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We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic
multipoles of a general cosmological observable with spin weight s, Doppler weight d and arbitrary
frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-
dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual
frequency maps with different masks. It also permits to deboost background radiations with non-blackbody
frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions.
The formalism can also be used to correct individual E and B polarization modes and account for motion-
induced E/B mixing of polarized observables with d ≠ 1 at different frequencies. We apply the generalized
aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the
motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments,
the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible.
However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the
polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis
(b > 45°; fsky ≃ 14%), and for the dipole-inferred velocity β ¼ 0.00123 typically attributed to our peculiar
motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific
intensity in the CMB rest frame by 1–2%, but we find the polarization cross-leakage between E and B
modes to be negligible.
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I. INTRODUCTION

Our local peculiar motion with respect to the cosmic
microwave background (CMB) imprints an effect on the
observed frequency and angle of the incoming photons.
Consequently, the motion affects the observed spherical
harmonic multipoles (l modes) of the CMB, which are in
turn used for cosmological parameter estimation and other
statistical analyses. For a statistically isotropic sky, the
harmonic multipoles of the CMB are uncorrelated with
each other in the CMB rest frame. However, this is not the
case in a frame that is moving with respect to the CMB. In a
moving frame the nearby multipoles leak into each other and
hence couple together (i.e., they become correlated) [1]. This
correlation, if not accounted for, can generate a bias on the
estimated parameters inferred from observations [2].
Correction of the local boost effects on the measured

cosmological data (deboosting) can indeed be performed in
real space. However the real space approach presents some
numerical challenges. It has been shown that deboosting
the CMB in real space can lead to a spurious power
suppression over small scales (l > 1000) and in order to
correct for it, very high resolution is needed [3]. This in turn
calls for an increase in the number of pixels involved and
makes the process computationally expensive. The har-
monic space deboosting on the other hand, does not
manifest this problem and is more numerically efficient

[4]. Moreover, pixel window functions, beam and mask
effects can be more easily dealt with in harmonic space and
it also allows us to apply the motion-induced effects
directly on the power spectrum. Therefore, studying the
motion-induced effects on the CMB in harmonic space is of
practical advantage.
The transformation of the spherical harmonic multipoles

of the CMB from one moving frame to another is typically
referred to as the Doppler and aberration kernel (or more
commonly just aberration kernel). The first calculation of
the aberration kernel for integrated intensity in an all-sky
experiment was first presented in Ref. [1], which employs a
Taylor expansion in the dimensionless frame velocity
β≡ v=c. Since the effect of Doppler and aberration on
harmonic modes grows roughly as ∝βl, this perturbative
scheme is only valid for harmonic multipoles up to
l≃ β−1. For the value of the dipole-inferred velocity with
respect to the CMB β ¼ 0.00123 [5], this corresponds to
l≲ 800. The authors report the motion-induced effects on
the temperature power spectrum to be of order β2 ≃ 10−6

for an all-sky map and hence negligible.
The study of the Doppler and aberration effects were

then extended to higher l modes using real space boosting
[3] and some innovative techniques for calculating the
aberration kernel such as Legendre polynomial recursive
relations [6] and Bessel function fits [7]. Later, Ref. [8]
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(DC from here on) introduced new recursive relations that
allow to calculate the kernel for observables with different
Doppler weights (see Sec. II), along with an ingenious
system of ordinary differential equations (ODE) that
remarkably reduces the calculation time of the kernel
elements at very high l. The all- and masked-sky analyses
of the boost on the CMB reveal that the motion-induced
effects generally become larger at smaller angular scales,
and can reach ≳1% in power spectrum amplitude for
certain sky cuts [4].
The correlation between nearby CMB multipoles due

to the motion-induced leakage is also important for
dipole-independent measurements of our local velocity
with respect to the CMB frame [7,9–13]. Using a wide
range of l modes, the Planck team has measured
this dipole-independent velocity to be β ¼ 0.001 28�
0.000 26ðstat:Þ � 0.000 38ðsyst:Þ [14], which is consistent
with the dipole-inferred value, but with relatively large error
bars. The next generation of the CMB surveys are certainly
going to make a more precise measurement of this motion-
induced correlation, but in order to do so, it is essential to
have a precise calculation of the Doppler and aberration
kernel elements for the harmonicmodes. Therefore, not only
the aberration kernel calculations are essential for boost
correction, they can be used for boost detection as well [6].
So far, the development of the aberration kernel has

been mostly aimed at frequency-independent observables,
such as thermodynamic temperature or the integrated
(bolometric) intensity of an initial blackbody spectrum.1

Therefore, the available formulas cannot be readily
applied to frequency-dependent observables (e.g., specific
intensity Iν). A frequency-dependent aberration kernel
allows for correction of the boost in the observed harmonic
multipoles of an individual frequency map of any back-
ground radiation with an arbitrary frequency spectrum.
This is of practical importance because it allows us to apply
different masks at each observational frequency, and
appropriately correct for the motion-induced effects in
the power spectra of individual maps before combining
them for final parameter estimation. Additionally, using a
frequency-dependent aberration kernel we can cross-
correlate different frequency maps with their respective
masks, and enhance the detection significance of the
dipole-independent boost measurements.
It is important to have an unambiguous measurement

of the motion-induced correlation between the harmonic
multipoles of the CMB and separate them from other
sources of mode coupling (e.g., primordial non-Gaussianity
[16]) in both polarized and unpolarized components.
Correcting the boost effects in the CMB polarization

is arguably even more important than the unpolarized
radiation, due to their relevance to the detection of the
primordial gravitational waves. Since the current and future
generation of CMB polarization surveys perform in differ-
ent frequency bands, it is crucial to have a frequency-
dependent formalism for correcting the boost effects in the
measurements of these CMB experiments.
In this paper, we introduce a generalized Doppler and

aberration kernel operator which can be applied to a general
frequency-dependent observable with arbitrary Doppler
and spin weight (Sec. II). Our calculations heavily rely
on the formulas derived in DC [8]. We apply the gener-
alized Doppler and aberration kernel to both unpolarized
and polarized pure blackbody CMB maps and power
spectra (Sec. III), and show that the distinction between
the generalized and DC kernel elements is not observatio-
nally significant for all-sky maps, but it cannot be neglected
for masked skies. Even though the focus of the paper is the
application of the aberration kernel in CMB observations, it
can also be applied to any frequency-dependent cosmo-
logical observable (e.g., CIRB, CRB etc.) or in radiative
transfer scattering problems.
The paper is organized adfs follows: In Sec. II we layout

the theoretical development of the generalized Doppler and
aberration kernel and introduce a frequency-dependent
formula for boosting/deboosting harmonic multipoles of
cosmological observables. In Sec. III C(1–2) we analyze
the behavior of the aberration kernel elements for unpo-
larized CMB temperature, integrated intensity and specific
intensity at different frequencies. In Sec. III C(3–4) we
repeat the analysis for polarized CMB radiation and
compare the results to the unpolarized case. In Sec. III D
we apply the aberration kernel to both polarized and
unpolarized CMB power spectra and study the frequency
dependence of the motion-induced effects in an all-sky
experiment and its observational implications. We repeat
our analysis in Sec. III E for a masked-sky and show that
the effects become more relevant in this case. Finally we
summarize the results in Sec. IV.

II. GENERALIZED DOPPLER AND
ABERRATION KERNEL

In this section we present the calculations of the Doppler
and aberration kernel for a frequency-dependent observ-
able. We consider a general observable d

sXðν; n̂Þ in the
direction n̂ at the frequency ν with a spin weight s and
Doppler weight d. The spin weight determines how the
observable transforms under coordinate rotation. Scalar,
vector and tensor observables respectively have spin
weights of 0;�1 and �2. On the other hand, the
Doppler weight determines how the observable transforms
under a Lorentz boost. For an observable with Doppler
weight d, the quantity d

sX=νd is a Lorentz invariant. Note
that the Doppler weight of the observable does not
necessarily correlate with its frequency dependence.

