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Owing to the analogy with the ordinary photons in the visible range of the electromagnetic spectrum,
the Glauber theory is generalized to address the quantum coherence of the gauge field fluctuations
parametrically amplified during an inflationary stage of expansion. The first and second degrees of
quantum coherence of relic photons are then computed beyond the effective horizon defined by the
evolution of the susceptibility. In the zero-delay limit, the Hanbury Brown–Twiss correlations exhibit a
super-Poissonian statistics which is, however, different from the conventional results of the single-mode
approximation customarily employed, in quantum optics, to classify the coherence properties of visible
light. While in the case of large-scale curvature perturbations, the degrees of quantum coherence
coincide with the naive expectation of the single-mode approximation, the net degree of second-order
coherence computed for the relic photons diminishes thanks to the effect of the polarizations.
We suggest that the Hanbury Brown–Twiss correlations are probably the only tool to assess the
quantum or classical origin of the large-scale magnetic fluctuations and of the corresponding curvature
perturbations.
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I. INTRODUCTION

The squeezed states of optical photons arise in a number
of diverse physical situations all related (directly or
indirectly) to the quantum theory of the parametric ampli-
fication [1]. The formulation of the quantum theory of
optical coherence [2–5] paved the way for the first quantum
description of parametric amplification [6]. Since then
various complementary descriptions of quantum amplifiers
have been developed through the years [7–10] both in the
context of single-mode and two-mode squeezed states (see
also [11,12] for an incomplete list of review articles on the
subject).
After the seminal discoveries of the COBE satellite [13]

(later confirmed and extended by the WMAP experiment
[14,15]) it became gradually clear that the early Universe
itself could be seen, from the physical viewpoint, as an
effective quantum amplifier. Consequently, the applications
of quantum optical techniques to the analysis of large-scale
inhomogeneities has been firstly suggested by Grishchuk
and collaborators in a class of problems involving the
evolution of the tensor and scalar modes of the four-
dimensional geometry [16–18]. Neither the tensor [19] nor
the scalar [20–22] inhomogeneities of a conformally flat
geometry are invariant under Weyl rescaling of the four-

dimensional metric. The lack of Weyl invariance implies
then the formation of squeezed states of the relic gravitons
and of the relic phonons [16–18] (see also [23] for a review
article). The key physical assumption behind these attempts
rests on the quantum mechanical nature of the initial
conditions of the large-scale inhomogeneities, as suggested
long ago by Sakharov [24] even prior to the formulation of
the conventional inflationary paradigms.
The quantum theory of parametric amplification has

been later applied to the case of relic photons [25] where
the quantum optical analogy is even more compelling:
in this case it is precisely the time variation of the
susceptibility that plays the role of the laser pump often
employed for the direct experimental preparation of the
squeezed states in various classes of nonlinear materials
(see, e.g., [1,11,12] and also [26]). The quantum theory of
parametric amplification of the relic photons (but also
of the relic gravitons and relic phonons) is useful for
treating the problem of initial data but it becomes essential
for analyzing the higher-order correlations of the large-
scale fluctuations, as the quantum optical analogy clearly
suggests.
There are some who argue that we have already an

accurate control of the protoinflationary dynamics; along
this prespective a consistent model suffices for claiming
that the large-scale fluctuations have a quantum origin. In
spite of this belief, it would be nice (and probably even
mandatory) to develop a more objective set of sufficient
criteria enabling us to infer the quantum origin of large-
scale fluctuations of any spin from some sort of observa-
tional evidence. The first idea coming to mind, in this
respect, it is to analyze the quantum coherence of the
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fluctuations in the spirit of the Glauber theory [2–4]. Only
by looking at the higher-order correlations we shall be able,
at least in principle, to establish if the large-scale curvature
perturbations have a classical or a quantum origin as
speculated by Sakharov [24].
A first step along this direction relies on the idea of

studying (and eventually measuring) the correlation
functions of the intensities of the curvature perturbations
rather than the correlations of the corresponding ampli-
tudes [27]. This concept was originally proposed by
Hanbury Brown and Twiss [28], and their analysis of
the intensity correlations is often dubbed Hanbury
Brown–Twiss (HBT) interferometry as opposed to the
standard Young-type interference where only amplitudes
(rather than intensities) are concerned. The applications of
the HBT effect range from stellar astronomy [28] (see also
[29]) to subatomic physics [30] where the interference of
the intensities has been used to determine the hadron
fireball dimensions [31] corresponding, in rough terms, to
the linear size of the interaction region in proton-proton
collisions.
In this paper, the quantum theory of optical coherence is

applied to the scrutiny of the statistical properties of the
relic photons produced thanks to the pumping action of the
susceptibility during an inflationary stage of expansion.
The idea is to define the Glauber correlation functions and
to focus the attention on their large-scale limit. The first and
second degrees of quantum coherence correspond, in the
quantum optical analogy, to the Young interferometry and
to the HBT interferometry. In the zero-time delay limit, the
degree of second-order coherence (conventionally denoted
by gð2Þ in quantum optics [1]) can be used to infer the
statistical properties of the quantum state. In the standard
lore, based on the so-called single mode approximation [1],
gð2Þ → 1 for a coherent state (also referred to as the
Poissonian limit because of the well known statistical
properties of the coherent states). Conversely in the chaotic
(or thermal) case we would have gð2Þ → 2; finally in the
case of two-mode squeezed states gð2Þ → 3 signalling a
super-Poissonian but also superchaotic statistics. By com-
paring the Hanbury Brown–Twiss correlations computed in
the scalar case (and, more precisely, for the large-scale
curvature fluctuations) with the case of relic photons, we
find specific physical differences which are traced back to
the role of the polarizations.
The plan of the present paper is the following. In Sec. II,

we shall discuss the squeezed states of the relic photons. In
Sec. III, the essentials of the Glauber approach will be
introduced. The large-scale limits of the correlation func-
tions will be studied in Sec. IV. In Sec. V, the physical
meaning of the degrees of quantum coherence will be
specifically computed and contrasted with the single-mode
approximation. Section VI contains our concluding
remarks. To avoid digressions, various useful details have
been relegated to the Appendix.

II. SQUEEZED STATES OF RELIC PHOTONS

The conformally invariant coupling of the Abelian gauge
fields is broken in different situations that can be usefully
recapitulated in terms of the general action [32]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Mρ
σðφ;ψÞYραYσα −N ρ

σðφ;ψÞ ~Yρα
~Yσα�:

ð2:1Þ

In Eq. (2.1), g denotes the determinant of the four-
dimensional curved metric gμν while the Abelian field
strength and its dual are defined, respectively, as

Yαβ ¼ ∇½μYν�; ~Yαβ ¼ 1

2
EμναβYαβ; Eαβμν ¼ ϵαβμνffiffiffiffiffiffi−gp ;

ð2:2Þ

where ∇μ is the covariant derivative defined in terms of gμν
and ϵαβμν is the Levi-Civita symbol in four dimensions.
Consistently with the observations we shall be working in a
conformally flat background geometry ḡμν ¼ a2ðτÞημν
where ημν denotes the Minkowski metric [with signature
ðþ;−;−;−Þ], aðτÞ is the scale factor and τ parametrizes the
conformal time coordinate. In the conformally flat metric
ḡμν, the components of the Abelian field strength appearing
in Eq. (2.1) are defined in terms of the electric and magnetic
degrees of freedom as Y0i ¼ ei=a2 and Yij ¼ −ϵijkbk=a2.
For more details on the notations and implications of the
action (2.1) the interested readers may consult Ref. [32].
In Eq. (2.1), Mρ

σðφ;ψÞ and N ρ
σðφ;ψÞ may depend on a

number of different scalar fields and on their covariant
derivatives. In a complementary perspective, they can be
constructed directly from fluid variables (i.e., fluid veloc-
ities, vorticities and shear) [32]. In spite of their specific
form, when Mρ

σ ≠ N ρ
σ the system is characterized by

different electric and magnetic susceptibilities; in this
situation Eq. (2.1) includes, as a special case, the derivative
couplings arising in the relativistic theory of Casimir-
Polder and Van der Waals interactions [33]. As discussed
in Ref. [32] a rather general parametrization in the case
Mρ

σ ≠ N ρ
σ can be written as

Mρ
σðφ;ψÞ ¼ λðφÞ

2
δρσ þ λEðφÞuσðφÞuρðφÞ;

N ρ
σðφ;ψÞ ¼ λðφÞ

2
δρσ þ λBðψÞūσðψÞūρðψÞ; ð2:3Þ

where uρðφÞ and ūρðψÞ are the normalized gradients of the
corresponding scalar fields1 but, in the context of a purely

1They are defined as uρðφÞ ¼ ∂ρφ=
ffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2p

and ūρðψÞ ¼
∂ρψ=

ffiffiffiffiffiffiffiffiffiffiffiffi
ð∂ψÞ2p

with ð∂φÞ2 ¼ gαβ∂αφ∂βφ and similarly for
ð∂ψÞ2. For further details see Refs. [32,33].
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hydrodynamical model, they can also play the role of the
four-velocities of a relativistic fluid; in both interpretations
uρ and ūρ are time-like four-vectors, i.e., within the present
notations gαβuαuβ ¼ gαβūαūβ ¼ 1.
With specifications of the previous paragraph, the

comoving electric and magnetic fields will obey the
following set of equations:

∇⃗ × ð
ffiffiffiffiffiffi
ΛB

p
B⃗Þ ¼ ∂τð

ffiffiffiffiffiffi
ΛE

p
E⃗Þ; ð2:4Þ

∇⃗ ×

�
E⃗ffiffiffiffiffiffi
ΛE

p
�
þ ∂τ

�
B⃗ffiffiffiffiffiffi
ΛB

p
�

¼ 0; ð2:5Þ

∇⃗ ·

�
B⃗ffiffiffiffiffiffi
ΛB

p
�

¼ 0; ∇⃗ · ð
ffiffiffiffiffiffi
ΛE

p
E⃗Þ ¼ 0: ð2:6Þ

where

ffiffiffiffiffiffi
ΛE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ λE

2

r
;

ffiffiffiffiffiffi
ΛB

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ λB

2

r
; ð2:7Þ

are, by definition, the electric and the magnetic suscep-
tibilities, i.e., χE ¼ ffiffiffiffiffiffi

ΛE
p

and χB ¼ ffiffiffiffiffiffi
ΛB

p
. The electric and

magnetic couplings are, respectively, gE ¼ ð4π=ΛEÞ1=2 and
gB ¼ ð4π=ΛBÞ1=2. Under the exchange and inversion of the
susceptibilities (

ffiffiffiffi
Λ

p
E → 1=

ffiffiffiffiffiffi
ΛB

p
and

ffiffiffiffiffiffi
ΛB

p
→ 1=

ffiffiffiffiffiffi
ΛE

p
) or

of the corresponding couplings (i.e., gE → 1=gB and
gB → 1=gE) Eqs. (2.4), (2.5), and (2.6) maintain the same
form provided the electric and magnetic fields are also
exchanged as E⃗ → −B⃗ and B⃗ → E⃗.
Even if the discussion can be carried on in the general

case, we shall be focussing our attention on the simplest
situation, namely the one where λE → 0 and λB → 0. This
implies, according to the previous discussion, that
Mρ

σ ¼ N ρ
σ ¼ ðλ=2Þδρσ. In this instance, Eqs. (2.4), (2.5),

and (2.6) become2

E⃗ 0 þ F E⃗ ¼ ∇⃗ × B⃗; B⃗0 − F B⃗ ¼ −∇⃗ × E⃗; ð2:8Þ

whereF ¼ χ0=χ, χ ¼ ffiffiffi
λ

p
is the susceptibility and the prime

denotes a derivation with respect to the conformal time
coordinate. To make more clear the logic and the termi-
nology we recall that when Mσ

ρ ≠ Nσ
ρ [see Eq. (2.3)], the

magnetic energy density and the electric energy densities
are multiplied by two different functions (i.e., the electric
and magnetic susceptibilities defined, respectively, as χE
and χB). This terminology is borrowed from the relativistic
theory of Van der Waals interactions [32] (see also [33]).

