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We propose a general method to self-consistently study the quasistationary evolution of the magnetic
field in the cores of neutron stars. The traditional approach to this problem is critically revised. Our results
are illustrated by calculation of the typical timescales for the magnetic field dissipation as functions
of temperature and the magnetic field strength.
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I. INTRODUCTION

The magnetic field plays a crucial role in the evolution
of neutron stars (NSs). Quite possibly, it serves as a most
important unifying agent relating and explaining the
observational properties of many diverse classes of NSs
(e.g., rotation-powered pulsars, magnetars, isolated neutron
stars etc.) [1,2]. If this is true, nonaccreting NSs from
different classes differ mainly in their age and the magnetic
field at birth. To extract as much information from
observations as possible one, therefore, needs to be able
to adequately model the long-term magneto-thermal evo-
lution of NSs with different initial magnetic field configu-
rations. Clearly, this is a very complex theoretical problem,
which has not been fully solved yet (but see, e.g.,
Refs. [2–8]).
One of the aspects of this problem is the way the

magnetic field evolves and dissipates in the internal layers
of NSs. Up to now, a substantial body of research on this
subject has been concentrated on the crust (see, e.g.,
Refs. [9–15] and references therein). Because the ionic
lattice of the crust is immobile, the magnetic field there
evolves exclusively through the Ohmic decay and Hall
drift. The case of the core is much more complex, since
there we have at least three particle species (neutrons,
protons, and electrons) that can move one relative to
another, so the diffusion effects come into play in addition
to the two processes active in the crust.
Evolution of the magnetic field in the core has been

studied, under various simplifying assumptions, e.g., in
Refs. [3,4,6,16–31]. However, self-consistent analysis of
this problem has never been attempted. To perform such an
analysis, one needs to solve (iterate in time) the Faraday
induction equation, ∂B=∂t ¼ −c∇ × E, where the electric
field E depends itself on the magnetic field B, diffusion
currents, perturbed chemical potentials, etc. A primary
problem, therefore, consists in finding E (and other
parameters in the system) for a given quasistationary
magnetic field configuration. This problem has been
addressed in a number of papers [19,24,26,31–35] starting
from the work of Goldreich and Reisenegger [36].

Unfortunately, the validity of some approximations made
in these references remains unclear. Here, we reconsider
this problem. Namely, we propose a method of obtaining
the self-consistent solutions describing quasistationary
evolution of the magnetic field in NSs. Our results indicate
that the conventional approach of Refs. [19,24,26,31,
33–36] may not be adequate.
The paper is organised as follows. In Sec. II we

formulate dynamic equations describing a magnetized
mixture of nonsuperfluid/nonsuperconducting particles
(e.g., neutrons, protons, and electrons in the NS core). In
Sec. III, we propose a general scheme, allowing us to
determine all the necessary ingredients to calculate the
electric field in an NS with a specified (axisymmetric)
magnetic field configuration. In Sec. IV, we discuss
how the proposed scheme should be modified to account
for muons (or other particle species), nonaxisymmetric
fields, and nucleon superfluidity/superconductivity. In
Sec. V, we derive expressions for the dissipation rate
of the magnetic energy in NS cores. In Sec. VI, the results
of the preceding sections are illustrated by calculation
(and comparison) of the magnetic field decay rates due to
different dissipation processes: Ohmic decay, nonequili-
brium beta-reactions, and ambipolar diffusion. Finally,
Sec. VII contains our conclusions and summary of
results.

II. GENERAL EQUATIONS

We consider a nonsuperfluid and nonsuperconducting
matter composed of various (possibly, charged) particle
species α. The effects of general relativity are neglected for
clarity,1 but the equation of state is assumed to be fully
relativistic. We also neglect thermal forces and the effects
of temperature on the equation of state. Then the equations
that govern evolution of the system can be written as (see,
e.g., Refs. [35–37])

1They do not affect our qualitative conclusions and can be
easily incorporated.
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The first of these equations is the momentum conserva-
tion equation for each particle species α; the subscripts i
and k there are the spatial indices. The physical meaning
of other equations is clear. In these equations c and G are
the speed of light and gravitational constant, respectively;
μα and nα are the relativistic chemical potential and
number density for particle species α; ϕ is the gravita-
tional potential; P and ε are the total pressure and energy
density, respectively,

P ¼ −εþ
X
α

μαnα; ð7Þ

dP ¼
X
α

nαdμα; ð8Þ

uα ≡ ½uðαÞ1; uðαÞ2; uðαÞ3� is the velocity of particles α;
Jαβ ¼ Jβα is the quantity defined (and calculated) in
Ref. [37] and related to the effective relaxation time ταβ
for scattering of particles α on particles β by the formula
[37]: ταβ ¼ nαμα=ðc2JαβÞ; the terms in Eq. (1), which
depend on Jαβ, represent the friction forces. Further, E
and B are the electric and magnetic fields; eα is the
electric charge of particle species α; and

j ¼
X
α

eαnαuα ð9Þ

is the electric current density [note that div j ¼ 0 in view
of Eq. (5)]. Finally, the source ΔΓα in the continuity
equation (2) appears due to nonequilibrium processes
of particle mutual transformations (e.g., nonequilibrium
Urca processes [38]). Note that we neglected the

displacement current in Eq. (5) and assumed the quasi-
neutrality condition (6), which is a perfect approximation
for slow processes we are interested in (see, e.g.,
Ref. [39] for justification of this assumption).
The system of equations (1)–(6) is rather general but it is

too complex. It can be further simplified if the hydro-
dynamic description of the system is justified, i.e. if the
interparticle collisions are so frequent, that ταβ ≪ τB (see
Sec. VI), where τB is a typical timescale of the problem
(in our case, it is the magnetic field evolution timescale).
Then the velocities uα of different particle species α are
very close to one another (e.g., Ref. [40]), so that it is
convenient to introduce the macroscopic velocity of the
flow U according to [37]

U
X
α

μαnα ≡
X
α

μαnαuα; ð10Þ

and replace Eq. (1) with
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To obtain this equation we neglected a number of small
terms in Eq. (1), making use of the fact that τB ≫ ταβ ¼
nαμα=ðc2JαβÞ (see, e.g., Ref. [40] for a similar discussion).
For example, we neglected the terms ∂=∂t½μαnαðuα −
UÞ=c2� ∼ μαnαðuα − UÞ=ðτBc2Þ in comparison to the
terms

P
β≠αJαβðuα − uβÞ ¼

P
β≠αμαnα=ðc2ταβÞðuα − uβÞ.

We also replaced uα with U in (already) small dissipative
term μαΔΓαuα=c2, appearing due to the action of weak
processes of particle mutual transformations.
Summing up Eq. (11) over all particle species and

neglecting the term, quadratically small in the deviation
from chemical equilibrium, one obtains the standard force
balance equation for the system as a whole,

∂
∂t

�ðPþ εÞ
c2

U

�
þ∇k

�ðPþ εÞ
c2

UiUk

�
¼ 1

c
½ j × B� − ∇P −

ðPþ εÞ
c2

∇ϕ: ð12Þ

III. THE PROBLEM OF MAGNETIC FIELD
EVOLUTION IN THE NS CORES: GENERAL

SCHEME OF THE SOLUTION

The equations of the previous section describe an
arbitrary mixture (plasma) of charged particles, provided
that they are nonsuperfluid and nonsuperconducting. Here
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we apply them to the particular case of NS matter composed
of neutrons (n), protons (p), and electrons (e) [npe-matter].
Extension of these results to more complex NS core
compositions (e.g., npe-matter with an admixture of muons)
is straightforward and is discussed in Sec. IV, where we also
consider the effects of nonaxisymmetric magnetic field and
nucleon superfluidity/superconductivity.

A. Our approximations and further simplifications

Assume that the star is nonrotating and spherically
symmetric in the absence of the magnetic field. It is in
hydrostatic, diffusion, and beta-equilibrium; all particle
currents are absent. Then we slightly perturb the system
by creating some small currents. They generate the mag-
netic field, which we, for simplicity, take axisymmetric,
B ¼ Bðr; θÞ (nonaxisymmetric case is briefly analysed
in Sec. IV B).2

After perturbation is applied, the system starts to
evolve to equilibrium through particle diffusion and
beta-processes. This process is accompanied by the mag-
netic field dissipation. A typical timescale for reaching the
equilibrium (i.e., the timescale of magnetic field decay) is
very large (see below), so that the system evolves through a
set of quasistationary states, which means that one can
neglect time derivatives in Eqs. (1), (2), (11), (12) of the
previous section [and, in addition, ignore the quadratically
small velocity-dependent terms, in particular, the term
depending on UiUk in Eq. (12)]. We follow here the ideas
of Ref. [36].
Let us demonstrate, for example, that the time

derivative in the continuity equation (2) can be omitted.
Below the perturbation of a quantity A will be denoted
as δA. From Eqs. (5) and (12), it follows that the
perturbation of the pressure P by the magnetic field is
δP ∼ B2. Correspondingly, δnα ∼ nαB2=P and ∂nα=∂t ∼
nαB2=ðPτBÞ. The magnetic evolution timescale τB is given
by [see Eq. (4)]: B=τB ∼ cE=R ∼ uαB=R, hence τB ∼ R=uα
(here R is the typical lengthscale; to obtain τB we estimated
E as: E ∼ uαB=c). Now we can write ∂nα=∂t ∼
nαB2=ðPτBÞ∼nαuαB2=ðPRÞ, while jdivðnαuαÞj∼nαuα=R.
Comparing these terms, it is easy to see that ∂nα=∂t
drops out from the continuity equation written to leading
order in B2=P.
Accounting for the approximations listed above,

