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The dilaton is a possible inflaton candidate following recent CMBdata allowing a nonminimal coupling to
the Ricci curvature scalar in the early Universe. In this paper, we introduce an approach that has seldom been
used in the literature, namely dilaton inflation with non-local features.More concretely, employing non-local
features expressed in [J. High Energy Phys. 04 (2007) 029], we study quadratic variations around a de Sitter
geometry of an effective action with a nonlocal dilaton. The nonlocality refers to an infinite derivative kinetic
term involving the operatorF ð□Þ. Algebraic roots of the characteristic equationF ðzÞ ¼ 0 play a crucial role
in determining the properties of the theory.We subsequently study the caseswhenF ð□Þ has one real root and
one complex root, from which we retrieve two concrete effective models of inflation. In the first case we
retrieve a class of single field inflationswith universal prediction of ns ∼ 0.967with any value of the tensor to
scalar ratio r < 0.1 intrinsically controlled by the root of the characteristic equation. The second case
involves a new class of two field conformally invariant models with a peculiar quadratic cross-product of
scalar fields. In this latter case, we obtain Starobinsky-like inflation through a spontaneously broken
conformal invariance. Furthermore, an uplifted minimum of the potential, which accounts for the vacuum
energy after inflation is produced naturally through this mechanism intrinsically within our approach.
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I. INTRODUCTION

Primordial inflation is a compelling paradigm for
describing the early Universe. This is manifest through
convincing observational data [1]. The end of inflation is
characterized by primordial perturbations which are even-
tually responsible for the structure formation in the
Universe. Their characteristics, namely, spectral tilts and
the ratio of tensor to scalar power spectra r, have been
recently measured: r has a well-established upper limit.1

r < 0.1 at 95% confidence level from Planck 2015 [1,3],
whereas the scalar tilt is most precisely measured as ns ¼
0.968� 0.006 at 95% confidence level. The CMB power
spectra are so far found to be very much adiabatic, scale
invariant and Gaussian [1,4], supporting thereby fðRÞ or
single field inflation models. Among a broad class of
models, the Starobinsky model based on the Rþ R2 gravity
modification and the Higgs inflation [5–7] occupy a
privileged position, with practically equal predictions in
the ðns; rÞ plane ns ¼ 1–2=N, r ¼ 12=N2, where N is the
number of e-foldings before the end of inflation. For the
expected value N ≈ 60 the above predictions match very
well the current observational values and constraints.

However, the physical nature of the inflaton and the
corresponding mechanism driving the early universe accel-
erated expansion are still an open issue [8,9].
It can be added that according to the present observa-

tions, the Hubble parameter during inflation can be as large
as 1015 Gev, suggesting the scale of inflation to be of the
order of MI > 1015 Gev. These energy scales are accept-
able in supergravity (SUGRA) and string theory, hence
argued to play a crucial role [10]. Therefore, during the last
years there have been many attempts to embed the infla-
tionary picture into low energy effective theories derived
from such fundamental approaches [11–15]. Furthermore,
the observational data provided a special stimulus to studies
of inflation in SUGRA and string theory. More precisely,
flat potentials of the following form

V ∼ ð1 − e−
ffiffiffiffiffiffiffiffi
2=3B

p
φÞ2n: ð1Þ

became successful candidates for the description of infla-
tion and appeared in various scenarios [8,9,11]. The
parameter B in the above potential can lead to any value
of r < 0.1 with a universal value for ns as it is in the R2

model, namely

ns ¼ 1 −
2

N
; r ¼ 12B

N2
: ð2Þ

Such predictions are so far shown to occur in the low
energy effective models of string theory/SUGRA and
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modified gravity [16–22]. In addition, several other models
inspired from string theory were also successful in con-
fronting Planck data [23–27].
Following the current observational status of inflation

[8,9], a nonminimally coupled scalar was established as a
suitable candidate. In this regard, it is possible consider a
closed string dilaton in string theory as a candidate of
interest. Embracing string theory as a key player in
cosmological inflation, we take an inspiration from string
field theory (SFT) [28,29] where nonlocality can naturally
emerge in the action. Previous attempts considering infla-
tion with non-locality features was done with p-adic strings
[30,31]. Moreover, configurations of nonlocality lead to
effective field theories with one or more scalar degrees of
freedom [32].
In the context of the previous paragraphs, we will argue

that interesting inflationary scenarios can be produced
with nonlocal features of the dilaton. More precisely,
the nonlocal nature of the dilaton is characterized by
the function F ð□Þ ¼ P∞

n¼0 fn□
n, where □ is the

d’Alembertian.
Depending on the number of roots of the characteristic

equation F ðzÞ ¼ 0, following the studies of [32–34], we
can write effective actions that are equivalent up to the
quadratic perturbations. More specifically, if F ð□Þ has
only one real root at z1, the corresponding effective action
contains just one propagating scalar where the kinetic term
contains the parameter F 0ðz1Þ and any higher derivatives
can be neglected assuming the field slow-rolls on a
sufficiently flat potential. As a consequence, we can write
a successful (albeit trivial) single field inflation with
controlled slow-roll dynamics through the parameter
F 0ðz1Þ, which leads to the prediction of r in (2). Far much
more interesting if F ð□Þ has a complex root the corre-
sponding effective action contains instead two real scalar
fields, which we will show to bear conformal invariance. In
this case, the two scalar fields share an opposite sign of
kinetic terms. From a spontaneous breaking of conformal
symmetry, we gauge fix one of the scalar field and obtain a
Starobinsky-like inflation, accompanied with a nontrivial
uplifting of the inflaton potential towards a nonzero
minimum.
This paper is organized as follows. In Sec. II, we start