The canonical electric and magnetic fields appearing in
Eq. (2.8) are then given by B⃗ ¼ a2

ffiffiffi
λ

p
b⃗ and E⃗ ¼ a2

ffiffiffi
λ

p
e⃗.

Note that the two equations appearing in Eq. (2.8) are left
invariant by the duality transformations [41] χ → 1=χ (i.e.,
F → −F ) provided E⃗ → −B⃗ and B⃗ → E⃗. The continuous
evolution of F will define an effective horizon for the
gauge modes related to E⃗ and B⃗.
In time-dependent (conformally flat) backgrounds, the

Coulomb gauge (i.e., Y0 ¼ 0 and ∇⃗ · Y⃗ ¼ 0) is preserved
(unlike the Lorentz gauge condition) under a conformal
rescaling of the metric. For the quantum mechanical
description of the problem we can therefore start with the
canonical Hamiltonian (see Appendix A for a derivation)

ĤðτÞ ¼
X
α

Z
d3k

�
k
2
ðâ†

k⃗α
âk⃗α þ â−k⃗αâ

†
−k⃗α

Þ

þ ξâ†
k⃗α
â†
−k⃗α

þ ξ�â−k⃗αâk⃗α

�
: ð2:9Þ

where ξ ¼ iF=2. Equation (2.9) is reminiscent of the toy
model of parametric amplifier analyzed, for the first time by
Mollow and Glauber [6]. The free part of Eq. (2.9) and the
two components of the interacting Hamiltonian satisfy the
usual commutation relations of the SUð1; 1Þ Lie algebra, as
we shall see in a moment. Equation (2.9) describes an
interacting Bose gas at zero temperature. In this case, the
freeHamiltonian corresponds to the kinetic energywhile the
interaction terms account for the two-body collisions with
small momentum transfer [42,43].
The Hamiltonian (2.9) is invariant under duality that

transforms χ in its inverse, i.e., χ → 1=χ. Under this
transformation we have that F → −F while the creation
and annihilation operators transform as

âk⃗α → ikâ†
−k⃗α

; â−k⃗α →
i
k
â†
k⃗α

ð2:10Þ

â†
k⃗α

→ −
i
k
â−k⃗α; â†

−k⃗α
→ −ikâk⃗α: ð2:11Þ

Recalling the notations discussed in Appendix A, the
Fourier representation of the field operators and of the
momenta

Âk⃗α ¼
1ffiffiffiffiffi
2k

p ðâk⃗α þ â†
−k⃗α

Þ; π̂k⃗α ¼ −i
ffiffiffi
k
2

r
ðâk⃗α − â†

−k⃗α
Þ;

ð2:12Þ
transform as

Âk⃗α →
π̂k⃗α
k

; π̂k⃗α → −kÂk⃗α ð2:13Þ

if we use Eqs. (2.10) and (2.11). In the present discussion,
the vacuum corresponds to the state minimizing the

2This situation corresponds to various models of magneto-
genesis [34,35] discussed in the past [36–38]. See also [39,40] for
a recent observation leading to an interesting class of magneto-
genesis models not described by Eq. (2.1).
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Hamiltonian at the onset of the dynamical evolution. This
state can be explicitly constructed by diagonalizing the
Hamiltonian in terms of an appropriate canonical trans-
formation. A similar procedure is used to derive the ground
state wave function of an interacting Bose gas at zero
temperature [42,43].
The evolution of âk⃗α and â†

k⃗α
can be obtained from

Eq. (2.9) and from the evolution equations in the
Heisenberg description:

dâp⃗α
dτ

¼ i½Ĥ; âp⃗α� ¼ −ipâp⃗α − 2iξâ†−p⃗α;

dâ†p⃗α
dτ

¼ i½Ĥ; â†p⃗α� ¼ ipâ†p⃗α þ 2iξ�â−p⃗α: ð2:14Þ

The formal solution of Eq. (2.14) is

âp⃗;αðτ; τiÞ ¼ upðτÞb̂p⃗αðτiÞ − vpðτÞb̂†−p⃗αðτiÞ;
â†−p⃗;αðτ; τiÞ ¼ u�pðτÞb̂†−p⃗αðτiÞ − v�pðτÞb̂p⃗αðτiÞ; ð2:15Þ

where upðτÞ and vpðτÞ satisfy jupðτÞj2 − jvpðτÞj2 ¼ 1.
From Eq. (2.14) the equations obeyed by up and vp can
be written as

dup
dτ

¼ −ipup − Fv�p;
dvp
dτ

¼ −ipvp − Fu�p: ð2:16Þ

The solution for the evolution equations of upðτÞ and
vpðτÞ can be obtained in two complementary regions,
namely for the wavelengths larger than the effective
horizon (i.e., p=F ≪ 1) and for wavelengths shorter
than the effective horizon (i.e., p=F ≫ 1). In the short
wavelength region, the solutions of Eq. (2.16) are plane
waves e�ipτ while in the long wavelength regime the
solution becomes

upðτÞ ¼ Apðτ; τexÞupðτexÞ þ B�
pðτ; τexÞv�pðτexÞ; ð2:17Þ

v�pðτÞ ¼ Bpðτ; τexÞupðτexÞ þ A�
pðτ; τexÞv�pðτexÞ; ð2:18Þ

where Apðτ; τexÞ and Bpðτ; τexÞ are given by

Apðτ; τexÞ ¼
χðτÞ
2χex

½1þ iIBðτex; τÞ� þ
χex
2χðτÞ ½1− iIEðτex; τÞ�;

ð2:19Þ

Bpðτ; τexÞ ¼
χex
2χðτÞ ½1− iIEðτex; τÞ�−

χðτÞ
2χex

½1þ iIBðτex; τÞ�:

ð2:20Þ

The two dimensionless integrals IBðτex; τÞ and IEðτex; τÞ
are given by

IBðτex; τÞ ¼ k
Z

τ

τex

χ2ex
χðτ0Þdτ

0; IEðτex; τÞ ¼ k
Z

τ

τex

χðτ0Þ
χ2ex

dτ0:

ð2:21Þ

Thanks to Eqs. (2.17) and (2.18) the initial conditions for
the evolution can be directly expressed at τex and can be
written in terms of the values of the mode functions at the
corresponding epoch (i.e., upðτexÞ≡ ūp and v�pðτexÞ≡ v̄�p).
We can now remark that the two complex functions upðτÞ

andvpðτÞ (subjected to the constraint jupðτÞj2−jvpðτÞj2¼1)
can the be parametrized in terms of three real functions.
The evolution of uk and vk can then be rephrased in
terms of the so-called squeezing parameters [1,11,12] (see
also [7–10]):

up ¼ e−iφp cosh rp; vp ¼ e−iðφp−γpÞ sinh rp; ð2:22Þ

where φp, rp and γp are all functions of the conformal time
coordinate τ even if the arguments of the functions will be
dropped for the sake of conciseness. Using Eq. (2.22),
Eq. (2.15) can be rewritten as

âp⃗α ¼ e−iφp ½cosh rpb̂p⃗α − eiγp sinh rpb̂
†
−p⃗α�;

â†−p⃗α ¼ eiφp ½cosh rpb̂†−p⃗α − e−iγp sinh rpb̂p⃗α�: ð2:23Þ

Equation (2.23) can be swiftly obtained by considering a
single p⃗-mode and by noticing that the operatorsK� andK0

obey the commutation relations of theSUð1; 1ÞLie algebra3:

Kþ¼ b̂†1b̂
†
2; K−¼ b̂1b̂2; K0¼

1

2
½b̂†1b̂1þ b̂2b̂

†
2�: ð2:24Þ

Using the standard Campbell-Baker-Hausdorff theorem
[1,44], Eq. (2.24) implies

â¼Σ†ðζÞΞ†ðφÞb1ΞðφÞΣðζÞ¼ e−iφ½coshrb̂1−eiγ sinhrb̂†2�;
ð2:25Þ

where ΞðφÞ and ΣðζÞ (with ζ ¼ reiγ) are, respectively, the
rotation operator and the two-mode squeezing operators
defined in terms of the generators of the SUð1; 1Þ Lie
algebra:

ΞðφÞ ¼ exp ½−iφðb̂†1b̂1 þ b̂2b̂
†
2Þ�;

ΣðζÞ ¼ exp ½ζ�b̂1b̂2 − ζb̂†2b̂
†
1�: ð2:26Þ

These two operators describe the evolution of the states in
the Schrödinger representation; their use has been pioneered
by Grishchuk and Sidorov [16] (see also [25] in the case of
the relic photons). Using Eq. (2.23) into Eq. (2.16), the

3To enlighten the two-mode symmetry of the problem we can
define for each p⃗-mode b̂1 ¼ b̂p⃗ and b̂2 ¼ b̂−p⃗.
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evolution of the squeezing amplitude rk and of the phase φp

becomes

r0p ¼ −F cos αp; φ0
p ¼ pþ F sin αp tanh rp; ð2:27Þ

where αp ¼ 2φp − γp and the relation between γ0p and φ0
p is

given by

γ0p ¼ φ0
p − p − F

sin αp
tanh rp

: ð2:28Þ

By combining Eqs. (2.27) and (2.28) it is immediate to
obtain

α0p ¼ 2pþ 2F
sin αp
tanh 2rp

: ð2:29Þ

III. GLAUBER DESCRIPTION
OF QUANTUM COHERENCE

A. General form of the Glauber correlation function

The statistical properties of any quantum state and its
degrees of quantum coherence can be used to reconstruct, at
least in partially, the physical nature of the source [1–4]. In
quantum optics, the Glauber theory is often used in an
exclusive manner: the statistical properties of visible light
are reduced to the study of a single mode of the field. This
is what goes under the name of single-mode approximation.
Conversely, in the analysis of the large-scale cosmological
fluctuations of different spin, a more inclusive approach is
needed since the correlation functions contain all the modes
of the field. In its most general form, the Glauber
correlation function can be written as [2,4]

Gðn;mÞ
i1;…in;inþ1;…;inþm

ðx1;…xn; xnþ1;…; xnþmÞ
¼ Tr½ρ̂Âð−Þ

i1
ðx1Þ…Âð−Þ

in
ðxnÞÂðþÞ

inþ1
ðxnþ1Þ…ÂðþÞ

inþm
ðxnþmÞ�;

ð3:1Þ

where xi ≡ ðx⃗i; τiÞ and ρ̂ is the density operator
representing the (generally mixed) state of the field Âi.
The field Âiðx⃗; τÞ can always be expressed as ÂiðxÞ ¼
ÂðþÞ

i ðxÞ þ Âð−Þ
i ðxÞ, with ÂðþÞ

i ðxÞ ¼ Âð−Þ†
i ðxÞ. By defini-

tion we will have that ÂðþÞ
i ðxÞjvaci ¼ 0 and also that

hvacjÂð−Þ
i ðxÞ ¼ 0; the state jvaci denotes the vacuum. The

vacuum corresponds to the state minimizing the
Hamiltonian at the onset of the dynamical evolution.
This state can be explicitly constructed by diagonalizing
the Hamiltonian in terms of an appropriate canonical
transformation. A similar procedure is used to derive the
ground state wave function of an interacting Bose gas at
zero temperature [42,43]. Provided the total duration of
inflation exceeds the minimal number of about 65 efolds,
the vacuum initial data are the most plausible, at least in the

conventional lore (see, however, Ref. [27] for different
choices in a related context). The correlation function
defined in Eq. (3.1) depends on the polarizations as the
free indices clearly show. It is useful, for future conven-
ience, to introduce the Glauber correlation function for a
scalar degree of freedom. In this case, Eq. (3.1) simply
becomes