Eq. (12) can be represented as [we make use of Eqs. (7)
and (8)] X

α

nα∇μ∞α ¼ 1

c
½j × B�; ð13Þ

where we introduced the redshifted chemical potentials,
μ∞α ¼ μαeϕ=c

2

; in the weak-field approximation ∇μ∞α ≈
∇μαþðμα=c2Þ∇ϕ. Using the quasineutrality condition (6)
and the definitions Δμe ≡ μp þ μe − μn and nb ¼ np þ nn,
Eq. (13) can be rewritten as

ne∇Δμ∞e þ nb∇μ∞n ¼ 1

c
½j × B�; ð14Þ

In full thermodynamic and hydrostatic equilibrium (when
there is no magnetic field), one has

Δμ∞e ¼ Δμe ¼ 0; μ∞n ¼ const: ð15Þ

When the magnetic field is applied, there is a small
deviation from equilibrium, and

ne∇δΔμ∞e þ nb∇δμ∞n ¼ 1

c
½ j × B�: ð16Þ

Taking into account that, in view of Eq. (15),

δΔμ∞e ¼ Δμ∞e ≈ Δμe
�
1þ ϕ

c2

�
≈ Δμe; ð17Þ

one obtains that, to leading order in the deviation, Eq. (16)
can be represented as

∇ðneΔμeþnbδμ∞n Þ−
�
dne
dr

Δμeþ
dnb
dr

δμ∞n

�
er ¼

1

c
½ j×B�;

ð18Þ

where the functions neðrÞ and nbðrÞ can be thought of as
taken in equilibrium and er is the unit vector in radial
direction. The left-hand side of Eq. (18) depends on
two scalars determined by the functions Δμeðr; θÞ and
δμ∞n ðr; θÞ. It turns out that Bðr; θÞ in this situation cannot
be arbitrary in order to compensate the left-hand side of
Eq. (18). At the very least, for axisymmetric fields, the φ
component of the Lorentz force density, FL ¼ ½ j × B�=c,
must vanish (gradient of an axisymmetric function cannot
have nonzero φ component),

FLφ ¼ 1

c
½ j × B�φ ¼ 0: ð19Þ

As shown, e.g., in Refs. [41,42], this is the only constraint
imposed on the magnetic field in order to satisfy (18). Then
both functions Δμeðr; θÞ and δμ∞n ðr; θÞ can be expressed
through FL and some unknown scalar function ζðrÞ (see
Appendix A), which will be determined in Sec. III C 1.
Below, in this section and in Sec. III B, we assume that
Δμeðr; θÞ and δμ∞n ðr; θÞ are already found. Then, in the
weak-field limit, δμn is given by

2We do not consider here the question of stability of such
system with respect to spontaneous reconfiguration of the
magnetic field on the Alfven timescale. The magnetic field
configuration is assumed to be stable.
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δμn ≈ δμ∞n −
μn0
c2

δϕ; ð20Þ

where μn0 is the equilibrium function μn. If we work in the
Cowling approximation (i.e., assume δϕ ¼ 0), this function
can be obtained immediately; otherwise, one should first
determine the gravitational potential perturbation δϕ
from the Poisson’s equation (3). All in all, Δμe and δμn
(and thus μn) can be determined. This means that we know
any thermodynamic quantity in the perturbed npe-matter,
since it can be presented as a function of only three
parameters, e.g., Δμe, μn, and T (we remind the reader
that the quasineutrality condition, ne ¼ np, still holds true
in the perturbed matter).
At this stage our consideration starts to differ from that

of Ref. [36] and others (e.g., [19,24,26,31,33–35]). In those
references Δμe is determined from the scalar differential
equation [see, e.g., equation (14) in Ref. [35]], which is a
divergence of a combination of the momentum equa-
tions (11) and the continuity equations (2). This scalar
equation is derived under simplifying assumptions, whose
validity for stratified matter is questionable. Moreover,
the solution to this equation is not necessary a solution to
the initial vector Eqs. (2) and (11). As a result, Δμe in
Refs. [19,24,26,31,33–36] depends on the rate of beta-
processes and on the relaxation time τnp, which are
sensitive functions of temperature T (e.g., Refs. [37,38]).
In contrast, here we argue that Δμe and μn do not depend
on T and are fixed by the magnetic field configuration.3

Further critical analysis of the previous results on the
subject is presented in Appendix B.

B. Determining the velocities uα
in the comoving frame

To study the magnetic field evolution in NS cores it is
necessary to extract all the available information from the
dynamic equations discussed above. Here our aim will
be to find the velocities uα. We shall work in the locally
comoving coordinate system, in which U ¼ 0. In that
coordinate system we define the vectors να,

uα comoving ≡ να=nα; ð21Þ

where uα comoving is the velocity of particle species α in the
comoving frame. Correspondingly, in an arbitrary frame

nαuα ≡ nαU þ να: ð22Þ

To find να ¼ nαuα comoving we should use Eq. (11) which
reduces, in our problem, to4

0 ¼ eαnα

�
Ecomoving þ

1

c
½uα comoving × B�

�
− nα∇μ∞α

−
X
β≠α

Jαβðuα comoving − uβ comovingÞ; ð23Þ

together with the condition U ¼ 0, which is equivalent to
[see the definition (10)]X

α

μαnαuα comoving ≡
X
α

μανα ¼ 0: ð24Þ

In Eq. (23), Ecomoving is the electric field in the comoving
frame. It is related to the electric field E in the laboratory
frame by the formula

Ecomoving ¼ Eþ 1

c
½U × B�: ð25Þ

A solution to the system of linear equations (23) and (24)
will give us νn, νp, and νe as functions of ∇μ∞α (α ¼ n, p,
e), Ecomoving, and B. [We remind the reader that we assume
(see Sec. III A) that all the perturbed thermodynamic
quantities, in particular, ∇μ∞α , are already “calculated”.]
The resulting expressions are rather lengthy so here we
present them schematically,

να ¼ ναð∇μ∞β ;Ecomoving;BÞ: ð26Þ

The (unknown) electric field Ecomoving can then be deter-
mined from the condition [see Eq. (9)],

j ¼ eeνe þ epνp; ð27Þ

so that (again schematically) Ecomoving is given by

Ecomoving ¼ Ecomovingð∇μ∞α ;B; jÞ; ð28Þ

and hence [see Eq. (25)]

E ¼ Ecomovingð∇μ∞α ;B; jÞ −
1

c
½U × B�: ð29Þ

Now, substituting Eq. (28) into (26), the currents να can be
represented as only functions of ∇μ∞β (β ¼ n, p, e), B, and
j ¼ c

4π∇ × B,

να ¼ ναð∇μ∞β ;B; jÞ: ð30Þ
3More precisely, if we expand Δμe or μn in a series of

Legendre polynomials Plðcos θÞ, then all the components except
for l ¼ 0 will be independent of temperature; the l ¼ 0 compo-
nent may vary with temperature, but only in a narrow temperature
range (see Sec. III C 1 and Appendix D for more details).

4Note that, only two of the three Eqs. (11) for neutrons,
protons, and electrons are really independent, since they contain
Eq. (14) that has already been used.
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In fact, these functions can be found analytically. We
also emphasize that the quantities ∇μ∞β and j are itself
determined by the magnetic field; the gradients ∇μ∞β , in
addition, depend on the unknown function ζðrÞ (see
Sec. III A and Appendix A), which will be determined
in the next section.

C. Determination of the flow velocity U
and the function ζðrÞ

Our next (most important) step will be to determine the
flow velocity U and the function ζðrÞ, the only unknown
parameters remained.

1. The components Ur and Uθ
and the equation for ζðrÞ

To this aim, let us consider the continuity equations (2).
They can now be rewritten as [see the definition (22)]

divðneUÞ ¼ −divνe − ΔΓ; ð31Þ

divðnpUÞ ¼ −divνp − ΔΓ; ð32Þ

divðnnUÞ ¼ −divνn þ ΔΓ; ð33Þ

where ΔΓ≡ ΔΓn ¼ −ΔΓp ¼ −ΔΓe (note that ΔΓ is the
well-known function of Δμe and T [38]). Because ne ¼ np,
Eq. (31) is duplicate of (32) and can be omitted.5 The
remaining Eqs. (32) and (33) can be rewritten, to leading
order in the deviation from equilibrium, as

npdivU þ dnp
dr

Ur ¼ −divνp − ΔΓ; ð34Þ

nndivU þ dnn
dr

Ur ¼ −divνn þ ΔΓ: ð35Þ

These equations can be solved for divUðr; θÞ andUrðr; θÞ,6
then Uθðr; θÞ can be easily found,

Uθ ¼
1

sin θ

�Z
θ

0

r sin ~θ

�
divU −

1

r2
∂ðr2UrÞ

∂r
�
d~θ þ ξðrÞ

�
;

ð36Þ

where ξðrÞ is some function which must vanish, ξðrÞ ¼ 0,
to guarantee finiteness of Uθ at θ ¼ 0. Another potentially

dangerous point where Uθ can be infinite corresponds to
θ ¼ π. The condition ensuring that it is not the case reads

Z
π

0

r sin ~θ

�
divU −

1

r2
∂ðr2UrÞ

∂r
�
d~θ ¼ 0: ð37Þ

This equation indicates that the multipole l ¼ 0 in the
Legendre expansion of the function in the square brackets
must vanish. That function depends on the chemical
potentials Δμe and μ∞n and hence on (still unknown)
function ζðrÞ introduced in Appendix A. The condition
(37), therefore, should be considered as a differential
equation for ζðrÞ; it should be supplied by the boundary
conditions, which follow, in particular, from the require-
ment of the regularity of Ur at r → 0, and are discussed in
more detail in Appendix D. A solution of Eq. (37) allows us
to find ζðrÞ and hence to fully determine the quantities Δμe
and μ∞n , as has already been advertised in Sec. III A.

