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Axions and axionlike particles are a leading model for the dark matter in the Universe; therefore,
dark matter halos may be boson stars in the process of collapsing. We examine a class of static boson
stars with a nonminimal coupling to gravity. We modify the gravitational density of the boson field to be
proportional to an arbitrary power of the modulus of the field, introducing a nonstandard coupling. We find
a class of solutions very similar to Newtonian polytropic stars that we denote “quantum polytropes.”
These quantum polytropes are supported by a nonlocal quantum pressure and follow an equation
very similar to the Lane-Emden equation for classical polytropes. Furthermore, we derive a simple
condition on the exponent of the nonlinear gravitational coupling, α > 8=3, beyond which the equilibrium
solutions are unstable.

DOI: 10.1103/PhysRevD.96.103010

I. INTRODUCTION

Bosonic dark matter possibly in the form of low-mass
axions is a leading contender to explain some inconsis-
tencies in the standard cold dark matter (CDM) model [1].
It is inspired from both a theoretical point of view [2] as
emerging from string theory and observationally in which
bosonic dark matter can address some potential discrep-
ancies in the standard CDM model [3–5]. Because the
bosons can collapse to form a starlike object [6,7], small-
scale structure would be different if the dark matter were
dominated by light bosons. Furthermore, the collisions of
these dark matter cores or boson stars would result in
potentially observable interference [8]. It is these boson
stars that are the focus of this investigation.
The Schrodinger-Poisson equation provides a model for

a boson star [9] in the Newtonian limit. We will explore the
solutions to the Schrodinger-Poisson equation with a small
yet nontrivial modification. The modified Schrodinger-
Poisson equation is given by the two equations

i
∂ψ
∂t ¼ −

1

2
∇2ψ þ Vψ ; ð1Þ

and

∇2V ¼ jψ jα ð2Þ

where we have taken m ¼ 1 and 4πG ¼ 1. For α ¼ 2, this
equation is the well-known nonrelativistic limit of the
Klein-Gordon equation coupled to gravity [10]. For
α ≠ 2, this is not the case. Although the Newtonian limit
of a self-gravitating scalar field with a potential of the form
jψ jα would yield Eq. (2), one would not get Eq. (1), the

Schrodinger equation, as the nonrelativistic limit for the
dynamics of the scalar field. Instead, Eqs. (1) and (2) result
as the Newtonian limit of a relativistic scalar field with a
nonminimal coupling to gravity such as the scalar-tensor
action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ Lm

jψ jα−2 þ ∂μψ̄∂μψ − jψ j2
�
; ð3Þ

where R is the Ricci scalar, g is the determinant of the
metric, and Lm is the Lagrangian density of the matter.
The small change in Eq. (2) yields a new richness to the

solutions for Newtonian boson stars that we will call
“quantum polytropes” for reasons that will become obvious
later. Although authors have considered other modifica-
tions to the Schrodinger-Poisson equation such as an
electromagnetic field [11] or nonlinear gravitational terms
[12,13], the nonlinear coupling of the gravitational source
proposed here is novel.

II. HOMOLOGY

We can examine how the equations change under a
homology or scale transformation. Let us replace the four
variables with scaled versions as

ψ →Aψ ; V→AaV; r→Abr and t→Act ð4Þ

and try to find the values of the exponents that result in the
same equations again,

iA1−c ∂ψ
∂t ¼ −

1

2
A1−2b∇2ψ þ A1þaVψ ð5Þ
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Aa−2b∇2V ¼ Aαjψ jα: ð6Þ

This yields the equations for the exponents

1 − c ¼ 1 − 2b ¼ 1þ a; a − 2b ¼ α ð7Þ

and the following scalings:

ψ→Aψ ; V→Aα=2V; r→A−α=4r and t→A−α=2t: ð8Þ

The total norm of a solution which is conserved is given by

N ¼
Z

∞

0

4πr2jψ j2dr ð9Þ

and scales under the homology transformation as N →
Að8−3αÞ=4. For a static solution, the value of the energy
eigenvalue (E) scales as Aα=2. Because the solution is not
normalized, the total energy will scale as the product of the
eigenvalue and the norm, yielding Að8−αÞ=4.
We see that for α ¼ 8=3 one can increase the central