Sðn;mÞðx1;…xn; xnþ1;…; xnþmÞ
¼ Tr½ρ̂q̂ð−Þðx1Þ…q̂ð−ÞðxnÞq̂ðþÞðxnþ1Þ…q̂ðþÞðxnþmÞ�:

ð3:2Þ
The quantum field q̂ðxÞ defines, for instance, the normal-
ized curvature perturbations on comoving orthogonal
hypersurfaces.
It is relevant to remark that Eq. (3.1) [and, similarly,

Eq. (3.2)] contain an operator that can be written as

Ôi1;…inðx1;…xnÞ
¼ Âð−Þ

i1
ðx1Þ…Âð−Þ

in
ðxnÞÂðþÞ

i1
ðx1Þ…ÂðþÞ

in
ðxnÞ: ð3:3Þ

The operator of Eq. (3.3) is needed to describe n-fold
delayed coincidence measurements of the field at the space-
time points ðx1;…xnÞ. If jbi is the state before the
measurement and jai is the state after the measurement,
the matrix element corresponding to the absorption of the
quanta of Âi at each detector and at given times is

hajÂðþÞ
i1

ðx1Þ…ÂðþÞ
in

ðxnÞjbi. The rate at which such absorp-
tions occur, summed over the final states, is therefore
proportional to [1,2,4]:

X
a

jhajÂðþÞ
i1

ðx1Þ…ÂðþÞ
in

ðxnÞjbij2

¼
X
a

hbjÂð−Þ
i1

ðx1Þ…Âð−Þ
in

ðxnÞjaihajÂðþÞ
i1

ðx1Þ…

× ÂðþÞ
in

ðxnÞjbi ¼ hbjÔjbi; ð3:4Þ

where the second equality of Eq. (3.4) follows from the
completeness relation.

B. Symmetric form of the correlation function

According to Eq. (3.4), when hbjÔjbi is averaged over
the ensemble of the initial states of the system it becomes
identical with Eq. (3.1) for xnþr ¼ xr (with r ¼ 1; 2;…; n
and n ¼ m). Since this is the case that will be studied
hereunder, we shall denote the symmetric form of the
Glauber correlation function as

GðnÞ
i1;…in;inþ1;…i2n

ðx1;…xn; xnþ1;…; x2nÞ
¼ Tr½ρ̂Âð−Þ

i1
ðx1Þ…Âð−Þ

in
ðxnÞÂðþÞ

inþ1
ðxnþ1Þ…ÂðþÞ

i2n
ðx2nÞ�:

ð3:5Þ
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Thanks to Eq. (3.5), the coherence properties of the
quantum field ÂiðxÞ can be discussed by introducing the
normalized version of the n-point Glauber function [2,4]:

gðnÞi1;…in;inþ1;…i2n
ðx1;…xn; xnþ1;…; x2nÞ

¼ GðnÞ
i1;…in

ðx1;…xn; xnþ1;…; x2nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π2n

j¼1G
ð1Þ
ijij

ðxj; xjÞ
q : ð3:6Þ

While, by definition, jgð1Þi1i2
ðx1; x2Þj ≤ 1, the higher-order

correlators are not restricted in absolute value as happens

for gð1Þðx1; x2Þ. A fully coherent field must therefore satisfy
the following necessary condition [1,2,4]:

gðnÞi1;…in;inþ1;…i2n
ðx1;…xn; xnþ1;…; x2nÞ ¼ 1; ð3:7Þ

for n ¼ 1; 2; 3;…. If only a limited number of normalized
correlation functions will satisfy Eq. (3.7) we shall speak
about partial coherence. The degrees of first- and second-
order coherence can be written as

gð1Þi1i2
ðx1; x2Þ ¼

Gð1Þ
i1i2

ðx1; x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1Þ
i1i1

ðx1; x1ÞGð1Þ
i2i2

ðx2; x2Þ
q ; ð3:8Þ

gð2Þi1i2i3i4
ðx1; x2; x3; x4Þ ¼

Gð2Þ
i1i2i3i4

ðx1; x2; x3; x4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1Þ
i1i1

ðx1; x1ÞGð1Þ
i2i2

ðx2; x2ÞGð1Þ
i3i3

ðx3; x3ÞGð1Þ
i4i4

ðx4; x4Þ
q ;

ð3:9Þ

where, in agreement with the general definitions of Eq. (3.1), the correlation functions appearing in Eqs. (3.8) and (3.9) are
given by

Gð1Þ
i1i2

ðx1; x2Þ ¼ hÂð−Þ
i1

ðx1ÞÂðþÞ
i2

ðx2Þi;
Gð2Þ
i1i2i3i4

ðx1; x2; x3; x4Þ ¼ hÂð−Þ
i1

ðx1ÞÂð−Þ
i2

ðx2ÞÂðþÞ
i3

ðx3ÞÂðþÞ
i4

ðx4Þi: ð3:10Þ

In a similar manner, it is possible to define, for instance, the third- and fourth-order degrees of coherence

gð3Þðx1; x2; x3; x4; x5; x6Þ ¼
Gð3Þðx1; x2; x3; x4; x5; x6ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

6
i¼1 G

ð1Þðxi; xiÞ
q ; ð3:11Þ

gð4Þðx1; x2; x3; x4; x5; x6; x7; x8Þ ¼
Gð4Þðx1; x2; x3; x4; x5; x6; x7; x8ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

8
i¼1 G

ð1Þðxi; xiÞ
q ; ð3:12Þ

where, for the sake of simplicity, we just suppressed
the polarization indices. If gð1Þðx1;x2Þ¼1 and
gð2Þðx1; x2; x3; x4Þ ¼ 1 (but gð3Þðx1; x2; x3; x4; x5; x6Þ ≠ 1)
the quantum field is second-order coherent. We shall be
interested in the first and second degrees of coherence even
if It has been recently suggested, in quantum optical
applications, that the degree of second-order coherence
might not always be sufficient to specify completely the
statistical properties of the radiation field [45–48].

C. Electric and magnetic correlation functions

The Glauber correlation function of Eq. (3.5) has been
originally defined not in terms of the vector potentials but
rather using the electric fields:

EðnÞi1;…in;inþ1;…i2nðx1;…xn;xnþ1;…;x2nÞ
¼Tr½ρ̂Êð−Þ

i1
ðx1Þ…Êð−Þ

in
ðxnÞÊðþÞ

inþ1
ðx1Þ…ÊðþÞ

in
ðx2nÞ�: ð3:13Þ

From Eq. (3.13), the corresponding degrees of second-
order coherence can also be defined. Equation (3.5) has
been instead proposed as basic correlator in the approach
of Mandel and Wolf [1]. Both approaches are somewhat
convenient for applications to questions relating to
photoelectric detection of light fluctuations. In the
present context, exactly the same discussion can be
carried on in the case of the magnetic correlator defined
as
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BðnÞ
i1;…in;inþ1;…i2n

ðx1;…xn; xnþ1;…; x2nÞ
¼ Tr½ρ̂B̂ð−Þ

i1
ðx1Þ…B̂ð−Þ

in
ðxnÞB̂ðþÞ

i1
ðxnþ1Þ…B̂ðþÞ

in
ðx2nÞ�:

ð3:14Þ
From Eqs. (3.13) and (3.14) the normalized degrees of
quantum coherence can be easily defined from the expres-
sions already derived4 using Eq. (3.5).
The degree of first-order coherence of Eq. (3.8) appears

naturally in the Young two-slit experiment and whenever
the degree of first-order coherence is equal to 1 the
visibility is maximized [1]. The degree of second-order
coherence of Eq. (3.9) enters the discussion of the Hanbury
Brown–Twiss effect [28] and its different applications
ranging from stellar interferometry [1] to high-energy
physics [30,31]. The degree of second-order coherence
arises naturally when discussing the correlations of the
intensities of the fields Âi, Êi and B̂i. Notice that the
intensity correlators relevant to the HBT interferometry can
be easily obtained from Eqs. (3.6) and (3.9) by identifying
the space-time points as follows:

x1 ≡ xnþ1; x2 ≡ xnþ2; … xn ≡ x2n : ð3:15Þ
In this case, the original Glauber correlator will effectively
be a function of n points and it will describe the correlation
of n intensities. The same observation can be made in the
case of Eqs. (3.13) and (3.14). The explicit expressions of
the HBT correlators can then be written from Eqs. (3.1),
(3.13), and (3.14) with the help of Eq. (3.15):

Gð2Þðx1; x2Þ ¼
X
i1i2

hÂð−Þ
i1

ðx1ÞÂð−Þ
i2

ðx2ÞÂðþÞ
i1

ðx1ÞÂðþÞ
i2

ðx2Þi;

ð3:16Þ

Eð2Þðx1; x2Þ ¼
X
i1i2

hÊð−Þ
i1

ðx1ÞÊð−Þ
i2

ðx2ÞÊðþÞ
i1

ðx1ÞÊðþÞ
i2

ðx2Þi;

ð3:17Þ
Bð2Þðx1; x2Þ ¼

X
i1i2

hB̂ð−Þ
i1

ðx1ÞB̂ð−Þ
i2

ðx2ÞB̂ðþÞ
i1

ðx1ÞB̂ðþÞ
i2

ðx2Þi;

ð3:18Þ
where the sum over repeated indices is pleonastic since the
usual convention of sum over repeated indices has been
adopted throughout. Nonetheless the explicit form of
Eqs. (3.16), (3.17) and (3.18) can be revealing when
compared with the explicit form of Eq. (3.2) in the case
of HBT correlations:

Sð2Þðx1; x2Þ ¼ hq̂ð−Þðx1Þq̂ð−Þðx2Þq̂ðþÞðx1Þq̂ðþÞðx2Þi: ð3:19Þ
The difference between Eqs. (3.16)–(3.18) and Eq. (3.19)
will have a direct repercussion on the large-scale limits of
the degree of quantum coherence, as we shall see in the
following section.

IV. QUANTUM CORRELATORS BEYOND
THE EFFECTIVE HORIZON

The correlation functions introduced in Sec. III will now
be computed in the case of the squeezed quantum states
associated with the Hamiltonian of Eq. (2.9). To avoid
digressions some of the relevant details have been relegated
in Appendixes B and C.