2. The component Uφ

And what about Uφ? It does not enter the dynamic
equations described above, except for the magnetic field
evolution equation (4), which can be rewritten as [see
Eq. (29)],

∂B
∂t ¼ −c∇ × E

¼ −c∇ × Ecomovingð∇μ∞α ;B; jÞ þ ∇ × ½U × B�: ð38Þ

How could we determine it? The idea is to look more
carefully at the force balance equation (16). Assume that,
initially, our system is quasistationary, that is Eqs. (18)
and (19) are satisfied. After a short (in comparison to the
diffusion timescale) period of time δt the magnetic field
will change according to Eq. (38),

δB ¼ f−c∇ × Ecomovingð∇μ∞α ;B; jÞ þ ∇ × ½U × B�gδt:
ð39Þ

This will, in turn, change the Lorentz force density by
δFL ¼ ½δj × B�=cþ ½ j × δB�=c. The r- and θ-components
of δFL can be easily compensated by adjusting the
chemical potentials. However, there is no compensating
force along the φ-component. This means that Uφ will be
rapidly generated and become of the order of uα on the
Alfven timescale tA ∼ ½μnnbR2=ðB2c2Þ�1=2 ∼ 0.2R2

6=B
2
14 s

[this estimate follows from Eq. (12)]. Eventually, the
system will evolve in a quasistationary manner with
δFLφ ¼ 0 at each time step. Mathematically, this amounts
to an additional constraint,

5It may seem that these equations contain one more nontrivial
condition, divνe ¼ divνp. But this condition means div j ¼ 0,
which is satisfied “by construction” (automatically) in view
of Eq. (5).

6Note that, the solution does not exist for a nonstratified star.
Then it is possible to modify our scheme in order to determine U
(and other quantities of interest). However, we prefer not to
discuss this unrealistic case in the paper.
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∂FLφ

∂t ¼ 1

c

�∂j
∂t × Bþ j ×

∂B
∂t

�
φ

¼ −
c
4π

ðrot rotE × Bþ rotB × rotEÞφ ¼ 0; ð40Þ

where the electric field E is given (schematically) by
Eq. (29). This condition determines Uφ and is necessary
for quasistationarity of the system.

IV. VARIOUS EXTENSIONS: ACCOUNTING FOR
MUONS, NONAXISYMMETRIC MAGNETIC

FIELD, SUPERFLUIDITY/SUPERCONDUCTIVITY,
AND DEVIATIONS FROM THE DIFFUSION AND

BETA-EQUILIBRIUM, WHICH ARE NOT
RELATED TO THE MAGNETIC FIELD

A. Muons

The scheme described above can be easily generalized
to the case of npeμ matter (an inclusion of other particle
species, e.g., hyperons, is similar). The force balance
equation (18) in npeμ-matter takes the form

∇ðneΔμe þ nμΔμμ þ nbδμ∞n Þ

−
�
dne
dr

Δμe þ
dnμ
dr

Δμμ þ
dnb
dr

δμ∞n

�
er ¼

1

c
½j × B�;

ð41Þ

where Δμμ ≡ μp þ μμ − μn; μμ and nμ are the muon
chemical potential and number density, respectively.
Solution to this equation allows one to express, e.g.,
Δμe and δμ∞n through the magnetic field B, the imbalance
Δμμ, and the unknown function ζðrÞ. Additional equation,
which is necessary to determine Δμμ is provided by the
continuity equation for muons,

divðnμUÞ ¼ −divνμ − ΔΓ̆; ð42Þ

where ΔΓ̆ is the source (depending on Δμμ, T and nb)
appearing due to nonequilibrium beta-processes involving
muons and the vector νμ (which depends on Δμμ) has
the same meaning as the vectors να from the preceding
section; it can be found from the momentum equation
for muons [analogous to Eq. (11)]. The function ζðrÞ
should be determined from the requirement of regularity
of the solution for U in the same way as it is done in
Sec. III C 1.

B. Nonaxisymmetric magnetic field

The case of nonaxisymmetric magnetic field B ¼
Bðr; θ;φÞ is of course much more complex, but the general
scheme of Secs. III A–III C remains applicable to that case
as well. The main difference concerns the constraint (19) on
the admissible configurations of the magnetic field. It is

straightforward to show [42] that, in the nonaxisymmetric
case, it should be modified,

∂FLθ

∂φ ¼ ∂
∂θ ðsin θFLφÞ: ð43Þ

Most of other equations [in particular, Eqs. (32) and (33)]
remain unchanged, but the solution (36) and the constraint
(40) should be disregarded. Using Eq. (43) and following
the same line of reasoning as in Sec. III C, it is easy to
verify that, in the nonaxisymmetric case, the constraint (40)
should be replaced with

∂
∂t

�∂FLθ

∂φ −
∂
∂θ ðsin θFLφÞ

�
¼ 0: ð44Þ

Together with the continuity equations (32) and (33), this
constraint will allow one to determine the velocity U. Note
that Eq. (44) reduces to (40) in the axisymmetric case.

C. Superfluidity/superconductivity

The general scheme considered in the above sections
can also be applied to superfluid and superconducting
matter. Consider, for example, npeμ-matter in a nonrotat-
ing magnetized star, in which neutrons are superfluid at
T < Tcn (Tcn is the neutron critical temperature) and
protons are normal. This situation has recently been
considered in Ref. [43] and we refer the interested reader
to that reference for details.
In the presence of superfluidity the total force balance

equation (41) retains its form, however, it should be
supplemented by an additional constraint, following from
the superfluid equation for neutrons [43],

∇μ∞n ¼ ∇δμ∞n ¼ 0: ð45Þ

Using it, one can easily express (similarly to how it is
done in Appendix A) the imbalances Δμe and Δμμ from
Eq. (41) through the magnetic field and the function ζðrÞ
(to be determined below).7 Since we “know” μn, Δμe, and
Δμμ, we can calculate any thermodynamic quantity in
npeμ-matter.
The next step is to employ the quasistationary Euler-type

equations for electrons, muons, and protons. They have a
standard form (see Sec. II),

− e

�
Eþ 1

c
ue × B

�
− ∇μ∞e −

Jep
ne

ðue − upÞ

−
Jen
ne

ðue − unÞ −
Jeμ
ne

ðue − uμÞ ¼ 0; ð46Þ

7We note that in beta-equilibrium Δμe ¼ Δμμ ¼ 0.
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− e

�
Eþ 1

c
uμ × B

�
− ∇μ∞μ −

Jμp
nμ

ðuμ − upÞ

−
Jμn
nμ

ðuμ − unÞ −
Jeμ
nμ

ðuμ − ueÞ ¼ 0; ð47Þ

e

�
Eþ 1

c
up × B

�
− ∇μ∞p −

Jep
np

ðup − ueÞ

−
Jnp
np

ðup − unÞ −
Jμp
np

ðup − uμÞ ¼ 0; ð48Þ

where uμ is the muon velocity and un is the velocity of
neutron thermal excitations. Generally, it differs from the
neutron superfluid “velocity,” proportional to the gradient
of the phase Φn of the Cooper-pair condensate wave
function (see below). un can be expressed through the
velocities ue, uμ, up from the equation

Jμnðuμ − unÞ þ Jenðue − unÞ þ Jnpðup − unÞ ¼ 0; ð49Þ

which follows [43] from a combination of Eqs. (41) and
(45)–(48).8 These equations should be supplemented by the
definition of the charge current density,

j ¼ c
4π

∇ × B ¼
X

α¼μ;e;p

eαnαuα: ð50Þ

To proceed further, we define the macroscopic velocity
U of the flow of the normal component (i.e., electrons,
muons, protons, and neutron thermal excitations) according
to the condition

U

� X
α¼e;p;μ

μαnα þ μnnn;th

�
≡ X

α¼e;p;μ

μαnαuα þ μnnn;thun;

ð51Þ

where nn;th ≡ nn − μnYnn is the number density of (normal)
neutron thermal excitations and Ynn is the nn component of
the relativistic entrainment matrix [44–48] (all other com-
ponents of this matrix vanish when protons are normal). It
vanishes at T > Tcn, Ynn ¼ 0, and equals Ynn ¼ nn=μn at
T ¼ 0. In the nonrelativistic limit Ynn is related to the
neutron superfluid density, ρsn, by Ynn ¼ ρsn=ðm2

nc2Þ.
Now, working in the locally comoving frame (U ¼ 0)

and using Eqs. (47)–(51) [Eq. (46) is ignored since it is a
linear combination of other equations, see footnote 8],
one can express the quantities Ecomoving, νe, νμ, νp, and
νn ≡ nn;thðun − UÞ through ∇μ∞β , B, and j in exactly the
same way as it is done in Sec. III B (the notation is the same
as in that section). The electric field E in the laboratory

frame is then given by Eq. (29) and depends on U. To find
U, one should employ the continuity equations,

divðneUÞ ¼ −divνe − ΔΓ; ð52Þ

divðnμUÞ ¼ −divνμ − ΔΓ̆; ð53Þ

divðnpUÞ ¼ −divνp − ΔΓ − ΔΓ̆; ð54Þ

div

�
nn;thU þ Ynnc2∇

�
ℏΦn

2

��
¼ −divνn þ ΔΓþ ΔΓ̆;