value of the wave function ψð0Þwithout changing the norm
but increasing the magnitude of the energy resulting in a
more bound configuration. For larger values of α, the value
of the norm decreases. We can argue that the this decrease
in the norm results in an unstable configuration. Let us
divide the configuration arbitrarily into a central region and
an arbitrarily small envelope. If we let the central region
collapse slightly, energy is released, but according to the
decrease in norm of this central region, we still have some
material left to add to the diffuse envelope to carry the
excess energy, and the process can continue to release
energy. The star is unstable. For α < 8=3, the slight
collapse results in an increase in the norm of the central
region, but there is no material to add except from the
arbitrarily small envelope, so the collapse fails. If we let the
star expand a bit in this case, the norm decreases. However,
the expansion costs energy, so the star is again stable to the
radial perturbation.
For α ¼ 8=3, the norm is independent of ψð0Þ and only

depends on the number of nodes of the solution; therefore,
it is natural to compare solutions for different values of α by
choosing to normalize them to the value of the norm for
α ¼ 8=3 for the corresponding state.

III. REAL EQUATIONS OF MOTION

We would like examine the static solutions of Eqs. (1)
and (2). We will make the substitution

ψ ¼ aeiS; ð10Þ

where the functions a ¼ aðr; tÞ and S ¼ Sðr; tÞ are explic-
itly real. This results in the three equations

∂a2
∂t þ∇ · ða2∇SÞ ¼ 0; ð11Þ

∂S
∂t þ

1

2
ð∇SÞ2 þ V −

1

2a
∇2a ¼ 0; ð12Þ

∇2V ¼ jajα; ð13Þ

which, in analogy with fluid mechanics, we can call the
continuity equation, the Euler equation, and the Poisson
equation. We can develop this analogy further by defining
ρ ¼ a2 and U ¼ ∇S and taking the gradient of Eq. (12) to
yield

∂ρ
∂t þ∇ · ðρUÞ ¼ 0; ð14Þ

∂U
∂t þ ðU ·∇ÞUþ∇

�
V −

1

2a
∇2a

�
¼ 0: ð15Þ

These are simply the Madelung equations [14]. If we had
retained constants such as the Planck constant h in the
Schrodinger equation, we would find the that final term in
the Euler equation is proportional to h2 and is a quantum
mechanical specific enthalpy,

w ¼ −
1

2a
∇2a: ð16Þ

Furthermore, because U ¼ ∇S, the vorticity of the flow
must vanish.
We can exploit the fluid analogy further to write the

equations in a Lagrangian form using

d
dt

¼ ∂
∂tþ ðU · ∇Þ ð17Þ

to yield

dρ
dt

þ ρ∇ · U ¼ 0; ð18Þ

dU
dt

þ∇
�
V −

1

2a
∇2a

�
¼ 0: ð19Þ

A static solution to these equations will have S ¼ −Et in
analogy with the time-independent Schrodinger equation
and a ¼ aðrÞ, where a satisfies

−Ea −
1

2
∇2aþ Va ¼ 0: ð20Þ

An alternative treatment would exploit the fact that U must
vanish for this static solution, so

1

2a
∇2a ¼ V þ constant; ð21Þ
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where we can identify the constant with the value of E in
Eq. (20). Furthermore, we have

∇2V ¼ jajα ¼ ∇2

�
1

2a
∇2a

�
; ð22Þ

so if we specialize to a spherically symmetric solution,
we have

−
1

r
d2

dr2

�
1

2a
d2

dr2
ðraÞ

�
þ jajα ¼ 0: ð23Þ

This equation is reminiscent of the Lane-Emden equation
for polytropes

1

r
d2

dr2
ðrθÞ þ θn ¼ 0; ð24Þ

so a natural designation for these objects is quantum
polytropes.
Our equation is of course fourth order with a negative

sign. We must supply four boundary conditions. In prin-
ciple, these are

að0Þ ¼ a0; ð25Þ

da
dr

����
r¼0

¼ 0; ð26Þ

−
1

2ar
d2ðraÞ
dr2

����
r¼0

¼ w0 ð27Þ

and

d
dr

�
1

2ar
d2ðraÞ
dr2

�
r¼0

¼ 0: ð28Þ

Of course, not all values of a0 and w0 will yield physically
reasonable configurations, so we must vary w0, for exam-
ple, to find solutions such that limr→∞aðrÞ ¼ 0. However,
using the scaling rules in Sec. II, once the value of w0 is
determined, one can rescale the solution.
In the case of the Lane-Emden equation for n < 5, one

can find solutions in which θ ¼ 0 at a finite radius, i.e.,
a star with a surface. From Eq. (20), we find that