with a quadratic action with dilatonic perturbations around
de Sitter (dS). We prescribe subsequently a method to write
an effective action bearing nonlocality. In Sec. II B we
study in detail two particular effective actions which leads
to interesting inflationary scenarios. In Sec. III we sum-
marize and discuss our inflationary scenarios. We refer to
the Appendix A for additional notes on SFT and tachyon
condensation (TC). Appendix B suggest a framework
concerning nonlocal dilaton within string theory.
Through out the paper, we set the metric signature

ð−;þ;þ;þÞ, small Greek letters are the fully covariant
indexes and the units ℏ ¼ 1; c ¼ 1;M2

P ¼ 1
8πG.

II. EFFECTIVE FIELDS FROM
A NONLOCAL FRAMEWORK

The attractor models of inflation leading to the predic-
tions in (2) essentially have a Starobinsky like potential2

with a parameter B. The realization of a Starobinsky like
potential can be achieved via employing a nonminimally
coupled scalar or conformal models [19,35]. The parameter
B here3 mainly defines the coefficient of the inflaton kinetic
term. In string (field) theory the kinetic term of a scalar
naturally comes with analytic infinite derivative function
(non-locality). Assuming there exists a nonlocal dilaton4 in
a 4D effective version of string theory,5 we can realize the
parameter B by analyzing the linearization of the theory
around a dS in a local limit.6

The second order action (scalar part) of an effective
theory of nonlocal dilaton around dS should look like

δð2ÞS ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
φF ð□Þφ; ð3Þ

where

F ð□Þ ¼ M2
Pð2□þ 3R0Þ þ ~F ð□Þ ð4Þ

where φ is the perturbation of the dilatonic field (ϕ), R0 is
the scalar curvature around dS, Mp is the reduced Planck

mass and ~F ð□Þ ¼ P∞
n¼1 fn□

n. Although during slow-roll
inflation infinite derivatives are not so relevant, it is
pertinent to identify the coefficients fn.
To generate inflation we must have an appropriate poten-

tial in our setup. At present, the state of the art of the
knowledge in string (field) theory lacks establishedmethods
to do so. In the courseof this paper,wewill employpotentials
phenomenologicallywhichweassumedonotviolategeneral
principles of string theoretical construction (cf. the
Appendices A, B for more discussions on this issue).
Considering therefore (3) for a general operator function

F ð□Þ we cannot convey inflationary physics straightfor-
wardly. In general, F ð□Þ being considered as an algebraic
function may have many roots. That is, equation

F ðzÞ ¼ 0 ð5Þ
can have more than one solution. We name it a character-
istic equation. Because of that, the propagator for the field
φ will have more than one pole. As such, it is equivalent to

2corresponding to canonical scalar field.
3i.e., so far shown to be obtained in SUGRA/string theory

settings [16–22].
4That is naturally coupled to Ricci scalar.
5In Appendix. B we suggest a mechanism for obtaining non-

local dilaton based on string (field) theory inspired set up. We
defer further development of our Appendix in a subsequent study
[36].

6It is natural to expect infinite derivatives are unimportant at
the inflationary energy scales.
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multiple degrees of freedom. Let us therefore write a local
realization of (3). Originally, this was done in [32] and then
formalized in [33,34,37]. We use the Weierstrass factori-
zation [32] which prescribes that any entire function (we
recall that SFT ensures that operators F ð□Þ are analytic
functions and in all existing computations they appear to be
entire functions) can be written as

F ðzÞ ¼ eγðzÞ
Y
j

ðz − zjÞmj; ð6Þ

where zj are roots of the characteristic equation and mj are
their respective multiplicities. We further assume hereafter that
allmj ¼ 1 for simplicity. γðzÞ is an entire function and as such
its exponent has no roots on the whole complex plane. It was
shown in [32] that for a quadratic Lagrangian of the type (3), a
local equivalent quadratic Lagrangian can be constructed as

δ2Slocal ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p X
j

F 0ðzjÞφjð□ − zjÞφj; ð7Þ

where prime means derivative with respect to the argument z
with the further evaluation at the point zj. It is said to be
equivalent because of the fact that solution for φ, which can be
obtained from equations of motion following from (3), is
connected to solutions for φj simply as

φ ¼
X

φj: ð8Þ
Roots zj become therefore the most crucial elements and

several comments are in order here:
(i) Note that roots zj can be complex in general. One

real root z1 is the simplest situation (cf. Sec. II A). In
this case, we have just a Lagrangian for a massive
scalar. It is acceptable ifF 0ðz1Þ > 0 in order to evade
a ghost in the spectrum.