A. Explicit form of the correlators

In the case n ¼ 1, Eqs. (3.5) and (3.13)–(3.14) give the
explicit expressions of the first-order correlators:

Gð1Þ
ij ðx1;x2Þ¼

1

2

Z
d3p

ð2πÞ3pPijðp̂Þv�pðτ1Þvpðτ2Þe−ip⃗·r⃗; ð4:1Þ

Bð1Þ
ij ðx1;x2Þ¼Eð1Þ

ij ðx1;x2Þ

¼1

2

Z
d3p
ð2πÞ3pPijðp̂Þv�pðτ1Þvpðτ2Þe−ip⃗·r⃗; ð4:2Þ

where r⃗¼ x⃗1− x⃗2 and Pijðp̂Þ¼δij−p̂ip̂j (with p̂i ¼ pi=p).
The final form of the expectation values appearing in
Eqs. (4.1) and (4.2) can be obtained from Eqs. (2.22),
(2.23), and (B1). In Eqs. (4.1) and (4.2), we did not sum
over the polarizations and even if the previous equations
hold also for i ≠ j, the degrees of first-order coherence are
actually defined from the traces of Eqs. (4.1) and (4.2):

Gð1Þðx1; x2Þ ¼ Gð1Þ
ii ðx1; x2Þ; Bð1Þðx1; x2Þ ¼ Bð1Þ

ii ðx1; x2Þ;
Eð1Þðx1; x2Þ ¼ Eð1Þ

ii ðx1; x2Þ: ð4:3Þ

Within the notations Eq. (4.3), the corresponding
degrees of first-order electric and magnetic coherence
are, respectively,

gð1ÞE ðx1; x2Þ ¼
Eð1Þðx1; x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð1Þðx1; x1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð1Þðx2; x2Þ
q ;

gð1ÞB ðx1; x2Þ ¼
Bð1Þðx1; x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bð1Þðx1; x1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bð1Þðx2; x2Þ
q ; ð4:4Þ

gð1ÞG ðx1; x2Þ ¼
Gð1Þðx1; x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gð1Þðx1; x1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gð1Þðx2; x2Þ
q : ð4:5Þ

As a consequence of Eq. (4.2) we also have that

gð1ÞE ðx1; x2Þ ¼ gð1ÞB ðx1; x2Þ.

4The electric and magnetic correlators give coincident results
for the degrees of quantum coherence as we shall explicitly show
in the next section. This property should be contrasted with what
happens for the magnetic and electric power spectra (see also
Appendix C). The reason for this occurrence is that the degrees of
quantum coherence, by construction, are sensitive to the proper-
ties of the quantum state.
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Equations (3.5), (3.13) and (3.14) give the degree of second-order coherence when written in the case n ¼ 2. More
specifically, when n ¼ 2, Eq. (3.14) is given by Eq. (B4) of the Appendix; then, after making explicit the expectation values
[see Eq. (B5)] the final result is

Bð2Þðx1; x2; x3; x4Þ ¼
1

4

Z
d3p1

ð2πÞ3 p1

Z
d3p2

ð2πÞ3 p2

× fv�p1
ðτ1Þv�p2

ðτ2Þvp1
ðτ3Þvp2

ðτ4Þe−ip⃗1·ðx⃗1−x⃗3Þe−ip⃗2·ðx⃗2−x⃗4ÞPiiðp̂1ÞPiiðp̂2Þ
þ Pijðp̂1ÞPijðp̂2Þ½v�p1

ðτ1Þv�p2
ðτ2Þvp2

ðτ3Þvp1
ðτ4Þe−ip⃗1·ðx⃗1−x⃗4Þe−ip⃗2·ðx⃗2−x⃗3Þ

þ v�p1
ðτ1Þu�p1

ðτ2Þup2
ðτ3Þvp2

ðτ4Þe−ip⃗1·ðx⃗1−x⃗2Þe−ip⃗2·ðx⃗3−x⃗4Þ�g: ð4:6Þ

Had we started from Eq. (3.13), the same steps would have
led, through Eq. (B3), exactly to the same final expression
of Eq. (4.6): in other words the direct calculation shows that
Bð2Þðx1; x2; x3; x4Þ≡ Eð2Þðx1; x2; x3; x4Þ. For the present
ends and as a preparation for the discussion of the last
part of Sec. V, it is relevant to contrast Eq. (4.6) with the

degree of second-order coherence obtainable in the case of
a scalar field [27]. The Hamiltonian coincides, in this
case, with Eq. (2.9) but the sum over the polarizations and
the polarization dependence of the creation and annihila-
tion operators are absent. When m ¼ n ¼ 2 Eq. (3.2)
implies:

Sð2Þðx1; x2; x3; x4Þ ¼
1

4

Z
d3p1

ð2πÞ3p1

Z
d3p2

ð2πÞ3p2

× fv�p1
ðτ1Þv�p2

ðτ2Þvp1
ðτ3Þvp2

ðτ4Þe−ip⃗1·ðx⃗1−x⃗3Þe−ip⃗2·ðx⃗2−x⃗4Þ

þ ½v�p1
ðτ1Þv�p2

ðτ2Þvp1
ðτ3Þvp2

ðτ4Þe−ip⃗1·ðx⃗1−x⃗4Þe−ip⃗2·ðx⃗2−x⃗3Þ

þ v�p1
ðτ1Þu�p1

ðτ2Þup2
ðτ3Þvp2

ðτ4Þe−ip⃗1·ðx⃗1−x⃗2Þe−ip⃗2·ðx⃗3−x⃗4Þ�g; ð4:7Þ

where the results of Eqs. (B6) and (B7) have been taken into account. Equations (4.6) and (4.7) are similar but the
polarizations introduce a quantitive difference which is even more apparent when Eq. (4.6) is written in explicit terms:

Bð2Þðx1; x2; x3; x4Þ ¼ Eð2Þðx1; x2; x3; x4Þ

¼
Z

d3p1

ð2πÞ3 p1

Z
d3p2

ð2πÞ3 p2

×

�
v�p1

ðτ1Þv�p2
ðτ2Þvp1

ðτ3Þvp2
ðτ4Þe−ip⃗1·ðx⃗1−x⃗3Þe−ip⃗2·ðx⃗2−x⃗4Þ

þ 1

4

�
1þ ðp⃗1 · p⃗2Þ2

p2
1p

2
2

�
½v�p1

ðτ1Þv�p2
ðτ2Þvp2

ðτ3Þvp1
ðτ4Þe−ip⃗1·ðx⃗1−x⃗4Þe−ip⃗2·ðx⃗2−x⃗3Þ

þ v�p1
ðτ1Þu�p1

ðτ2Þup2
ðτ3Þvp2

ðτ4Þe−ip⃗1·ðx⃗1−x⃗2Þe−ip⃗2·ðx⃗3−x⃗4Þ�
�
: ð4:8Þ

Gð2Þðx1; x2; x3; x4Þ ¼
Z

d3p1

p1ð2πÞ3
Z

d3p2

p2ð2πÞ3

×

�
v�p1

ðτ1Þv�p2
ðτ2Þvp1

ðτ3Þvp2
ðτ4Þe−ip⃗1·ðx⃗1−x⃗3Þe−ip⃗2·ðx⃗2−x⃗4Þ

þ 1

4

�
1þ ðp⃗1 · p⃗2Þ2

p2
1p

2
2

�
½v�p1

ðτ1Þv�p2
ðτ2Þvp2

ðτ3Þvp1
ðτ4Þe−ip⃗1·ðx⃗1−x⃗4Þe−ip⃗2·ðx⃗2−x⃗3Þ

þ v�p1
ðτ1Þu�p1

ðτ2Þup2
ðτ3Þvp2

ðτ4Þe−ip⃗1·ðx⃗1−x⃗2Þe−ip⃗2·ðx⃗3−x⃗4Þ�
�
: ð4:9Þ

MASSIMO GIOVANNINI PHYSICAL REVIEW D 96, 103513 (2017)

103513-8



While the electric and the magnetic correlators of
Eqs. (3.13) and (3.14) lead to the same results [i.e.,
Eq. (4.8)], if we use the vector potential as pivotal variable
(as suggested, for instance, in [1]) we get, formally, a
different correlator. However, the expressions of Eqs. (4.6)
and (4.9) are equivalent and only differ in the contribution
of the phase space. Furthermore these differences are
immaterial when estimating the degree of second-order
coherence in the large-scale limit (see Sec. V).

B. Continuity of the effective horizon

For a reliable implementation of the large-scale limit of
the degrees of quantum coherence, a continuous evolution
of the extrinsic curvature, of the susceptibility and of the
effective horizon is mandatory. For this purpose we shall
consider the following expressions for the scale factors
across the inflationary transition5:

ainfðτÞ ¼
�
−
τ

τi

�
−γ
; τ < −τi;

aradðτÞ ¼
γτ þ ðγ þ 1Þτi

τi
; τ ≥ −τi; ð4:10Þ

where γ ¼ 1 in the case of an exact de Sitter phase.
During a quasi-de Sitter phase, the connection between
the conformal time coordinate and the Hubble rate is given
by H ¼ aH ¼ −1=½ð1 − ϵÞτ� (assuming constant slow-roll
parameters). According to Eq. (4.10) the scale factors and
their first time derivatives are continuous, i.e., aradð−τiÞ ¼
aið−τiÞ and a0radð−τiÞ ¼ a0infð−τiÞ; therefore the extrinsic
curvature H=a is also continuous since Hradð−τiÞ ¼
Hinfð−τiÞ.
The continuous evolution of χ can then be parametrized

in two complementary ways. In the first case, the suscep-
tibility approaches exponentially the constant asymptote
and the evolution of χðτÞ across the boundary τ ¼ −τi will
then be parametrized as6:

χinfðτÞ ¼ χi

�
−
τ

τi

�
1=2−ν

; τ < −τi; ð4:11Þ

χradðτÞ ¼ χi

��
1−

1− 2ν

2β

�
þ 1− 2ν

2β
e−βðτ=τiþ1Þ

�
; τ ≥−τi:

ð4:12Þ

From the explicit expressions of Eqs. (4.11) and (4.12) we
have that χið−τiÞ ¼ χrð−τiÞ and, similarly, χ0ið−τiÞ ¼
χ0rð−τiÞ implying that both the functions and their first
derivatives are continuous. The continuity of the suscep-
tibility and of its first derivative implies the continuity of
F ¼ χ0=χ. In the cosmic time parametrization, we shall
have that F ¼ aF where F ¼ _χ=χ and the overdot denotes
a derivation with respect to the cosmic time coordinate t. In
Eq. (4.12), the rate with which the constant value χ1 is
approached is controlled by β. The interesting physical
limit will be the one where β ≫ 1: in this limit the transition
is continuous but it occurs suddenly.
The same sudden limit can be studied using a power-law

parametrization for the transition regime, like, for instance:

χinfðτÞ ¼ χi

�
−
τ

τi

�
1=2−ν

; τ < −τi; ð4:13Þ

χradðτÞ¼ χi

�
2ðαþνÞ−1

2α
þ1−2ν

2α

�
τ

τi
þ1

�
−α
�
; τ≥−τi:

ð4:14Þ

In Eq. (4.14), the parameter α ≥ 1 plays the same role
of β in Eqs. (4.11) and (4.12): it controls the rate of the
transition in the intermediate regime and as α increases
the transition gets more sudden. The expressions of
Eqs. (4.13) and (4.14) are continuous and differentiable,
as it can b explicitly checked, i.e., χinfð−τiÞ ¼ χradð−τiÞ and
χ0infð−τiÞ ¼ χ0radð−τiÞ. In spite of the different analytical
details, the parametrizations of Eqs. (4.11)–(4.14) lead to
the same results in the sudden limit. In numerical studies of
the problem (see, e.g., third paper of [37]), the continuous
evolution of the susceptibility and of the effective horizon
have been always enforced even if there are some who
confuse the sudden approximation (i.e., the regime β ≫ 1
or α ≫ 1) with a discontinuity of the effective horizon.

C. Evolution of the squeezing parameters

According to Eqs. (2.22) and (2.27)–(2.29) the evolution
rp, γp and αp follows directly from up and vp: Eqs. (2.27)–
(2.29) have been derived from Eq. (2.16) by means of
Eq. (2.22). However, instead of solving Eqs. (2.27)–(2.29)
it is more practical to derive upðτÞ and vpðτÞ, rephrase the
result in terms of the squeezing parameters and take, when
needed, the large-scale limit. In this procedure, Eq. (2.16)
and Eqs. (2.27)–(2.29) can be used interchangeably in
order to simply some of the asymptotic expressions.
When τ < −τi, Eq. (4.11) [or Eq. (4.13)] can be inserted

into Eq. (2.16) and the corresponding solutions will be
given by7:

5Note that the γ appearing in Eq. (4.10) has nothing to do with
the γp appearing in Eqs. (2.22)–(2.28). This remark avoids
potential confusions.