ð55Þ

where the second term in the left-hand side of Eq. (55)
describes the motion of the superfluid neutron component
(see, e.g., Refs. [44,47,48]).
As in Sec. III C, one of the equations (52)–(54) [e.g.,

Eq. (52)] can be disregarded because of the quasineutrality
condition, np¼neþnμ, and charge conservation, div j ¼ 0.
Then the components Ur and Uθ of the velocity U can be
found from Eqs. (53) and (54); the function ζðrÞ follows
from the differential equation ensuring regularity of Ur and
Uθ. The component Uφ is still given by the condition (40),
which retains its form in the superfluid npeμ-matter
provided that the magnetic field is axisymmetric. Finally,
the neutron continuity equation allows one to determine the
phase Φn of the wave function of the Cooper-pair con-
densate. Thus, all the unknown parameters in the system
can be found following the same strategy as in Sec. III.
In principle, these results can be extended to account

for proton superconductivity. In particular, the total force
balance equation will take the form [for npe-matter,
cf. Eq. (18)]

∇ðneΔμe þ nbδμ∞n Þ −
�
dne
dr

Δμe þ
dnb
dr

δμ∞n

�
er

¼ 1

4π
½∇ ×Hc1� × B; ð56Þ

where Hc1 is the vector directed along B, whose absolute
value equals the lower critical magnetic field for a sim-
plified model of noninteracting proton vortices [48,49].9

This equation can be easily solved [42] for Δμe and δμ∞n ,
similar to how it is done in Sec. III, so that all other
thermodynamic quantities can be determined. The remain-
ing scheme of the solution is also quite similar. However,
the problem is slightly more delicate than before since now
the magnetic field is confined to flux tubes (proton vortices)
and one should accurately account for both ordinary

8Note that only five of six Eqs. (41), (45), and (46)–(49) are
really independent.

9We assume that protons form type-II superconductor. Note
that in the superconducting npe-matter chemical potentials (and
other thermodynamic quantities) depend not only on nb, ne, and
T, but also on the magnetic field B [48,49].
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diffusion of “nonsuperfluid” particles, as well as various
dissipative (and nondissipative) processes associated with
particle interaction with the flux tubes. The complex
dynamic equations describing these effects have been
(partly) formulated in Refs. [48,49]; full account is given
in Ref. [50]. Application of these equations to the problem
considered here is a subject of future work.

D. Accounting for deviations from the diffusion
and beta-equilibrium, which are not related

to the magnetic field

In Sec. III, we assumed that a deviation of the star from
the diffusion and beta-equilibrium is exclusively deter-
mined by the magnetic field. This assumption allowed us to
neglect the terms ∂nα=∂t in the continuity equations (2).
But how our scheme will be modified if some part of the
deviation from the diffusion and beta-equilibrium is not
related to the magnetic field? For example, additional
deviation can arise due to compression of the spinning
down neutron star or simply due to its cooling (if one
accounts for a weak dependence of chemical potentials on
T). In this situation one should start with the most general
form of the continuity equations [cf. Eqs. (34) and (35)],

∂np
∂t þ npdivU þ dnp

dr
Ur ¼ −divνp − ΔΓ; ð57Þ

∂nn
∂t þ nndivU þ dnn

dr
Ur ¼ −divνn þ ΔΓ: ð58Þ

To simplify presentation, below we assume that, initially,
there is a deviation from the diffusion and beta-equilibrium,
which is not caused exclusively by the magnetic field,
but the subsequent evolution of the system proceeds with
the magnetic field as the only perturbing factor. Then the
system should evolve to the configuration studied in detail
in Sec. III on some typical timescale τ0, which is, as a rule,
much smaller than the typical magnetic timescale τB.

10

Generalization of our approach to the case when some
other factors (besides the magnetic field) perturb the system
out of the diffusion and beta-equilibrium during its evo-
lution (e.g., decreasing temperature) is rather straightfor-
ward and can be made in a similar fashion.
The partial derivatives ∂nα=∂t (α ¼ n, p) in Eqs. (57)

and (58) can be expressed through δμ∞n and Δμe as

∂nα
∂t ¼ ∂nα

∂μn
∂μn
∂t þ ∂nα

∂Δμe
∂Δμe
∂t ¼ ∂nα

∂μn
∂δμ∞n
∂t þ ∂nα

∂Δμe
∂Δμe
∂t ;

ð59Þ

where we, for simplicity, presented nn and np as functions
of only μn and Δμe (thus assuming that the dependence of
nα on T can be neglected) and used the Cowling approxi-
mation, δμn ¼ δμ∞n [cf. Eq. (20)]. To calculate the time
derivatives in the right-hand side of Eq. (59) one should use
the expression (A6) for δμ∞n and Δμe. As a result, one will
obtain two types of terms. The terms of the first type
depend on ∂B=∂t, hence their typical timescale is τB and
they drop out from the continuity equations (57) and (58) to
leading order in B2=P because of the very same reasons that
have already been discussed in the beginning of Sec. III A.
The terms of the second kind depend on ∂ζðr; tÞ=∂t and
cannot a priori be neglected when there is an initial
disturbance in the system, which is not related to the
magnetic field. Therefore, one should substitute ∂nα=∂t
into Eqs. (57) and (58) in the form [see Eqs. (A4)–(A6)]

∂nα
∂t ¼

�∂nα
∂μn

∂nα
∂Δμe

�� ne nb

− dne
dr − dnb

dr

�−1� ∂ζðr; tÞ=∂t
−∂ζ0ðr; tÞ=∂t

�
:

ð60Þ

Equations (57) and (58) can then be solved for divU and
Ur, which allows one to determine Uθ from Eq. (36) with
ξ ¼ 0. The main difference from the results of the previous
sections is that now Ur and Uθ depend not only on ζ and
its spatial derivatives, but also on ∂ζ=∂t. An equation for
ζðr; tÞ can be obtained in the same way as in Sec. III C 1
and is given by the condition (37). However, now it is a
partial differential equation; it should thus be supple-
mented by the initial condition, ζðr; 0Þ, and by the
boundary conditions, following, in particular, from the
regularity of Ur at r → 0.

V. MAGNETIC FIELD DISSIPATION

The aim of the present section is to derive a general
expression for the total dissipation rate _EB of the magnetic
field energy for the system in the quasistationary state, free
of any specific approximations. In what follows, all the
surface integrals appearing in the formulas are ignored
for simplicity; they can be easily written out if necessary.
One has

_EB ¼ 1

4π

Z
V
B
∂B
∂t dV: ð61Þ

This equation can be represented as (e.g., Ref. [36])

_EB ¼ −
Z
V
EjdV: ð62Þ

Let us express the electric field, entering Eq. (62), from
Eq. (11) for protons (α ¼ p) with the vanishing left-hand
side,

10It can be shown that the typical timescale for reaching the
diffusion equilibrium in this problem is τ0 ∼ R2Jnp=ðμnnbÞ and
for reaching the beta-equilibrium is τ0 ∼ n2p=ðμnnbλeÞ (see Sec. V
for the definition of λe).
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E ¼ −
up × B

c
þ ∇μ∞p

e
þ Jepðup − ueÞ þ Jnpðup − unÞ

ene
;

ð63Þ

where e≡ ep and we make use of the quasineutrality
conditon, ne ¼ np, and the definition of μ∞p from Sec. III A.
The second term in Eq. (63) is potential and thus does not
contribute to the magnetic field dissipation (see, e.g.,
Ref. [43] for more details). Thus,

_EB ¼ −
Z
V

�
−
up ×B

c
þ Jepðup − ueÞ þ Jnpðup − unÞ

ene

�
jdV:

ð64Þ

The first term here can be modified:Z
V

�
up × B

c

�
jdV ¼ −

Z
V

�
j × B
c

�
updV: ð65Þ

Substituting now Eqs. (16) and (17), we obtain

−
Z
V

�
j × B
c

�
updV ¼

Z
V
ð−ne∇Δμe − nb∇δμ∞n ÞupdV:

ð66Þ

Integration by parts of the first term in the right-hand side
of this equation gives (we remind that we skip the surface
integral)Z

V
½divðnpupÞΔμe − ∇δμ∞n ðnnun þ npupÞ

− ∇δμ∞n nnðup − unÞ�dV; ð67Þ

where we expressed up in the second term as up ¼
nnunþnpup

nb
þ nnðup−unÞ

nb
. Now, (i) to transform the first term

we make use of the proton continuity equation,
divðnpupÞ ¼ −ΔΓ; (ii) to transform the second term we
integrate it by parts and use the baryon continuity equation,
divðnnun þ npupÞ ¼ 0; (iii) to transform the third term we
express ∇δμ∞n from Eq. (11) for neutrons, which reads

nn∇δμ∞n ¼ −
X
β≠n

Jnβðun − uβÞ: ð68Þ

As a result, we getZ
V
½−ΔμeΔΓ− Jenðue − unÞðup − unÞ− Jnpðup − unÞ2�dV:

ð69Þ

Returning then to Eq. (64) and rearranging terms, we obtain

_EB ¼ −
Z
V
EjdV

¼
Z
V
½−ΔμeΔΓ − Jenðue − unÞ2

− Jepðue − upÞ2 − Jnpðun − upÞ2�dV

þ
Z
V
ðue − upÞ½Jenðue − unÞ þ Jnpðup − unÞ�dV:

ð70Þ

Let us show that the last term in the right-hand side of
Eq. (70) vanishes. Using Eq. (68), one may writeZ

V
ðue − upÞ½Jenðue − unÞ þ Jnpðup − unÞ�dV

¼
Z
V
ðue − upÞnn∇δμ∞n dV

¼
Z
V
ðue − upÞnb∇δμ∞n dV −

Z
V
ðue − upÞne∇δμ∞n dV:

ð71Þ

Equation (16) implies that ðue − upÞnb∇δμ∞n ¼
−ðue − upÞne∇Δμ∞e . Using this equality together with
the charge conservation equation, div j ¼ 0, and integrating
by parts both terms in the right-hand side of Eq. (71), one
verifies that Eq. (71) indeed vanishes. Consequently,

_EB ¼
Z
V
½−ΔμeΔΓ − Jenðue − unÞ2 − Jepðue − upÞ2

− Jnpðun − upÞ2�dV: ð72Þ

We see that the magnetic field dissipates because of particle
mutual transformations and relative motion (diffusion).
If we neglect (weak) interaction between electrons and
neutrons, i.e. put Jen ¼ 0, then _EB will take the familiar
form (see, e.g., Ref. [36]),

_EB ¼
Z
V

�
−ΔμeΔΓ −

j2

σ0
− Jnpðun − upÞ2

�
dV; ð73Þ

where σ0 ¼ e2n2e=Jep is the electrical conductivity in the
absence of the magnetic field. The last term in the right-
hand side of Eq. (73) describes the effect of ambipolar
diffusion. The associated ambipolar velocity, up − un, can
be expressed through ∇μ∞n from Eq. (68). In contrast to the
results of Refs. [19,24,26,31,33–36], both quantities Δμe
and ∇μ∞n are almost independent of the relaxation time τnp
and beta-reaction rate.11 As a consequence, the ambipolar
diffusion timescale can be estimated as (see Sec. VI for

11To make this statement more precise, see Appendix D.
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more details): τB∼B2=½Jnpðup−unÞ2�∼npmpR2=ðB2τpnÞ.
This estimate coincides with the solenoidal ambipolar
diffusion timescale introduced in Ref. [36] (see Eq. (34)
there). Note that the irrotational diffusion timescale of
Ref. [36] (see also Refs. [6,19,24–26,28,31,33–35]) does
not appear in our analysis.
Proceeding in a very similar way in the case of npeμ-

matter, we obtain

_EB ¼
Z
V

�
−ΔμeΔΓ − ΔμμΔΓ̆

−
1

2

X
α;β¼n;p;e;μ

Jαβðuα − uβÞ2
�
dV; ð74Þ

where the source ΔΓ̆ is introduced in Sec. IV. If we
are in subthermal regime, i.e., Δμμ=ðkBTÞ ≪ 1 [or
Δμe=ðkBTÞ ≪ 1] then ΔΓ̆ (or ΔΓ) can be approximately
presented as ΔΓ̆ ¼ λμΔμμ (or ΔΓ ¼ λeΔμe), where λμ > 0

and λe > 0 are temperature- and density-dependent beta-
reaction coefficients given in, e.g., Ref. [38].
In Ref. [43], it is shown that Eqs. (72) and (74) retain

their forms in the case of superfluid matter. Equations (72)
and (74) have a clear physical interpretation. It can be
demonstrated that the right-hand sides of these equations
equal to the (minus) entropy generation rate _S [excluding
the thermal conductivity and thermo-diffusion contribu-
tions, which were neglected in the dynamic equations of
Sec. II]. In fact, this result is a special case of a more general
theorem, which can be formulated as follows.
Theorem 1.—Assume that the system is quasistationary

in a sense described in Sec. III A. Then the rate of
change of the magnetic field energy _EB in the volume V
is given by

_EB ¼ −
Z
V
T _SdV þ “Surface terms; ” ð75Þ

where the first term is the total heat generated in the system
( _S is the rate of change of the entropy density) and the
second term represents possible magnetic energy and/or
particle (e.g., neutrino) flows through the boundary of the
volume V. This theorem should work equally well for both
normal and superfluid/superconducting magnetized matter
(in the latter case _EB is the total vortex energy, including
their kinetic energy). It is nontrivial, since it forbids, in
particular, transformation of EB into the energy of macro-
scopic flows or into the “chemical” energy (when Δμe
increases). The proof will be presented elsewhere.
Note that the dissipation rate _EB calculated above

depends on the differences uα − uβ ¼ να=nα − νβ=nβ
[see Eq. (22)]. The vectors να are, in turn, expressed
through various chemical potentials and the magnetic field
by the formula (30). Thus, _EB can be calculated (even

without knowing the velocity U), provided that these
chemical potentials are determined. The next section
presents an example of such calculation.
The theorem (75) is valid as long as one can neglect the

time derivatives in the continuity equations (34) and (35).
This is not the case if there are some other factors (except
for the magnetic field) that disturb the system from the
diffusion and beta-equilibrium (see Sec. IV D for an
example of such situation). Then ∂nα=∂t can not generally
be neglected and Eq. (75) should be replaced with

_EB ¼ −
Z
V
T _SdV −

Z
V
δμ∞n

∂nb
∂t dV −

Z
V
Δμe

∂np
∂t dV

þ “Surface terms; ” ð76Þ

where the last two integrals can be evaluated by making
use of Eq. (A6) and expressions for ∂nα=∂t (α ¼ n, p).
For an illustrative example of Sec. IV D, ∂nα=∂t is given
by Eq. (60).

VI. NUMERICAL EXAMPLE

For illustration, here we present detailed calculations
of the magnetic field dissipation rate _EB for normal npe-
matter using the formula (73) [i.e., assuming Jen ¼ 0].12

Then, using Eqs. (5), (68) and σ0 ¼ e2n2e=Jep, one can
rewrite Eq. (73) as

_EB ¼ −
Z
V

�
ΔμeΔΓþ

�
c

4πene

�
2

Jep ðrotBÞ2

þ n2n
Jnp

ð∇δμ∞n Þ2
�
dV: ð77Þ

In what follows, we take Jep and Jnp from Refs. [51,52];
ΔΓ due to nonequilibrium modified Urca (hereafter
MUrca) processes [denoted as ΔΓðMUÞ] is taken in the
same simple form as in Ref. [35] (see also references
therein), but with the nonlinear corrections from
Refs. [38,53]; for ΔΓðDUÞ due to nonequilibrium direct
Urca (hereafter DUrca) process we employ the exact
expression listed in Refs. [38,53], but set the effective
masses of nucleons to m�

p ¼ 0.7mp, m�
n ¼ 0.7mn:

Jep ≈ 2.0 × 1028T2
8

�
ρ0
ρ

�
5=3

�
ne
n0

�
4=3 g

cm3 s
; ð78Þ

Jnp ≈ 1.25 × 1031T2
8

�
ρ0
ρ

�
1=3

�
np
n0

�
g

cm3 s
; ð79Þ

12In fact, this simple example admits also relatively straight-
forward calculation of the components Ur and Uθ of the flow
velocity U (see Appendix D, where the components unr and unθ
of the neutron velocity un are calculated). We, however, plan to
find all the components of U in a future work.
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ΔΓðMUÞ ≈ 5× 1027
Δμe

erg cm3 s
T6
8

�
ρ

ρ0

�
2=3

�
1þ 189

367

�
Δμe
πkBT

�
2

þ 21

367

�
Δμe
πkBT

�
4

þ 3

1835

�
Δμe
πkBT

�
6
�
; ð80Þ

ΔΓðDUÞ ≈ 1.6× 1036
Δμe

ergcm3 s
T4
8

�
ne
n0

�
1=3

�
1þ 10

17

�
Δμe
πkBT

�
2

þ 1

17

�
Δμe
πkBT

�
4
�
: ð81Þ

Here ρ ¼ ε=c2 is the density; ρ0 ¼ 2.8 × 1014 g cm−3 s−1;
n0 ¼ 0.16 fm−3; T8 ¼ T=ð108 KÞ. The first three equa-
tions, (78)–(80), are based on a rather outdated micro-
physics and are used here for simplicity. We checked,
however, that more accurate (but lengthy) expressions for
Jep and ΔΓðMUÞ, available in the literature (see, e.g.,
Refs. [38,54]), do not affect our results much. Note that
in Eqs. (80) and (81), we employ the nonlinear expressions
for ΔΓðMUÞ and ΔΓðDUÞ valid at arbitrary ratio of
Δμe=ðkBTÞ (not only at Δμe ≪ kBT).
Using Eqs. (68), (79), and the results of Appendix A,

it is straightforward to estimate the typical difference
between the neutron and proton velocities, jun − upj∼
~B2=ð4πJnpRÞ ∼ 3 × 10−10 ~B2