1Exceptions to this include the frequency-dependent calcula-
tions presented in the appendices of Refs. [1,12,15]. However,
contrary to the methods introduced in this paper, those calcu-
lations are only valid for βl ≪ 1.
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As a simple example, for a pure blackbody radiation the
parameters Iν (specific intensity) and T3 (thermodynamic
temperature cubed) both have Doppler weights of 3, with
the former being frequency-dependent but not the latter.
Table I lists a few common observable and their respective
Doppler and spin weights.
In a frame moving with the velocity β ¼ v=c in the β̂

direction, dsXðν; n̂Þ will be observed at a different frequency
ν0 and direction n̂0 due to the Doppler and aberration
effects. Using the Lorentz invariance of dsX=νd we can write
[17,18]

d
s
~Xðν0; n̂0Þ ¼

�
ν0

ν

�
d
d
sXðν; n̂Þ; ð1Þ

with

ν0 ¼ γð1þ βμÞν; ð2Þ

and

n̂0 ¼
�ð1 − γ−1Þμþ β

1þ βμ

�
β̂þ

�
γ−1

1þ βμ

�
n̂; ð3Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
and μ ¼ n̂ · β̂. Equations (2) and (3)

respectively represent the Doppler and aberration effects.
For simplicity, we assume that β̂ ¼ ẑ and rewrite Eq. (3) as

μ0 ¼ μþ β

1þ βμ
ð4Þ

where μ0 ¼ n̂0 · β̂. It is worth mentioning that in practice,
we will be using the inverse of the Doppler and aberration
relations [Eqs. (2) and (4)]

ν ¼ γð1 − βμ0Þν0; ð5Þ

μ ¼ μ0 − β

1 − βμ0
: ð6Þ

We are interested in finding how the harmonic multi-
poles of d

sXðν; n̂Þ transform under a boost, so we expand
both sides of Eq. (1) using

d
sXðν; n̂Þ ¼

X∞
l¼0

Xl
m

d
sXlmðνÞ−sYlmðn̂Þ: ð7Þ

By separating the coefficients on the left-hand side of
Eq. (1) we obtain

d
s
~Xl0m0 ðν0Þ¼

X
l;m

Z
dn̂02−sY�

l0m0 ðn̂0Þ−sYlmðn̂Þ
�
ν0

ν

�
d
d
sXlmðνÞ

¼
X
l;m

Z
dn̂02−s

Y�
l0m0 ðn̂0Þ−sYlmðn̂Þ
½γð1−βμ0Þ�d

d
sXlmðνÞ: ð8Þ

This expression is usually represented as a harmonic boost
equation [1]

d
s
~Xl0m0 ðν0Þ ¼

X
l;m

d
sKm0m

l0l ðβÞdsXlmðνÞ; ð9Þ

where the aberration kernel d
sKm0m

l0l ðβÞ represents the angu-
lar integral in Eq. (8)

d
sKm0m

l0l ðβÞ ¼
Z

dn̂02 −sY�
l0m0 ðn̂0Þ−sYlmðn̂Þ
½γð1 − βμ0Þ�d : ð10Þ

For β̂ ¼ ẑ different m modes do not mix, so we will
drop the index m0 and use the notation d

sKm
l0lðβÞ ¼P

m0δm0m
d
sKm0m

l0l ðβÞ. From here on, we will refer to
d
sKm

l0lðβÞ as DC kernel elements.
The abbreviation of Eq. (8) as Eq. (9) is only correct if

the observable d
sXlm is frequency-independent and it is

therefore only applicable to observables marked with a
cross in Table I. Equation (9) implicitly assumes that the
frequency dependence of the observable in the moving
frame, d

s
~Xl0mðν0Þ, is the same as the one in the rest frame,

d
sXlmðνÞ. For a general frequency-dependent observable,
since the argument of dsXlmðνÞ implicitly depends on n̂0 [see
Eq. (5)], it cannot be taken out of the integral in Eq. (8). In
other words, the frequencies ν0 observed in the moving
frame are angle dependent, and are not the same as the
frequencies observed in the rest frame. In order to calculate
the aberration kernel for a frequency-dependent observable,
we will have to integrate over this implicit angular

TABLE I. Some common observables used in CMB analysis. The polarization parameters Q and U can conventionally have opposite
spin signs. The more common polarization parameters E and B are not listed, because they have mixed spin weights.

Observable Notation Doppler weight Spin weight Frequency dependent

Thermodynamic temperature T 1 0 ✗
Specific intensity Iν 3 0 ✓
Integrated (bolometric) intensity I ¼ R

Iνdν 4 0 ✗

Polarized temperature QT � iUT 1 ∓2 ✗
Polarized intensity Qν � iUν 3 ∓2 ✓
Unpolarized occupation number nν 0 0 ✓
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dependence. As we will show, this procedure (generaliza-
tion) will result in frequency-dependent kernel elements.
In order to implement the frequency dependence of

Eq. (8), we need to expand d
sXlmðνÞ about the observed

frequency in the moving frame ν0. Using Taylor expansion
we can write

d
sXlmðνÞ ¼

X∞
n¼0

ðν − ν0Þn
n!

∂n
ν0
d
sXlmðωÞ

¼
X∞
n¼0

ðγð1 − βμ0Þ − 1Þn
n!

ν0n∂n
ν0
d
sXlmðωÞ; ð11Þ

where ∂n
ν0 is shorthand notation for ∂n=∂ωjω¼ν0 and ω is a

dummy variable representing the frequency. Here, in the
second line we used ν ¼ γð1 − βμ0Þν0. Now using the
binomial expansion

ðγð1 − βμ0Þ − 1Þn ¼
Xn
k¼0

�
n
k

�
ð−1Þnþk½γð1 − βμ0Þ�k; ð12Þ

we can rewrite Eq. (11) as

d
sXlmðνÞ¼

X
n;k

ð−1Þnþk

n!
n
k
½γð1−βμ0Þ�kν0n∂n

ν0
d
sXlmðωÞ: ð13Þ

Substituting this into Eq. (8) yields d
s
~Xl0m0

d
s
~Xl0m0ðν0Þ ¼

X
l;m

X
n;k

ð−1Þnþk

n!

�
n
k

�
d−k
s Km

l0lðβÞν0n∂n
ν0
d
sXlmðωÞ:

ð14Þ

Depending on the expansion order, the coefficients
d−k
s Km

l0lðβÞ can be calculated using the recursive formulas
presented in DC [8]

d
sKm

l0l ¼ γd−1s Km
l0l þ γβ

�
sCmlþ1

d−1
s Km

l0lþ1

þ sm
lðlþ 1Þ

d−1
s Km

l0l þ sCml
d−1
s Km

l0l−1

�
; ð15Þ

or

d
sKm

l0l ¼ γdþ1
s Km

l0l − γβ

�
sCml0þ1

dþ1
s Km

l0þ1l

þ sm
l0ðl0 þ 1Þ

dþ1
s Km

l0l þ sCml0
dþ1
s Km

l0−1l

�
; ð16Þ

where

sCml ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2−m2Þðl2−s2Þ

l2ð4l2−1Þ

q
l > 0 & l > jmj; jsj

0 otherwise:
ð17Þ

Using Eqs. (15) and (16) one can find the kernel coef-
ficients in Eq. (14) in terms of 1

sKm
l0l, which can be

calculated using the following system of coupled ordinary
differential equations (ODE) [8]:

∂η
1
sKm

l0l ¼ ðlþ 1ÞsCmlþ1
1
sKm

l0lþ1
− lsCml

1
sKm

l0l−1; ð18Þ

where η ¼ tanh−1 β is the rapidity of the moving frame.
This ODE system can be solved using the initial condition
1
sKm

l0l ¼ δl0l for η ¼ 0.
Now, we define the generalized Doppler and aberration

kernel as an operator

d
s
bKm
l0lðβ; ν0Þ≡

X∞
n¼0

Xn
k¼0

ð−1Þnþk

n!