6If the solution (4.11) is simply matched to a constant value of
χ for τ > −τi the first derivative will be discontinuous while the
second derivative of χ at the transition will be singular. All the
parametrizations must then contain a transition regime [as in
Eqs. (4.11)–(4.14)] which can be studied, though, in the sudden
limit (i.e., respectively, for β ≫ 1 and α ≫ 1).

7In Eq. (4.15), we used the following notation UkðτÞ ¼
uðinfÞk ðτÞ and VkðτÞ ¼ vðinfÞk ðτÞ to avoid potential confusions with
other superscripts.
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UkðτÞ ¼
N
2

ffiffiffiffiffiffiffiffi
−kτ

p
½Hð1Þ

ν ð−kτÞ − iHð1Þ
ν−1ð−kτÞ�;

VkðτÞ ¼
N �

2

ffiffiffiffiffiffiffiffi
−kτ

p
½iHð2Þ

ν−1ð−kτÞ −Hð2Þ
ν ð−kτÞ�; ð4:15Þ

where N ¼ eiπðνþ1=2Þ=2 ffiffiffiffiffiffiffiffi
π=2

p
; Hð1Þ

ν ðzÞ ¼ Hð2Þ
ν ðzÞ are the

Hankel functions [49]. The solution (4.15) is correctly
normalized and, as it can be explicitly checked
jUkðτÞj2 − jVkðτÞj2 ¼ 1.
The same strategy leading to Eq. (4.15) could also be

employed in the regime τ > −τi; the idea would be to insert
Eqs. (4.12) [or (4.14)] inside Eq. (2.16) and then deduce the
corresponding solutions. However, if χ scales with ðτ=τiÞ
(i.e., χ ¼ χðzÞ with z ¼ τ=τi) the equation for ðuk þ v�kÞ
obeys, in spite of the functional form of χðzÞ

d2

dz2
ðuk þ v�kÞ þ

�
k2τ2i −

1

χ

d2χ
dz2

�
ðuk þ v�kÞ ¼ 0; ð4:16Þ

where z ¼ τ=τi is the scaling variable. Provided the
transition occurs through a scaling period where

χ ¼ χðτ=τiÞ, the first term inside the square bracket of
Eq. (4.16) is always negligible: kτi is at most of order 1
since the largest amplified wave number is Oð1=τiÞ. In
similar terms, we also have

d2

dz2
ðuk−v�kÞþ

�
k2τ2i − χ

d2

dz2

�
1

χ

��
ðuk−v�kÞ ¼ 0: ð4:17Þ

The solution of Eqs. (4.16) and (4.17) to lowest order in
k2τ2i can be written as8:

ðuk þ v�kÞ ¼ cþðkÞχðτÞ þ c−ðkÞχ
Z

z dz1
χ2ðz1Þ

; ð4:18Þ

ðuk − v�kÞ ¼
~cþðkÞ
χðτÞ þ ~c−ðkÞ

χðτÞ
Z

z
dz1χ2ðz1Þ: ð4:19Þ

For an analytically tractable solution it is practical to use
an explicit profile such as the one of Eq. (4.12). The full
solution for τ > −τi is therefore given by9:

ukðxi; τÞ ¼
N

ffiffiffiffi
xi

p
2C2β

e−βðτ=τiþ1Þ

Dþ Ceβðτ=τiþ1Þ fC2½Dþ Ceβðτ=τiþ1Þ�2βHð1Þ
ν ðxiÞ

þHð1Þ
ν−1ðxiÞ½D2ðD − 1Þxi þ CDð2D − 1Þe2βðτ=τiþ1ÞðDxi − iβÞ

− ½Dþ Ceβðτ=τiþ1Þ�2xi lnðDþ Ceβðτ=τiþ1ÞÞ�g; ð4:20Þ

vkðxi; τÞ ¼
N � ffiffiffiffi

xi
p

2C2β

e−βðτ=τiþ1Þ

Dþ Ceβðτ=τiþ1Þ f−C2½Dþ Ceβðτ=τiþ1Þ�2βHð2Þ
ν ðxiÞþ

−Hð2Þ
ν−1ðxiÞ½D2ðD − 1Þxi þ CDð2D − 1Þe2βðτ=τiþ1ÞðDxi − iβÞ

− ½Dþ Ceβðτ=τiþ1Þ�2xi ln ðDþ Ceβðτ=τiþ1ÞÞ�g; ð4:21Þ

where, for simplicity, we defined C ¼ 1 − ð1 − 2νÞ=ð2βÞ
and D ¼ ð1 − 2νÞ=ð2βÞ; for τ ≥ −τi the solutions u

ðradÞ
k ðτÞ

and vðradÞk ðτÞ have been denoted, respectively, by ukðτÞ and
vkðτÞ. It follows from Eqs. (4.20) and (4.21) that
jukðxi; τÞj2 − jvkðxi; τÞj2 ¼ 1. Note that the obtained sol-
ution, as required, is continuous and differentiable every-
where and, in particular, at the transition point τ ¼ −τi
(recall, for this purpose, that CþD ¼ 1).

D. Crossing of the effective horizon

The condition defining the time when a given mode
reenters the effective horizon is obtained by requiring
χ00rad=χrad ¼ k2; the latter condition implies:

τre
τi

þ 1 ¼ 1

β
ln

�
Dðβ2 − x2i Þ

Cx2i

�
; ð4:22Þ

where Eq. (4.12) has been explicitly used. Equation (4.22)
defines the crossing of the effective horizon as a function of
xi ¼ kτi. Since kτi ≤ 1 (kτi ≪ 1 for the typical scale of the
gravitational collapse) we will have that

τre
τi

¼ −
2

β
ln

�
k

aiHi

�
−
1

β
ln

				 CD
				 − x2i

β3
þOðx4i Þ; ð4:23Þ

where kτi ¼ k=ðaiHiÞ. To get an idea of the accuracy of
this expansion we can compute k=ðaiHiÞ in terms of the
fiducial parameters of the concordance scenario:

8Equations (4.16) and (4.17) hold under the condition kτi ≤ 1
which is verified for all the amplified modes of the spectrum; this
condition is less stringent than the usual requirement that the
modes are larger than the effective horizon (i.e., kτ < 1).

9While this solution holds in the case of the profile (4.11)–
(4.12) a similar result can be obtained in the case of Eqs. (4.13)
and (4.14) but, for the sake of conciseness, the details will be
skipped.
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k
aiHi

¼ 3.71 × 10−24
�

k
Mpc−1

��
ϵ

0.01

�
−1=4

×

�
AR

2.41 × 10−9

�
−1=4

; ð4:24Þ

where AR is the amplitude of the power spectrum of scalar
fluctuations at the pivot scale kp ¼ 0.002 Mpc−1.
To compute the degrees of quantum coherence we must

fix a reference time and we shall take this reference time to
coincide with τre. Alternatively one can keep the time-scale
generic and expand the relevant correlation functions in the
limit xi ≪ 1. Inserting then Eq. (4.22) into Eqs. (4.20) and
(4.21), we obtain10

ukðxi;ν;βÞ¼
N

2Cβ2ðβ2−x2i Þ
ffiffiffiffi
xi

p �
C2β4Hð1Þ

ν ðxiÞ

−Hð1Þ
ν−1ðxiÞ

�
iðx4i − ix3i β−2x2i β

2þ iDxiβ3þβ4Þ

þxiβ3 log

�
Dβ2

x2i

���
; ð4:25Þ

vkðxi;ν;βÞ¼
N �

2Cβ2ðβ2−x2i Þ
ffiffiffiffi
xi

p �
−C2β4Hð2Þ

ν ðxiÞ

þHð2Þ
ν−1ðxiÞ

�
iðx4i − ix3i β−2x2i β

2þ iDxiβ3þβ4Þ

þxiβ3 log

�
Dβ2

x2i

���
: ð4:26Þ

These equations are still exact but they can be expanded
around the effective horizon. From Eqs. (4.25) and (4.26)
the squeezing parameters can be obtained, as we shall now
show. Since, by definition n̄kðxi; ν; βÞ ¼ jvkðxi; ν; βÞj2 the
average multiplicity can be computed by expanding, at
once, the whole expression:

jvkðxi; ν; βÞj2 ¼
�
xi
2

�
−2ν

�
C2Γ2ðνÞ

8π
xi þOðx3i Þ

�

þ
�
−
1

2
þ 1

4 tan νπ

�
−

1

C2ðν − 1Þ −
C2

ν

−
2D
β

þ 2

β
ln

�
Dβ2

x2i

��
xi þOðx2i Þ

�

þ
�
xi
2

�
2ν
�

π

2C2Γ2ðνÞxisin2νπ
þOðxiÞ

�

ð4:27Þ

where we extensively used that CþD ¼ 1 (and hence that
C2 −D2 ¼ C −D). The same result of Eq. (4.27) can be

obtained if we expand around the effective horizon but keep
the Hankel functions in their exact form. The result of this
procedure is

n̄kðxi; ν; βÞ ¼
πxi
8

�
C2

4
jHð1Þ

ν ðxiÞj2 þ
1

C2
jHð1Þ

ν−1ðxiÞj2 − 1

�

þ πx2i
8β

½Hð1Þ
ν ðxiÞHð2Þ

ν−1ðxiÞ þHð1Þ
ν−1ðxiÞHð2Þ

ν ðxiÞ�

× ðDþ 2 ln xi − lnDβ2Þ
þOðx3i Þ: ð4:28Þ

Recalling that e−iφkðτÞjukðτÞj ¼ ukðτÞ we can express
φkðτreÞ in a closed form:

e−iφkðτreÞ ¼ eiðνþ1=2Þπ=2
�
−i −

xi
2C2ðν − 1Þβ2 þOðx2i Þ

�

ð4:29Þ

Equation (4.29) can be obtained by writing ukðxi; ν; βÞ as

ukðxi; ν; βÞ ¼ eiðνþ1=2Þπ=2½Q1ðxi; ν; βÞ þ iP1ðxi; ν; βÞ�;
ð4:30Þ

where Qðxi; ν; βÞ and Pðxi; ν; βÞ are both real and given by

Q1ðxi; ν; βÞ ¼
ffiffiffiffiffiffiffi
πxi

p
23=2Cβ2ðβ2 − x2i Þ
× ½C2β4JνðxiÞ þ ðx2i − β2Þ2Yν−1ðxiÞ
− xiβJν−1ðxiÞðx2i −Dβ2Þ
þ β2 lnDβ2 − 2β2 ln xi�

P1ðxi; ν; βÞ ¼ −
ffiffiffiffiffiffiffi
πxi

p
23=2Cβ2ðβ2 − x2i Þ

× ½ðx2i − β2Þ2Jν−1ðxiÞ − C2β2YνðxiÞ
þ xiβYν−1ðxiÞðx2i −Dβ2

þ β2 lnDβ2 − 2β2 ln xiÞ�: ð4:31Þ

Exactly with the same strategy we can compute γk which is
given by

e−i½φkðτreÞ−γkðτreÞ� ¼ vkðxi; ν; βÞ
jvkðxi; ν; βÞj

¼ e−iðνþ1=2Þπ=2
�
−i −

xi
2C2ðν − 1Þ

�
: ð4:32Þ

By combining Eqs. (4.29) and (4.32) we also have that

e−iαkðτreÞ ¼ −1þ ixi
2C2ðν − 1Þ

�
1þ 1

β2

�
þOðx2i Þ: ð4:33Þ10It canbe explicitlyverified that jukðxi;ν;βÞj2−jvkðxi;ν;βÞj2¼1,

as required by the commutation relations.
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With the results obtained so far we shall be able to discuss
in detail the degrees of first-order and second-order
coherence.