14=ðT2
8R6Þ cm s−1, where ~B14

is a typical magnetic field in units of 1014 G and R6

is a typical lengthscale in units of 106 cm. This result
should be compared with an estimate for jue − upj,
following from Eqs. (5) and (9): jue−upj∼Bc=ð4πeneRÞ∼
10−11 ~B14=R6 cms−1.
To evaluate the integral (77) we need to specify the

magnetic field and then, using it, determine the functions
Δμe and δμ∞n from the formulas given in Appendix A. For
numerical calculations, we choose the toroidal-poloidal
magnetic field configuration from Ref. [35] (see Sec. III
there and our Appendix C). We adopt the three models
of the magnetic field, which differ by the ratio of
maximum absolute values of toroidal and poloidal fields,
BT max=BP max (see Tab. I). The first and the last of these
models coincide with, respectively, the models A and B
from Ref. [35].
We also need the (equilibrium) radial profiles of the

functions ρðrÞ, nbðrÞ, and neðrÞ in the stellar core. To
calculate them we employed HHJ equation of state [55],

which gives the circumferential radius RNS ¼ 12.2 km
for a model of an NS with the mass M ¼ 1.4 M⊙. Note
that DUrca process is forbidden for a chosen NS model.
However, to get an impression of a possible effect of
nonequilibrium processes which are stronger than MUrca,
we artificially switched DUrca on in one of our models (in
the whole core).13

Using these models and the formulas from Appendix A,
we calculate the functions Δμe and δμ∞n [to do this, we also
need to know the function ζðrÞ, see Eqs. (A4) and (A5); it is
calculated in Appendix D following the general procedure
described in Sec. III C 1]. Then we have all the necessary
information to calculate the integral (77). Choosing ~B ¼
max fBP max; BT maxg and ~n ¼ n0 in Eqs. (A7) and (A8),
and integrating over the whole NS core, we find

_EB ¼ −αðtypeÞR
~B4
14Tk

8

�
1þ βðtypeÞ2

~B4
14

T2
8

þ βðtypeÞ4

~B8
14

T4
8

þ βðtypeÞ6

~B12
14

T6
8

�
− αOhm ~B2

14T2
8 − αAmb

~B4
14

T2
8

; ð82Þ

where k ¼ 6 for MUrca (type ¼ MU) and k ¼ 4 for DUrca
(type ¼ DU) processes, and the coefficients α and β are
listed in Table I. One can compare this dissipation rate with
the total magnetic field energy stored in the core,

EB ¼
Z
V

B2

8π
dV ¼ γ ~B2

14; ð83Þ

where the numerical factor γ is also listed in Table I.
Figures 1 and 2 display the characteristic magnetic field
decay timescale, τB ≡ 2EB= _EB, due to the mechanisms
described above. Thick black lines separate regions where
the contribution into τB of one or another term in Eq. (82) is
dominant. Thus, in the ‘MUrca’ and ‘DUrca’ domains the
nonequilibrium beta-processes are the most important [first
term in Eq. (82)]; in the “Ohmic decay” domain (second
term) ohmic dissipation prevails; finally in the “ambipolar

TABLE I. Numerical coefficients in Eqs. (82) and (83) for an NS withM ¼ 1.4 M⊙. Abbreviation ‘MU’ and ‘DU’ stands for MUrca
and DUrca processes as the main neutrino emission mechanisms, respectively.

BT max=BP max γ [1044 erg] αR [1023 erg=s] β2 × 108 β4 × 1015 β6 × 1024 αOhm [1025 erg=s] αAmb [1030 erg=s]
MU DU MU DU MU DU MU DU

0 4.0 1.1 1.3 × 108 1.0 1.3 0.09 0.1 0.3 0 0.52 1.1
1 5.1 6.5 7.5 × 108 6.0 6.9 1.3 1.3 8.2 0 3.7 9.8
2.29 1.9 5.1 5.9 × 108 6.5 7.5 1.4 1.4 8.0 0 3.3 7.9

13One should bear in mind that even if DUrca is closed, there
could be other very powerful nonequilibrium processes of
particle mutual transformations if we allow for hyperons in the
NS core [56–58]. To our knowledge, these nonleptonic processes
were ignored in the literature devoted to the magnetic field
evolution, but they can be very effective dissipation agents.
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diffusion” domain the third term mostly determines the
timescale τB. As we have already emphasized in Sec. V, this
timescale coincides with the solenoidal ambipolar time-
scale from Ref. [36].
As follows from the analysis of the figures, the boundary

between the ambipolar diffusion and reaction (MUrca or
DUrca) domains is independent of ~B at ~B≲ 1015 G. This
means that the nonlinear terms [see square bracket in
Eq. (82)] are not important at such ~B and can be neglected.
The nonlinear regime of beta-reactions rapidly switches
on at ~B≳ 1016 G (MUrca) or 3 × 1015 G (DUrca). Note,
however, that the magnetic fields that large become
quantizing, which may affect the results quantitatively
(but not qualitatively, see, e.g., Refs. [37,59] and figure 3
in Ref. [52]). Second, there is a clear separation between
the domains: the nonequilibrium beta-processes prevail at

high ~B and T; ambipolar diffusion becomes important at
relatively low temperature (the corresponding timescale
scales as 1=T2), while the Ohmic decay plays a dominant
role at low magnetic fields, but then the typical timescale
exceeds the age of the Universe. Finally, one may note that
when DUrca is switched on, it becomes the main dis-
sipation mechanism in the almost whole region of ~B
and T shown in Fig. 2. Moreover, a typical timescale τB
for this mechanism can be very small, about a century
for T ≳ 6 × 108 K and ~B ∼ 1014 G and 4–7 days for
~B ∼ 1016 G. The magnetic field will reconfigure (by
effective dissipation) on these short timescales in order
to vanish Δμe in the core, provided that the system evolves
in the subthermal regime (Δμe ≲ kBT). The case of the
suprathermal regime (Δμe ≳ kBT) is a bit more tricky and
will be analysed by us elsewhere.

FIG. 2. The same as in Fig. 1 but for the nonequilibrium DUrca process as the main mechanism that restores chemical equilibrium.

FIG. 1. The magnetic field decay timescale τB ¼ 2EB= _EB in the case of the nonequilibrium MUrca processes as the main mechanism
restoring chemical equilibrium. From left to right: BT max=BPmax ¼ 0, 1, 2.29. Thin white lines correspond to log τB ¼ const. Thick
black lines in the (log ~B − logT) plane separate the regions where one of the three dissipation mechanisms (ambipolar diffusion, MUrca
processes, or Ohmic decay) is most efficient.
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VII. CONCLUSIONS AND FINAL REMARKS

In this work we study the quasistationary equilibrium
and dissipation in magnetized cores of NSs. We argue
that the generally accepted approach to this problem
pioneered by Goldreich and Reisenegger [36] (see also
Refs. [19,24,26,31,33–35]) should be revised (see
Appendix B for details). Taking, as an example, normal
npe-matter in NS cores, we formulate a general scheme
allowing one to find all the necessary ingredients (thermo-
dynamic parameters, velocities, electric field, etc.) to self-
consistently follow the quasistationary evolution of the
stellar magnetic field. Our results can be summarized as
follows:

(i) Expanding the quantities Δμeðr; θÞ≡ μp þ μe − μn
and δμ∞n ðr; θÞ in the Legendre polynomials
Plðcos θÞ, we demonstrate that all the components
with l ≠ 0 are fixed for stratified NSs by specifying
the magnetic field configuration. This is in contrast
to Refs. [19,24,26,31,33–35], in which Δμeðr; θÞ is
determined from a single scalar differential equation
depending on both the beta-reaction coefficient λe
and the relaxation timescale τnp.

(ii) The flow velocity U, defined by Eq. (10), does
not vanish and plays an important role in maintain-
ing the quasiequilibrium. Its components Ur and Uθ

can be found from the continuity equations (34)
and (35), and they depend, in particular, on the
sources ΔΓ.

(iii) The requirement of regularity ofUr andUθ at r → 0,
θ → 0, and θ → π allows us to determine the
l ¼ 0 components of the functions Δμe and δμ∞n
(Appendix D). It turns out that they depend on T
only in the narrow range of temperatures, where the
dimensionless parameter λeJnpR2=n2p ∼ 1.

(iv) The φ-component of the velocity U is of special
interest. It should be chosen in such a way to ensure
that the system is in the quasistationary state during
its evolution [see the condition (40)].

(v) The results listed above are obtained for npe
composition of NS cores and for axisymmetric
magnetic field configurations. However, they
can be easily generalized to include muons
(and other particle species), nonaxisymmetric
magnetic fields, and superfluidity/superconductivity
(Secs. IVA–IVC). They can also be generalized to
the case when there are other factors (in addition to
the magnetic field) disturbing the system from the
diffusion and beta-equilibrium (Sec. IVD).

(vi) We provide the formulas for the rate of magnetic
field energy dissipation for both normal npe and
npeμ-matter [see Eqs. (72) and (74)]. These for-
mulas retain its form in the superfluid matter, see
Ref. [43]. In the limiting case when electron-neutron
collisions are neglected (Jen ¼ 0), our Eq. (72)
reduces to the well-known result of Ref. [36]. What

is more interesting, we formulate a theorem which
states that, under quasistationary conditions (see
Sec. III A), all the heat generated in the system is
due to dissipation of the magnetic energy, excluding
possible losses through the system boundary,
_EB ¼ −

R
V T _SdV þ “Surface terms”.

