay because the very
interaction activates Higgs fluctuations due to the oscillat-
ing inflaton [45–50].
Recently, it was pointed out that a black hole (BH)

can be a nucleation site just like a boiling stone in a
superheated liquid system, and the vacuum transition rate
can be dramatically enhanced (or the potential barrier
becomes effectively smaller) around the BH [51–53] (see
Refs. [54–59] for earlier work). The result of their calcu-
lation is independent of the periodicity of the Wick-rotated
time coordinate, so that they insist that the result can be
applied to an arbitrary low temperature system. In particu-
lar, the enhancement gets more significant for a smaller
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BH, and in an extreme case, the Higgs can classically
overcome the potential barrier, such as the thermal hopping
and the Hawking-Moss transition. Applying this result to
the Higgs field, they concluded that even a single small BH
that evaporates within the current age of the Universe leads
to the disaster of our vacuum [60].1 And thus, there should
not be such a small BH in our observable Universe.
Although such a small BH may not be formed in the usual
scenario of cosmology, their conclusion puts a stringent
constraint on some cases, such as the formation of
primordial BHs in the early Universe [63].2

In this paper, we reinterpret the earlier results derived via
a Wick-rotated Euclidean field theory in Refs. [51–53] by
invoking an effective action for a thin-wall bubble that can
also describe the vacuum transition in scalar field theories
[55,56,73]. We start with the bubble nucleation at a finite
temperature in the flat spacetime, and recall that the final
bubble nucleation rate can be factorized into the probability
of producing states with a finite energy times a tunneling
rate of a finite energy. This is also true if we have a BH. By
extending the same procedure, we reformulate the bubble
nucleation rate around a BH in the case where the back-
reaction of the bubble on the spacetime can be neglected.3

We compare the bubble nucleation rate computed in this
way with the full gravitational one in the limit of negligible
backreaction. As a result, we clarify the meaning of the
enhancement factor, that is, a probability of producing
states with a finite energy E, which is a Boltzmann factor
e−E=TBH . It is hard to imagine that a BH only activates
bubbles since quantum field theory has many other degrees
of freedom to be excited. Hence, we expect all the states
with a finite energy E should also be generated by the
same mechanism. This argument clarifies the need of
finite-density corrections to the bubble nucleation rate
regardless of its origin, namely whether or not the
Universe is filled by the plasma of the BH Hawking
temperature, though the size of corrections depends on it.4

We also confirm that the periodicity of each bounce
solution as a function of E is not necessarily related to the
temperature of the system. However, after summing over all
the possible transitions as a function of E, we find that the
dominant process is always consistent with the periodicity
indicated by the temperature of the system. This observa-
tion also holds if we have a BH. Although one still cannot
determine the question raised in Ref. [63], whether or not
the thermal plasma fills the whole Universe, by only

looking at the periodicity of bounce solutions, our pro-
cedure indicates that the heart of the problem is free from a
BH. The problem is whether or not a finite-volume heat
reservoir can emit bubbles whose size is much larger than
the size of the reservoir. We leave this issue as an open
question.
The following is the summary of our results of this paper:

(a) In a flat spacetime with a finite-temperature plasma,
we have shown −dB=dE� ¼ 2Δτ and d2B=dE2� < 0,
where −B is the exponent of the quantum tunneling
rate, E� is the energy of the bubble, and 2Δτ is the
periodicity of the bubble solution. Since the exponent
of the Boltzmann factor satisfies dð−E�=T�Þ=dE� ¼
−1=T�, the inequality d2B=dE2� < 0 implies that
the dominant process is given either by E� ¼ 0 or
E� ¼ Esp, where Esp is the sphaleron energy.

(b) In the Schwarzschild–de Sitter spacetime, we even-
tually find −dBbubble=dΔM ¼ 2Δτ and −dBboundary=
dΔM ¼ −1=TBH;−, where TBH;- is the Hawking tem-
perature associated with the remnant BH and
−Bboundary and −Bbubble are the exponents of the
quantum tunneling rate coming from the boundary
of BH and the other contributions, respectively.
The difference of the BH mass before and after the
transition, ΔM, is equal to the bubble energy by the
conservation of energy. We also show that
BbubbleðΔMÞ coincides with BðE� ¼ ΔMÞ in the limit
where the bubble radius is much larger than the BH
radius once we identify the temperature as the Hawk-
ing temperature. In particular, d2Bbubble=dΔM2 < 0 in
that limit.

(c) In the fixed-background Schwarzschild–de Sitter
spacetime with finite-temperature effects, we again
obtain −dB=dE� ¼ 2Δτ. The behavior of the second
derivative is similar to the above full calculation. In the
case that the effect of the change of the metric by the
bubble is negligible, the nucleation rate coincides with
the one derived by the above full calculation only if we
identify the temperature of the system as the Hawking
temperature of the BH. This observation clarifies that
the enhancement factor is nothing but the probability
of generating states with a finite energy, which is the
Boltzmann factor with a BH Hawking temperature.

This paper is organized as follows. In Sec. II, we first
review the calculation of the tunneling rate for a thin-wall
bubble in a scalar field theory. We show that the transition
rate is dominated either by a vacuum transition without an
excited energy or by a sphaleron transition in this system.
Next, we take into account gravity and consider the vacuum
transition in the Schwarzschild–de Sitter spacetime in
Sec. III. In particular, we calculate the bubble energy
dependence of transition rate and show that its behavior
is similar to the one in a finite-temperature system in a flat
spacetime. We also use the effective action for the thin-wall
bubble and show that the same nucleation rate in the

1See also Refs. [61,62] for related work.
2The bubble nucleation process is also important in the context

of the multiverse, where bubbles continuously nucleate and
observers may live in the baby universes [64–71]. The enhance-
ment effect of the nucleation rate is applied in Ref. [72] to
generate baby universes around BHs.

3This situation is practically important for realistic applica-
tions, for instance, to study the metastable Higgs vacuum [52].

4See also Sec. IV.
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literature can be derived by the thermal activation of the
BH Hawking temperature in a certain limit. Section IV is
devoted to the conclusion and discussion, where we briefly
explain the physics behind our result and discuss the
possibility that the cost of such thermal plasma may
significantly reduce the bubble nucleation rate.

II. TRANSITION WITHOUT GRAVITY

In this section, we review the calculation of the transition
rate from a false vacuum to a true vacuum in quantum
field theory without gravity, i.e., in the limit of G → 0,
where G [≡1=ð8πM2

PlÞ] is the Newton constant and MPl

(¼ 2.4 × 1018 GeV) is the Planck scale. We take gravity
into account in Sec. III.

A. Tunneling from a false vacuum

The action is given by

S½ϕ� ¼
Z

d4x

�
−
1

2
∂μϕ∂μϕ − VðϕÞ

�
; ð2:1Þ

where VðϕÞ is a potential for the scalar field, which has a
false vacuum at ϕ ¼ ϕFV and the true vacuum at ϕ ¼ ϕTV.
The lifetime of the false vacuum can be calculated from

the path integral as follows:

e−Γt0 ¼ jhϕbubble; t ¼ t0jϕFV; t ¼ 0ij2
jhϕFV; t ¼ t0jϕFV; t ¼ 0ij2 ð2:2Þ

¼
����
Z

ϕðt¼t0Þ¼ϕbubble

ϕðt¼0Þ¼ϕFV

DϕeiS½ϕ�
����2
,����

Z
ϕðt¼t0Þ¼ϕFV

ϕðt¼0Þ¼ϕFV

DϕeiS½ϕ�
����2

ð2:3Þ

¼
Z
bounce

DϕeiS½ϕ�
,Z

ϕðt∈½−t0;t0�Þ¼ϕFV

DϕeiS½ϕ� ð2:4Þ

¼
Z
bounce

DϕeiS½ϕ�−iSM;0 ; ð2:5Þ

SM;0 ≡ S½ϕðxÞ ¼ ϕFV�; ð2:6Þ

with t0 → ∞, where the path integral
R
bounce is performed

under the boundary conditions of ϕðt ¼ �t0Þ ¼ ϕFV and
ϕðt ¼ 0Þ ¼ ϕbounce. The subscript “bubble” in ϕmeans that
it is a bubble configuration with a certain radius as we
specify below. The denominator in the first line comes from
the normalization of the initial and final states and gives the
factor e−iSM;0 in the last line, where the subscript “M”
indicates this action is defined in Minkowski spacetime.
Now we take the imaginary time τ ¼ it and rewrite

Eq. (2.5) in terms of the Euclidean path integral. In the
saddle point approximation in Euclidean theory, the path

integral is approximated by SE½ϕbounce�, which is calculated
from a bounce solution of the classical Euclidean equation
of motion. The action is minimized by a solution where ϕ
bounces only once. In addition to the single bounce
solution, there is an infinite number of solutions where
ϕ bounces many times, which may be summed in the dilute
gas approximation. Then we obtain

e−Γt0 ∝ e−jKjt0 exp−ðSE½ϕbounce�−SE½ϕ¼ϕFV�Þ; ð2:7Þ
where jKj is a prefactor that is not important for our
discussion. Thus, we obtain

Γ ∝ e−B; ð2:8Þ

B ¼ Sbounce − SE;0; ð2:9Þ

where the Euclidean action is given by

SE½ϕ� ¼
Z

d4x

�
1

2
∂μϕ∂μϕþ VðϕÞ

�
; ð2:10Þ

and the normalization factor is given by

SE;0 ¼ SE½ϕ ¼ ϕFV�: ð2:11Þ
Let us emphasize that the action Sbounce is calculated

from the bounce solution under the boundary condition of
ϕ ¼ ϕFV at τ ¼ �τ0ð→ �∞Þ, and the tunneling process
corresponds to a transition from ϕ ¼ ϕFV to ϕ ¼ ϕbounce,
i.e., a transition from the metastable ground state ϕ ¼ ϕFV
to the state at the other side of the potential barrier
ϕ ¼ ϕbounce. Although we mention here the contribution
from the perturbation δϕðτÞ, it does not usually contribute
to the exponential factor.5

The bounce solution ϕbounce obeys the Euclidean equa-
tion of motion that is given by the variational principle of
SE½ϕ� in terms of ϕ:

d2ϕ
dτ2

þ Δϕþ U0 ¼ 0; ð2:12Þ

UðϕÞ ¼ −VðϕÞ; ð2:13Þ

where Δ ¼ ∂2
i is the Laplacian. In quantum field theory,

the degrees of freedom is infinity because of the spacial
dependence of the field. In many cases, however, we can
use some symmetries to reduce the degrees of freedom
to unity.