(ii) More than one real root apparently seems not to be a
promising scenario. Since the function F ðzÞ is
analytic (and therefore continuous), neighboring
real roots will be accompanied with F 0ðzjÞ of
opposite signs. In other words, one root is normal
and the next to it is a ghost. We study an effective
model corresponding to this case in Sec. II B.

A. Effective model of single field inflation

If F ðzÞ has one real root, then (7) contains a single scalar
degrees of freedom

δ2Slocal ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
F 0ðz1Þφð□ − z1Þφ ð9Þ

The effective action which is perturbatively equivalent up
to quadratic order to (9) around dS background, looks like
(taking MP ¼ 1)

S1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
~Φ2R −

A
2
∂ ~Φ2 − Vð ~ΦÞ

�
; ð10Þ

where ~Φ is an effective dilatonic field and the respective
correspondence is

F 0ðz1Þ ¼ 6þ A

F 0ðz1Þz1 ¼ 3R0 − V 00ð ~Φ0Þ: ð11Þ
Here R0 is scalar curvature of the dS vacuum solution for a
constant ~Φ. Assuming the generalized structure of from the
proposed action (B2), the potential Vð ~ΦÞ can be taken to be
arbitrary. If we consider a potential VJð ~ΦÞ ¼ V0ð− ~Φ2þ
~Φ4Þ2 which looks in the Einstein frame as

VE ¼ ~V0ð1 − e
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3½F 0ðz1Þ=6�
p

~ϕÞ2; ð12Þ

where ~ϕ is canonically normalized field by defining
~Φ ¼ e−

ffiffiffiffiffi
1

Aþ6

p
~ϕ. The inflationary predictions corresponding

to the potential in (12) are well known [16,19,38,39] and in
particular we retrieve

ns ¼ 1 −
2

N
; r ¼ 2F 0ðz1Þ

N2
; ð13Þ

where we consider N ¼ 60 number of e-foldings. We there-
fore conclude that provided the non-local operator F ð□Þ
contains one real root, it gives a successful inflation with a
universal prediction of ns ¼ 0.967 and the tensor to scalar
ratio r < 0.1. The value of r can be varied to any value by
varying the nonlocal parameter F 0ðz1Þ.

B. Effective model of conformal inflation

If F ðzÞ has a complex root then we should write (7) for a
scalar field and also for its complex conjugate. So con-
sidering such a pair of complex conjugate roots, we have

δ2Slocal ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½F 0ðz1Þφ1ð□ − z1Þφ1

þ F 0ðz̄1Þφ̄1ð□ − z̄1Þφ̄1�; ð14Þ
where a bar over represents the complex conjugates. To
maintain the connection with (3) we should consider
complex conjugate solutions to equations of motion, such
that φ ¼ φ1 þ φ̄1 is real. The important feature is that the
quadratic form of fields is already diagonal. Introducing
φ1 ¼ χ þ iσ, z1 ¼ αþ iβ, F 0ðz1Þ ¼ cþ is we can rewrite
(14) in terms of real components as

δ2Slocal ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½χðc□ − cαþ sβÞχ

− σðc□ − cαþ sβÞσ − 2χðs□ − sα − cβÞσ�:
ð15Þ

The above expression is inevitably non-diagonal and
features a cross-product of real fields ∼χσ. In this
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formulation, note that the two fields χ, σ share an opposite
sign concerning their kinetic terms [40].
Let us now show that the following effective action with

two fields with conformal invariance, can be perturbatively
equivalent up to quadratic order to (15) around dS back-
ground

S2 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
½ ~α ~Φ2

1 − ~α ~Φ2
2 − 2~β ~Φ1

~Φ2�f
�
~Φ2

~Φ1

�
R

þ A
2
½ ~α∂ ~Φ2

1 − ~α∂ ~Φ2
2 − 2~β∂μ

~Φ1∂μ ~Φ2�f
�
~Φ2

~Φ1

�

− Vð ~Φ1; ~Φ2Þ
�
; ð16Þ

where ~Φ1; ~Φ2 are effective dilatonic fields.
We can write the quadratic Lagrangian for the spin-0

part, which contains 2 components ~χ ¼ δ ~Φ1 and ~σ ¼ δ ~Φ2

(i.e., again the spin-0 metric perturbation is excluded by
equations of motion), as

δ2S2 ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½~χΔ~χ ~χ þ ~σΔ ~σ ~σ þ ~χΔ~χ ~σ ~σ�; ð17Þ

where

Δ~χ ¼
M2

P

2

�ð∂ ~Φ1
I0Þ2

I0
ð3□þ R0Þ þ

∂2I0
∂ ~Φ2

1

R0

�

− A ~αf0□ −
∂2V0

∂ ~Φ2
1

;

Δ ~σ ¼
M2

P

2

�ð∂ ~Φ2
I0Þ2

I0
ð3□þ R0Þ þ

∂2I0
∂ ~Φ2

2

R0

�

þ A ~αf0□ −
∂2V0

∂ ~Φ2
2

;