(vii) Our results are illustrated by a numerical example
in which we calculate the dissipation timescales for
the magnetic field as functions of typical field and
temperature (Sec. VI). We demonstrate, in particular,
that our ambipolar diffusion timescale coincides
with the solenoidal ambipolar timescale of Ref. [36],
while the irrotational timescale (and the correspond-
ing regime, see, e.g., Refs. [6,19,24–26,28,31,
33–36]) does not appear in our analysis.

(viii) We see three immediate directions for future work.
First, it would be extremely interesting to calculate
the flow velocity U and hence to obtain all the
necessary ingredients to follow the quasistationary
magnetic field evolution in NSs. Second, an im-
portant problem concerns the topology of currents in
the vicinity of the crust-core interface. How much
magnetic energy flows away from the core and
dissipates in the crust? This problem was completely
ignored in the present paper. Third, the present work
indicates the need to re-examine magnetothermal
evolution of NSs, especially, magnetars. Could the
observed surface temperature of magnetars be sup-
ported by the magnetic field dissipation in their
cores? What is the role of suprathermal regime
(Δμe ≳ kBT) of beta-processes in such evolution?
We hope to address these issues in our future work.
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APPENDIX A: SOLUTION TO EQ. (18)

Introducing the parameters Z1 and Z2,

Z1 ¼ neΔμe þ nbδμ∞n ; ðA1Þ

Z2 ¼ −
�
dne
dr

Δμe þ
dnb
dr

δμ∞n

�
; ðA2Þ

Eq. (18) can be rewritten as14

∇Z1 þ Z2er ¼ FL; ðA3Þ

14A similar equation has been recently discussed in Ref. [42].
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where FL ¼ ½j × B�=c is the Lorentz force density. The
solution to this equation reads

Z1 ¼
Z

θ

0

rFLθd~θ þ ζðrÞ; ðA4Þ

Z2 ¼ FLr −
∂
∂r

�Z
θ

0

rFLθd~θ

�
− ζ0ðrÞ; ðA5Þ

where the function ζðrÞ is determined in Sec. III C 1 (see
also Appendix D). Using Eqs. (A4) and (A5), one finds15�Δμe

δμ∞n

�
¼

� ne nb

− dne
dr − dnb

dr

�−1�Z1

Z2

�
: ðA6Þ

Note that, as follows from this equation, if we expand Δμe
(or δμ∞n ) in the series of Legendre polynomials Plðcos θÞ,
Δμe ¼

P
lΔμelPlðcos θÞ, then the harmonics Δμel with

l ≠ 0 will be independent of ζðrÞ; i.e., they are fully
determined by the magnetic field configuration.
Instead of the quantities Δμe and δμ∞n it can be

convenient to introduce the dimensionless parametersgΔμe and gδμ∞n according to definitions,

Δμe ≡
~B2

~n
gΔμe; ðA7Þ

δμ∞n ≡ ~B2

~n
gδμ∞n ; ðA8Þ

where ~B and ~n are some typical values of B and
number densities, respectively. The dimensionless param-
eter gδμ∞n is of the order of ~n=ð4πnbÞ in the star, whilegΔμe ∼ ðnb=neÞgδμ∞n for the magnetic field configurations
considered in this paper.

APPENDIX B: TRADITIONAL DERIVATION
OF THE SCALAR EQUATION FOR Δμe

Here we present the “traditional” derivation of the scalar
equation for Δμe following the recent work [35], and
briefly discuss why (as we believe) the solution to this
equation should not be relied upon. Below we consider
npe-matter (i.e., ne ¼ np) and assume that Jen ¼ 0 (neu-
trons do not interact with electrons). Then, using Eqs. (16),
(17), and (68), one obtains

∇Δμe þ
μp

x2nc2τpn
vamb ¼

FL

ne
; ðB1Þ

where vamb≡xnðup−unÞ; xn≡nn=nb; τpn¼μpnp=ðc2JnpÞ.
Taking divergence of this equation and using the continuity
equations (31)–(33), one finds

div∇Δμe −
1

b
∂Δμe
∂r − βdivðnbunÞ ¼ div

�
FL

ne

�
−
1

b
FLr

ne
;

ðB2Þ

where 1=b≡ ð1=βÞdβ=dr and β≡ μp=ðc2xnnpτpnÞ. The
next step in the traditional approach consists in expressing
divðnbunÞ through Δμe, which requires some further
approximations [35]. For example, one can write (below
we only consider the subthermal regime in which
ΔΓ ¼ λeΔμe; see Secs. V and VI for details)

xndivðnbunÞ ¼ xndiv

�
nnun
xn

�
¼ λeΔμe − ∇xnðnbunÞ
≈ λeΔμe; ðB3Þ

where we, following Ref. [35], neglected the term propor-
tional to ∇xn. Using this approximation, Eq. (B2) takes the
final form [35]

div∇Δμe −
1

b
∂Δμe
∂r −

1

a2
Δμe ¼ div

�
FL

ne

�
−
1

b
FLr

ne
; ðB4Þ

where 1=a2 ≡ βλe=xn. The authors of Ref. [35] impose the
following boundary conditions for this equation: regularity
of the ambipolar velocity at the origin and the magnetic
axis, and vanishing of its radial component at the crust-core
interface.16 With these boundary conditions Eq. (B4) can
be solved and it is easy to see that, generally, Δμe will
depend on the relaxation time τpn and the beta-reaction
rate (through the coefficient λe).

17 This result apparently
contradicts our solution (see Appendix A). Moreover, it
follows from Eq. (B4) that at large temperatures (when
1=a2 → ∞) Δμe ¼ 0, while our solution (A6) predicts that
Δμe does not necessary vanish and is determined by the
current magnetic field configuration (which, of course, will
evolve in time to smooth out deviations from chemical

15This solution exists only for stratified stars. See also
footnote 6.

16Actually, we see no physical reason to require that the radial
component of the ambipolar velocity vanishes at the crust-core
interface: nothing can prevent neutrons and protons from pen-
etrating into the crust, where they can suffer direct and inverse
beta-decays, interact with the existing nuclei or form the new
ones. Of course, in the crust the dynamical equations for nucleons
will differ from Eq. (1).

17It is important to stress that all harmonics in the expansion of
Δμe in Legendre polynomials Plðcos θÞ will generally depend
on τpn and λe. This is in contrast to our solution (A6), in which
only the l ¼ 0 harmonic may depend on τpn and λe through the
function ζðrÞ.
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equilibrium—but we do not consider the magnetic field
dynamics in the present paper).
So, what is wrong with Eq. (B4) and/or its solution? First

of all, an approximation of Eq. (B3), when one neglects the
term −∇xnðnbunÞ in comparison to λeΔμe is unjustified,
because un diverges at ∇xn → 0 [see Eqs. (D4) and (D5)
and the footnote 18]. Second, even if we take Eq. (B4) for
granted, it is not proven that the solution to this scalar
equation is, at the same time, the solution to the initial
vector equation (B1) [or Eq. (16)]; our analysis shows that
it is not the case.

APPENDIX C: MAGNETIC FIELD STRUCTURE

We use the same axisymmetric model of the magnetic
field as in Ref. [35] (see this reference for a detailed
description and justification of the model). In spherical
coordinates the magnetic field is given by

B ¼ 1

r sin θ
ð∇P × eφ þ T eφÞ; ðC1Þ

where eφ is the unit vector in the azimuthal direction;
Pðr; θÞ and T ðr; θÞ are the poloidal and toroidal stream
functions, respectively. They are expressed as

P ¼ P0fðr=RNSÞsin2θ;
T ¼ s

P0RNS
ðP − P0Þ2ΘðP − P0Þ; ðC2Þ

where RNS is the stellar radius; ΘðxÞ is the Heaviside step
function and the function

fðxÞ ¼
(

35
8
x2 − 21

4
x4 þ 15

8
x6; x < 1;

1
x ; x ≥ 1

ðC3Þ

determines one of the possible polynomial configurations
of the poloidal component, which is dipolar outside the
star. One can check that this magnetic field configuration
satisfies the condition (19).
This model is defined by two parameters, P0 and s. It is

more convenient, however, to choose the maximum abso-
lute value of the poloidal BP max and toroidal BT max
components as independent parameters. They are related
to P0 and s by the formulas

BPmax¼8.75
P0

R2
NS

; BTmax≈0.0254
sP0

R2
NS

; s≈345
BTmax

BPmax
:

ðC4Þ

In addition, there is a magnetic field Bp at the pole on
the stellar surface. From Eqs. (C1)–(C3) it follows that
Bp ≈ 0.229BP max. Note that, at fixed ratio BT max=BP max,

the magnetic field configuration is determined by the only
one scaling parameter, e.g., BP max or Bp.