5If the system couples with light degrees of freedom, the
prefactors could be significant [74–78]. In other words, we have
to be careful what the “tree-level” action is in computing the
bounce. Throughout this paper, we do not consider this issue
further, and simply assume that we somehow know the tree-level
action that is appropriate to compute the bounce.
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The Euclidean action has an O(4) symmetry in quantum
field theory, so let us first focus on O(4) symmetric
solutions. In the thin-wall approximation, the scalar field
configuration is approximated by the following O(4)
symmetric configuration:

ϕðxÞ ¼ ϕthinðη; η�Þ≡
�
ϕTV for η ≪ η�;

ϕFV for η ≫ η�;
ð2:14Þ

where η (≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ x2 þ y2 þ z2

p
) is the radial coordinate of

the Euclidean spacetime and η� is the radius of the bubble.
Note that this is an instanton solution where the time
variable τ runs from −∞ to ∞ and the configuration is
nontrivial in a small interval jτj≲ η�.
The number of degrees of freedom is reduced to be unity

by the O(4) symmetry, so that we can consider a one-
dimensional system with the variable η�. Plugging the O(4)
symmetric thin wall configuration back into the action, we
can express the action as a function of the bubble radius η�,

SE ¼ −
1

2
π2η4�ϵþ 2π2η3�σ þ SE;0; ð2:15Þ

where the first term comes from the contribution inside
the bubble, while the second term comes from the surface
of the bubble. We define the energy density difference as
ϵ≡ VðϕFVÞ − VðϕTVÞ and the surface energy density of
bubble σ as

σ ≡
Z

ϕFV

ϕTV

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðϕÞ − VðϕFVÞ�

p
: ð2:16Þ

The variable η� obeys a constraint that originates from the
Euclidean equation of motion. The same equation can be
derived from the variational principle of SE½ϕðη; η�Þ� in
terms of the variable η�. Then we find the following results:

η� ¼ η0 ≡ 3σ

ϵ
; ð2:17Þ

SE ¼ 27π2

2

σ4

ϵ3
þ SE;0ðϕFVÞ: ð2:18Þ

We find

B ¼ B0 ≡ 27π2

2

σ4

ϵ3
: ð2:19Þ

It is instructive to consider the same theory with an O(3)
spherical symmetric assumption, which can be generalized
to calculate transition rates in a finite temperature. In the
thin-wall approximation, the worldsheet metric is written as
(see, e.g., Ref. [73])

ds23 ¼ −
�
1 −

�
dr�
dt

�
2
�
dt2 þ r2�dΩ: ð2:20Þ

The action for the domain wall is given by the worldsheet
area in addition to the difference of potential energy inside
and outside bubble, so that we obtain

S ¼
Z

dt

�
−4πr2�σγ−1 þ

4

3
πr3�ϵ

�
þ SM;0; ð2:21Þ

where γ ¼ ½1 − ðdr�=dtÞ2�−1=2 may be regarded as the
gamma factor of the domain wall. The first term is the
surface term, which contains the kinetic energy of bubble,
and the second term comes from the contribution inside the
bubble. The conserved energy can be derived from

E ¼ ∂L
∂ _r� _r� − L; ð2:22Þ

where the Lagrangian L can be read from the above action.
This is rewritten as

4πr2�σγ −
4

3
πr3�ϵ ¼ E� ð2:23Þ

¼ 0: ð2:24Þ

In the second equality, we use the fact that the initial
energy is zero. Taking the imaginary time τ ¼ it, this can
be rewritten as �

dr�
dτ

�
2

¼
�
3σ

ϵ

�
2 1

r2�
− 1: ð2:25Þ

The bounce solution is given by

r� ¼ ½ð3σ=ϵÞ2 − τ2�1=2; ð2:26Þ

so that we obtain the value of the Euclidean bounce action
as

SE ¼ 27π2

2

σ4

ϵ3
þ SE;0: ð2:27Þ

Noting that r2� þ τ2 ¼ ð3σ=ϵÞ2 ¼ η2�, these results are con-
sistent with the above results using the O(4) symmetric
assumption.

B. Tunneling with a finite energy

Now we can consider a transition from an excited state
around the false vacuum by using the O(3) approximation
and the thin-wall approximation. As one can see from
Eq. (2.23) and Fig. 1, a state with a finite energy E� allows
an O(3) symmetric bubble with dr=dt ¼ 0, whose radius is
r�1 or r�;2. The amplitude of the transition from a bubble
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with r� ¼ r�;1 at τ ¼ 0 to another one with r� ¼ r�2 at
τ ¼ τ0, which is going to expand, is obtained from

hr�;2;τ¼ τ0jr�;1;τ¼0i¼
Z

rðτ¼τ0Þ¼r�;2

rðτ¼0Þ¼r�;1
D½ϕ�e−S½ϕ�: ð2:28Þ

The transition rate is then given by

e−Γt0 ∝ jhr�;2; τ ¼ τ0jr�;1τ ¼ 0ij2 ð2:29Þ

¼
����
Z

rðτ¼τ0Þ¼r�;2

rðτ¼0Þ¼r�;1
D½ϕ�e−S½ϕ�

����2 ð2:30Þ

¼
Z
bounce

D½ϕ�e−S½ϕ�; ð2:31Þ

where the last path integral is performed under the
boundary conditions such that r ¼ r�;1 at τ ¼ −τ0,
r ¼ r�;2 at τ ¼ 0, and r ¼ r�;1 at τ ¼ τ0. By using the
saddle-point approximation, the path integral is replaced by
the dominant contribution e−S½ϕbounce� where ϕbounce is the
bounce solution obeying the Euclidean equation of motion
with the boundary condition of r� ∈ ½r�;1; r�2�. The ampli-
tude is normalized by jhr�;1; τ ¼ τ0jr�;1; τ ¼ 0ij2. As a
result, the transition rate can be expressed as

Γ ∝ e−BðE�Þ; BðE�Þ ¼ SbounceðE�Þ − SE;0ðE�Þ; ð2:32Þ

where SE;0ðE�Þ comes from the normalization. Note again
that SbounceðE�Þ is obtained from the Euclidean equation
of motion from r�;1 to r�;2, while SE;0ðE�Þ is an O(3)
symmetric bubble with a fixed radius r�;1.
The bounce with a finite energy E� satisfies

4πr2�σγ −
4

3
πr3�ϵ ¼ E�; ð2:33Þ

where E� is the initial energy. There are two solutions with
a vanishing wall velocity _r ¼ 0, r�;1 and r�;2, which are
obtained from E� ¼ 4πσr2� − 4πr3�ϵ=3 as can be seen from
Fig. 1. Note here that the initial energy should be small
enough to have these two solutions. The critical energy,
above which we do not have solutions for Eq. (2.23), is

obtained from the condition dr�=dτ ¼ d2r�=dτ2 ¼ 0.
The critical solution is

r�;sp ¼
2σ

ϵ
; ð2:34Þ

Esp ¼
16πσ3

3ϵ2
: ð2:35Þ

Here, the subscript “sp” indicates that this is nothing but the
sphaleron, as we will see in the next Sec. II C. When we
regard r� as a position variable of a particle in a one-
dimensional system, the constraint Eq. (2.33) can be
rewritten as the following conservation law of “energy”:

1

2

�
dr�
dτ

�
2

þ Uðr�Þ ¼ 0; ð2:36Þ

2Uðr�Þ ¼ 1 −
�
ϵ

3σ
r� þ

E�
4πr2�σ

�
−2
: ð2:37Þ

Plugging the solutions into Eq. (2.21), we get the bubble
nucleation rate for E� < Esp,

BðE�Þ ¼
Z

dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πr2�σÞ2 −

�
4

3
πr3�ϵþ E�

�
2

s
ð2:38Þ

¼
Z

dτ4πr2�σγ
�
dr�
dτ

�
2

; ð2:39Þ

where we use SE;0ðE�Þ ¼ E�
R
dτ þ SE;0. Once we regard

the factor 4πr2�σγ as the effective mass of the bubble, the
result is similar to that in the one-dimensional quantum
mechanical system.
Note again that the above transition means that a bubble

with a radius r�;1, which is not r� ¼ 0, tunnels into the one
with a radius r�;2. Hence, we need to specify the way to
excite the initial state to the bubble with the radius
r� ¼ r�;1. If such bubbles are continuously produced and
collapse in the initial state with a finite probability, the
vacuum decay rate may be expressed as the probability of
creating bubbles with r� ¼ r�;1 times the probability of
tunneling from r� ¼ r�;1 to r� ¼ r�;2, namely e−BðEÞ. Here,
note that we first assume the field configuration as
Eq. (2.14) and reduce the number of degrees of freedom
to unity. Since there are infinite degrees of freedom for
the scalar field, it is generally difficult to give the energy so
that all the energy is converted to such a macroscopic
configuration, that is, the initial bubble with a radius r�;1.
The thermal state is an example that we have such an
excited initial condition naturally. In this case, all degrees

FIG. 1. Example of bubble potential as a function of its
radius r�.
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of freedom have a typical energy of order T� with the
Boltzmann weight, and hence the probability of creating
the initial bubble is nothing but expð−E�ðr� ¼ r�;1Þ=TÞ and
is nonzero.