Δ~χ ~σ ¼
M2

P

2

�∂ ~Φ1
I0∂ ~Φ2

I0
I0

ð3□þ R0Þ þ
∂2I0

∂ ~Φ1∂ ~Φ2

R0

�

− A ~βf0□ −
∂2V0

∂ ~Φ1∂ ~Φ2

;

where R0 is the scalar curvature of dS vacuum for constant
dilatonic fields ~Φ1 ¼ ~Φ1;0; ~Φ2 ¼ ~Φ2;0. Here we define
Ið ~Φ1; ~Φ2Þ ¼ ½ ~α ~Φ2

1 − ~α ~Φ2
2 − 2~β ~Φ1

~Φ2�fð ~Φ2= ~Φ1Þ and I0 ≡
Ið ~Φ1;0; ~Φ2;0Þ, ∂ ~Φ1

I0 ≡ ∂Ið ~Φ1; ~Φ2Þ=∂ ~Φ1 are the quantities
evaluated at the values of fields at dS vacuum and so on for
analogous terms.
We make use of (15), in the case of two complex

conjugate roots with the Lagrangian written in real fields.
Hence,we juxtapose (15) and (17). Themotivation for doing
this is to establish a more fundamental correspondence7 for

the effectivemodel (16). Essentially, themost important is to
establish Δ~χ ¼ −Δ ~σ. In this manner, we can neglect the
second derivatives of the potential V. However, we must
satisfy a number of constraints, namely, all parameters and
vacuum fields values must be real and I0 strictly positive.
And we want to have ~β ≠ 0, which we will satisfy in the
following. The greatly simplifying point is that we must
require such an adjustment of coefficients of Δ-s only in a
single point ( ~Φ1 ¼ ~Φ1;0, ~Φ2 ¼ ~Φ2;0). On top of this we
emphasize again that we aim at retrieving a nearly dS phase,
not an exact one. These requirements are generically

satisfied altogether with the presence of a function fð ~Φ2

~Φ1

Þ
(apart from special situations which we discuss shortly). It is
important that being a function of the ratio of fields it cannot
spoil a possible conformal invariance.
Our argument and the construction is to establish an

effective setting which can emulate (15). We claim that we
have such an effective framework as long we can match
quadratic actions for scalar modes around a dS background.
We can thus establish a correspondence between (15) and
(17) by means of the following:

(i) During inflationary expansion we can assume that
the scalar fields vary slowly and the kinetic terms
can be neglected. We are thus mainly interested in
whether Δ~χ ¼ −Δ ~σ for the terms proportional to R0.
To have this we should require

ð∂ ~Φ1
I0Þ2

I0
þ ∂2I0

∂ ~Φ2
1

þ ð∂ ~Φ2
I0Þ2

I0
þ ∂2I0

∂ ~Φ2
2

≈ 0 ð18Þ

(ii) We can check that even in the very simple case of
~β ¼ 0, a nonconstant function f is required to satisfy
the above relation. A simple choice like

f ¼ 1þ f1 ~Φ2= ~Φ1; ð19Þ

with just one free parameter f1 is sufficient. Other-
wise, for f ¼ const a condition ~Φ1;0 ¼ �i ~Φ2;0 arises
from (18). Therefore to build such an effective

model the function fð ~Φ2

Φ1
Þ is very useful and impor-

tant. The cross-product of fields may arise for ~β ¼ 0
but a quite involved nonpolynomial function f is
required.

(iii) For a non-trivial ~β the same function f as above in
(19) is enough to arrange the condition (18). More-
over ~β ≠ 0 generates a cross-product of fields.

(iv) In complete analogy we can consider the coefficients
of the kinetic terms. We have to require a non-
constant function f. We note that having opposite
coefficients in front of d’Alembertian operators for
different fields essentially means that one of these
fields is a ghost.

7This is, however much more involved than in Appendix II A
with a single field.
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Recalling expressions (7) and (15), we see that the presence
of a cross-product is a special feature related to a complex
root of the function F ðzÞ [which defines the nonlocal
operator F ð□Þ]. This means that the parameter β found in
(15) is essentially nonzero (notice that there is no direct
simple relation between ~β and β). In the limiting case of
β → 0, we should see the cross-product disappearing and
this corresponds to ~β → 0 in the effective model (16).
Another way to recognize the effective model (16) without
a cross-product of fields is to consider directly (7) with two
specially tuned real roots. This means that these roots are
related as z2 ¼ −z1 and moreover F 0ðz2Þ ¼ −F 0ðz1Þ.
To resolve the issue of a ghost in the spectrum requires

an extra symmetry in order to gauge the ghost away. The
most natural candidate is the conformal symmetry used in
the building of similar models in [18,19,35]. The conformal
invariance is restored in (16) if we assume A ¼ 6. Our
model without a cross-product resembles the conformal
models studied in [41,42]. We stress that the cross-product
appeared for the first time in the cosmological models and
we have here provided an imperative explanation through
the nonlocal dilaton.