V. DEGREES OF COHERENCE IN THE
LARGE-SCALE LIMIT

The degrees of first-order and second-order coherence
will now be computed. We shall then contrast the results
with the benchmark values obtained in the context of the
single-mode approximation.

A. First-order coherence

From the discussion of Sec. IV, the degrees of coherence
can be computed at any time τi < τ ≤ τre but the most
relevant reference time is τ ¼ OðτreÞ; in this case, vkðτÞ
and ukðτÞ are given by Eqs. (4.20) and (4.21). From
Eqs. (4.2) and (4.3), after angular integration, the

first-order correlation function at separate space-time
points are

Bð1Þðx1; x2Þ ¼ Eð1Þðx1; x2Þ

¼ C2

64π2

Z
dpp3 ffiffiffiffiffiffiffi

pτ2
p

Hð2Þ
ν ðpτ2Þ

×
ffiffiffiffiffiffiffi
pτ1

p
Hð1Þ

ν ðpτ1Þj0ðprÞ; ð5:1Þ

Gð1Þðx1; x2Þ ¼
C2

64π2

Z
pdp

ffiffiffiffiffiffiffi
pτ2

p
Hð2Þ

ν ðpτ2Þ

×
ffiffiffiffiffiffiffi
pτ1

p
Hð1Þ

ν ðpτ1Þj0ðprÞ; ð5:2Þ

where j0ðk1rÞ denotes the spherical Bessel function of
zeroth order [49]. From Eqs. (5.1) and (5.2), the normalized
degree of first-order coherence defined in Eqs. (4.4) and
(4.5) becomes

gð1ÞB ðx⃗1; x⃗2; τ1; τ2Þ ¼ gð1ÞE ðx⃗1; x⃗2; τ1; τ2Þ

¼
R
dp1p3

1v
�
p1
ðτ1Þvp1

ðτ2Þj0ðp1rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dp1p3

1v
�
p1
ðτ1Þvp1

ðτ2Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

dp2p3
2v

�
p2
ðτ2Þvp2

ðτ2Þ
q ; ð5:3Þ

gð1ÞG ðx⃗1; x⃗2; τ1; τ2Þ ¼
R
dp1p1v�p1

ðτ1Þvp1
ðτ2Þj0ðp1rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

dp1p1v�p1
ðτ1Þvp1

ðτ2Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

dp2p2v�p2
ðτ2Þvp2

ðτ2Þ
q : ð5:4Þ

Using Eqs. (5.1) and (5.2) into Eq. (5.4) the numerators and
the denominators of Eq. (5.3) depend on τ1 and τ2 but, as a
consequence of Eqs. (4.20) and (4.21), this dependence
simplifies when computing the degrees of quantum coher-
ence in the large-scale limit. Therefore the final form of
Eqs. (5.3) and (5.4) can be written as

gð1ÞB ðrÞ ¼ gð1ÞE ðrÞ ¼
R
dpp5−2νj0ðprÞR

dpp5−2ν → 1; ð5:5Þ

gð1ÞG ðrÞ ¼
R
dpp3−2νj0ðprÞR

dpp3−2ν → 1; ð5:6Þ

where the integrals are evaluated over all the modes larger
than the effective Hubble radius and the second relation
clearly holds in the limit k1r ≪ 1 (corresponding to large
angular separations). Equations (5.5) and (5.6) remain
clearly valid in the zero time-delay limit (i.e., τ1 → τ2).

B. Second-order coherence

According to Eq. (3.15) the space-time points can be
identified two by two and, in this case, Eqs. (4.6) and (4.9)
define the intensity correlation which is typical of the HBT

effect. More specifically, when x3 → x1 and x4 → x2
Eqs. (4.6) and (4.9) become:

Bð2Þðx1;x2Þ¼
Z

d3p1

ð2πÞ3p1

Z
d3p2

ð2πÞ3p2

�
jvp1

ðτ1Þj2jvp2
ðτ2Þj2

þ1

4

�
1þðp⃗1 ·p⃗2Þ2

p2
1p

2
2

�
½v�p1

ðτ1Þv�p2
ðτ2Þ

×vp2
ðτ1Þvp1

ðτ2Þe−iðp⃗1−p⃗2Þ·r⃗

þv�p1
ðτ1Þu�p1

ðτ2Þup2
ðτ1Þvp2

ðτ2Þe−iðp⃗1þp⃗2Þ·r⃗ �
�
:

ð5:7Þ

The normalized degrees of second-order coherence are

gð2ÞE ðx1; x2Þ ¼
Eð2Þðx1; x2Þ

Eð1Þðx1; x1ÞEð1Þðx2; x2Þ
;

gð2ÞB ðx1; x2Þ ¼
Bð2Þðx1; x2Þ

Bð1Þðx1; x1ÞBð1Þðx2; x2Þ
; ð5:8Þ

gð2ÞG ðx1; x2Þ ¼
Gð2Þðx1; x2Þ

Gð1Þðx1; x1ÞGð1Þðx2; x2Þ
: ð5:9Þ
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Equations (5.8) and (5.9) are nothing but the correlations of the intensity. Up to terms that are small in the large-scale limit,
Bð2Þðx1; x2Þ and Eð2Þðx1; x2Þ can be expressed as

Bð2Þðx1; x2Þ ¼ Eð2Þðx1; x2Þ

¼
Z

d3p1

ð2πÞ3 p1n̄p1
ðτ1Þ

Z
d3p2

ð2πÞ3 p2n̄p2
ðτ2Þ

×

�
1þ 1

4
½1þ ðp̂1 · p̂2Þ2�½1þ e−iðp⃗1−p⃗2Þ·r⃗ þ e−iðp⃗1þp⃗2Þ·r⃗ þOðp1p2τ1τ2Þ�

�
: ð5:10Þ

Equation (5.10) follows from the observation that

u�p1
ðτ1Þv�p1

ðτ1Þup2
ðτ2Þvp2

ðτ2Þ
n̄p1

ðτ1Þn̄p2
ðτ2Þ

¼1þOðp1p2τ1τ2Þ: ð5:11Þ

The angular integrals appearing in Eq. (5.10) can be performed by expressing the momenta in polar coordinates and the
result in terms of the degree of second-order coherence becomes

gð2ÞB ðr; τ1; τ2Þ ¼ gð2ÞE ðr; τ1; τ2Þ

¼
R
p3
1dp1n̄p1

ðτ1Þ
R
p3
2dp2n̄p2

ðτ2ÞJðr; p1; p2ÞR
p3
1dp1n̄p1

ðτ1Þ
R
p3
2dp2n̄p2

ðτ2Þ
ð5:12Þ

where Jðr; p1; p2Þ is defined as

Jðr; p1; p2Þ ¼ 1þ cosp1rð3p2r cosp2rþ ðp2
2r

2 − 3Þ sinp2rÞ
p2
1p

3
2r

5

þ sinp1r½p2rðp2
1r

2 − 3Þ cosp2rþ ð3 − p2
2r

2 þ p2
1r

2ðp2
2r

2 − 1ÞÞ sinp2r�
p3
1p

3
2r

6

¼ 5

3
−
r2ðp2

1 þ p2
2Þ

9
þ ð5p4

1 þ 18p2
1p

2
2 þ 5p4

2Þr4
900

þOðp5r5Þ: ð5:13Þ

The last line of Eq. (5.13) corresponds to the large-scale limit obtained by expanding the exact expression for p1r < 1 and
p2r < 1; note that p in the correction denotes a generic momentum. If applied to Gð2Þðx1; x2Þ the same analysis leads to the
following expression for the second-order coherence:

gð2ÞG ðr; τ1; τ2Þ ¼
R
p1dp1n̄p1

ðτ1Þ
R
p2dp2n̄p2

ðτ2ÞJðr; p1; p2ÞR
p1dp1n̄p1

ðτ1Þ
R
p2dp2n̄p2

ðτ2Þ
: ð5:14Þ

The large-scale limit of the degree of second-order coher-
ence can then be written as

lim
τ1→τ2

gð2ÞB ðr; τ1; τ2Þ ¼ lim
τ1→τ2

gð2ÞE ðr; τ1; τ2Þ

¼ lim
τ1→τ2

gð2ÞG ðr; τ1; τ2Þ →
5

3
: ð5:15Þ

The result of Eq. (5.15) holds in the zero time-delay limit
τ1 − τ2 ¼ 0.

C. Physical interpretation

Equations (5.5)–(5.6) and (5.15) differ from the ones
obtainable in the conventional single-mode approximation

which is often mentioned in quantum optical applications.
In short, we could say that while the degree of second-
order coherence should go to 3 for a squeezed state, we
got 5=3 [see Eq. (5.15)]. The rationale for the disagreement,
as we shall see hereunder, has to do with the polarizations.
More specifically, according to the results of

Eqs. (5.5)–(5.6) and (5.15) in the zero time-delay limit
(i.e., ðτ1−τ2Þ→0) and for large-scales, the degrees quan-

tum states are first-order coherent (i.e., gð1ÞB ð0Þ ¼ gð1ÞE ð0Þ ¼
gð1ÞG ð0Þ ¼ 1) but not second-order coherent (i.e., gð2ÞB ð0Þ ¼
gð2ÞE ð0Þ ¼ gð2ÞG ð0Þ ¼ 5=3). To facilitate the comparison with

the forthcoming considerations we denoted by gð1ÞX ð0Þ and
gð2ÞX ð0Þ (with X ¼ B; E;G) the first- and second-order
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degrees of quantum coherence in the zero time-delay
limit.
In quantum optics, the numerical values of the degrees

of first- and second-order coherence are customarily
classified by considering a single mode of the field and
a single polarization. This approximation is often referred
to as single-mode quantum optics (see, e.g., chapter 5 of
Ref. [50] and also [1]) or also single-mode approximation
The rationale for this approximation is that many experi-
ments use plane parallel light beams whose transverse
intensity profiles are not important for the measured
quantities. As a consequence it is often sufficient in
interpreting the data to consider the light beams as
exciting a single mode of the field. In actual interferom-
etry, the electric field is first split into two components
through the beam splitter, then it is time-delayed and
finally recombined at the correlator. The limit of zero time
delay between the signals is commonly used, in both
cases, to characterize the statistical properties of the
source. For a single mode of the field (i.e., in the
single-mode approximation) the degrees of first- and
second-order coherence are defined as

ḡð1Þðτ1; τ2Þ ¼
hâ†ðτ1Þâðτ2Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hâ†ðτ1Þâðτ1Þi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hâ†ðτ2Þâðτ2Þi
p ; ð5:16Þ

ḡð2Þðτ1; τ2Þ ¼
hâ†ðτ1Þâ†ðτ2Þâðτ2Þâðτ1Þi
hâðτ1Þâðτ1Þiha†ðτ2Þaðτ2Þi

; ð5:17Þ

where the overline at the left hand side distinguishes
Eqs. (5.16) and (5.17) from Eqs. (5.8) and (5.9) holding in
the general case. Equations (5.16) and (5.17) define,
respectively, the degrees of first and second-order tem-
poral coherence: in the zero time-delay limit τ1 − τ2 → 0
and, in this case, the degree of second-order coherence
will be denoted by ḡð2Þ. For a single-mode coherent state
(i.e., âjαi ¼ αjαi), Eqs. (5.16) and (5.17) imply