APPENDIX D: CALCULATION OF ζðrÞ
The general scheme of Sec. III C 1 can be, of course,

applied to the simple case of Sec. VI. However, it is
easier to slightly modify it in this particular situation.
Namely, it is convenient to start directly from the continuity
equations (2) for protons and neutrons, which read, in the
quasistationary approximation,

dnp
dr

upr þ npdivup ¼ −ΔΓ; ðD1Þ

dnn
dr

unr þ nndivun ¼ ΔΓ; ðD2Þ

where the number densities np, nn depend on r only and
upr, unr are the radial components of the proton and
neutron velocities up and un, respectively. Note that these
velocities are not independent. Assuming Jen ≪ Jnp, it
follows from Eq. (68)

up ¼ un þ
nn
Jnp

∇δμ∞n : ðD3Þ

Using these equations, one can find div un and unr
18:

div un ¼ −
1

yn − yp

�
yndivMn þ ynypMnr

þ
�
yp
nn

þ yn
np

�
ΔΓ

�
; ðD4Þ

unr ¼
1

yn − yp

�
divMn þ ypMnr þ

�
1

nn
þ 1

np

�
ΔΓ

�
;

ðD5Þ

where

yi ≡ 1

ni

dni
dr

; i ¼ n; p; ðD6Þ

Mn ≡ nn
Jnp

∇δμ∞n : ðD7Þ

Since yi → OðrÞ, at r → 0, while nn, np and Jnp → const at
r → 0, it follows from Eq. (D5) that unr is finite at r → 0
only if

18Note that these quantities diverge in nonstratified neutron
stars, since 1=ðyn − ypÞ ∝ 1=ð∇xnÞ, where xn ¼ nn=nb.
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�
nn
Jnp

∇2ðδμ∞n Þþ
�
1

nn
þ 1

np

�
ΔΓ

�
r→0

∼rα; α≥1. ðD8Þ

Using Eqs. (D4) and (D5), we can find unθ and, hence,
determine an analogue of the condition (37) ensuring
finiteness of unθ,

19

Z
π

0

r sin ~θ

�
divun −

1

r2
∂ðr2unrÞ

∂r
�
d~θ ¼ 0. ðD9Þ

This condition can be conveniently rewritten in an operator
form as

P̂0

�
divun −

1

r2
∂ðr2unrÞ

∂r
�
¼ 0; ðD10Þ

where the operator P̂0 extracts l ¼ 0 component in the
Legendre expansion of an arbitrary function fðr; θÞ ¼P∞

l¼0 flðrÞPlðcos θÞ: P̂0fðr; θÞ≡ 1=2
R
π
0 sin θfðr; θÞdθ ¼

f0ðrÞ. Now, if we substitute Eqs. (D4)–(D7) into Eq. (D10),
we obtain a third-order linear differential equation depend-
ing on ðP̂0δμ

∞
n Þ000, ðP̂0δμ

∞
n Þ00, ðP̂0δμ

∞
n Þ0, ðP̂0ΔΓÞ0, and

P̂0ΔΓ, where the prime (0) means d=dr. Schematically, it
can be presented as

A1ðrÞðP̂0δμ
∞
n Þ000 þ A2ðrÞðP̂0δμ

∞
n Þ00 þ A3ðrÞðP̂0δμ

∞
n Þ0

þ A4ðrÞðP̂0ΔΓÞ0 þ A5ðrÞP̂0ΔΓ ¼ 0; ðD11Þ

where A1ðrÞ, A2ðrÞ, A3ðrÞ, A4ðrÞ, and A5ðrÞ are some
coefficients that can be easily determined from Eqs. (D4)
and (D5). Equation (D11) should be supplemented with the
boundary conditions. They can be found, in particular, from
Eq. (D8), whose l ¼ 0 component is given by�
nn
Jnp

∇2ðP̂0δμ
∞
n Þ þ

�
1

nn
þ 1

np

�
P̂0ΔΓ

�
r→0

∼ rα; α ≥ 1.

ðD12Þ

Note that Eqs. (D11) and (D12) depend on two functions,
P̂0δμ

∞
n and P̂0ΔΓ. In fact, they are not independent and are

related by the (l ¼ 0) radial component of Eq. (16), in
which δΔμ∞e ¼ Δμe [see Eq. (17)],

ðP̂0δμ
∞
n Þ0 ¼

1

nb
P̂0FLr −

ne
nb

ðP̂0ΔμeÞ0: ðD13Þ

Since ΔΓ is known function of Δμe [see Eqs. (80) and (81)
in Sec. VI], and all the harmonics in the expansion of Δμe
in Legendre polynomials except for l ¼ 0 are specified by

the magnetic field [see Eq. (A6)], the relation between
P̂0Δμe and P̂0ΔΓ can be established after rather tedious
but straightforward calculations. To simplify the sub-
sequent presentation, below we consider the subthermal
regime,Δμe ≪ kBT, in whichΔΓ ¼ λeΔμe, where λe is the
beta-reaction coefficient that can be found from Eqs. (80)
or (81).
Before proceeding further, let us make the following

comment. It is easy to demonstrate that the last two terms in
Eq. (D11) [and the last term in Eq. (D12)] can be neglected
(i.e., beta-processes are not important) if n2p=ðR2JnpÞ ≫ λe
(R is the typical lengthscale). Then Eq. (D11) becomes a
homogeneous differential equation with the boundary
condition ∇2ðP̂0δμ

∞
n Þjr→0 ∼ rα (α ≥ 1) [see Eq. (D12)],

which results in ðP̂0δμ
∞
n Þ0jr→0 ¼ 0 and ðP̂0δμ

∞
n Þ00jr→0 ¼ 0.

It has a unique solution, ðP̂0δμ
∞
n Þ0 ¼ 0, i.e., P̂0δμ

∞
n ðrÞ ¼ C.

The constant C here is arbitrary; it specifies the central
baryon number density of our perturbed NS model
(following Ref. [60], we prefer to define a stellar
configuration by choosing central baryon density rather
than the total number of baryons in the perturbed star). In
what follows we assume C ¼ 0. In the opposite limit,
n2p=ðR2JnpÞ ≪ λe (diffusion is not efficient), similar
consideration leads to the solution P̂0ΔΓðrÞ ¼ 0, which
reduces to P̂0Δμe ¼ 0 in the subthermal regime.
Irrespective of the limit, knowledge of one function
[P̂0δμ

∞
n or P̂0Δμe] allows one to determine the derivative

of another function using Eq. (D13).
As follows from these examples, the solution in both

limits is not sensitive to the temperature or a particular
dissipation mechanism. However, an interplay of the
dissipation mechanisms (ambipolar diffusion and nonequi-
librium beta-processes) determines a range of transition
temperatures, defined by the condition n2p=ðR2JnpÞ ∼ λe, at
which one asymptotic solution transforms into another.
Since λe is a strong function of temperature, the transition
region is quite narrow.
Generally, to solve Eq. (D11) with the boundary con-

dition (D12) one needs to express ðP̂0δμ
∞
n Þ0 in these

equations through P̂0FLr and ðP̂0ΔμeÞ0 using Eq. (D13).
The resulting inhomogeneous differential equation allows
one to determine the function P̂0ΔμeðrÞ (we remind that we
assume P̂0ΔΓ ¼ λeP̂0Δμe). The boundary conditions for
P̂0ΔμeðrÞ depend on the behaviour of the magnetic field at
r → 0 and follow from the analysis of (D12):

ðP̂0ΔμeÞ0jr→0 ¼ 0; ðD14Þ

ðP̂0ΔμeÞ00jr→0 ¼
�
1

ne
P̂0FLr

�0����
r→0

þ
�
λJnpn2b
3n2nn2p

P̂0Δμe
�����

r→0

: ðD15Þ
19It is clear that if un is well behaved, then all other velocities

(including U) are also well behaved and can be easily expressed
through un.
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We have here only two boundary conditions, while to solve
Eq. (D11) we need, generally, one more condition which
specifies P̂0Δμe at some r.20 Presumably, this additional
condition could be obtained by matching the solution of
(D11) with the solution of similar equation in the crust, but
we have not tried to perform such an analysis. Let us only
mention that in an idealised (and unrealistic) situation in
which λ ¼ 0 in the crust (i.e., when beta-processes are
suppressed in the crust) the condition for P̂0Δμe could
follow from the requirement that there are no net flow of
neutrons from the core to the crust (otherwise, the quasis-
tationarity condition would break down, since, by
assumption, neutrons cannot be converted into protons in
the crust). This requirement means

R
core λðP̂0ΔμeÞr2dr ¼ 0

[see Eq. (D2)], which gives us a third necessary condition
to solve (D11).
Assuming that the functions P̂0Δμe and P̂0δμ

∞
n are

already defined, an unknown function ζðrÞ can be found
from the l ¼ 0 component of equation (A4),

ζðrÞ ¼ P̂0Z1 − P̂0

Z
θ

0

rFLθd~θ: ðD16Þ

The functions δμ∞n ðr; θÞ and Δμeðr; θÞ can then be found
from Eq. (A6). Alternatively, one can avoid use of the
function ζðrÞ by presenting the solution in the following
equivalent way,

δμ∞n ¼ ðδμ∞n ÞA6 − P̂0ðδμ∞n ÞA6 þ P̂0δμ
∞
n ; ðD17Þ

Δμe ¼ ðΔμeÞA6 − P̂0ðΔμeÞA6 þ P̂0Δμe; ðD18Þ

where the functions ðδμ∞n ÞA6 and ðΔμeÞA6 are given by
Eq. (A6). Although they depend on an (unknown) function
ζðrÞ, one can choose this function in an arbitrary way (e.g.,
set ζ ¼ 0) to calculate ðδμ∞n ÞA6 and ðΔμeÞA6, since it drops
out from Eqs. (D17) and (D18).
To plot Figs. 1 and 2, we decided to use an approximate

method for calculation of ζðrÞ. Namely, we employed the
asymptotic solutions described above, assuming that
P̂0δμ

∞
n ðrÞ ¼ 0 in the ambipolar diffusion domain (see

Figs. 1 and 2) and P̂0Δμe ¼ 0 in the MUrca (DUrca)
domain. We checked that the figures are not too sensitive to
an actual form of the solution.
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