Assuming fð ~Φ2

~Φ1

Þ ≈ constant during inflation, then (16)

can be written as

S2 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ð ~α ~Φ2

1 − ~α ~Φ2
2 − 2~β ~Φ1

~Φ2Þ
R
12

þ ~α

2
∂ ~Φ2

1 −
~α

2
∂ ~Φ2

2 − ~β∂μ
~Φ1∂μ ~Φ2 − VJð ~Φ1; ~Φ2Þ

�
;

ð20Þ

where we have set MP ¼ 1 for simplicity and use the
subscript J for the Jordan frame as before. Since the field
~Φ1 has a wrong sign kinetic term (assuming ~α > 0), we can
eliminate it by the choice of conformal gauge ~Φ1 ¼

ffiffiffi
6

p

which spontaneously breaks the conformal invariance. To
obtain a consistent inflation within this model we consider
the following potential

VJð ~Φ1; ~Φ2Þ ¼
λ

4
ðγ1 ~Φ2

2 þ γ2 ~Φ1
~Φ2 þ γ3 ~Φ2

1Þð ~Φ2 − ~Φ1Þ2;
ð21Þ

where γ1, γ2, γ3 are arbitrary constant parameters. The
potential (21) is motivated from [18], which we generalize
here to our conformal model with a term containing the
cross-product of fields. The importance of this generaliza-
tion will be explained in what follows. Note that if
~β ¼ γ2 ¼ γ3 ¼ 0, the model reduces to the conformal
model without a cross-product of fields studied in [18].

Rescaling the fields as ~Φ1 →
~Φ1ffiffi
~α

p and ~Φ2 →
~Φ2ffiffi
~α

p in action

(20) and using the gauge ~Φ1 ¼
ffiffiffi
6

p
we yield

S2 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2

�
1 −

~Φ2
2

6
−

2~βffiffiffi
6

p
~α
~Φ2

�
−
1

2
∂μ

~Φ2∂μ ~Φ2

−
λ

4~α2
ðγ1 ~Φ2

2 þ γ2 ~Φ1
~Φ2 þ γ3 ~Φ2

1Þð ~Φ2 −
ffiffiffi
6

p
Þ2
�
: ð22Þ

Performing the conformal transformation gμν →

½1þ ~β2

~α2
− 1

6
ð ~Φ2 þ ~β

~α

ffiffiffi
6

p Þ2�−1gμν and shifting the field

~Φ2 → ~Φ2 þ ~β
~α

ffiffiffi
6

p
, we arrive to the Einstein frame action

S2E¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
RE

2
−

ω

2ðω−
~Φ2
2

6
Þ2
∂μ

~Φ2∂μ ~Φ2−VEð ~Φ2Þ
�
;

ð23Þ

where ω ¼ 1þ ~β2

~α2
and

VEð ~Φ2Þ ¼
9λ

~α2
½γ1 ~Φ2

2 þ ðγ2 − 2γ1
~β
~αÞ

ffiffiffi
6

p
~Φ2 þ 6ðγ1 ~β2

α2
− γ2

~β
~α þ γ3Þ�ð ~Φ2 −

ffiffiffi
6

p ~β
~α −

ffiffiffi
6

p Þ2

ð6ω − ~Φ2
2Þ2

: ð24Þ

If γi are chosen such that γ2 ¼ 2γ1
~β
~α and γ1

~β2

α2
− γ2

~β
~α þ γ3 ≳ 0, we can obtain inflation with an uplifting of the potential at the

minimum.

Being more concrete, let us consider a simple case with γ1 ¼ 1, γ2 ¼ 2
~β
~α and γ3 ¼ 2

~β2

~α2
, for which (24) reduces to the

following form in terms of canonically normalized field ~Φ2 ¼
ffiffiffiffiffiffi
6ω

p
tanhð ~ϕffiffi

6
p Þ

VEð ~ϕÞ ¼ μ2
�
sinh2

�
~ϕffiffiffi
6

p
�
þ

~β2

ð ~α2 þ ~β2Þ cosh
2

�
~ϕffiffiffi
6

p
��"

cosh

�
~ϕffiffiffi
6

p
�
−

1

1þ ~β
~α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

~β

~α2

2

s
sinh

�
~ϕffiffiffi
6

p
�#2

ð25Þ

where μ2 ¼ 9λð ~αþ ~βÞ2
~α2ð ~α2þ~β2Þ. In the limit

~β
~α ≪ 1, the first term in (25) dominates during inflation while the second term is negligible.

The potential (25) is always positive and in particular has a nonzero value at the minimum at ~ϕ ≈ 0. In general the shape of
the potential is similar to the Starobinsky-like models in no-scale SUGRA [16].
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Setting ~α ¼ 1, in the limit ~β ≪ 1, we can approximate
the potential in (25) as

VEð ~ϕÞ ≈
μ2

4
ð1 − e−

ffiffi
2
3

p
~ϕÞ2 þ μ2 ~β2

4
ð1þ e−

ffiffi
2
3

p
~ϕÞ2; ð26Þ

where the first term dominates when ~ϕ ≫ 1 and leads to a
Starobinsky like inflation i.e., ns ∼ 0.967; r ∼ 0.0033 for
N ¼ 60 and the second term gives a nonzero vacuum
energy at the minimum of the potential8 near ~ϕ ¼ 0. Here
μ ≈ 2 × 10−5 (in Planck units as we have set MP ¼ 1)
which can be determined from the observed amplitude of
scalar perturbations As ¼ 2.2 × 10−9 at the horizon exit [1].
In particular ~β ∼ 10−55 gives a vacuum energy that repro-
duces the present day cosmological constant Λ ∼ 10−120.
Therefore, we conclude that a nonlocally induced cross-
product of the fields ~Φ1 and ~Φ2 in (20) naturally uplifts the
inflaton potential at the minimum and possibly explain the
present day dark energy (assuming it is ΛCDM).