E ¼ − lim
r→∞

1

2ar
d2ðraÞ
dr2

¼ lim
r→∞

wðrÞ: ð29Þ

Therefore, if E ≠ 0, the quantum system must extend to an
infinite radius.
To examine the regularity conditions near the center, let

us expand the solution near the center as

aðrÞ ¼ a0 þ a2r2 þ a4r4; ð30Þ

where we have dropped the odd terms to ensure that the
derivative of the density and the derivative of the enthalpy
vanish at the center. We find that

w0 ¼ −3
a2
a0

ð31Þ

and

a4 ¼
aα0a

2
0 þ 18a22
60a0

¼ a0

�ja0jα
60

þ w2
0

30

�
: ð32Þ

As we would like to focus on the ground state in which
the function aðrÞ has no nodes, we can also make the
substitution that aðrÞ ¼ eb, which yields a simpler differ-
ential equation for bðrÞ,

bð4ÞðrÞ ¼ 2

�
eαb −

2

r
ðb0b00 þ b000Þ − b0b000 − ðb00Þ2

�
ð33Þ

and

w ¼ −
b00 þ ðb0Þ2

2
−
b0

r
: ð34Þ

An examination of Eqs. (33) and (34) yields the boundary
conditions at r ¼ 0,

b0ð0Þ ¼ 0; ð35Þ

b00ð0Þ ¼ −
2

3
w0; ð36Þ

b000ð0Þ ¼ 0; ð37Þ

so a series expansion about r ¼ 0 for bðrÞ yields

bðrÞ ¼ b0 −
w0

3
r2 þ 3eαb0 − 4w2

0

180
r4 þOðr5Þ: ð38Þ

Furthermore, we can examine the behavior at large dis-
tances from Eq. (29) to find that

lim
r→∞

bðrÞ ≈ −r
ffiffiffiffiffiffiffiffiffi
−2E

p
¼ −r

ffiffiffiffiffiffiffiffiffi
−2w

p
: ð39Þ

Figure 1 depicts the ground-state wave function
bðrÞ ¼ lnψðrÞ for various values of α. The wave
function is normalized such that N¼R

dVjψ j2 is constant.
Furthermore, we have verified that the scaling relations of
Sec. II hold for these solutions. At fixed total normaliza-
tion, the wave function is more spatially extended as α
increases. The slope for large values of r decreases
gradually with increasing α, reflecting the modest decrease
in the binding energy as α increases.
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IV. EXCITED STATES

To study the excited states [15] in which aðrÞ may have
nodes, we have a more complicated differential equation of
the form

að4ÞðrÞ ¼ 2ajajα − 4a000

r
þ N1

a
þ N2

a2
; ð40Þ

where

N1 ¼ 2a0a000 þ ða00Þ2 þ 8

r
a0a00 ð41Þ

and

N2 ¼ −2ða0Þ2a00 − 4

r
ða0Þ3: ð42Þ

Rather than deal with these singular points, we can return to
the coupled differential Eqs. (1) and (2) to examine the
excited states.
We will make the substitutions that u ¼ ψðrÞre−iEt and

v ¼ VðrÞr to yield the equations

Eu ¼ −
1

2
u00 þ vu

r
ð43Þ

and

v00 ¼ jujαr1−α; ð44Þ

where we have focused on spherically symmetric configu-
rations. Because Eqs. (1) and (2) are nonlinear, we cannot
follow the strategy of expanding the solutions in terms of
spherical harmonics to yield a simple solution beyond
spherical symmetry. The general solution is beyond the
scope of this paper.
We must supply four boundary conditions for the

functions u and v, and these are u ¼ 0, u0 ¼ ψð0Þ,
v ¼ 0, and v0 ¼ Vð0Þ, where we take Vð0Þ ¼ 0 because
we can shift both the values of E and VðrÞ by a constant and
retain the same equations. We generally shift E and VðrÞ
such that limr→∞VðrÞ ¼ 0. We can also take ψð0Þ ¼ 1 and
scale the resulting solution using the scaling relations in
Sec. II. Finally, only specific values of E will result in
normalizable solutions, so we shoot from the origin to
large radii and find the values of E that result in normal-
izable solutions. Figure 2 depicts the ground state and the
excited states for α ¼ 2 and α ¼ 3 in which the wave
function has been normalized such that ψð0Þ ¼ 1. It is
important to note that the various states correspond to
different total normalizations, i.e., different numbers of
particles. Furthermore, we will call the ground state the
state without any nodes and the excited states the states
with nodes, so the quantum number n denotes the number
of antinodes or extrema, starting with 1; therefore, Fig. 2
shows the wave functions for n¼1 to n ¼ 8. The wave
functions for α ¼ 2 and α ¼ 3 appear quite similar modulo
a size scaling. The α ¼ 3 wave functions with this
particular normalization extend over a larger range in
radius than the α ¼ 2 wave functions.
Of course, what is most interesting are the configura-