C. Tunneling with a thermal energy

Now we can consider a transition in the scalar field
theory in a thermal background with a temperature of T�.
The transition rate can be calculated by the integral of the
Boltzmann factor times quantum tunneling rate (see, e.g.,
Ref. [79]):

Γ ¼ Γq þ Γc; ð2:40Þ

Γq ∼
Z

Esp

0

dEe−E=T�e−BðEÞ; ð2:41Þ

Γc ∼
Z

∞

Esp

dEe−E=T� ; ð2:42Þ

where Γc is the classical transition rate. Note that, for
E� > Esp, the bubble nucleation rate is unity, BðEÞ ¼ 1,
where Esp is the sphaleron energy as explained below.
Let us evaluate the transition rate approximately. As

discussed in the case of one-dimensional quantum mechan-
ics, the question traces back to the behavior of d2B=dE2.
If d2B=dE2 > 0 for 0 ≤ E ≤ Esp, one may evaluate the
integral via the steepest descent method by expanding the
exponent as follows:

E
T�

þ BðEÞ ¼ Ecr

T�
þ BðEcrÞ þ

�
1

T�
þ B0ðEcrÞ

�
ðE� − EcrÞ

þ B00ðEcrÞ
2

ðE − EcrÞ2 þ…: ð2:43Þ

If one finds the solution of

1=T� ¼ −B0ðEcrÞ ð2:44Þ

¼ 2

Z
r�ðτ¼0Þ¼r�;2

r�ðτ¼−ΔτÞ¼r�;1
dr�

����� dr�dτ

����
�

−1
ð2:45Þ

¼ 2Δτ for 0 ≤ E ≤ Esp; ð2:46Þ

where 2Δτ is the time periodicity of the bounce solution,
the integral may be approximated by the Gaussian. In this
case the first integral is dominated by the energy Ecr,

Γq ∼ e−Ecr=T�e−ðSbounceðEcrÞ−SE;0ðEcrÞÞ ð2:47Þ

¼ e−SbounceðEcrÞ; ð2:48Þ

where we use SE;0ðEcrÞ ¼ Ecr=T�. This equation indicates
that the transition rate can be decomposed into two parts
as Eq. (2.47): the Boltzmann factor and the quantum
tunneling rate. On the one hand, the quantum tunneling
rate tells one that the bubble with r� ¼ r�;1, which is not
equal to r� ¼ 0, tunnels to r� ¼ r�;2. On the other hand,
the Boltzmann factor represents the probability that the
bubble with energy Ecr reaches the point of r� ¼ r�;1.
Therefore, in total, Eq. (2.48) gives the transition rate
where the bubble goes from r� ¼ 0 to r� ¼ r�;1 via thermal
excitation and then to r� ¼ r�;2 via quantum tunneling. If
there is no solution to Eq. (2.46), the integral is dominated
by the boundary between Eq. (2.41) and Eq. (2.42), which
ends up e−Esp=T� .
However, at least for the thermal transition in quantum

field theory under the thin-wall approximation with the
O(3) symmetry, the second derivative of the bounce action
with respect to its energy is always d2B=dE2 ≤ 0. Let us
first confirm this property. Figure 2 shows the bounceB and
its first derivative, −B0ðEÞ, as a function of the energy E.
One can see that −B0ðEÞ is an increasing function with
respect to E, and thus dB2=dE2 ≤ 0. Therefore, the saddle
point is not a minimum of the exponent in Eq. (2.41).

FIG. 2. Plot of BðEÞ (blue line) and −dBðEÞ=dE (pink line) as a function of E for a thin-wall bubble in quantum field theory. Here, we
have normalized quantities by those at the zero-temperature: B0 ¼ 27π2σ4=2ϵ3 and r�;0 ¼ 3σ=ϵ. The results with these combinations are
independent of σ and ϵ.
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Rather, the integral is dominated by its edges, E ¼ 0 or Esp.
As a result, the transition rate can be expressed as

Γ ∼ Γq þ Γc; ð2:49Þ

Γq ∼ e−Bð0Þ; ð2:50Þ

Γc ∼ e−Esp=T� : ð2:51Þ

Recalling the sphaleron energy Esp ¼ 16πσ3=3ϵ2 and the
bounce action Bð0Þ ¼ 27π2σ4=2ϵ3, we can go further. It is
clear that the sphaleron transition dominates the decay
process when the temperature T� is large enough to satisfy
Esp=T� < Bð0Þ. The threshold temperature is given by

T�;th ¼
Esp

Bð0Þ ¼
32ϵ

81πσ
ð2:52Þ

¼ 32

27π
η−1� ≪ η−1� : ð2:53Þ

Thus, we conclude that the transition rate is summarized as

Γ ∼ e−Bð0Þ for T� ≤ T�;th; ð2:54Þ

Γ ∼ e−Esp=T� for T�;th ≤ T�: ð2:55Þ

Before closing this section, we would like to explain the
relation between the above results and the well-known
method of putting the theory on S1T−1�

×R3 (i.e., periodic

Wick-rotated time τ ∼ τ þ T−1� ) and evaluating the imagi-
nary part of the free energy F ¼ lnZ [23]. In this case,
the geometry forces all the configurations to be periodic,
including the bounce. The quantum one, Eq. (2.54),
corresponds to the dominant periodic instanton.
Interestingly, though there exist other branches of periodic
instantons with a finite energy E, the vacuum one, E ¼ 0,
dominates for the thin-wall approximation under the O(3)
symmetry. Note here that, since T−1

�;th is much larger
than the radius of the vacuum bubble η� as can be seen
from Eq. (2.53), the vacuum bubble may be embedded in
S1T−1�

×R3 for T� ≤ T�;th. The classical one, Eq. (2.55), is

obtained by the dimensional reduction of S1T−1�
, which is a

good approximation if the energy scale of the bubble is
much smaller than the temperature. It is clear that the static
solution can be embedded in the periodic spacetime.

III. TRANSITION IN THE SCHWARZSCHILD–DE
SITTER SPACETIME

Gravity changes the spacetime in accordance with finite-
energy objects. In the case of our interest, not only the BH
but the bubble could be the origin of such distortions.

Roughly speaking, in the context of the vacuum decay,
the change of the spacetime affects the cost to nucleate the
bubble. One can guess that gravity should modify the
vacuum decay rate. Therefore, in this section, we switch on
gravity and investigate its effect on the vacuum decay. The
action is given by [80]

S ¼ Sbubble þ SG; ð3:1Þ

Sbubble ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂ϕÞ2 − VðϕÞ

�
; ð3:2Þ

SG ¼ 1

2

Z
Y
R

ffiffiffiffiffiffi
−g

p
d4xþ Sboundary; ð3:3Þ

where g is the determinant of the metric and R is the Ricci
scalar. We take the Planck unit, MPl (≃2.4 × 1018 GeV)
¼ 1 (i.e., the Newton constant G is taken to be 8πG ¼ 1),
unless otherwise stated. The curvature scalar R contains
terms with second derivatives, which can be removed by
integration by parts and write the action only by first
derivatives so that we can use the path integral approach in
the gravitational theory. As a result, the boundary term
Sboundary arises, which is the integral of the trace of the
second fundamental form of the boundary K [81],

Sboundary¼
Z
∂Y
K

ffiffiffiffiffiffi
−h

p
d3x¼ ∂

∂n
Z
∂Y

ffiffiffiffiffiffi
−h

p
d3x¼ ∂

∂nVboundary;

ð3:4Þ

where h is the determinant of the three-dimensional metric
on the boundary surface, Vboundary is the volume of the
boundary, and n is the unit normal. Note that the region of
boundary depends on the metric, and hence the boundary
term Sboundary is determined only after we specify the
metric.
In particular, we consider a bubble nucleation in (anti-)de

Sitter spacetime with a BH, which is described by the
Schwarzschild-de Sitter metric,

ds2 ¼ −fSdSðrÞdt2 þ
dr2

fSdSðrÞ
þ r2dΩ; ð3:5Þ

fSdSðrÞ ¼ 1 −
MBH

4πr
−
Λr2

3
; ð3:6Þ

where MBH is a BH mass and Λ is a vacuum energy. The
areas of the boundary, ∂Vboundary=∂n, at the surface of the
BH (≡ABH) and at the cosmological horizon (≡AdS) are
given by ABH ≃M2

BH=4π and AdS ≃ 4π=H2 in this metric,
respectively, where H is the inverse of the apparent horizon
length related to the vacuum energy as H2 ¼ Λ=3. This
metric respects only an O(3) symmetry. We use the O(3)
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symmetric assumption to find bounce solutions in the
following analysis.