�
n
k

�
d−k
s Km

l0lðβÞν0n∂n
ν0 ð19Þ

and rewrite Eq. (8)

d
s
~Xl0mðν0Þ ¼

X
l

d
s
bKm
l0lðβ; ν0ÞdsXlmðνÞ: ð20Þ

We have replaced the dummy variable ω with ν to
assimilate this equation with Eq. (9). Note that the right-
hand side is only a function of ν0 and ν will be replaced by
ν0 after differentiation. Now, using this generalized kernel
we will study the motion-induced effects in the CMBmaps.

III. RESULTS

A. Notation

Here we layout some of the notation used in the
following section for easy reference. The blackbody and
differential blackbody frequency functions are respectively
defined as

BνðT0Þ ¼
2h
c2

ν3

ehν=kT0 − 1
; ð21Þ

FνðT0Þ ¼
∂BνðTÞ
∂T

����
T¼T0

¼ BνðT0Þ
T0

ðν=kT0Þehν=kT0

ehν=kT0 − 1
: ð22Þ

where the T0 ¼ 2.725 K is the mean temperature of the
CMB and h, k, and c are respectively the Planck constant,
Boltzmann constant and the speed of light.
The harmonic multipoles for temperature, integrated

intensity and specific intensity in the rest frame are
respectively represented as aTlm, a

I
lm and aIνlmðνÞ, where

aXlm ¼ R
dn̂Xðn̂ÞY�

lmðn̂Þ and their counterparts in the
moving frame are denoted as ~aTl0m, ~aIl0m and ~aIνl0mðν0Þ,
where ~aXl0m ¼ R

dn̂0Xðn̂0ÞY�
l0mðn̂0Þ. Here we have used
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m0 ¼ m, since we assumed β̂ ¼ ẑ. Similarly, we use the
notation eTlm, e

I
lm, and e

Iν
lmðνÞ for the E mode multipoles of

CMB polarization P�ðn̂Þ ¼ Qðn̂Þ � iUðn̂Þ and bTlm, b
I
lm,

and bIνlmðνÞ for the B modes [1,7,8].
As in the previous section, the frequency-independent

DC elements for an observable with the Doppler weight d
and spin weight s are represented with d

sKm
l0lðβÞ. The

generalized aberration kernel operator for a frequency-
dependent observable [as defined in Eq. (19)] is represented
with d

s
bKm
l0lðβ; ν0Þ. The frequency function of the hamonic

multipoles of the specific intensity for a pure blackbody
CMB at the mean temperature of T0 is given by FνðT0Þ. For
easy comparison of the boosted specific intensity multi-
poles with those of the thermodynamic temperature, we
normalize the generalized aberration kernel using the
following definition

d
sKm

l0lðβ; ν0Þ≡ Fν0 ðT0Þ−1dsbKm
l0lðβ; ν0ÞFνðT0Þ: ð23Þ

We will refer to this as the normalized aberration kernel
(see Sec. III C 2) and it can be thought of as the eigen-
functions of the generalized aberration kernel operator
d
s
bKm
l0lðβ; ν0Þ. It is very straightforward to implement the

generalized aberration kernel formalism on non-blackbody
spectra: one only needs to replace Fν with the frequency
spectrum of the new background radiation.
For clarity, we have employed the mathcal font for the

frequency-independent DC kernel elements d
sKm

l0lðβÞ and
their associate boost power transfer matrix d

sBl0lðβÞ (see
Sec. III D), and the standard font has been used for the
frequency-dependent Kernel operator d

s
bKm
l0lðβ; ν0Þ, the nor-

malized kernel elements d
sKm

l0lðβ; ν0Þ and their power
transfer matrix d

sBl0lðβ; ν0Þ. The frequency-dependent var-
iables can also be distinguished by the appearance of the
explicit frequency parameter ðν0Þ in front of them.
We use the notation ΔKX to show the relative percent

difference between whatever kernel is under discussion and
the equivalent DC kernel element with d ¼ 1. This notation
is explicitly defined in the text wherever used. To be
consistent with the calculations of § II, the primed notation
ν0 and l0 has been reserved for the observed frequency
and angular mode in the moving frame. We also use the
dipole-inferred value of β ¼ 0.00123 in the numerical
calculations.

B. Numerical methods

In Sec. III C we examine the characteristics of the
generalized kernel elements d

sKm
l0lðβ; ν0Þ and the DC kernel

elements d
sKm

l0lðβÞ for temperature (d ¼ 1) and integrated
intensity (d ¼ 4) and compare them with each other.
In order to calculate d

sKm
l0lðβ; ν0Þ we take the follow-

ing steps:

(1) Find the DC temperature kernel elements
1
sKm

l0lðβ; ν0Þ by solving the ODE system Eq. (18)
up to lmax.

(2) Find the DC kernel elements for Doppler weights
fd; d − 1;…d − ng using Eqs. (15) and (16), start-
ing from 1

sKm
l0lðβ; ν0Þ obtained in step 1.

(3) Construct the generalized Doppler and aberration
kernel operator using Eq. (19) and the DC kernel
elements obtained in step 2.

(4) Apply the generalized aberration kernel operator to
the differential blackbody spectrum according to
Eq. (23) to find the normalized aberration kernel
elements.

In the numerical calculations we set the velocity parameter
to β ¼ 0.00123 and the mean temperature of the CMB
to T0 ¼ 2.725 K and lmax ¼ 3000. We also choose the
β-expansion order n ¼ 5 to attain convergence in Eq. (19).
For the range of angular scales that we examine,

0 ≤ l ≤ 3000, the contribution of modes jl0 − lj > 8 is
negligible so we only solve the ODE for a neighborhood of
Δl ¼ 8 to minimize the computation time. Step 1 is the
most computationally expensive step in the numerical
evaluation of the generalized Kernel (∼10 minutes on a
3.1 GHz Intel Core i5). We only evaluate the 1

0K
m
l0lðβÞ

elements once, and tabulate them for repeated use in steps 2
(∼1 minute) and 3 (∼ a few seconds).
In Secs. III D and III E we apply the generalized and

DC aberration kernel to both polarized and unpolarized
simulated skies and CMB power spectra. The power spectra
are generated with CAMB2 [19], using the parameters
H0 ¼ 67.74, Ωbh2 ¼ 0.022, Ωch2 ¼ 0.1188, Ωk ¼ 0,
τ ¼ 0.066, ns ¼ 0.9667 and tensor to scalar ratio r ¼ 0
unless otherwise noted. All the boosts on the power spectra
and the sky realizations generated from them are performed
in harmonic space.

C. General characteristics of the kernel elements

1. Thermodynamic temperature and integrated intensity

Before we examine the frequency dependence of the
motion-induced effects on specific intensity, first we apply
the generalized aberration kernel to the well studied cases
of thermodynamic temperature and integrated intensity
[1,6] and analyze the general behavior of the kernel over
different angular scales and its dependence on the Doppler
weight of the observable. The common way to analyze the
CMB data is to convert the observed intensity Iν in every
direction to a thermodynamic temperature T, using the
blackbody spectrum BνðTÞ ¼ 2h

c2
ν3

ehν=kT−1. Obviously, the
underlying assumption here is that the frequency spectrum
of the CMB is Planckian in every direction:
Iνðn̂Þ ¼ BνðTðn̂ÞÞ. Once the temperature map has been

2http://camb.info.
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produced, we can rotate it so that β̂ ¼ ẑ, and then use the
harmonic boost equation to correct for the motion-induced
effects [Eq. (19)] and finally rotate it back. Since temper-
ature is not a frequency-dependent parameter, all the
frequency derivatives will vanish and only the n ¼ 0 term
will survive and the generalized kernel elements in Eq. (19)
simplify to the DC kernel elements with d ¼ 1

~aTl0m ¼
X
l

1
0K

m
l0lðβÞaTlm: ð24Þ

Here ~aTl0m are the harmonic multipoles of the temperature
observed in the moving frame. The top panel of Fig. 1
shows the absolute value of 10K

0
l0lð0.00123Þ for a neighbor-

hood of Δl ¼ 8 around different values of l0. The value of
the aberration kernel 1

0K
m
l0;l0þΔl shows how much power

from the mode ðl0; mÞ harmonic mode in temperature leaks
into its nearby mode ðl0 þ Δl; mÞ. Since the temperature
aberration kernel has the symmetric property 1