tions for a fixed number of particles, so a particular
value of N ¼ R

dVjψ j2. For α ≠ 8=3, the total normali-
zation, N, can take any value. However, for α ¼ 8=3, the
normalization is fixed to the values of the ground and
the various excited states. Figure 3 depicts the binding
energy as a function of α for two particular choices of
normalization. As both the logarithm of the normalization
and the value of the energy E are smooth functions of
α for ψð0Þ ¼ 1, we calculate these values for α ¼ 2, 7=3,
8=3, 3, and 10=3 and interpolate or extrapolate over
the plotted range. We then use the scaling relations
from Sec. II to find the eignenvalues for a particular
normalization.
What is most striking about the energy levels is that for

α < 8=3 we have the normal ordering in which states with
more nodes are less bound. For α > 8=3, as the number of
nodes increases, so does the binding energy of the state.
The energy levels are not bounded from below in this case,
a hallmark of instability. For the limiting case α ¼ 8=3,
we see that at most one state is bound for a particular

FIG. 1. Upper: The energy eigenvalue of the ground state. As
discussed in the text, we choose to normalize the ground states to
have the same normalization of the α ¼ 8=3 ground-state
solution. Lower: The solid curves trace the ground state. The
function is given by the equation bðrÞ ¼ lnψðrÞ. The solutions
from bottom to top are α ¼ 1,1.5, 2, 2.5, 8=3, and 3. The black
lines show the expected slope of the solution for large values of r
from Eq. (39) for α ¼ 1 and 3. The dotted curves give the value of
wðrÞ for the same states from bottom to top.
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total normalization, N, but that its energy is arbitrary
because we can scale the value of the wave function,
which changes the energy eigenvalue without changing the
total normalization.

V. PERTURBATIONS

The results from scaling in Sec. II and from the
examination of the excited states in Sec. IV give very
strong hints that quantum polytropes with α > 8=3 are
unstable. We will prove that α > 8=3 is a sufficient
condition for instability for an arbitrary stationary configu-
ration. Let us take a constant background and examine
small perturbations of the form

a ¼ a0 þ a1ðr; tÞ and U ¼ U1ðr; tÞ ð45Þ

so we have

2a0
∂a1
∂t þ a20∇ · U1 ¼ 0; ð46Þ

∂U1

∂t þ∇
�
V1 −

1

2a0
∇2a1

�
¼ 0: ð47Þ

Now, if we take the time derivative of Eq. (46) and the
divergence of Eq. (47), we can combine the equations to
yield

2a0
∂2a1
∂t2 − a20∇2V1 þ

a0
2
∇4a1 ¼ 0 ð48Þ

and

∂2a1
∂t2 −

α

2
a1ja0jα þ

1

4
∇4a1 ¼ 0: ð49Þ

If we expand the perturbations in Fourier components, we
obtain the dispersion relation

FIG. 3. Energy eigenvalue of the states for a number of particles
fixed to that of the ground state of theα ¼ 8=3 configuration (upper
panel) and to the first excited state (lower panel). In both cases,
more bound states lie at the top. On the left-hand side (α < 8=3) of
both plots, the states from top to bottom are n ¼ 1, 2, 3, 4, 5, and 6.
On the right-hand side (α > 8=3), the ordering is reversed;
i.e., from top to bottom, the states are n ¼ 6, 5, 4, 3, 2, and 1.

FIG. 2. The ground and first seven excited states for α ¼ 2 and α ¼ 3 in which the wave function is normalized such that ψð0Þ ¼ 1.
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ω2 ¼ k4

4
−
α

2
ja0jα; ð50Þ

where the first term is the standard result for the de Broglie
wavelength of a particle and the second term is due to the
self-gravity of the perturbation.
We can be a bit more sophisticated now and assume that

small perturbations lie near a static solution so

a ¼ a0ðrÞ þ a1ðr; tÞ and U ¼ U1ðr; tÞ; ð51Þ

thus, we have

2a0
∂a1
∂t þ∇ · ða20U1Þ ¼ 0; ð52Þ

∂U1

∂t þ∇
�
a1
a0

V0 þ V1 −
1

2a0
∇2a1

�
¼ 0; ð53Þ

and if we take the time derivative of Eq. (52), we can
combine the equations to yield