ḡð1Þ ¼ ḡð2Þ ¼ 1; ð5:18Þ

so that a coherent state is both first-order and second-order
coherent in the single mode approximation. For a chaotic
state in the single approximation the statistical weights of
the density matrix are provided by the Bose-Einstein

distribution [1,50] and the results for the degrees of
coherence imply:

ḡð1Þ ¼ 1; ḡð2Þ ¼ 2; ð5:19Þ

so that the degree of second-order coherence is twice
the result of a coherent state. In the case of a Fock
state, ḡð2Þ ¼ ð1 − 1=nÞ < 1, showing that Fock states
lead always to sub-Poissonian behaviour and they are
anti-bunched [1,50]. Let us now come to the most
interesting case for the present discussion, namely the
case of a squeezed state [26], corresponding11 to
â ¼ cosh rb̂ − sinh rb̂†. Taking the limit of zero time-
delay and inserting these expressions in Eq. (5.17) we
have that:

ḡð1Þ ¼ 1; ḡð2Þ ¼ 3þ 1

n̄
; n̄ ¼ sinh2r: ð5:20Þ

Equation (5.20) also implies that in the limit n̄ ≫ 1 the
degree of second-order coherence goes to 3.
In the single-mode approximation, chaotic light is an

example of bunched quantum state (i.e., ḡð2Þ > 1 implying
more degree of second-order coherence than in the case of a
coherent state). Fock states are instead antibunched (i.e.,
ḡð2Þ < 1) implying a degree of second-order coherence
smaller than in the case of a coherent state. Finally
squeezed light is bunched and also superchaotic, meaning
that the degree of second-order coherence is larger than in
the case of thermal state.
Based on the single-mode approximation, we have that

the degree of second-order coherence of our problem
should have implied that ḡð2ÞX → 3, for X ¼ B; E;G. We

instead obtained ḡð2ÞX → 5=3 (and ḡð2ÞX → 1). The reason
for this apparent disagreement stems from the contribu-
tion of the polarizations to the degree of second-order
coherence.
To prove this statement let us consider the case of a

scalar field. For this analysis we shall adapt the results of
Ref. [27] valid in the case of the scalar modes of the
geometry. Recalling the results of Eqs. (3.2) and (4.7) the
correlation function of Eq. (B7) (when x1 ¼ x3 and
x2 ¼ x4) describes the interference of two beams with
intensities Îðx⃗1; τ1Þ and Îðx⃗2; τ2Þ, i.e.,

Gð2Þðx1; x2Þ ¼ hÎðx⃗1; τ1ÞÎðx⃗2; τ2Þi

¼ 1

4

Z
d3k1

k1ð2πÞ3
Z

d3k2
k2ð2πÞ3

fjvk1ðτ1Þj2jvk2ðτ2Þj2½1þ e−iðk⃗1−k⃗2Þ·r⃗�

þ v�k1ðτ1Þu�k1ðτ2Þuk2ðτ1Þvk2ðτ2Þe−iðk⃗1þk⃗2Þ·r⃗g; ð5:21Þ

11For simplicity, the phases have been fixed to zero since they do not affect the degree of second-order coherence in the single-mode
approximation.
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where, as usual, r⃗ ¼ x⃗1 − x⃗2. If we perform the angular integrations, the degree of second-order coherence becomes, in this
case,

gð2Þðr⃗; τ1; τ2Þ ¼
hÎðx⃗1; τ1ÞÎðx⃗2; τ2Þi
hÎðx⃗1; τ1ÞihÎðx⃗2; τ2Þi

¼ 1þ
R
k1dk1jvk1ðτ1Þj2j0ðk1rÞ

R
k2dk2jvk2ðτ2Þj2j0ðk2rÞR

k1dk1jvk1ðτ1Þj2
R
k2dk2jvk2ðτ2Þj2

þ
R
k1dk1u�k1ðτ2Þv�k1ðτ1Þj0ðk1rÞ

R
k2dk2uk2ðτ1Þvk2ðτ2Þj0ðk2rÞR

k1dk1jvk1ðτ1Þj2
R
k2dk2jvk2ðτ2Þj2

: ð5:22Þ

Using now of the same observation of Eq. (5.11) we have that the degree of second-order coherence in the scalar case
becomes

gð2Þðr⃗; τ1; τ2Þ ¼ 1þ 2

R
k1dk1j0ðk1rÞn̄k1ðτ1Þ

R
k2dk2j0ðk2rÞn̄k2ðτ2ÞR

k1dk1n̄k1ðτ1Þ
R
k2dk2n̄k2ðτ2Þ

þ
R
k1dk1j0ðk1rÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄k1ðτ1Þ

p R
k2dk2j0ðk2rÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄k2ðτ2Þ

p
R
k1dk1n̄k1ðτ1Þ

R
k2dk2n̄k2ðτ2Þ

: ð5:23Þ

The large-scale limit the spherical Bessel functions go to 1
and therefore Eq. (5.23) becomes

gð2Þðr; τ1; τ2Þ → 3; lim
τ1→τ2

gð2Þðr; τ1; τ2Þ ¼ gð2Þðr; τÞ:

ð5:24Þ

The result of Eq. (5.15) holds also in the zero time-delay
limit τ1 − τ2 ¼ 0. This analysis demonstrates that the
degree of second-order coherence for the squeezed relic
photons does not go to 3 in the large-scale limit but rather
to 5=3.
It is interesting to stress, as we close, that the single-

mode approximation is perfectly sound when the fluctua-
tions beyond the horizon are described by a scalar field as it
happens for the curvature perturbations [27]. In this case,
we could even go to higher order and compute the degrees
of third- or fourth-order coherence [see Eqs. (3.11) and
(3.12)] and confirm the same result. While the lengthy
details will be omitted we can say that ḡð3Þ ¼ 11þOð1=n̄Þ
and ḡð4Þ ¼ 93þOð1=n̄Þ: this result holds also in the scalar
case when all the modes of the field are taken into account.
In the case of the squeezed relic photons, however, the role
of the polarizations is essential, as the comparison of
Eqs. (4.6), (4.7), and (4.8) clearly shows.

VI. CONCLUDING REMARKS

Among the six fiducial parameters characterizing the
concordance scenario with massless neutrinos, a single
number (i.e., the scalar spectral index) accounts for the
presence of large-scale inhomogeneities. A further source
of inhomogeneity is represented by the tensor modes of the
geometry even if their amplitude is, at least, one order of

magnitude smaller than the one of the scalar modes.
Furthermore since we do observe magnetic fields over
large distance scales we may even admit the presence of
large-scale gauge inhomogeneities. In the standard lore
provided by conventional inflationary models, all the
potential sources of large-scale perturbations could stem
from the zero-point fluctuations of quantum fields of
different spins. At the moment the only argument in favour
for this appealing possibility is merely theoretical: since a
long stage of inflation is supposed to iron efficiently all
preexisting inhomogeneities, it is logically plausible that
large-scale fluctuations originated quantum mechanically.
Because of the various assumptions behind this suggestion,
it would be highly desirable to a have a more operational
way of deciding about the statistical properties of large-
scale fluctuations.
As we showed a possible answer to these questions

involves the application of the tenets of Glauber theory,
originally developed to address the coherence properties of
optical fields. This analysis can be applied to the large-scale
curvature perturbations but also to the large-scale fluctua-
tions of the gauge fields. Since the pioneering attempts of
Hanbury Brown and Twiss, it has been realized that the
study of first order interference between the amplitudes
cannot be used to distinguish the nature of different
quantum states of the radiation field. Young interferometry
(indirectly based on the concept of power spectrum) is not
able, by itself, to provide information on the statistical
properties of the quantum correlations since various states
with diverse physical properties (such as laser light and
chaotic light) may lead to comparable degrees of first-order
coherence. It is only by correlating intensities that the
possible quantum origin of large-scale inhomogeneities can
be independently assessed. In quantum optics, the Glauber
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approach is often used in an exclusive manner by reducing
the statistical properties of light to the analysis of a single
(polarized) mode of the field: this is commonly referred to
as the single-mode approximation. When dealing with
large-scale fluctuations of different spins in cosmology
the approach can only be inclusive since the correlation
functions are typically unpolarized and contain all the
modes of the field.
While the overall attempt of this paper is rather prag-

matic, the obtained results are potentially inspiring. We
showed that the statistical properties of the quantum states
can be disambiguated by examining the higher degrees of
coherence. Specific observational strategies along this
direction should then be tailored. The new generations
of detectors and the Hanbury Brown–Twiss interferometry
in the THz region could be a reasonable hope in this
respect. If new generations of astrophysical detectors will
be able to resolve single photons the analysis of second-
order interference effects may become feasible, at least in
the case of the cosmic microwave background.
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APPENDIX A: BASIC CONVENTIONS
AND NOTATIONS

In time-dependent conformally flat backgrounds and in
the Coulomb gauge (i.e., Y0 ¼ 0 and ∇⃗ · Y⃗ ¼ 0), the action
(2.1) can be written as

S ¼ 1

2

Z
dτd3x

�
A⃗02 þ

�
χ0E
χE

�
2

A⃗2 − 2
χ0E
χE

A⃗ · A⃗0

−
χ2B
χ2E

∂iA⃗ · ∂iA⃗
�
; ðA1Þ

where12 A⃗ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛE=ð4πÞ

p
Y⃗; we have assumed that χE and

χB are only dependent on the conformal time coordinate τ.

In terms of the canonical momentum π⃗ conjugate to A⃗, the
canonical Hamiltonian is simply given by

HðτÞ ¼ 1

2

Z
d3x

�
π⃗2 þ 2

χ0E
χE

π⃗ · A⃗þ χ2B
χ2E

∂iA⃗ · ∂iA⃗
�
;

π⃗ ¼ A⃗0 −
χ0E
χE

A⃗: ðA2Þ

The discussion can be carried on in the case of different
susceptibilities and different gauge couplings (see, e.g.,

[32]); however we shall now focus on the case χE ¼ χB ¼ χ
so that Eq. (A2) becomes

HðτÞ ¼ 1

2

Z
d3x

�
π⃗2 þ 2

χ0

χ
π⃗ · A⃗þ ∂iA⃗ · ∂iA⃗

�
;

π⃗ ¼ A⃗0 −
χ0

χ
A⃗: ðA3Þ

The vector potential and the canonical momenta are
explicitly related to the canonical electric and magnetic

fields as B⃗ ¼ ∇⃗ × A⃗ and as E⃗ ¼ −π⃗. In Fourier space, the
corresponding field operators are:

Âiðx⃗; τÞ ¼
1ffiffiffiffi
V

p
X
p⃗;α

eðαÞi Âp⃗;αðτÞe−ip⃗·x⃗;

Âp⃗;α ¼
1ffiffiffiffiffiffi
2p

p ðâp⃗α þ â†−p⃗αÞ; ðA4Þ

π̂iðx⃗; τÞ ¼
1ffiffiffiffi
V

p
X
p⃗;α

eðαÞi π̂p⃗αðτÞe−ip⃗·x⃗;

π̂p⃗;α ¼ −i
ffiffiffiffi
p
2

r
ðâp⃗α − â†−p⃗αÞ; ðA5Þ

where V is a fiducial (normalization) volume. In the
discussion, it is practical to switch from discrete to con-
tinuousmodeswhere the creation and annihilation operators
obey ½âk⃗α;â†p⃗β�¼δαβδ

ð3Þðk⃗−p⃗Þ and the sums are replaced by

integrals according to
P

k⃗→V
R
d3k=ð2πÞ3. This observa-

tion should be borne in mind when discussing the explicit
results; in terms of Eqs. (A4) and (A5) the Hamiltonian of
Eq. (A3) becomes exactly the one reported in Eq. (2.9).