III. CONCLUSIONS AND DISCUSSION

The dilaton is a possible inflaton candidate in the view of
latest CMB data endorsing a nonminimal coupling to the
Ricci curvature scalar. In this paper we investigated
effective models of inflation emerged from an assumed
second order action of non-local dilaton around dS. Here
the nonlocality enters in the dilaton kinetic term with an
analytic infinite derivative function F ð□Þ. Using the non-
local features explained in [32].
We analyze the cases corresponding to the roots zj of the

characteristic equationF ðzÞ ¼ 0. The presence of the cross-
product is a special feature related to a complex root of the
function fðzÞ (which defines the non-local operator fð□Þ).
Moreover, the derivatives F 0ðzjÞ play an important role.
This is seen from action (7), which describes the evolution of
scalar perturbations around a dS vacuum within a non-local
context, non-locality being a guide in this process. Its
importance is obvious as inflation is a dS like expansion
and all the observable quantities related to scalars can be
obtained from exploring the action for linear perturbations.
A very important restriction is that no ghosts must be in the
spectrum. This selects two configurations of roots.
First, there is a situation with one real root z1 accom-

panied with a correct sign of F 0ðz1Þ. In this case there is
one scalar perturbative degree of freedom. Such a con-
figuration can be obtained from the effective model
description (10). It is important that coefficients in front
of the Einstein-Hilbert term and the kinetic term of a scalar
field are independent. We therefore conclude that provided
the nonlocal operator F ð□Þ contains one real root, it gives
a successful inflation with a universal prediction of

ns ¼ 0.967 and tensor to scalar ratio as in (2) which can
be adjusted to any value r < 0.1 by means of the parameter
F 0ðz1Þ. A future more accurate detection of parameter r
from CMB [43] would indicate the values of z1 and F 0ðz1Þ.
Second, there was a case with two roots. They can be

complex conjugate and then we should look at (15) which is
written in manifestly real components. In this scenario, we
inevitably get a quadratic cross-product of fields. Moreover,
one field looks like a ghost. However, kinetic andmass terms
have exactly opposite signs. This suggests that a conformal
symmetrymay help exorcizing the ghost. Indeed, building an
effective model (16) we have taken the conformal symmetry
into account and have shown that we indeed can make use of
it to remove the unwanted degrees of freedom. The cross-
product of fields naturally leads to anupliftingof thepotential
in the reheating point. In principle one can get a similar two-
field model starting with two real roots which are related as
z1 ¼ −z2 and F 0ðz1Þ ¼ −F 0ðz2Þ. This latter case has no
cross-product of fields and falls into the considerations of
[41,42]. The novel feature here is that the conformally
invariant models with a quadratic cross-product of scalar
fields appear for the first time in a cosmological setup and can
be naturally explained using the nonlocality of a dilaton.
More generic configurations with more than two fields

may have no reasonably simple effective model counter-
part. This is because more than one ghost would appear. In
this case quite a peculiar structure may be required in order
to arrange such a configuration that it will be possible to
gauge away all the ghosts. However, although understand-
ing a potential power of multifield models [42], we surely
leave this as an open question. We also have skipped a case
of multiple roots. It can be considered analogously but
requires a more complicated formula mirroring (7).
We note that models of inflation obtained in this paper can

be distinguished upon a deeper study of bi-spectrum and/or
the reheating phase. This is because in such computations full
nonlocal operators will come into play and these structures
are unique for the presently studied class of models.
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APPENDIX A: A REVIEW OF SFT AND
TACHYON CONDENSATION

In generic words SFT is an off-shell description of
interacting strings [28,29,44–48]. It describes a string by

8A potential of similar kind can be found in the α−attractor
models where the inflaton potential was uplifted due to the effect
of a SUSY breaking mechanism [39].
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means of a string field Ψ. This object is a shorthand for
encoding all the string excitations in one instance. The
corresponding action for open string field9 can be written as

S ¼ 1

g2o

�
1

2

Z
Ψ⋆QΨþ 1

3

Z
Ψ⋆Ψ⋆Ψ

�
ðA1Þ

where ⋆ and
R
are Witten product and integral for string

fields respectively. Q is the Becchi-Rouet-Stora-Tyutin
(BRST) charge. The first term clearly corresponds to the
motion of free strings while the second term represents the
interaction. The second term is the three-string vertex
responsible for the nonperturbative physics. go is the open
string coupling constant, it is dimensionless.
It has been understood [51–55] that the tachyon of open

strings is responsible for the decay of unstable D-branes or
D-brane-anti-D-brane pairs. The corresponding process is
the condensation of the tachyon (TC) to a non-perturbative
minimum10 Upon the TC the unstable brane (or pair)
decays. It is the cornerstone of Sen’s conjecture regarding
TC that the depth of the tachyon potential minimum is
exactly the tension of an unstable brane to which the string
is attached to. The decay of a brane represents a configu-
ration in which open strings must not exist, because the
brane, to which they were attached, has decayed [58,59].
This being said, let us assume Sen’s conjecture, which
prescribes the disappearance of open string excitations. The
latter phenomenon of open strings extinction can be
formalized as follows in the field-theoretical language.
Given a field φ the following quadratic Lagrangians are
nondynamical