A. Bubble nucleation via tunneling

Here, we illustrate how to evaluate the bounce action in
the presence of a BH with gravitational backreaction
following Refs. [51–53,60]. Since we employ a thin-wall
approximation, we may use the Euclidean metric defined
separately in the outer and inner regions of the bubble,

ds2 ¼ f�ðrÞdτ2� þ dr2

f�ðrÞ
þ r2dΩ; ð3:7Þ

f�ðrÞ ¼ 1 −
M�
4πr

−
Λ�r2

3
; ð3:8Þ

where Mþ is the initial BH mass and M− is the remnant
BH mass after the bubble nucleation. The zeros of f�
define the horizon of each patch. We have at most two
zeros for each f�: the BH horizon RBH;� and the de Sitter
horizon RdS;� for Λ� > 0, respectively. The natural perio-
dicities to eliminate the conical deficits at each horizon are
the following: T−1

BH;� ¼ 4πRBH;�=ð1 − Λ�R2
BH;�Þ at r ¼

RBH;� and T−1
dS;� ¼ 4πRdS;�=ðΛ�R2

dS;� − 1Þ at r ¼ RdS;�.
We now specify the setup of our interest. In the

following, we focus on the case where we initially have
a BH with Mþ. Also, we assume that the vacuum energy
of the scalar field changes from Λþ to Λ− due to this
transition. On the other hand, the remnant BH mass M− is
taken to be an arbitrary parameter. We do not impose that
the Hawking temperature of the initial black hole TBH;þ ¼
4πRBH;þ=ð1 − ΛþR2

BH;þÞ should coincide with that inferred
from the periodicity of the bubble solution. This mismatch
will cause a conical deficit at the BH horizon, and thus we
have to cope with it appropriately, as done in Ref. [51].
Before evaluating the bounce action, we briefly illustrate

how to obtain the wall trajectory of the nucleated bubble
with fixed Mþ, Λ�, and T ini. The wall trajectory r�ðλÞ is
parametrized by the proper time of a comoving observer of
the wall,

f� _τ2� þ _r2�
f�

¼ 1; ð3:9Þ

where the dot denotes the derivative with respect to the
proper time λ. The Israel junction condition yields

fþγþ − f−γ− ¼ −
1

2
σr�; ð3:10Þ

where σ is the tension of the bubble and

γ� ≡ _τ� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðr�Þ þ 1

f�ðr�Þ ð
dr�
dτ�

Þ2
q : ð3:11Þ

We can explicitly rewrite it as

f�γ� ¼
�
ΔΛ
3σ

∓ σ

4

�
rþ ΔM

4πσr2
: ð3:12Þ

The junction condition implies that the wall velocity has
to satisfy the following conservation law of “energy”:

1

2

�
d~r�
d~λ

�
2

þ Uð~rÞ ¼ 0; ð3:13Þ

2Uð~rÞ ¼
�
~r� þ

k2
~r2�

�
2

þ k1
~r�

− 1; ð3:14Þ

where ~r� ¼ αr�=γ and ~λ ¼ αλ=γ, and

k1 ¼
αM−

4πγ
þ ð1 − αÞαΔM

2πσγ2
; k2 ¼

α2ΔM
4πσγ2

;

γGMW ¼ σl2

1þ σ2l2=4
; α2 ¼ 1þ Λ−γ

2

3
; l2 ¼ 3

ΔΛ
;

ð3:15Þ

where ΔM≡Mþ −M− and ΔΛ≡ Λþ − Λ− (≡ϵ).6 Once
we fix the all the parametersM� and Λ�, we can obtain the
wall trajectory as a function of the proper time, r�ðλÞ, in
principle. In our setup, we have fixed Mþ and Λ� and
hence we have a family of solutions as a function of the
remnant BH mass, r�ðλ;M−Þ.
Now we are in a position to evaluate the Euclidean action

by the solution to Eq. (3.13). The gravitational Euclidean
action is given by

SG ¼ Sboundary −
1

2

�Z
Yþ

ffiffiffi
g

p
Rþ

Z
Y−

ffiffiffi
g

p
R

�

þ
�Z

∂Yþ

ffiffiffi
h

p
K þ

Z
∂Y−

ffiffiffi
h

p
K

�
; ð3:16Þ

where Y− and Yþ represent the regions inside and outside
of the bubble, respectively, and ∂Y� represents the boun-
dary induced by the bubble. Note again that Sboundary
accounts for the boundaries at the horizons. The Einstein
equation and the Israel junction condition imply that the
action can be rewritten as

SG ¼ Sboundary −
1

2

�Z
Yþ

ffiffiffi
g

p
4Λþ þ

Z
Y−

ffiffiffi
g

p
4Λ−

�

−
3

2

�Z
∂Y

ffiffiffi
h

p
σ

�
: ð3:17Þ

6Note that the γGMW here is different from the gamma factor of
the domain wall, γ, defined below.
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In the thin-wall approximation, the bubble Euclidean action
is given by

Sbubble ¼
Z

d4x
ffiffiffi
g

p �
1

2
ð∂ϕÞ2 þ VðϕÞ

�
ð3:18Þ

¼
Z

dλ

�
4πr2�σ þ 4π

3
r3�ðΛ−γ− − ΛþγþÞ

−
4π

3
R3
BH;−Λ−γ− þ 4π

3
R3
dS;þΛþγþ

�
: ð3:19Þ

If there is no de Sitter horizon, we have to drop the
last term.
The bubble nucleation rate around the BH is calculated

from

B ¼ SE − SE;0; ð3:20Þ

where SE is the total Euclidean action (¼ SG þ Sbubble) and
SE;0 is the action without the bubble. If the gravitational
action changes, the boundary term may also change.
Assuming that the bubble is not as large as the de Sitter
horizon, one can see that the boundary from the BH horizon
only contributes to the difference. The explicit form of B is
given by

BðM−Þ ¼ BbubbleðM−Þ þ BboundaryðM−Þ; ð3:21Þ

BbubbleðM−Þ ¼ 4π

Z
r�ðfþdτþ − f−dτ−Þ

þ
Z

4π

3
r3�ðΛþdτþ − Λ−dτ−Þ

−
1

2

Z
ðMþdτþ −M−dτ−Þ; ð3:22Þ

BboundaryðM−Þ ¼ 8π2ðR2
BH;þ − R2

BH;−Þ; ð3:23Þ

where we use the Israel junction σr�=2¼−ðfþ _τþ−f− _τ−Þ.
The third term in Bbubble is related to the contribution of the
conical deficit. The term Bboundary accounts for the change
of the BH entropy which comes from the area of the
boundary at the horizon. We regard this result as a function
of M− for later convenience. In summary, the bubble
nucleation rate from the initial state (a BH of Mþ, vacuum
energy of Λþ) to the final state (a BH of M−, vacuum
energy Λ−) is given by

ΓðM−Þ ∼ e−BðM−Þ: ð3:24Þ

We emphasize that the initial mass of the BH Mþ, the
initial and final energy densities Λ�, and the surface
energy density of the bubble σ are determined by the
initial conditions and the potential of the scalar field, while
the remnant BH massM− after the bubble nucleation is not

yet determined in the above calculation. In the sense of
the path integral approach, we should sum over all the
nucleation rates ΓðM−Þ ∼ e−BðM−Þ in terms of the variable
M−. Thus, we need to find a minimal value of the action in
terms of M−,

Γ ∼
Z

dM−ΓðM−Þ ∼
Z

dM−e−Bboundary−Bbubble ∼ e−Bmin :

ð3:25Þ

As has been pointed out in Ref. [51], it is possible that the
remnant BH massM− is larger than the initial BH massMþ
though it usually gives subdominant contributions. Here,
we comment on the lower bound on the integral Eq. (3.25).
If Mþ is sufficiently large, there is a lower bound of M−,
below which the “potential”Uð~rÞ is always larger than zero
and there is no solution to Eq. (3.13). At the critical point,
Uð~rÞ ¼ U0ð~rÞ ¼ 0 and the solution is static. See also the
discussion below.
Let us take the variation of the bounce action B ¼

Bboundary þ Bbubble with respect to M− so as to approximate
the integral of Eq. (3.25). The boundary term gives

d
dM−

Bboundary ¼ −
4πRBH;−

1 − Λ−R2
BH;−

¼ −T−1
BH;−: ð3:26Þ

By numerically solving the equation of motion and
calculating the transition rate (See Figs. 3 and 4), we also
find that the variation of the other terms satisfies

d
dM−

Bbubble ¼
Z

dτ− ¼ 2Δτ−: ð3:27Þ

Combining these results, we obtain

d
dM−

B ¼ 2Δτ− − T−1
BH;−: ð3:28Þ

The above result Eq. (3.28) is similar to the one
obtained in the previous sections [see Eq. (2.46)]. In
particular, if we require dBðM−Þ=dM− ¼ 0, we find the
relation 2Δτ− ¼ T−1

BH;−, which may imply that the transition
is due to the thermal effect with Hawking temperature.
However, the transition rate is not minimized at the saddle
point unless d2BðM−Þ=dM2

− > 0 as we discussed in the
previous section. In fact, we numerically check that this
condition is not always satisfied. We show an example
in Fig. 3, where we assume RBH;þ ¼ 0.1r�;0, Λþ ¼ 0, and
Λ− ¼ −0.03=r2�;0.