0K
m
l0;l ¼

ð−1Þlþl01
0K

m
l;l0 [8], Fig. 1 also shows how much power

leaks from the mode ðl0 þ Δl; mÞ into ðl0; mÞ. Therefore,
it is easy to conclude that if there is equal amount of power
in nearby temperature multipoles (e.g., a flat power
spectrum), the boost will not have any effect on the
observed harmonic modes. Also, here we emphasize again
that since β̂ ¼ ẑ, there will be no leakage from m0 into
m ≠ m0 and so the azimuthal modes do not mix under the
boost. As we can see in the figure, the leakage of the nearby
modes are relatively small for low values of l0, but the
kernel becomes wider as l0 grows. So, more power leaks
from each harmonic mode into its nearby multipoles and
vice versa as we go to smaller angular scales. This
characteristic of the aberration kernel also emerges when
we study the power spectra in a masked sky (§ III E).
Alternatively, we can choose to employ the integrated

intensity I ¼ R
Iνdν as the observable, instead of the

thermodynamic temperature T (e.g., Ref. [1]). In this case,
since the integrated intensity has a Doppler weight of 4 (see
Table I), we will need to use the generalized Doppler and
aberration kernel with d ¼ 4 to calculate or correct the
effect of boost on the harmonic multipoles. Again, since the
integrated intensity is frequency-independent, the harmonic
boost equation will simplify to

~aIl0m ¼
X
l

4
0K

m
l0lðβÞaIlm: ð25Þ

The middle panel of Fig. 1 shows the absolute relative
difference ΔKI ¼ j40K0

l0lðβÞ=10K0
l0lðβÞj − 1 for different

values of l0. The general behavior of the aberration kernel
4
0K

m
l0lðβÞ is similar to that of the thermodynamic temper-

ature 1
0K

m
l0lðβÞ, but its values are typically larger due to the

higher Doppler weight of the integrated intensity [see
Eq. (15)]. The difference is extremely suppressed for
Δl ¼ 0, but for larger Δl, it is generally more pronounced
at lower l0.
Both temperature and integrated intensity can be used as

observables for boost correction or detection. The main
disadvantage in using these variables is that due to their
frequency-independent nature, they do not allow us to
examine individual frequency maps, however, this can be
alleviated by using the frequency-dependent specific inten-
sity as observable and its corresponding Doppler and
aberration kernel.

2. Specific intensity

In practice, the CMB observations are performed over
narrow frequency bands, with the specific intensity Iν as the
observable. The generalized Doppler and aberration kernel
can be used to apply/correct a boost on individual fre-
quency maps, rather than a combined temperature or
integrated intensity map. This is especially advantageous
when different masks are applied over different frequen-
cies. For the frequency-dependent observable Iν, we can
write the harmonic boost equation as

FIG. 1. Top: Modulus of the temperature Doppler and aberra-
tion kernel elements for nearby multipoles of different l0 modes.
Further neighbors contribute more at larger l0s. Middle: Absolute
relative difference between the integrated intensity kernel
(Doppler weight 4) and the temperature kernel elements of the
top panel (Doppler weight 1): ΔKI ¼ j40K0

l0lðβÞ=10K0
l0lðβÞj − 1.

In general, the relative difference is larger for farther
neighbors of smaller l0, but it becomes negligible as l0 grows.
Bottom: Absolute relative difference between the specific
intensity kernel (Doppler weight 3) and the top panel: ΔKIν ¼
j30K0

l0lðβ; ν0Þ=10K0
l0lðβÞj − 1 for two different frequencies. The

difference is typically larger at higher frequencies and for lower
l values. Also see Fig. 2.
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~aIνl0mðν0Þ ¼
X
l

3
0
bKm
l0lðβ; ν0ÞaIνlmðνÞ: ð26Þ

Here, since the harmonic multipoles ~aIνl0mðνÞ are frequency-
dependent, Eq. (26) does not simplify to a single DC
kernel. Instead it will be a linear combination of different
Doppler weight DC kernel elements, with coefficients
proportional to frequency derivatives of the harmonic
multipoles ~aIνl0mðνÞ [Eq. (19)].
For a pure blackbody CMB radiation at a temperature

T0 ¼ 2.725K, the frequency dependence of the specific
intensity harmonic multipoles is [20]

aIνlmðνÞ ¼ FνðT0ÞaTlm=T0: ð27Þ

By plugging this in Eq. (26), and applying the generalized
kernel operator on FνðT0Þ we obtain

~aIνl0mðν0Þ ¼
X
l

½30bKm
l0lðβ; ν0ÞFνðT0Þ�aTlm=T0 ð28Þ

≡X
l

3
0K

m
l0lðβ; ν0ÞaIνlmðν0Þ; ð29Þ

where the normalized kernel d
sKm

l0lðβ; ν0Þ defined in
Eq. (23), can be thought of as the eigenfunction of the
operator d

s
bKm
l0lðβ; ν0Þ. The bottom panel of Fig. 1 shows the

absolute relative difference between the frequency-
dependent normalized aberration kernel elements (d ¼ 3)
and the DC temperature kernel (d ¼ 1) which we represent
as ΔKIν ¼ j30K0

l0lðβ; ν0Þ=10K0
l0lðβÞj − 1. The behavior is

similar to the aberration kernel for the integrated intensity,
but since the specific intensity has a lower Doppler weight,
its aberration kernel is overall smaller. Similarly, since the
specific intensity has a higher Doppler weight than the
thermodynamic temperature, its kernel elements are also
larger than the DC aberration kernel elements with d ¼ 1.
The most important distinction between the normalized

aberration kernel for specific intensity and the DC kernels
for temperature and integrated intensity is the frequency
dependence. In Fig. 1, we have shownΔKIν at two different
frequencies of 100 GHz and 217 GHz. These representative
values correspond to two of the frequency bands used
by the Planck collaboration for cosmological parameter
estimation [21]. The values of the normalized aberration
kernel elements 3

0K
0
l0lðβ; ν0Þ are smaller at the lower

frequency of 100 GHz. In fact as ν0 → 0 we get
3
0K

0
l0lðβ; ν0Þ → 3

0K
0
l0lðβÞ and therefore the specific intensity

aberration kernel becomes smaller and converges to its
d-equivalent frequency-independent DC aberration kernel
in the Rayleigh-Jeans limit. This convergence happens for
any radiation with a power law frequency spectrum να

(α ¼ 2 for a blackbody at low frequencies). After applying
the frequency derivatives ν0n∂ν0 [see Eq. (19)] on a power-
law spectrum we obtain ν0nα!=ðα − nÞ!; at ν0 ¼ 0 this

expression is only nonzero for n ¼ 0 (The DC term), so
in the expression for the generalized aberration kernel, all
the higher order correction due to the frequency depend-
ence of the observable vanish, and the kernel converges to
its DC equivalent with the same Doppler weight. Figure 2
shows the frequency dependence of the specific frequency
aberration kernel only for the first neighbor Δl ¼ 1, using
the parameter ΔKν ≡ j30K0

l0;l0þ1
ðβ; ν0Þ=10K0

l0;l0þ1
ðβÞj − 1 for

different values of l0. This is essentially an extension of the
bottom panel of Fig. 1 for Δl ¼ 1 over different frequen-
cies. The relative difference at ν0 ¼ 0 shows the offset
between 3

0K
0
l0lðβÞ and 1

0K
0
l0lðβÞ for different values of l0.

Since the Doppler weight of the kernel becomes irrelevant
at smaller angular scales, the offset becomes smaller as l0
grows. At higher frequencies, however, the relative differ-
ence between the aberration kernels for specific intensity
and thermodynamic temperature grows and the frequency
dependence of the observable becomes non-negligible. The
relative difference can exceed 10% for low l0 modes (e.g.
l0 ¼ 50 at 400 GHz); however, one should note that the
value of the temperature kernel itself (reported on the right-
hand side of the plot) becomes smaller for these modes.
As we can see in the bottom panel of Figs. 1 and 2, the

modulus of the aberration kernel elements (which represent
the motion-induced correlation between nearby multipoles)
are consistently larger for 30K

0
l0lðβÞ elements than 1

0K
0
l0lðβÞ.