L ¼ −m2φ2 or L ¼ φeγð□Þφ: ðA2Þ

The left Lagrangian is clearly a mass term without any
dynamics. In the right Lagrangian, □ is the space-time
d’Alembertian and γ is an entire function. Although it may
look like □ produces dynamics as it is a differential
operator, as long as we require that the function in the
exponent is an entire function, the whole exponent has no
eigenvalues as an operator. This means that the inverse of
such an exponent gives no poles in the propagator and
effectively we have no dynamics at all.
We further notice that the right Lagrangian in (A2) is an

essentially nonlocal Lagrangian. It is obviously nondy-
namical on the quadratic level and as long as the field φ is
alone. However, novel and unusual effects can be generated
upon coupling to other fields or in the nonlinear physics
[30,32,56,57,60].

The essence of SFT is that as long as a string interaction
is involved then the nonlocality of the above type emerges.
Technically, we can understand this as follows. Strings are
extended objects by construction. When a field-theoretic
model describes strings, this property of an extended object
is encoded in the nonlocality of interactions. SFT straight-
forwardly creates vertex terms of the form

∼ðeα0□φ1Þðeα0□φ2Þðeα0□φ3Þ ðA3Þ

Here α0 is the string length squared (which may be different
from the inverse of the Planck mass squared).
Note that upon lengthy computations [28,29], the quad-

ratic Lagrangian of the open string tachyon T near the
vacuum is nondynamical of the form

LT ¼ −
T
2
vð□; T Þ: ðA4Þ

For zero momenta, i.e., when □ ¼ 0 the resulting vð0; T Þ
is exactly the tachyon potential. The dependence on □ is
analytic and being linearized near the vacuum value of field
T ¼ T 0 þ τ it produces

Lτ ¼ −
T
2

v00ðT ¼ T 0Þ
2

τeγð□Þτ; ðA5Þ

with some entire function γð□Þ. The coupling T is nothing
but the tension of the unstable D-brane given as

T ¼ 1

2π2g2oðα0Þ
pþ1
2

; ðA6Þ

where α0 is the string length squared, go is the open string
coupling constant and p comes from the dimensionality
of the Dp-brane. Thus, as expected for a 3-brane, T
has a dimension ½length�−4 and the tachyon field τ is
dimensionless.

APPENDIX B: A SFT INSPIRED FRAMEWORK
FOR NONLOCAL DILATON

Let us start with the well-known action of a low energy
open-closd SFT coupling, obtained in the framework of the
linear dilaton conformal field theory [32,61] (see for
instance [62]).

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
ðΦ2Rþ 4∂μΦ∂μΦÞ

−
T
2
Φ½vð□;T Þ þ 1�

�
; ðB1Þ

where we have redefined the dilaton field as Φ ¼ e−ϕ. In
the above system, tachyon is assumed to be near the
potential minimum and its dynamics can be neglected

9An action for a closed SFT can be written only in a
nonpolynomial form, even for the bosonic strings [49,50].

10The TC process itself does not require a dynamical departure
from a Minkowski background. This is supported by explicit
papers [56,57] and related studies.
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(see Appendix A). A careful but quick analysis immedi-
ately shows that the above action does not support a dS
background. We can easily see that the Minkowski back-
ground is the only option here that corresponds to an exact
compensation of the tension of the initial D-brane by the
tachyon energy at the bottom of the potential and the
dilaton is a constant.
To produce inflation, in a nearly dS background, we

include additional elements in (B1). Such terms may be
invoked and expected from several arguments

(i) Open-closed string interactions in general contain
higher vertexes beyond the action above. These
contributions generate new vertexes involving grav-
iton, dilaton, and open string tachyon.

(ii) The so called “marginal deformation” [63] excita-
tion in the closed strings. This operator is also of a
weight zero but in fact is nondynamical at a low-
level considerations. However, its exclusion by
equations of motion will generate additional terms
to an effective action as well.

(iii) Once a general (not linear) conformal field theory of
the dilaton is considered the above analysis would
not work. New interactions will be generated since
the BRST algebra of the primary fields will get
modified.