7 These parameters lead to l ¼ 10r�;0
and σl=M2

Pl ¼ r�;0=l ¼ 0.1. Note that the r�;0 dependence
can be trivially factorized in our results such that

7Note that r�;0 ≡ 3σ=Δϵ (ϵ ¼ ΔΛ).

FALSE VACUUM DECAY CATALYZED BY BLACK HOLES PHYSICAL REVIEW D 96, 103514 (2017)

103514-9



B;BCdL ∝ r2�;0, ΔM;Mþ ∝ r�;0, and dB=dM− ∝ r�;0
though we take r�;0 ¼ 1=MPl as a reference value to plot
them. In the left panel of Fig. 3, BðΔMÞ monotonically
decreases as ΔM increases and it is minimized at the
maximal value of ΔM, which corresponds to the static
solution. Note again that, if the seed BH mass, Mþ, is
sufficiently heavy, there exists a maximal value of ΔM,
above which we do not have solutions to Eq. (3.13) and
at which the solution becomes static. In the right panel,
dBbubbleðΔMÞ=dM− increases as ΔM increases for mod-
erately large ΔM, which implies that there is no saddle
point at least in that range of ΔM.
We can see that the result coincides with Fig. 2 when we

take a limit of r�;0 ≫ RBH;þ (and ΔM ≪ Mþ as we discuss
in the next subsection), where the effect of curved space-
time on the bubble configuration is negligible. Figure 4
shows the result of B and its derivative with respect to M−
for the cases of RBH;þ=r�;0 ¼ 0.01 (red line), 0.1 (pink
line), 0.2 (violet line), and 0.3 (blue line). We can see that

the red line in the figure, where we take RBH;þ=r�;0 ¼
0.01 ≪ 1, coincides with that in Fig. 2. Note however that
the result coincides with the one in flat spacetime only
when we identify T� in flat spacetime as the Hawking
temperature TBH;− of the BH according to the correspon-
dence between Eqs. (2.46) and (3.28). As we see below, this
temperature is much larger than T�;th defined by Eq. (2.53),
so that the transition rate is dominated by the static solution.
This is also true for larger values of RBH;þ=r�;0, which then
implies that the static solution dominates the transition rate
even if d2Bbubble=dΔM2þ < 0 for moderately small ΔM and
large RBH;þ=r�;0. These results show that the effect of the
boundary term is relevant and is crucial even if the curved
spacetime does not affect the bubble configuration.
Since the transition rate is smaller for smaller M−, it is

minimized at the critical point for a large initial BH mass.
In fact, this property has been pointed out in Ref. [51]
and so the static solution is studied in detail in the
literature. To clarify the situation, we shall take the limit

FIG. 4. Left: B as a function of ΔMð≡Mþ −M−Þ, and Right: dBbubble=dM− as a function of ΔM, for a thin-wall bubble in the
Schwarzschild–de Sitter spacetime. We take the parameters to be the same as in Fig. 3 except that we take RBH;þ=r�;0 ¼ 0.01 (red line),
0.1 (pink line), 0.2 (violet line), and 0.3 (blue line).

FIG. 3. Left: Bbubble (blue line) as a function ofΔMð≡Mþ −M−Þ, and Right: dBbubble=dM− (pink line) as a function of ΔM, for a thin-
wall bubble in the Schwarzschild–de Sitter spacetime. In the left panel, we also plot B (black thick line) and Bboundary (yellow dashed
line); in the right panel, 2Δτ− (black dashed line) is shown. We take RBH;þ ¼ 0.1r�;0, Λþ ¼ 0, and Λ− ¼ −0.03=r2�;0. In this case, one
can show that l ¼ 10r�;0 and σl=M2

Pl ¼ r�;0=l ¼ 0.1 ≪ 1. We take r�;0 ¼ 1=MPl to plot the results, but the r�;0 dependence can be
trivially factorized such that B, BCdL ∝ r2�;0, ΔM;Mþ ∝ r�;0, and dB=dM− ∝ r�;0. Note that dBbubble=dM− ¼ −dBbubble=dΔM.
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of M− ¼ M−;min þ ε with ε → þ0 and see what happens.
r�;1 and r�;2 coincide with each other at r� ¼ r�;sp, where

~r�;sp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9
ð1þ A−1=3 þ A1=3Þ

r
≥
1

3
; ð3:29Þ

A≡ 2−1=3
	
2þ ð27k2Þ2 þ 27jk2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð27k2Þ2

q 

; ð3:30Þ

and the amplitude of the solution decreases to zero for
ε → þ0. However, the second derivative U00ð~rÞ is nonzero
in that limit. Since the potential can be approximated to
be a quadratic potential for a sufficiently small ε, the
periodicity is determined solely by the second derivative.
It is given by

−
∂2U
∂ ~r2 ¼ 9

�
1 − A1=3

þ 1

ð27k2Þ2
A1=3ð−Bþ ðB − ð27k2Þ2ÞA1=3=2Þ

�
;

ð3:31Þ

B≡ 27jk2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð27k2Þ2

q
: ð3:32Þ

Note that −ð1=2Þ∂2U=∂ ~r2 ¼ 3 ð9Þ for k2 ¼ 0 (�∞). This
is plotted in Fig. 5, where the red dashed line represents
the asymptotic value for k2 → �∞. If Λþ ¼ 0, there is an
upper bound on k2 indicated by the dotted line. We find
that the periodicity of ~λ is in the range of ð2π=3; 2π= ffiffiffi

3
p Þ

and is of order unity. Thus, the periodicity of τ� for
M− ¼ M−;min þ ε with 1 ≫ ϵ > 0 is related to that of λ as
follows:

lim
ε→þ0

2Δτ�ðM−;min þ εÞ ¼
Z

γ�dλ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðr�;spÞ

p γGMW

α
2Δ~λ: ð3:33Þ

Noting that γ=α≃ r�;0 for σ2l2 ≪ 1 and Λþ ¼ 0, we
find that the resulting periodicity is of the same order
as the radius of the Coleman solution. Therefore, the
periodicity of the bubble is much larger than the radius of
the BH, indicating that dB=dM− ¼ 2Δτ− − T−1

BH;− ≃
2Δτ− > 0 for M− ¼ M−;min þ ε with 1 ≫ ε > 0. This
observation justifies that the transition rate tends to be
minimized by the smallest value of M−, namely the static
solution. For a sufficiently smallMBH, the minimum mass
of the remnant BH becomes zero.8 In this special case,
dB=dM− ¼ dBbubble=dM− ¼ 2Δτ−, which indicates that
the transition rate is minimized at M− ¼ 0 if possible.

Let us interpret the obtained result. First, note that we
can identify ΔM ≡Mþ −M− as the energy of the bubble
because of the energy conservation. Then we can find some
similarities between the above results and the ones in the
previous section. First, the derivative of B with respect to
ΔM (or −M−) gives the periodicity of the instanton
solution and the inverse of the Hawking temperature of
remnant BH T−1

BH−. This corresponds to Eq. (2.46) once we
identify the temperature as the Hawking temperature.
Second, the second derivative tends to be negative (at
least for a moderately large ΔM and/or r�;0 ≫ RBH;þ).
Depending on the seed BH mass, the transition rate is
dominated by M− ¼ 0 or a static solution, which are the
boundary of the allowed value of M−. This is analogous
to the thermal transition for a high enough temperature
T� > T�;th discussed in Sec. II C. (In fact, the Hawking
temperature TBH;− is much larger than the threshold
temperature T�;th.) There, the periodicity of the bubble
for E < Esp never coincides with T−1� . This is not a problem
because those solutions with E < Esp do not dominate the
path integral in this case; rather, the static solution E ¼ Esp

is realized and this bounce can be embedded into the
Euclidean spacetime with the periodicity of T−1� . We will
further clarify these correspondences in the subsequent
subsections.

B. Bubble nucleation without backreaction to metric

In this section, we neglect the change of the metric by the
bubble in this subsection and regard the metric as a
background [73]. Comparing the result computed in this
way with the full gravitational one, the meaning of
the enhancement factor in Refs. [51–53] is clarified.
In the thin-wall approximation, the worldsheet metric in
the Schwarzschild–de Sitter spacetime background is
written as

FIG. 5. Relation between 2Δ~λ and k2 for static solutions. The
red dashed line represents the asymptotic value of 2Δ~λ for
k2 → �∞. The green dashed line represents an upper bound
of k2 for the case of Λþ ¼ 0.

8Such a seed mass is referred to as a critical mass in
Refs. [51,53].
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ds23 ¼ −
�
fðr�Þ −

1

fðr�Þ
�
dr�
dt

�
2
�
dt2 þ r2�dΩ2: ð3:34Þ

The Euclidean effective action for the domain wall is given
by the worldsheet area in addition to the difference of
potential energy inside and outside bubble, and thus we
obtain

SE ¼
Z

dτ

�
4πr2�σγ−1 −

4π

3
ðr3� − R3

BHÞϵ
�
; ð3:35Þ

where ϵ ¼ Λþ − Λ− (≡ΔΛ) and RBH ¼ MBH=4π is the BH
horizon radius. Recall that the Euclidean gamma factor γ is
given by

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr�Þ þ 1

fðr�Þ ð
dr�
dτ Þ2

q : ð3:36Þ

The conserved energy is

E ¼ ∂L
∂ _r� _r� − L; ð3:37Þ

where the Lagrangian L can be read from the above action.
It can be expressed as

fðr�Þ4πr2�σγ −
4π

3
ðr3� − R3

BHÞϵ ¼ E�; ð3:38Þ

where E� is the total energy in the initial state. We should
take E� ¼ 0 for the vacuum transition without the thermal
effect, in which case the bubble nucleates from r� ¼ RBH,
i.e., from the surface of the BH, to a certain radius. The
conservation law can be rewritten as

1

f2ðr�Þ
�
dr�
dτ

�
2

¼ fðr�Þ
�
ϵ

3σ
r� þ

E�
4πr2�σ

�
−2

− 1; ð3:39Þ

where we redefine E� − 4πR3
BHϵ=3 as E�.