Therefore, employing Iν instead of T would be beneficial in

reconstruction of β⃗ using the multipole correlation (outlined

FIG. 2. The absolute relative difference between the aberra-
tion kernel for specific intensity (d ¼ 3) and thermodynamic
temperature (d ¼ 1) for Δl ¼ 1: ΔKIν ¼ j30K0

l0;l0þ1
ðβ; ν0Þ=

1
0K

0
l0l0þ1

ðβÞj − 1. These values show the effective change on

aIνlmðνÞ over different frequencies. The numbers on the right side
show the numerical value of the temperature aberration kernel
(frequency-independent) for the corresponding lines with the
same color. The deviation of the specific intensity aberration
kernel from the temperature kernel is larger at lower l values and
higher frequencies.

GENERALIZED DOPPLER AND ABERRATION KERNEL FOR … PHYSICAL REVIEW D 96, 103502 (2017)

103502-7



in [14]) because it will lead to a stronger motion-induced
mode coupling and therefore higher signal to noise for
the effect.

3. Polarized temperature and integrated intensity

In this section we turn our focus to the motion induced
effects on the polarization of the CMB. The harmonic boost
equation for E and B polarization modes can be written in
terms of the DC kernel elements with s ¼ �2 [1,7,8]

~eTl0m ¼
X
l

ð1eeKm
l0lðβÞeTlm þ 1

ebK
m
l0lðβÞbTlmÞ; ð30aÞ

~bTl0m ¼
X
l

ð1beKm
l0lðβÞeTlm þ 1

bbK
m
l0lðβÞbTlmÞ; ð30bÞ

where

d
eeKm

l0lðβÞ≡
1

2
½d2Km

l0lðβÞ þ d−2Km
l0lðβÞ�; ð31aÞ

d
ebK

m
l0lðβÞ≡

i
2
½d2Km

l0lðβÞ − d−2Km
l0lðβÞ�; ð31bÞ

d
ebK

m
l0lðβÞ≡−d

ebK
m
l0lðβÞ; ð31cÞ

d
bbK

m
l0lðβÞ≡ d

eeKm
l0lðβÞ: ð31dÞ

The kernel coefficients d
eeKm

l0lðβÞ and d
bbK

m
l0lðβÞ represent

the boostmodifications to theE andBmodes (auto-leakage),
while d

ebK
m
l0lðβÞ and d

beK
m
l0lðβÞ respectively capture the

motion-induced E to B leakage and vice versa (cross-
leakage).
It is easy to calculate the DC aberration kernel for

polarization 1
�2K

m
l0lðβÞ using the kernel ODE [Eq. (18)].

The main difference between this case and the temperature
aberration kernel (s ¼ 0), originates in the sCl0m coeffi-
cients. As it is evident from Eq. (17), the difference
between 2Cl0m and 0Cl0m becomes smaller as l0 grows.
Therefore, the difference between the DC polarization and
temperature aberration kernels become negligible for large
values of l0. Figure 3 shows this convergence between the
aberration kernels with different spin weights, using the
relative difference ΔKP ≡ j12K0

l0lðβÞ=10K0
l0lðβÞj − 1 for dif-

ferent values of Δl ¼ l − l0 and m ¼ 0. As it is evident
from the plot, the difference is only greater than 0.1% for
l0 ≲ 100, while at smaller scales 1

2K
0
l0lðβÞ converges to the

DC temperature kernel 1
0K

0
l0lðβÞ. The difference is indeed

even smaller for m > 0, so at large values of l0 one can
safely use the unpolarized aberration kernel for boost
corrections of the polarized observables. However, in what
follows, for the sake of accuracy, we do not make this
simplification and use the actual values of the polarization
kernel obtained from solving the kernel ODE.

Since the sCl0m coefficients are not sensitive to the sign
of s, it is easy to see from the kernel ODE [Eq. (18)] that
1
2K

m
l0l ¼ Km

l0l. This allows us to simplify the polarization
aberration kernels in Eq. (31) as

1
eeKm

l0lðβÞ ¼ Km
l0lðβÞ ¼ 1

2K
m
l0lðβÞ; ð32aÞ

1
ebK

m
l0lðβÞ ¼ 1

beK
m
l0lðβÞ ¼ 0: ð32bÞ

Therefore, for polarized temperature there is no E to B
leakage (and vice versa). As it is shown in Ref. [8],
this condition only holds for d ¼ 1 and in general
for observables with Doppler weights other than 1,
d
2K

m
l0lðβÞ ≠ d−2Km

l0lðβÞ. Any difference between the kernel
elements with s ¼ 2 and s ¼ −2will lead to a spurious E to
B leakage. For example, when using integrated intensity
(d ¼ 4), therewill be an E toB leakage that becomes as large
as ∼3 × 10−4 μK at l0 ¼ 2 [1].
The polarization kernel elements for integrated intensity

have been studied in detail in Ref. [1], so we do not discuss
them here any further. Instead, we turn our attention to the
frequency-dependent polarized specific intensity.

4. Polarized specific intensity

Using the generalized Doppler and aberration kernel
operator we can write the harmonic boost equation for
polarized specific intensity as

~eIνl0mðν0Þ ¼
X
l

3
eeKm

l0lðβ; ν0ÞeIνlmðν0Þ þ 3
ebK

m
l0lðβ; ν0ÞbIνlmðν0Þ;

ð33aÞ

~bIνl0mðν0Þ ¼
X
l

3
beK

m
l0lðβ; ν0ÞeIνlmðν0Þ þ 3

bbK
m
l0lðβ; ν0ÞbIνlmðν0Þ;

ð33bÞ

FIG. 3. The absolute relative difference between the aberration
kernel elements for polarized and unpolarized thermodynamic
temperature over different angular modes. The difference be-
comes smaller as l0 grows, except for the central value of the
kernel (Δl ¼ 0) which is almost spin (s) independent.
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where similar to Eq. (31), we define the polarized specific
intensity aberration kernel elements as

3
eeKm

l0lðβ; ν0Þ≡
1

2
½32Km

l0lðβ; ν0Þ þ 3−2Km
l0lðβ; ν0Þ�; ð34aÞ

3
ebK

m
l0lðβ; ν0Þ≡

i
2
½32Km

l0lðβ; ν0Þ − 3−2Km
l0lðβ; ν0Þ�; ð34bÞ

3
beK

m
l0lðβ; ν0Þ≡−3

ebK
m
l0lðβ; ν0Þ; ð34cÞ

3
bbK

m
l0lðβ; ν0Þ≡ 3

eeKm
l0lðβ; ν0Þ: ð34dÞ

We start with the interesting case of E to B aberration
kernel. The bottom panel of Fig. 4 shows the modulus of
the 3

ebK
l0=2
l0l ðβ; ν0Þ and equivalently 3

beK
l0=2
l0l ðβ; ν0Þ at two

different frequencies of 100 GHz and 217 GHz. Since
according to recursive Eq. (15), the two kernel elements
3
þ2K

m
l0lðβ; ν0Þ and 3−2Km

l0lðβ; ν0Þ are identical for m ¼ 0, the
value of 3

ebK
m¼0
l0l ðβ; ν0Þ is always zero for this mode.

Therefore, we plot the kernel elements for the arbitrary
value of m ¼ l0=2. As we see in the plot, the aberration

kernel 3ebK
l0=2
l0l ðβ; ν0Þ is relatively small even at low l0, so we

do not expect the motion-induced E to B polarization

leakage to be a major source of error in CMB B mode
observations (we will study this case further in the section
dedicated to polarization power spectrum Sec. III D 4).
Even though the cross-component leakage in polariza-

tion seems to be negligible, the motion-induced modifica-
tions to each individual mode cannot be easily neglected.
Similar to the unpolarized case, the E mode and B mode
polarization of the CMB will be affected by the boost. The
top panel of Fig. 4 shows the modulus of the 3

eeK
l0=2
l0l ðβ; ν0Þ

and equivalently 3
bbK

l0=2
l0l ðβ; ν0Þ at two different frequencies

of 100 GHz and 217 GHz. The behavior of the polarization
aberration kernel is very similar to the unpolarized ones, in
that it is sharper at low values of l0, but becomes wider as l0
grows. The difference between the two frequencies is of the
order of ∼10−3 and therefore not visible in the plot. This
difference, however, will prove important when we study
the effect of boost on masked skies.