We therefore propose a broader [than (B1)] action that
includes new possible interactions of tachyon of open string
and the dilaton of closed string:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
ðΦ2Rþ 4∂μΦ∂μΦÞ

−
T
2

X∞
n¼−∞

Φnþ1vnð□; T Þ
�
: ðB2Þ

where R is Ricci scalar, T is the tension of the D-brane.
Here, the term for v0 is the one appearing in (B1), i.e.,
v0 ¼ vð□; T Þ þ 1. The other terms vnð□; T Þ for n ≠ 1
would correspond and convey the higher order couplings of
the tachyon potential to the dilaton, which in general
depends on infinite number of d’Alembertian operators
ð□Þ based on the concepts of SFT (cf., Appendix A).
Action (B2) is different from (B1) by new terms

involving coupling of dilaton and tachyon. Let us stress
that we need to establish whether inflation is possible in this
framework, keeping the dilaton constant in the vacuum then
we will search for constant curvature solutions. This makes
it irrelevant to consider higher curvature terms. Before
proceeding, the appearance of an explicit dilaton potential
does not contradict the “dilaton theorem” claim, as this was
developed in a pure closed string framework. Moreover,
results of [64] indicate that the open-closed SFT coupling
will waive the “dilaton theorem” statement. Overall as
such, action (B2) is a viable attempt to account open-closed
strings couplings during the TC process. Explicit

computation of all such extra terms into the action within
pure SFT considerations is beyond the scope of our present
analysis.
To support action (B2) as a proposed framework to

extract inflationary cosmology, we have to show a constant
curvature (in particular dS) background solution is viable,
when the dilaton field takes a constant value and the open
string tachyon condenses to its minimum. Hence, varying
(B2) with respect to the metric gμν, T and Φ we can show
that the following configuration is a solution

Φ ¼ Φ0 ¼ 1; T ¼ T 0; gμν is dS with

R ¼ R0 ¼ 2
T
M2

P

X
n

vn;0; ðB3Þ

together with the following relations fulfilledX
n

v0n;0 ¼
X
n

vn;0ð3 − nÞ ¼ 0; ðB4Þ

where prime 0 is the derivative with respect to an argument
and the subscript 0 means that the function is evaluated at
T ¼ T 0. We note thatΦ0 can be any value and is irrelevant
as long as it is finite, so we took Φ0 ¼ 1 for simplicity. We
will discuss the question of how generic such configura-
tions (B3), satisfying (B4), may arise in SFT in a separate
forthcoming study [36]. Therefore, our proposed action
(B2) can support dS solutions (B3).

1. Quadratic variations around de Sitter background

The quadratic variation of our background action (B2)
can be written as two parts in the following way

δð2ÞS ¼ δð2ÞSM2
P
þ δð2ÞSint ðB5Þ

The perturbative modes are φ ¼ δΦ, trace of the metric
perturbations h (we define δgμν ¼ hμν, h ¼ hμμ) and
τ ¼ δT . Furthermore, different spins do not mix in the
quadratic action, i.e., tensor modes do not mix with scalar
modes. So, the first part of the quadratic varied action reads

δð2ÞSM2
P
¼

Z
d4x

ffiffiffiffiffiffi
−g

p M2
P

2
φð2□þ 3R0Þφ: ðB6Þ

where we substituted h from its equation of motion.
The second part, after a Taylor expansion of the tachyon

potential vð□; T Þ around T ¼ T 0, reads

δð2ÞSint ¼ −
T
2

Z
d4x

ffiffiffiffiffiffi
−g

p X
n

�
ðnþ 1Þnφ2vn;0

þ nv0n;0φfð□Þτ þ v00n;0
2

τeγð□Þτ
�
; ðB7Þ

where we have used (A5). Accounting the fact that the open
string tachyon on its own is not dynamical, the function
γð□Þ in the exponent must be an entire function but the
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operator fð□Þ may have eigenvalues. Excluding τ by its

equation of motion is dictated by τ ¼ −
P

n
ðnv0n;oÞP
n
v00n;0

×

fð□Þe−γð□Þφ. Substituting this back into (B7) yields

δð2ÞSint ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
φF̄ ð□Þφ; ðB8Þ

where

F̄ ð□Þ ¼ −T
�X

n

ððnþ 1Þnvn;0Þ

−
ðPnnv

0
n;0Þ2

2
P

nv
00
n;0

fð□Þ2e−γð□Þ
�
: ðB9Þ

The second order action (B5) with (B6) and (B8)
represents a nonlocal scalar (dilaton) degree of freedom
around dS background. It is clear from the above expres-
sion that higher curvature corrections are not relevant for
us. Indeed, suppose there is a term in the action likeffiffiffiffiffiffi−gp Φ2R2, such a term would produce contributions to h2

and φh but as long as our background has constant scalar
curvature and constant dilaton field the final effect of such
an additional term would be just renormalization of
constants in action (B6). We see that both the spin-0

excitation of the metric and the dilaton field are combined
into one joint scalar mode. Again, we can show by explicit
computation that including other interactions, like for
instance

ffiffiffiffiffiffi−gp Φ2R2wð□; τÞ, will result in the same net
result when all but one scalar fields can be excluded by
equations of motion which finally results in a single
(nonlocal) scalar excitation.11 We further mention that
the open string sector contains only the tachyon, since
higher mass fields have been integrated out, in the course of
the brane decay consideration (cf. Appendix A).
Altogether, this Appendix provides a possible mecha-

nism to motivate non-local dilaton from string theory. The
further theoretical development of this part is deferred for
future investigations.
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