2a0
∂2a1
∂t2 ¼ ∇ ·

�
a20∇

�
a1
a0

V0 þ V1 −
1

2a0
∇2a1

��
: ð54Þ

Furthermore, the perturbation of the potential satisfies

∇2V1 ¼ α
a1
a0

ja0jα−1: ð55Þ

These again yield a self-gravitating wave equation in which
the static background affects the propagation.
To examine the question of stability, we can return to

the Lagrangian formulation of the equations of motion,
Eqs. (18) and (19). We can take the time derivative of
Eq. (18) to get

d2ρ
dt2

þ dρ
dt

∇ · Uþ ρ
d
dt

∇ · U ¼ 0 ð56Þ

and the divergence of Eq. (19) to yield

d
dt

∇ · Uþ∇2

�
V −

1

2a
∇2a

�
¼ 0: ð57Þ

If we have a perturbation on a static solution, we find a
simpler equation for the perturbations in the Lagrangian
formulation:

d2ρ1
dt2

¼ ∇2

�
a1
a0

V0 þ V1 −
1

2a0
∇2a

�
: ð58Þ

We will examine a homologous transformation in which

r ¼ r0ð1þ ϵ sinωtÞ: ð59Þ

From Eq. (18), this gives

ρ¼ ρ0ð1−3ϵsinωtÞ and a¼ a0

�
1−

3

2
ϵsinωt

�
: ð60Þ

Of course, this pertubation is not a solution of Eq. (58);
however, we can use it to derive an upper bound on the
squared frequency of the oscillation. From Eq. (58), we
obtain to order ϵ

Z
dV3ϵω2 sinωta20 <

Z
dV

�
aα0

�
1−

3

2
αϵsinωt

�

− ð1−4ϵsinωtÞ∇2
1

2a0
∇2a0

�
; ð61Þ

and we can use the zeroth-order solution to simplify this to
yield

Z
dV3ϵω2 sinωta20 <

Z
dV

�
ja0jα

�
1 −

3

2
αϵ sinωt

�

− ð1 − 4ϵ sinωtÞja0jα
�

ð62Þ

and

3ω2

Z
dVa20 <

Z
dV

�
8 − 3α

2

�
ja0jα ð63Þ

so

ω2<

�
8−3α

6

�Z
dVja0jα

�Z
dVa20

�
−1
¼8−3α

6

M
N
; ð64Þ

where M is the gravitational mass of the system and N is
the number of particles. Therefore, α > 8=3 is a sufficient
condition for ω2 < 0 and instability for at least one
perturbative mode, regardless of the static configuration,
as we argued from the homology transformations in Sec. II.
If we examine an initially stationary configuration in

which U ≠ 0 but dρ=dt ¼ 0 so ∇ · U ¼ 0, we find to first
order in the perturbation that the same stability condition
applies when one uses the homologous transformation and
the variational principle, so we find that α > 8=3 is a
sufficient condition for instability in general.

VI. CONCLUSIONS

We examine a natural generalization of the Schrodinger-
Poisson equation and develop the theory of the static
solutions to this equation that we denote quantum poly-
tropes and their stability. These solutions obey a natural
fourth-order generalization of the Lane-Emden equation,
the second-order equation for classical polytropes.
Furthermore, as for classical polytropes, the question of
the stability of the solutions comes down to the exponent of
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the coupling. In the classical case, this is how the pressure
depends on density with power-law indices greater than
4=3 indicating stability. In the quantum case, it is how the
boson field generates the gravitational field that leads to
instability with power-law indices greater than 8=3 indicat-
ing instability. We demonstrate the instability in three ways,
and the criteria all coincide. We employ two classical
techniques, a homology scaling argument and perturbation
analysis, and one quantum technique, the observation that
the states are not bounded from below for α > 8=3. This is a
sufficient condition for instability, not a necessary one.
In particular, the excited states even for α ¼ 2 are
unstable [16].

The modified Schrodinger-Poisson presented here
allows for richer possibilities for the modeling of dark
matter halos and structure formation and can naturally
emerge as the Newtonian limit from an underlying rela-
tivistic field theory. In particular, if α > 8=3, the dark
matter halos may develop a quasistatic core that ultimately
collapses to form a cusplike standard cold dark matter [17]
or disperses, providing for especially rich phenomenology.
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