D. All-sky power spectra

So far we have examined individual kernel elements and
their variationwithDoppler weight and frequency. However,
what we are ultimately interested in is the motion-induced
effects on the power spectrum. The statistical effect of boost
on the power spectrum can be simplified as

d
s
~Cl0 ¼

X
l

d
sBl0lðβÞdsCl; ð35Þ

where

d
sCl ¼ 1

2lþ 1

X
m

hjdsXlmj2i ð36Þ

is the power spectrum of the observable d
sXlm in the CMB

frame and d
s
~Cl0 is the boosted power spectrum. Herewe have

acquired the notion of the boost power transfer matrix
(BPTM) defined in Ref. [4] as

d
sBl0lðβÞ≡ 1

2l0 þ 1

X
m

jdsKm
l0lðβÞj2: ð37Þ

Weuse a parallel definition of the boost power transfermatrix
for the normalized frequency-dependent aberration kernel
elements as

d
sBl0lðβ; ν0Þ≡ 1

2l0 þ 1

X
m

jdsKm
l0lðβ; ν0Þj2: ð38Þ

The theoretical advantage of using BPTM for studying the
motion-induced effects is that it can be directly applied to
analytic power spectra and it is not prone to random map
realization noise and cosmic variance. In other words, it
provides information about how the boost affects the
statistical ensemble of the harmonic multipoles. In this
subsection we study the effects of boost on the power
spectrum and its dependence on the Doppler weight and
frequency of observation, first by analyzing the BPTM and
then by looking at simulated CMB skies.

FIG. 4. The normalized aberration kernel elements for polar-
ized specific intensity at 100 and 217 GHz. Top: The modulus of
the kernel for EE and BB modes. The values of the kernel
elements are almost identical to the unpolarized case at high l0.
The difference between different frequencies are not visible in the
plot. Bottom: The modulus of the kernel for EB and BE leakage.
The values are smaller at the lower frequency of 100 GHz
compared with 217 GHz and also negligible compared with the
auto-leakage components (EE and BB).
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1. Thermodynamic temperature and
integrated intensity power transfer

First, let us start by looking at the boost power transfer
matrix for the DC temperature kernel 1

0K
m
l0l0þΔl. As it can

be seen in Fig. 1, the central value of the aberration kernel
(Δl ¼ 0) typically gets smaller as l0 grows. This can be
interpreted as transfer of power from Δl ¼ 0 to the nearby
neighbors Δl ¼ 1, 2, 3 etc., which grow larger at higher
l0s. Naturally we would expect the same behavior from the
BPTM of the temperature kernel 1

0Bl0;l0þΔlðβÞ, which
shows how much power leaks to the nearby multipoles
Δl at each observed angular mode l0. The top panel of
Fig. 5 shows 1

0Bl0;l0þΔlð0.00123Þ for l0
max ¼ 3000. As it is

expected from the general behavior of the aberration kernel,
at large angular scales (small l0) most of the power remains
within the same l0 mode (Δl ¼ 0), but it starts to leak into
the nearby multipoles as l0 increases. This can be simply
explained by considering the angle change due to aberration
effect which is of the order Δθ≃ βjβ̂ × n̂j. For the dipole-
inferred value of β, this would correspond to

Δθmax ≃ 0.001 23. For l0 < 1=Δθmax ≃ 800, since the
angular change due to motion is smaller than the angular
scale of the harmonic multipoles, the aberrated photons
remain within the same angular modes. Therefore, no
significant power leakage to nearby multipoles is expected
atl0 ≲ 800. As the aberration kernel becomeswider at larger
l0s, more power leaks into further neighbors. For example,
the power leakage intoΔl ¼ 1 becomes larger thanΔl ¼ 0
at l0 ≃ 1500, and roughly at l0 ≃ 2600 the leakage into
Δl ¼ 2 becomes dominant over Δl ¼ 1 and so on.
As mentioned earlier, the value of the DC aberration

kernel elements for integrated intensity with d ¼ 4 are
typically larger than the corresponding elements for tem-
perature with d ¼ 1 (see Fig. 1). Consequently, the power
transfer matrix 4

0Bl0lðβÞ is expected to be larger than
1
0Bl0lðβÞ over all angular scales. The middle panel of
Fig. 5 shows the percent difference between the two
BPTMs: ΔBI ≡ j40Bl0lðβÞ=10Bl0lðβÞj − 1 for l ¼ l0 þ Δl
and β ¼ 0.001 23. At large angular scales, the relative
difference between the BPTMs for Δl > 0 is large, mainly
due to the fact that the value of the temperature BPTM (top
panel of Fig. 5) is small. As l0 grows larger, ΔBI becomes
smaller and the Doppler weight of the observable becomes
irrelevant. Also, as expected from Fig. 1, the central value
of the aberration kernel (Δl ¼ 0) is nearly d-independent.
The relative difference between the BPTMs for Δl ¼ 0 has
not been shown in the plot, but it does not become larger
than 4 × 10−4.

2. Specific intensity power transfer

Similar to the integrated intensity, the specific intensity
boost power transfer matrix has generally larger values
comparedwith the temperature one. This is simply due to the
fact that specific intensity has a larger Doppler weight
(d ¼ 3) than the thermodynamic temperature (d ¼ 1). The
bottom panel of Fig. 5 shows the relative difference between
the frequency-dependent power transfer matrix for specific
intensity and the temperature power transfer ΔBIν ≡
j30Bl0lðβ; ν0Þ=10Bl0lðβÞj − 1 at two different frequencies of
100 GHz and 217 GHz. The behavior of 3

0Bl0lðβ; ν0Þ for
these chosen frequencies closely resemble the BPTM for
integrated intensity with the difference that 30Bl0lðβ; ν0Þ are
smaller over all angular scales due to their smaller Doppler
weight d ¼ 3. For the same reason, the specific intensity
BPTM is larger than the temperature BPTM with d ¼ 1.
Also,ΔBI217 GHz

is larger thanΔBI100 GHz
by roughly a factor of

4 over all angular scales. For the all-sky maps the difference
between the BPTM specific intensity becomes smaller
compared with the temperature BPTM.

3. Unpolarized power spectrum

We showed that the BPTM for the integrated intensity
and specific intensity are typically larger than the one for
thermodynamic temperature. The relative difference is

FIG. 5. Top: The Boost Power Transfer Matrix (BPTM) for
temperature aberration kernel. There is no significant power
transfer at l0 < 800, but at smaller angular scales more power
leaks from Δl ¼ 0 to the nearby neighbors. Middle: The absolute
relative difference between the BPTM for integrated intensity and
temperature ΔBI ≡ j40Bl0lðβÞ=10Bl0lðβÞj − 1 for l ¼ l0 þ Δl.
The relative difference is larger than 1% at low l0 (≲500), but
the value of the aberration kernel is also negligibly small over
these angular scales. Bottom: The absolute relative difference
between the BPTM for integrated intensity and temperature
ΔBI ≡ j30Bl0lðβ; ν0Þ=10Bl0lðβÞj − 1. The BPTM for specific in-
tensity is smaller than integrated intensity over all angular scales,
and its relative difference with the temperature BPTM decreases
at lower frequencies.
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larger over larger angular scales (lowl0) where the aberration
kernel itself is small. Over smaller angular scales (high l0)
where the kernel values become significantly larger, the
relative difference between BPTMs with different Doppler
weights becomes negligible. The combination of these
variations leads to a relatively constant difference between
the BPTMs with different Doppler weights. For an all-sky
map, however, this difference is completely negligible as it is
depicted in Fig. 6. The top panel shows the difference
δCXX

l0 ¼ ~CXX
l0 − CXX

l0 between the boosted and rest frame
power spectra for a single realization. Here we are using the
notation CXX

l to represent the power spectrum estimator
applied to the maps, where X stands for T, I100 GHz and
I217 GHz. The bottom panel shows the relative difference
between the two power spectra δCXX

l0 =CXX
l0 . We calculate

δCXX
l0 for temperature and using the DC kernel elements

1
0K

m
l0lðβÞ, and for the specific intensity using the normalized

frequency-dependent kernel 3
0K

m
l0lðβ; ν0Þ. The effect of the

boost on a single realization can be as large as 0.2%, when
binned over Δl0 ¼ 50,3 but there is no noticeable difference
between the boost in temperature or in specific intensity. The
motion-induced effects on the power spectra are generally
suppressed in all-sky power spectra due to cancellations

between the effect in the antipodal directions of motion,
however, aswewill show this is not the case formasked skies.