It is convenient to introduce the proper time λ of the
bubble trajectory,

dλ ¼ γ−1dτ; ð3:40Þ

which gives

fðr�Þ
�
dτ
dλ

�
2

¼ 1 −
1

fðr�Þ
�
dr�
dλ

�
2

: ð3:41Þ

Then Eq. (3.39) can be rewritten as

�
dr�
dλ

�
2

¼ fðr�Þ −
�

ϵ

3σ
r� þ

E�
4πσr2�

�
2

; ð3:42Þ

dτ
dλ

¼ 1

fðr�Þ
�

ϵ

3σ
r� þ

E�
4πσr2�

�
: ð3:43Þ

Recalling that

�
1 −

k1
~r�

−
�
~r� þ

k2
~r2�

�
2
��

~r�
α
þ k2

~r2�

�
−2

¼ f−ðr�Þ
�
k2
~r2�

þ ~r�
α

�
−2

− 1; ð3:44Þ

we find that this equation is consistent with the result
in the previous subsection in the limit of f−ðrÞ ≈ fðrÞ,
γGMW ≈ 3σ=ϵ ¼ r�;0, and ΔM ¼ E�. Here, extra terms in
γGMW other than 3σ=ϵ in Refs. [51–53,60] come from the
backreaction to the bubble, as we see below. Thus our result
is consistent with their result in the limit of the negligible
backreaction.
Here, we would like to explain that the exact form of

γGMW can be understood as the backreaction to the bubble.
In the next-to-leading order approximation, we have to take
into account the self-gravitational energy of the bubble in
the Newtonian limit. It may be calculated by

Eself ¼
1

2

Z
r2�dΩ02

Z
r2�dΩ2

Gσσ
jr − r0j ð3:45Þ

¼ πr3�σ2; ð3:46Þ

where G ¼ 1=ð8πÞ is the Newton constant. When we
include this contribution to the bubble action, it may be
absorbed by the redefinition of ϵ,

ϵ → ϵ

�
1 −

3σ2

4ϵ

�
: ð3:47Þ

This is because the ϵ dependence comes only through
γGMW ≃ 3σ=ϵ in the previous leading order results. Then
the next-to-leading order contribution is

γGMW ≃ 3σ

ϵ

�
1 −

3σ2

4ϵ

�
; ð3:48Þ

which is consistent with the expansion of the exact γGMW

under σ2=ϵ ≪ 1.
Now we are ready to discuss the bubble nucleation

with a finite energy under this metric, and see its relation
to the result in the previous section. First we need to
derive the bubble nucleation rate with an initial energy
of E�, where the bubble solution obeys Eq. (3.38). It is
given by
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BðE�Þ ¼ SbounceðE�Þ − SE;0ðE�Þ ð3:49Þ

¼
Z

dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðr�Þ
ð4πr2�σÞ2 −

1

f2ðr�Þ
�
4

3
πr3�ϵþE�

�
2

s

ð3:50Þ

¼
Z

dτ4πr2�σγ
1

fðr�Þ
�
dr�
dτ

�
2

; ð3:51Þ

with SE;0ðE�Þ ¼ E�Δτ. To get the vacuum decay rate, we
have to multiply the probability of producing a bubble
with r�;1. Let us consider the situation where bubbles
with E� are produced with a rate of e−PðE�Þ. Then the
bubble nucleation rate for E� < Esp is given by

ΓqðE�; ½P�Þ ∼ e−PðE�Þe−BðE�Þ: ð3:52Þ

Up to here, the probability function PðEÞ is generic. In
the following, we would like to specify its form so that it
reproduces the previous result in a certain limit. Then,
we discuss its consequence. First, we show that BðE�Þ
coincides with Bbubble [Eq. (3.22)] in the limit of f− ≈ f,
γGMW ≈ 3σ=ϵ ¼ r�;0 and ΔM ¼ E�. This is obvious
because we have already seen that the master Eq. (3.43)
coincides with that in the previous section [Eqs. (3.13) and
(3.14)]. For clarity, we also plotted BðE�Þ and −B0ðE�Þ in
Figs. 6 and 7 for parameters which are close to the case
shown in Figs. 3 and 4, respectively. One can see that BðE�Þ
and −B0ðE�Þ coincide with those in Figs. 3 and 4, since, for
the parameters in these figures, the backreaction is quite
small because of σl ¼ r�;0=l ¼ 0.1 ≪ 1 and Mþ ≫ Esp ≥
ΔM. Next, let us see how Bboundary behaves in this limit.
Since we have MBH ≈Mþ ≈M− ≫ ΔM and 1 ≫ r�;0=l ≳
M−=4πl, the boundary term can be expressed as

Bboundary ¼
1

2

�
M2þ −M2

−

�
1þ ðM−=4πÞ2

l2
þ…

�
2
�

≈
ΔM

1=MBH
¼ E�

TBH
: ð3:53Þ

In the last equality, we use TBH ¼ 1=MBH and identify
E� ¼ ΔM. Now it is clear that the result in the previous
section is reproduced for the probability function of

PðE�Þ ¼
E�
TBH

; ð3:54Þ

which is nothing but the canonical ensemble with a
temperature T� that coincides with the Hawking temper-
ature of the background BH, T� ¼ TBH.
Before discussing the physical meaning of PðE�Þ, let us

evaluate the vacuum decay rate. It is given by

Γ ¼
Z

dE�ΓqðE�; ½P�Þ ∼
Z

dE�e−PðE�Þe−BðE�Þ: ð3:55Þ

Again, let us first try to find the saddle point. A first
derivative of the exponent yields

dP
dE�

¼ T−1
BH; ð3:56Þ

−
dB
dE�

¼
Z

dτ
ð4=3Þπr3�ϵþ E�
fðr�Þ4πr2�σγ

¼
Z

dτ ¼ 2Δτ: ð3:57Þ

If the second derivative of the bounce with respect to E� is
always positive, one may approximate the integral by the
saddle point satisfying 2Δτ ¼ T−1

BH. However, the second
derivative can be negative in some cases (see Figs. 6 and 7).
Actually, the sign is always negative in the quantum
field theory in the flat spacetime as we have discussed
in Sec. II C. If B00ðEÞ is negative for 0 ≤ E� ≤ Esp, the
transition rate may not be dominated by the saddle point

FIG. 6. Plot of BðE�Þ (left panel) and −dBðE�Þ=dE� (right panel) as a function of E� for a thin-wall bubble in the Schwarzschild
spacetime without the backreaction of the bubble to the metric. In the left panel, we also plot Bþ E�=TBH (black thick line) and E�=TBH
(yellow dashed line). We take RBH;þ ¼ 0.1r�;0 and l ¼ 10r�;0. We also take r�;0 ¼ 1=MPl though the r�;0 dependence can be trivially
factorized as dB=dE� ∝ r�;0. One can see that the result almost coincides with Fig. 3.
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but by either boundary of E�. One of the boundaries of E�
is, of course, E� ¼ 0, which is just the quantum tunneling
process from a false vacuum in the presence of a BH
with MBH [54]. The other boundary Esp comes from the
condition that BðEspÞ ¼ 0, which corresponds to the
sphaleron process at high temperature and is determined
by the static solution. For the sample parameters shown in
Figs. 6 and 7, one can see that E� ¼ Esp dominates for
T� ¼ TBH;−. Here, we assume E� ≪ Mþ so that we can
neglect the change of metric due to the bubble nucleation.
Hence, we require Esp ≪ Mþ. Note again that the dom-
inant process is always consistent with the periodicity
indicated by the BH Hawking temperature TBH, although a
family of bounce solutions as a function of E� is not.
Now we would like to discuss the consequence of PðE�Þ.

Comparing the bubble nucleation rate computed in this
section with the full gravitational one, we have seen that the
enhancement factor can be regarded as a probability of
generating bubbles with a finite energyE. However, there are
many other degrees of freedom in quantum field theory, and
hence it is hard to imagine that a BH only excites bubbles.
Therefore, all the states with an energy E other than bubbles
should also be generated by the same mechanism. This
observation makes it clear that one needs to take into account
finite-density corrections to the bubble nucleation rate
induced by the presence of plasma. Up to here, the
conclusion is independent of whether or not the plasma
fills the whole Universe. However, the size of corrections
does depend. If PðE�Þ originates from Hawking radiation
emitted from the BH horizon, the flux decreases as we move
away from the BH. If it originates from the thermal plasma
of the Hawking temperature filling the Universe, the thermal
plasma is present even far away from the BH. We expect that
the finite-density corrections in the former case are milder
than those in the latter. See Sec. IV for further discussion.