APPENDIX B: FOUR-POINT FUNCTIONS

We report here some of the explicit expressions involved
in the derivations of the four-point functions appearing in
Secs. IV and V. Let us recall that, according to the present
conventions:

Êð−Þ
i ðx⃗; τÞ ¼ −

iffiffiffiffi
V

p
X
p⃗;α

ffiffiffiffi
p
2

r
eðαÞi â†−p⃗;αe

−ip⃗·x⃗;

B̂ð−Þ
i ðx⃗; τÞ ¼ −

iffiffiffiffi
V

p
X
p⃗;α

ϵmnipme
ðαÞ
nffiffiffiffiffiffi

2p
p â†−p⃗;αe

−ip⃗·x⃗

ÊðþÞ
i ðx⃗; τÞ ¼ iffiffiffiffi

V
p

X
p⃗;α

ffiffiffiffi
p
2

r
eðαÞi âp⃗;αe−ip⃗·x⃗;

B̂ðþÞ
i ðx⃗; τÞ ¼ −

iffiffiffiffi
V

p
X
p⃗;α

ϵmnipme
ðαÞ
nffiffiffiffiffiffi

2p
p âp⃗;αe−ip⃗·x⃗:

The two-point functions define the degree of first-order
coherence, and they are

12The 1=
ffiffiffiffiffi
4π

p
is purely conventional and its presence comes

from the factor 16π included in the initial gauge action.
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Eð1Þðx1; x2Þ ¼ hÊð−Þ
i ðx1ÞÊðþÞ

i ðx2Þi

¼ 1

2V

X
p⃗1;α1

e−ip⃗1·x⃗1
X
p⃗2;α2

e−ip⃗2·x⃗2
ffiffiffiffiffiffiffiffiffiffi
p1p2

p
eðα1Þi ðp̂1Þeðα2Þi ðp̂2Þhâ†−p⃗1;α1

âp⃗2;α2i;

Bð1Þðx1; x2Þ ¼ hB̂ð−Þ
i ðx1ÞB̂ðþÞ

i ðx2Þi

¼ −
1

2V

X
p⃗1;α1

e−ip⃗1·x⃗1
X
p⃗2;α2

e−ip⃗2·x⃗2
1ffiffiffiffiffiffiffiffiffiffi
p1p2

p ϵm1n1ip1m1
eðα1Þn1 ðp̂1Þϵm2n2ip2m2

eðα2Þn2 ðp̂2Þhâ†−p⃗1;α1
âp⃗2;α2i: ðB1Þ

Using Eq. (3.5) in the case n ¼ 2, we have

Gð2Þðx1; x2; x3; x4Þ ¼ hAð−Þ
i ðx1ÞAð−Þ

j ðx2ÞAðþÞ
i ðx3ÞAðþÞ

j ðx4Þi

¼ 1

4V2

X
p⃗1;α1

e−ip⃗1·x⃗1ffiffiffiffiffi
p1

p
X
p⃗2;α2

e−ip⃗2·x⃗2ffiffiffiffiffi
p2

p
X
p⃗3;α3

e−ip⃗3·x⃗3ffiffiffiffiffi
p3

p
X
p⃗4;α4

e−ip⃗4·x⃗4ffiffiffiffiffi
p4

p eðα1Þi ðp̂1Þeðα2Þj ðp̂2Þeðα3Þi ðp̂3Þeðα4Þj ðp̂4Þ

× hâ†−p⃗1;α1
â†−p⃗2;α2

âp⃗3;α3 âp⃗4;α4i: ðB2Þ

The degrees of quantum coherence can also be defined in terms of the electric fields themselves, as originally suggested by
Glauber. Equation (3.13) in the case n ¼ 2 becomes

Eð2Þðx1; x2; x3; x4Þ ¼ hEð−Þ
i ðx1ÞEð−Þ

j ðx2ÞEðþÞ
i ðx3ÞEðþÞ

j ðx4Þi

¼ 1

4V2

X
p⃗1;α1

e−ip⃗1·x⃗1
X
p⃗2;α2

e−ip⃗2·x⃗2
X
p⃗3;α3

e−ip⃗3·x⃗3
X
p⃗4;α4

e−ip⃗4·x⃗4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3p4

p
eðα1Þi ðp̂1Þeðα2Þj ðp̂2Þeðα3Þi ðp̂3Þeðα4Þj ðp̂4Þ

× hâ†−p⃗1;α1
â†−p⃗2;α2

âp⃗3;α3 âp⃗4;α4i: ðB3Þ

Finally, if we write Eq. (3.14) in the case n ¼ 2 the result is

Bð2Þðx1; x2; x3; x4Þ ¼ hBð−Þ
i ðx1ÞBð−Þ

j ðx2ÞBðþÞ
i ðx3ÞBðþÞ

j ðx4Þi

¼ 1

4V2

X
p⃗1;α1

e−ip⃗1·x⃗1ffiffiffiffiffi
p1

p
X
p⃗2;α2

e−ip⃗2·x⃗2ffiffiffiffiffi
p2

p
X
p⃗3;α3

e−ip⃗3·x⃗3ffiffiffiffiffi
p3

p
X
p⃗4;α4

e−ip⃗4·x⃗4ffiffiffiffiffi
p4

p eðα1Þn1 ðp̂1Þϵm1n1ip1;m1
eðα2Þn2 ðp̂2Þϵm2n2jp2;m2

× eðα3Þn3 ðp̂3Þϵm3n3ip3;m3
eðα4Þn4 ðp̂4Þϵm4n4jp4;m4

hâ†−p⃗1;α1
â†−p⃗2;α2

âp⃗3;α3 âp⃗4;α4i: ðB4Þ

To compute the degree of second-order coherence we need the following expectation value:

hâ†−p⃗1;α1
â†−p⃗2;α2

âp⃗3;α3 âp⃗4;α4i ¼ v�p1
ðτ1Þv�p2

ðτ2Þvp3
ðτ3Þvp4

ðτ4Þ½δð3Þðp⃗1 þ p⃗4Þδð3Þðp⃗2 þ p⃗3Þδα1α4δα2α3
þ δð3Þðp⃗1 þ p⃗3Þδð3Þðp⃗2 þ p⃗4Þδα1α3δα2α4 �
þ v�p1

ðτ1Þu�p2
ðτ2Þup3

ðτ3Þvp4
ðτ4Þδð3Þðp⃗1 þ p⃗2Þδð3Þðp⃗3 þ p⃗4Þδα1α2δα3α4 : ðB5Þ

It is important to contrast the results obtained in the vector case with the scalar case.

Sð2Þðx1; x2; x3; x4Þ ¼ hqð−Þðx1Þqð−Þðx2ÞqðþÞðx3ÞqðþÞðx4Þi

¼ 1

4V2

X
p⃗1;α1

e−ip⃗1·x⃗1
X
p⃗2;α2

e−ip⃗2·x⃗2
X
p⃗3;α3

e−ip⃗3·x⃗3
X
p⃗4;α4

e−ip⃗4·x⃗4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3p4

p hd̂†−p⃗1
d̂†−p⃗2

d̂p⃗3
d̂p⃗4

i: ðB6Þ

where, in this case,
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hd̂†−p⃗1
d̂†−p⃗2

d̂p⃗3
d̂p⃗4

i ¼ v�p1
ðτ1Þv�p2

ðτ2Þvp3
ðτ3Þvp4

ðτ4Þ
× ½δð3Þðp⃗1 þ p⃗4Þδð3Þðp⃗2 þ p⃗3Þ
þ δð3Þðp⃗1 þ p⃗3Þδð3Þðp⃗2 þ p⃗4Þ�
þ v�p1

ðτ1Þu�p2
ðτ2Þup3

ðτ3Þvp4
ðτ4Þ

× δð3Þðp⃗1 þ p⃗2Þδð3Þðp⃗3 þ p⃗4Þ: ðB7Þ

As already mentioned after Eq. (A5) in the continuous
mode representation we have that the commutation rela-
tions are ½âk⃗α; â†p⃗β� ¼ δαβδ

ð3Þðk⃗ − p⃗Þ. Clearly in the discrete
mode representation the commutation relations will contain
the appropriate volume factors and the Dirac delta functions
will be replaced by Kroeneker deltas over the discrete
momenta. The two procedures are fully equivalent.

APPENDIX C: POWER SPECTRA

The power spectra when the relevant scales are larger
than the Hubble radius and before reentry are given by

PBðk; τÞ ¼
π

2
C2jHð1Þ

ν ðxiÞj2

þ π

2β
½Hð1Þ

ν ðxiÞHð2Þ
ν−1ðxiÞ þHð1Þ

ν−1ðxiÞHð2Þ
ν ðxiÞ�

× ðDþ 2 ln xi − lnDβ2Þx2i þOðx3i Þ;
PEðk; τÞ ¼

π

2C2
jHð1Þ

ν−1ðxiÞj2xi þOðxiÞ: ðC1Þ

If the evolution of the susceptibility is not continuous (or
not differentiable) we can still write a generic form of the
ukðτÞ and vkðτÞ, namely:

ukðτÞ−v�kðτÞ¼c−ðxiÞeikðτþδkτiÞþcþðxiÞe−ikðτþδkτiÞ;

ukðτÞþv�kðτÞ¼cþðxiÞe−ikðτþδkτiÞ−c−ðxiÞeikðτþδkτiÞ; ðC2Þ

where δk, in this context, is just an arbitrary phase possibly
picked up at the transition and, as usual, xi ¼ kτi. While in
principle c�ðxiÞ cannot be determined since the evolution is

not continuous we can try to fix them by imposing,
artificially, the continuity of the solutions for τ < −τi
and τ ≥ −τi. The result of this procedure will be

c̄−ðxiÞ ¼
N
2

ffiffiffiffi
xi

p ½Hð1Þ
ν ðxiÞ þ iHð1Þ

ν−1ðxiÞ�e−iδkxi ; ðC3Þ

c̄þðxiÞ ¼
N
2

ffiffiffiffi
xi

p ½Hð1Þ
ν ðxiÞ − iHð1Þ

ν−1ðxiÞ�eiδkxi : ðC4Þ

where, for simplicity, we denoted c∓ðxiÞ ¼ c̄∓ðxiÞe∓iδk .
The magnetic and the electric power spectra are,
respectively,

PBðk; τÞ ¼
k4

4π2
jukðτÞ − v�kðτÞj2;

PEðk; τÞ ¼
k4

4π2
jukðτÞ þ v�kðτÞj2 ðC5Þ

Using Eqs. (C3) and (C4), Eq. (C5) becomes

PBðk; xi; τÞ ¼
H4

i a
4
i x

5
i

8π
f½JνðxiÞ coskτ− Jν−1ðxiÞ sinkτ�2

þ ½YνðxiÞ coskτ− Yν−1ðxiÞ sinkτ�2g;

PEðk; xi; τÞ ¼
H4

i a
4
i x

5
i

8π
f½JνðxiÞ sinkτþ Jν−1ðxiÞ coskτ�2

þ ½YνðxiÞ sinkτþ Yν−1ðxiÞ coskτ�2g: ðC6Þ

In the sudden approximation (i.e., β → ∞ and C → 1),
Eqs. (C1) and (C6) give the same result for xi ≪ 1 and
kτ < 1. The reverse is not always true since the technique
leading to Eq. (C6) is based on the continuity of the
susceptibility which is not verified in practice. The correct
junction conditions for the susceptibility and for the
extrinsic curvature are therefore essential for a correct
derivation of the power spectra and of the degrees of
quantum coherence.
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