4. Polarized power spectra

The BPTM and the power spectra for polarization auto-
leakage (E to E and B to B) components are almost
identical to the ones in the unpolarized case (Fig. 5) and
therefore we will not discuss them here. Instead, we
examine the polarization cross-leakage (E to B and B to
E) components in an all-sky experiment. Figure 7 shows all
the polarization power spectra in a boosted frame. We adopt
a theoretical power spectrum with an arbitrary value of r ¼
0.05 generated with CAMB in the rest frame, and boost it
using the BPTMs defined in Eqs. (37) and (38). For the EE
and BB components, the boosted and rest frame lines are
not distinguishable in the plot. The relative difference due
to the boost for both these components (δCEE

l0 =C
EE
l0 and

δCBB
l0 =C

BB
l0 ) in an all-sky map is almost identical to the one

in Fig. 6: they are relatively flat over all angular scales with
a maximum fluctuation of 0.2% for Δl0 ¼ 50.
As we discussed in Sec. III C 3, the cross-leakage

aberration kernel is zero for polarized temperature, and
so is its BPTM. Therefore, we do not expect anyE to B or B
to E leakage due to boost in polarized temperature (d ¼ 1).
However, as mentioned earlier, this is not the case for

FIG. 7. All-sky polarized power spectra in a boosted frame. The
boosted EE (orange) and BB (green) auto-spectra for all the
observables lie almost on top of the rest frame lines and therefore
are not distinguishable from them. The motion-induced cross-
spectra E to B (red) and B to E (blue) for specific intensity are
larger at the higher frequency of 217 GHz compared with
100 GHz, but they are both smaller than the integrated intensity
motion-induced cross-spectra. The intensity parameters have
been normalized to temperature and the units are converted to μK.

FIG. 6. Top: The difference between boosted and rest frame
power spectra for thermodynamic temperature (black), specific
intensity at 100 GHz (orange) and 217 GHz (blue) for a single
sky realization. The vertical lines (gray) show the difference for
individual l0 modes, but the circles are the binned values for
Δl0 ¼ 50 and are interpolated with a cubic spline. Bottom: The
relative difference between boosted and rest frame power spectra
shown in the top panel. The fluctuations are at most 0.2% and
relatively flat around 0 over all angular scales. There is no
significant difference between the boost in temperature and
specific intensity at different frequencies.

3The size of the bin has been set to 50 to allow for easy
comparison of our results with similar studies. [2,4].
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observables with d ≠ 1. In Fig. 7 we show these cross-
leakage components for integrated intensity and specific
intensity at 100 and 217 GHz. Even though these motion-
induced leakage components are nonzero, there are still
several orders of magnitude below the EE and BB auto-
spectra in an all-sky analysis and likely below both
instrumental sensitivity and foreground residuals.

E. Masked-sky power spectra

Nowwe examine the effect ofDoppler and aberration on a
masked-sky. We will show that the motion-induced effects
are more pronounced in a cut-sky compared with an all-sky,
and more importantly, for specific intensity the effects
increase with the frequency of observation. In any all- or
partial-sky observation covering the sky symmetrically with
respect to the direction of motion, the motion-induced
effects on the power spectrum get suppressed, because of
the cancellation between the boosted modes lying on
opposite directions [8]. These cancellations, however, do
not occur in presence of a mask that is asymmetric with
respect to the direction of motion, and hence in this case we
would expect a larger effect due to the boost.
We compute the boosted power spectra for a represen-

tative case of a masked sky (b > 45°) shown in Fig. 8 using
the method outlined in Appendix A of Ref. [22]. The mask
has been chosen to be in a direction that maximizes the
Doppler and aberration effects [4]. Obviously, the overall
power in a masked-sky is less than its all-sky analogue, so
we divide the unmasked part of the sky by the average value
of the mask in order to compensate the drop in the power
due to the cut. This allows us to only see the drop or growth
in the power due to the boost.

1. Unpolarized power spectrum

First, we apply the mask in Fig. 8 to a single realization
of the unpolarized CMB temperature. For the all-sky map,
the effect of the boost on the power spectrum was to
produce small fluctuations that are more prominent where
the slope of the power spectrum is at its maximum (Fig. 6).
In the case of the cut-sky, these fluctuations are amplified
with the mean increasing over smaller scales (Fig. 9). The
increase in power in the direction of motion already exists

in the all-sky map, but it is also accompanied with a
decrease on power on the opposite direction of motion, so
the overall effect of the boost is suppressed in this case.
However, this cancellation does not happen in a cut-sky and
hence the motion-induced effects become amplified in the
final observed power spectrum.
More importantly, in the case of the all-sky boosted map,

there was no noticeable difference between the boosted
temperature and specific intensity power spectra. However,
in a masked sky the frequency-dependence of the aberra-
tion kernel becomes non-negligible. As we can see in the
bottom panel of Fig. 9, in the masked sky, the difference
between the power spectra of temperature and the specific
intensity at 217 GHz (100 GHz) is roughly ∼0.6% (∼0.2%)
over all angular scales. The difference is smaller for specific
intensity at 100 GHz, as it is expected from the general
behavior of the frequency-dependent aberration kernel over
small frequencies. This convergence of the specific inten-
sity aberration kernel to the temperature kernel can be seen
in the single kernel elements and the BPTM for Iν as well
(Figs. 1 and 11).

2. Polarized power spectra

The characteristics of the boost in the masked-sky
polarized power spectra4 is similar to the unpolarized case:
the fluctuations due to the boost are amplified where the

FIG. 9. Equivalent of Fig. 6 for amasked sky. Top: the difference
between the boosted and rest frame spectra is more noticeable at
lower l0 where the unpolarized CMB power spectrum is more
steep (before and after the acoustic peaks and troughs). Bottom:
The relative difference between the boosted and rest frame spectra
in themasked-sky. Themotion-induced oscillations in temperature
increase over smaller angular scales (large l0) and can reach
∼1.5%. The power increase is higher at 217 GHz (100 GHz) by
∼0.6%ð0.2%Þ over all angular scales.

FIG. 8. The theoretical cut (b > 45°, fsky ≃ 14%Þ applied to
the CMB power spectra. The invisible part of the sky is masked
and the arrow shows the direction of motion of the observer.