C. Bubble nucleation via sphaleron

At a sufficiently high temperature, the classical transition
rate Γc dominates over the transition rate [30], which

corresponds to a static solution of Eq. (3.38). Then, the
transition rate is given by e−Esp=T�, where Esp is the bubble
energy for the static solution. This is nothing but the
sphaleron transition. In this subsection, we study this
sphaleron transition in more detail.

1. de Sitter spacetime

First, let us focus on the Hawking-Moss transition in
the de Sitter spacetime, where the metric in the static patch
can be written as

ds2 ¼ −fdSðrÞdt2 þ
dr2

fdSðrÞ
þ r2dΩ; ð3:58Þ

fdSðrÞ ¼ 1 −
Λr2

3
: ð3:59Þ

This coordinate has an apparent horizon with a radius
of H−1 ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

.
Suppose that the transition occurs in the whole region

inside the horizon, in which case we should take into
account the boundary term of the gravitational action. Since
the scalar field is static inside the bubble and the whole
region is contained inside the bubble, the solution is static
and the transition rate is dominated by the boundary term,

B ¼ 8π2
�

3

VðϕÞ −
3

VFV

�
; ð3:60Þ

where VðϕÞ is the local maximal of the scalar potential.
In gravity theory, the static solution results in H ¼ 0
(i.e., E ¼ 0) by the Hamiltonian constraint, which is the
consequence of the least action principle for Laps function
and some other components in the metric [80]. Therefore,
the tunneling rate is determined only by the change of the
boundary term ΔST for the static solution as Eq. (3.60)
[82], analogous to the thermodynamic transition with a
conserved energy, like a microcanonical picture.

FIG. 7. Plot same as Fig. 6 but with RBH;þ=r�;0 ¼ 0.01 (red line), 0.1 (pink line), 0.2 (violet line), and 0.3 (blue line). One can see that
the result almost coincides with Fig. 4.

KYOHEI MUKAIDA and MASAKI YAMADA PHYSICAL REVIEW D 96, 103514 (2017)

103514-14



A similar result can be derived when we neglect the
effect of the change of metric and regard the metric as a
background. This case is analogous to the thermodynamic
transition with unchanged temperature, like a canonical
picture, as we will see. First, note that we use the metric of
Eq. (3.59), which has an apparent boundary at rH ¼ H−1.
It can be rewritten as

ds2 ¼ −dT2 þ dS2 þ dX2 þ dY2 þ dZ2; ð3:61Þ

with

−T2 þ S2 þ X2 þ Y2 þ Z2 ¼ H−2; ð3:62Þ

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−2 − r2

p
sinh ½Ht�; ð3:63Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−2 − r2

p
cosh ½Ht�; ð3:64Þ

X ¼ r sin θ cosϕ; ð3:65Þ

Y ¼ r sin θ sinϕ; ð3:66Þ

Z ¼ r cos θ: ð3:67Þ

The metric has a singularity at T ¼ S ¼ 0 unless the time
variable t is periodic in the imaginary part with a period
of T−1

dS ¼ 2π=H. Therefore, for an equilibrium state in
de Sitter space, the propagator of a scalar field has a
periodicity in iðt − t0Þ with a period of T−1

dS ¼ 2π=H, which
implies that the scalar field is mimicked as in a thermal
system with a temperature of TdS ¼ H=2π.9 Thus, the
scalar field has thermal fluctuation, and in fact Hawking
and Moss have pointed out that the thermal transition of the
Universe inside the horizon can occur due to the thermal
effect of Hawking radiation in de Sitter spacetime. When
we consider a nucleation of a bubble with the size of
Hubble volume, it is static and its energy is given by

Esp ¼
4π

3
H−3ΔVðϕÞ: ð3:68Þ

The static bubble is nucleated by the following sphaleron
rate:

Γsp ∝ e−Esp=TdS : ð3:69Þ

This transition process is just the Hawking-Moss transition
and the exponential factor is equal to the result [Eq. (3.60)]
in the limit of ΔV ≪ V (½VðϕÞ − VFV�=V2ðϕÞ≃
1=VðϕÞ − 1=VFV). This equivalence also implies that the
above calculation of Eq. (3.60), where we include the
boundary term as proposed in Refs. [51–53], corresponds

to the transition due to the thermal effect with the Hawking
temperature.
Next, let us consider the same theory with a metric which

can describe the outer region of the boundary [29]. This
result can be reproduced by calculating a distribution
function of ϕ for a mode larger than the Hubble horizon
scale. The metric is written by

ds2 ¼ dt2 − a20e
2Htdx2 ¼ ðHηÞ−2ðdη2 − dx2Þ; ð3:70Þ

where η is the conformal time defined by a0eHt ¼ ð−HηÞ−1
for −∞ < η < 0. Let us first assume that the scalar field is
massless, in which case the equation of motion is given by

ϕ̈k þ 3H _ϕk þ
k2

a2ðtÞϕk ¼ 0 ð3:71Þ

in the Fourier space. The solution is given by

ϕk ¼
ffiffiffi
π

4

r
Hð−ηÞ3=2Hð1Þ

3=2ð−kηÞ ¼
Hffiffiffiffiffi
2k

p
�
η −

i
k

�
e−ikη;

ð3:72Þ

where Hð1Þ
3=2 is the Hankel function of the first class. Here,

we implicitly assume that the vacuum state annihilated by
ak’s corresponds to the usual adiabatic vacuum in the limit
of η → −∞. Such a vacuum is chosen in the context of
inflation and corresponds to the one naturally defined in the
metric Eq. (3.59). This is because well inside the horizon
the scalar field is just a free theory one, which is equivalent
to the one without metric (i.e., Minkowski metric). When
we focus on a mode with the wavelength of the order of the
Hubble length in a de Sitter vacuum, the particle distribu-
tion function ρðϕ; tÞ is calculated as

ρðϕ; tÞ ¼ N−1 exp

�
−
8π2

3H4
ΔVðϕÞ

�
; ð3:73Þ

where N is a normalization factor [29]. Therefore, the
probability for a transition to ϕ2 is given by

Γ ∝ exp½−8π2=ð3H4ÞðVðϕ2Þ − VFVÞ�: ð3:74Þ

Since TdS ¼ H=ð2πÞ, this result is consistent with the
above ones.
Here, we summarize these methods and results. When

we consider the metric with a boundary at r ¼ H−1 and
regard it as a background, the Hawking-Moss transition
occurs due to the thermal effect [see Eq. (3.68)]. When we
consider the same metric and take into account the Einstein
equation as well as the equation of motion for the scalar
field, the transition is a static solution and its rate is given
by the surface term (or entropy) [see Eq. (3.60)]. When
we consider the metric without a boundary and use the9Unless it has a conformal coupling ξ ¼ 1=6.
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Bunch-Davis (BD) vacuum, the transition can be calculated
from the method used by Starobinsky and Yokoyama [see
Eq. (3.73)]. These calculations are equivalent because the
initial state is the same in each.
We may obtain some insights into the origin of the

thermal plasma of the Hawking temperature in the above
calculation by noting that there are ambiguities in the
meaning of a vacuum state in curved spacetime [81,83–85].
There is no apparent boundary in the metric Eq. (3.70), so it
is natural to consider a nonsingular vacuum. It is actually
the case for the BD vacuum j0BDi [85]. Then the transition
rate is calculated from

e−Γt0 ¼ jhϕbubble; τ ¼ τ0jϕFV; τ ¼ 0;BDij2
jhϕFV; τ ¼ τ0;BDjϕFV; τ ¼ 0;BDij2 ð3:75Þ

¼
Z

DϕeiS½ϕ�−iS½ϕFV�; ð3:76Þ

as explained above. Then, after the coordinate transforma-
tion to the metric Eq. (3.59), the imaginary time should be
periodic so as to avoid the singularity at the apparent
horizon. Since the periodicity of imaginary time effectively
leads to a thermal effect on the scalar field, the BD vacuum
state is seen as a thermally excited state by the observer
using the latter metric. Therefore, for the latter observer,
the transition rate from the same state is schematically
written as

e−Γt0 ¼ jPE;ihϕbubble; τ ¼ τ0jE; iihE; ijϕFV; τ ¼ 0;BDij2
jhϕFV; τ ¼ τ0;BDjϕFV; τ ¼ 0;BDij2 ;

ð3:77Þ

where we insert a complete set
P

E;ijE; iihE; ij ¼ 1.
Since the BD vacuum is a thermally excited state with
the temperature of TdS ¼ H=ð2πÞ from the observer
with the metric with the apparent boundary, we use
hE; ijϕFV; τ ¼ 0;BDi ∼ e−E=TdS and rewrite it as

Γ ∼
Z

V top

0

dEe−E=TdSe−BðEÞ þ
Z

∞

V top

dEe−E=TdS : ð3:78Þ

Note that we also have to include the boundary term in
BðEÞ because there is the apparent singularity. Of course,
these results represent the nucleation rate from the same
state jϕFV; τ ¼ 0;BDi, so they should be equal to each
other.
This example implies that the effective thermal effect is

implicitly included when we calculate transition rates in a
Euclidean background metric. This should also be true in
the Schwarzschild–de Sitter spacetime. In fact, it has been
discussed that a no-boundary wave function of BH in the
Euclidean geometry coincides with the Hartle-Hawking
vacuum state [86,87]. This fact may indicate that the bubble

nucleation rate is enhanced by the thermal effect of the
Hawking radiation.