4or, more accurately, the effect of the mask on the boosted
power spectra.
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power spectra are steep, along with an overall increase in
power over smaller angular scales. Figures 10 and 11 show
the effect of boost on the E and B modes of the CMB
polarization power spectra. Here, the input spectra are
generated with r ¼ 0, so the rest frame B mode polarization
is only due to the lensing effect. In the top panel of Fig. 10,
we can clearly see the prominence of the boost effect near
the acoustic peaks of the E mode polarization. In contrast
with the E mode, the B mode lensing power spectrum does

not fluctuate over different angular scales, so the power
oscillations due to the boost are absent in Fig. 11.
Similar to the unpolarized power spectrum, there is an

increase in power over small angular scales for both the E
mode and B mode polarization. As we show in the bottom
panels of Figs. 10 and 11, this motion-induced power
increase can respectively reach ∼2% and ∼1% for the E
and B modes of the polarized temperature. Here, again the
power increase is larger for the specific intensity at 217 GHz
(100 GHz) than the one in polarized temperature by
∼0.6% (∼0.2%).
Even though the boost effects on each individual

polarization mode are at the percent level, there is no
significant motion-induced cross-component leakage from
E to B and vice versa in the case of the masked-sky.
Figure 12 shows the cross-leakage for E to B polarization of
specific intensity for 217 and 100 GHz in a masked sky, in
comparison with the all-sky case. Naturally, since our
acquired cut mainly masks the large angular scales, there
is no significant change in the power spectrum over small
angular scales. The major modification happens at larger
angular scales. For 2≲ l0 ≲ 5 (corresponding to angular
scales 90°≲ θ ≲ 36°) there is a drop in the power due to the
fact that the mask covers a huge portion of the sky. In
contrast, there is a rise in the power spectrum for 5≲ l0 ≲
30 (corresponding to angular scales 36°≲ θ ≲ 6°), because
of the absence of the antipodal part of the sky with respect
to the direction of motion which prevents the mode
cancellations to happen for these modes. For l0 ≳ 30 the
angular modes lie well within the unmasked part of the sky
and hence we do not expect a major modification due to the
mask for these multipoles. Nevertheless, the overall E to B
leakage for polarized specific intensity seems to be small
for both all-sky and masked-sky power spectra (e.g. 5 ×
10−5 μK at l0 ¼ 5 for r ¼ 0.05). It is important to mention
that the amplitude of the cross-leakage components for
polarization increases with the tensor to scalar ratio r and

FIG. 11. Equivalent of Fig. 10 for the B mode polarization.
Since the lensing power spectrum does not fluctuate over
different angular scales, the motion-induced power oscillations
are absent for the B mode polarization. The relative difference of
the boosted and rest frame power spectra (bottom) can be as large
as ∼1%.

FIG. 12. motion-induced E to B polarization leakage in a
masked sky (solid). The all-sky leakage spectra from Fig. 7 are
also shown for comparison (dashed). Naturally, the mask does
not affect very smaller scales (l0 ≳ 30), but there is an increase in
power over large angular scales that are not cut out by the mask
(5≲ l0 ≲ 30)

FIG. 10. Equivalent of Fig. 9 for the E mode polarization. The
motion-induced oscillations are clearly pronounced before and
after the acoustic peaks of the E mode power spectrum where the
slope is maximum. The relative difference of the boosted and rest
frame power spectra (bottom) can be as large as ∼2%. Similar to
the unpolarized case, the power increase is higher at 217 GHz
(100 GHz) by ∼0.6%ð0.2%Þ over all angular scales.
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can act as a potential source of error for large scale E and B
mode measurements. However, this component is easy to
model and subtract from polarization measurements of the
future microwave experiments aimed at primordial gravi-
tational waves detection through CMB polarization.

IV. SUMMARY

We introduced a frequency-dependent formalism for
analyzing the motion-induced imprints of the Doppler
and aberration effects in the harmonic multipoles of
unpolarized and polarized radiations (Sec. II). Our calcu-
lations extend the formalism of DC [8]—developed for
boosting frequency-independent observables with arbitrary
Doppler and spin weights—to include observables with
arbitrary frequency spectra. This generalized formalism can
be applied to CMB and other background radiations with
different frequency functions. The frequency-dependent
nature of the harmonic boost equation that we introduced
allows us to boost/deboost CMB with different masks or in
the presence of y and μ spectral distortions [23–25] as well
any type of extra galactic foregrounds.
The general effect of the boost on an observed background

radiation is to generate a motion-induced leakage between
the nearby observed harmonicmodes (l0) [Sec. III C 1]. This
leakage generally is larger for closer neighbors at larger
angular scales (small Δl at low l0) and expands to further
neighbors at smaller scales (larger Δl at higher l0). For a
perfect blackbody radiation the motion induced effects
increase with the frequency of observation, but they can
be neglected in the Rayleigh-Jeans limit [Sec. III C 2].
Our generalizedDoppler and aberration formalism can be

readily applied to CMBpolarization as well [Sec. III C 3]. In
small angular scales the spin weight of the observable
becomes irrelevant and so the aberration kernel for polarized
and unpolarized radiations converge. For polarized CMB
observables (spin 2), the relative difference between polar-
ized and unpolarized aberration kernel elements drop below
0.1% for scales smaller than ∼2 degrees (l≳ 100). So in
practice one can use the unpolarized aberration kernel
elements instead of the polarized ones for these scales
without much loss in precision.
We studied the effects of a boost on the observed power

spectra in all- and cut-skies for unpolarized [Sec. III D 3]
and polarized [Sec. III D 4] temperature, integrated inten-
sity and specific intensity at 100 and 217 GHz. In the all-
sky case, the boost produces small flat oscillations (∼0.1%)
over all angular scales and we showed that the frequency of
observation is practically irrelevant for a pure blackbody
CMB spectrum for both polarized and unpolarized maps.
When using polarized thermodynamic temperature, there is
no leakage from E to B mode and vice versa. However, we
show that with polarized specific intensity, there is a cross-
component leakage which increases with the observational
frequency. Even though the E to B leakage is larger at
217 GHz compared with the one at 100 GHz, they are both

largely subdominant to the primordial E and B modes (for
r ¼ 0.05) and their individual boost corrections. This
leakage is of the order of a few ×10−5 μK for the specific
intensity (normalized to temperature units) over large
angular scales ðl0 > 5Þ and declines over smaller scales.
Applying a mask on the power spectrum does not greatly
affect the cross-component leakage and the overall effect
remains subdominant with respect to the CMB intrinsic E
and B modes. Nevertheless, using the formalism introduced
in this paper, the motion-induced effects on individual E
and B modes and their respective cross-component leak-
ages can be easily modeled and subtracted from observa-
tions, along with other systematic errors in experiments
aiming at measuring the gravitational waves through CMB.
The effects of theDoppler and aberration in the direction of

motion (e.g., increase in frequency of the photons or decrease
in the solid angle) are generally accompanied by the opposite
effects on the antipodal direction on the sky. The overall
impression of the boost on the all-sky power spectrum for an
individual angular mode is therefore canceled due to averag-
ing over modes lying on opposite sides of the sky (math-
ematically speaking, due to averaging over differentmmodes
of a perticular l0 mode). This cancellation, however, does not
happen for a cut-sky, where the motion-induced effects are
especially largerwhen themask is asymmetricwith respect to
the direction of motion [Sec. III E]. For the specific cut
(b > 45°, fsky ≃ 14%Þ that we applied to a single sky
realization, the boost can increase both unpolarized and
polarized (E-mode) thermodynamic temperature by 1%-
2% at angular scales smaller than 10 arcmins (l0 ≳ 1000).
The motion-induced effects are typically larger near the
angular scales where the slope of the rest frame power
spectra are most steep [4]. Since the B mode polarization
power spectrum lacks this feature (at least on small scales
where lensing is the dominant source), the motion-induced
effects for this mode are not as prominent as the ones in
temperature and Emode polarization, reaching at most 1% at
4 arcmins (l0 ¼ 2500).
More importantly, the frequency of observation for

specific intensity becomes relevant in a cut-sky. We showed
that for both unpolarized and polarized power spectra the
motion-induced effects for specific intensity at 217 GHz
(100 GHz) are larger than their thermodynamic temperature
counterparts by ∼0.6% (∼0.2%) over all angular scales.
Therefore, in principle neglecting the frequency depend-
ence of the boost can generate a bias in cosmological
parameter estimation from the power spectra.
It is important to mention that all the reported numbers

are specific to the mask that we applied to the sky
realizations and power spectra, and are only valid for an
observer moving in the north galactic pole with the velocity
β ¼ 0.001 23. These examples were only chosen to present
the importance of the frequency dependence of the gen-
eralized Doppler and aberration kernel that we developed in
this paper. A more detailed analysis of the results on the
CMB power spectra with realistic masks, window functions
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and proper local direction of motion for the observer is
therefore needed to accurately gauge the amplitude of the
motion-induced effects for different CMB experiments.
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