2. Schwarzschild–de Sitter spacetime

Now, we move to the sphaleron transition in the
Schwarzschild–de Sitter spacetime.
Let us first take the viewpoint of Sec. III A. There may be

no solution of Eq. (3.13) for small values of M− when Mþ
is larger than a certain threshold value [51–53,60]. In
particular, this is the case for k1 ≫ 1 and/or k2 ≫ 1. In this
case, the transition rate is dominated by a static solution
and the sum of the matter and the gravitational action
vanishes due to the Hamiltonian constraint except for the
boundary term. Thus, the transition rate is just given by the
boundary term in ΔSG as 2πΔA ¼ ðM2þ −M2

−Þ=2. Note
that since the total energy is conserved in this calculation,
the bubble energy is equal to the change of the BH mass:
ΔEbubble ¼ ΔM. Then the bounce action can be interpreted
as a change of the entropy associated with the Hawking
temperature dS ¼ dU=TBH;− because

Bboundary ¼
Z

dM−
d

dM−
Bboundary ¼ −

Z
dM−

TBH;−
¼

Z
dS;

ð3:79Þ

where we use Eq. (3.26). One can see that this viewpoint
is analogous to the thermodynamic transition where the
energy is conserved during that process, like a micro-
canonical picture.
Then, let us discuss the viewpoint of Sec. III B. There

may be no solution satisfying the equation of motion
Eq. (3.39) for the energy larger than a certain threshold
value. This implies that the transition occurs classically
with the probability function of Eq. (3.54) for such a large
initial energy. Thus, we obtain

ΓBH ∼
Z

Esp

0

dE�e−PðE�Þ−BðE�Þ þ
Z
Esp

dE�e−PðE�Þ; ð3:80Þ

where the first term is just Eq. (3.52) and the second term
is the classical contribution. The sphaleron energy Esp is
given by the bubble energy for the static solution. It is clear
that we have the classical transition process from this
viewpoint. When we use Eq. (3.54) and consider a system
with a sufficiently high temperature, the classical transition
rate Γc dominates over the transition rate in Eq. (2.40),
which corresponds to a static solution of Eq. (3.38). In this
case, the transition rate is given by e−Esp=T�, where Esp is the
bubble energy for the static solution. This viewpoint is
analogous to the thermodynamic transition where the
temperature is unchanged instead of the energy, like a
canonical picture.
Note that these two pictures give the same result in a

certain limit, as in the case of the equivalence between the
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microcanonical and canonical ensembles. In the viewpoint
of Sec. III A, the energy is conserved Esp ¼ ΔM. Thus
the transition rate of the sphaleron process in Sec. III B
is interpreted as to e−ΔM=T� . This can be farther rewritten
as e−MBHΔM ≃ e−ðM2

þ−M2
−Þ=2 ¼ e−2πΔA, where we use

Mþ ≃M−, which should be satisfied to match the result
in Sec. III B regarding the metric as a background. Thus,
both results coincide if the backreaction of the bubble
energy to the metric can be neglected. This result also
implies that the transition occurs via the thermal fluctuation
of the Hawking temperature.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we reconsidered the bubble nucleation
around a BH by using an effective theory of a thin-wall
bubble in the Schwarzschild–de Sitter spacetime. We
calculated the bubble nucleation rate in Schwarzschild–
de Sitter spacetime using three different methods. The first
one is proposed in Refs. [51–53] and is the full calculation
taking into account the backreaction to the metric. The
other two are calculations in certain limits: a flat spacetime
limit and a fixed-background limit. The bubble nucleation
rate in these latter two methods can be decomposed into
two factors: a quantum tunneling rate from a finite energy E
and a probability of producing states with an energy E. The
latter factor is just the Boltzmann factor in a finite-temper-
ature system. Comparing these results with that of the full
calculation used in the literature, we clarified the physical
meaning of the enhancement factor due to the existence of
BH. Namely, the enhancement factor can be interpreted as a
probability of producing states with an energy ΔM, where
ΔM is the difference of BH mass before and after the
transition. This makes it clear that all the other states, such
as plasma, are also generated through the same mechanism,
and calls for finite-density corrections to the tunneling rate,
which tend to stabilize the false vacuum. We showed also
that the probability is just equal to the Boltzmann factor for
the energy E ¼ ΔM. This means that the results of the latter
two calculations coincide with that of the former only when
we consider an activation due to the finite temperature and
the temperature should be identified with the Hawking
temperature associated with the BH horizon. This implies
that, in the former calculation, the finite-temperature effect
is implicitly taken into account. The enhancement of the
bubble nucleation rate should be related to the Hawking
radiation.
We showed also that the periodicity of the bounce

solution is not necessarily related to the temperature of
the system, but the consistency of those limits indicates
that the bounce solutions around a BH coincide with the
thermally activated tunneling associated with the BH
Hawking temperature. Although the periodicity of bounce
solutions as a function of its energy can be different from
the one indicated by the conical singularity of BH horizon,

we find that the dominant process can always be embedded
in the Euclidean spacetime with a periodicity of the
Hawking temperature.
It may be instructive to interpret two methods in the

curved spacetime in terms of statistical mechanics. The
former, where we fully include the effect of gravity, may
correspond to the microcanonical ensemble. The energy is
fixed and should be conserved before and after the
transition. This is satisfied in the above calculation because
the energy of the bubble is equal to the mass difference of
BH ΔM. This interpretation is also supported by the fact
that the transition is determined by the change of the BH
entropy above a certain threshold. The other method, where
we neglect the backreaction to the metric and consider a
thermal activation, may correspond to the canonical ensem-
ble, where temperature is fixed but the energy of the bubble
is not necessarily conserved before and after the transition.
In this case, the free energy should be minimized for the
dominant transition process. In any case, the result should
be the same in a limit where the backreaction can be
neglected because these interpretations are irrelevant for
the physical results.
According to our results and the above discussion, we

conclude that the bubble nucleation around a BH is
associated with a thermal effect of the Hawking temper-
ature, and the enhancement factor is nothing but a prob-
ability of generating bubbles with a finite energy. The point
here is that all the states other than bubbles should also be
generated since it is hard to imagine a mechanism which
only activates bubbles, though we have many other degrees
of freedom in quantum field theory. There are two possible
interpretations of the probability function. The enhance-
ment may be due to a thermal plasma which fills a whole
space outside of the BH as shown in the left panel of Fig. 8.
On the other hand, it may be possible that the bubble
nucleation occurs at the BH horizon with a nonzero kinetic
energy, and it expands to a critical bubble (see the right
panel in Fig. 8). If the former interpretation is correct, the
obtained bounce solutions may not correspond to the
realistic case, where a BH resides in an almost empty
space, but rather to the case where a BH is surrounded by
the thermal plasma of the BH Hawking temperature. This
has been pointed out in Refs. [79,88,89] in de Sitter
background. Moreover, the existence of such thermal
plasma may reduce the probability of bubble nucleations.
Its effect typically makes the transition difficult because the
scalar field prefers a symmetric point in the field space due
to the thermal mass. As a result, the bubble nucleation rate
may not be so drastically enhanced even around a small
BH. This viewpoint and question are also discussed in
Ref. [63] (see also Refs. [61,62]). On the other hand, if the
latter interpretation is correct, the Universe is not neces-
sarily filled with the thermal plasma and the bounce
solutions can be applied to the realistic case. Even in this
case, we need to take into account the finite-density
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corrections to the effective potential because there exists a
flux of Hawking radiation emitted from the BH as done in
Ref. [90] (see, e.g., Refs. [91–95] for related work). Notice
that, however, this interpretation leaves an open question
whether or not a bubble can be excited with a nonzero
kinetic energy by a finite-volume thermal bath (or at the BH
horizon) whose size is much smaller than the critical
bubble, and expands to a critical bubble. Nevertheless,
we postpone the conclusion in this paper; rather we explain
how to include the finite-density corrections of Hawking
radiation. Detailed studies on this aspect will be presented
elsewhere [96].
Thermal effects originate from the ambiguity of the

vacuum state at the false vacuum. When we perform the
Wick rotation and calculate the Euclidean action, we use a
specific metric where the components of the metric do not
depend on the (imaginary) time variable. However, it is well
known that the vacuum state has an observer dependence
[81,83–85]. For example, a vacuum state defined by a
freely falling observer around a BH is a thermally excited
state for a static observer. This ambiguity of the vacuum
state may add an implicit assumption on the initial state
when we calculate a Euclidean action in general relativity.
Regarding the observer dependence, we have also obtained
a consistent result in the case of bubble nucleations in a de
Sitter universe which supports this viewpoint. Our consid-
eration clarifies that we have to take particular care of the

initial vacuum state in the Wick-rotated Euclidean space-
time to calculate the bubble nucleation rate around a BH.
This is also supported by the fact that a no-boundary wave
function of BH in the Euclidean geometry coincides with
the Hartle-Hawking vacuum state [86,87].
Strictly speaking, a BH surrounded by an infinite thermal

plasma of the BH Hawking temperature in a de Sitter or flat
spacetime is thermodynamically unstable. This is because a
larger/smaller BH gets fat/light by accreting/emitting par-
ticles from/to the thermal plasma, and thus the system is
unstable under the perturbation. Although we naively
expect that this effect could be neglected if one restricts
the validity of the calculation to the case where the lifetime
of our vacuum is much shorter than the evaporation time
scale of the BH, a more rigorous way to test the procedure
in Refs. [51–53] may be to study the anti–de Sitter
Schwarzschild metric as done recently in Ref. [97].
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