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Scalar condensates with large expectation values can form in the early universe, for example, in theories
with supersymmetry. The condensate can undergo fragmentation into Q-balls before decaying. If the
Q-balls dominate the energy density for some period of time, statistical fluctuations in their number density
can lead to formation of primordial black holes (PBH). In the case of supersymmetry the mass range is
limited from above by 1023 g. For a general charged scalar field, this robust mechanism can generate black
holes over a much broader mass range, including the black holes with masses of 1–100 solar masses, which
is relevant for LIGO observations of gravitational waves. Topological defects can lead to formation of PBH
in a similar fashion.
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I. INTRODUCTION

It is well established that stellar core collapse can lead to
formation of black holes. However, it remains an open
question whether some processes in the early universe could
produce primordial black holes (PBH) [1–14]. PBHs
can account for all or part of dark matter [1–6,8–14].
Furthermore, they could be responsible for some of the
gravitationalwave (GW) signals observed byLIGO [15–17].
In addition, PBHs can invade and destroy neutron stars,
ejecting neutron rich material in the process, which can
account for all or part of the r-process nucleosynthesis, as
well as the 511-keV line in the Galactic center [18]. Finally,
PBHs could provide seeds for supermassive black holes [7].
A number of scenarios for black hole formation have been
considered [5], and many of them rely on a spectrum of
primordial density perturbations that has some additional
power on certain length scales, which can be accomplished
by means of tuning an inflaton potential.
It was recently pointed out that PBHs can form in a very

generic scenario, which does not require any particular
spectrum of density perturbations from inflation [19].
Scalar fields with slowly growing potentials form a
coherent condensate at the end of inflation [20–23]. In
general, the condensate is not stable, and it breaks up in
lumps, which evolve into Q-balls [24]. The gas of Q-balls
contains a relatively low number of lumps per horizon, and
the mass contained in these lumps fluctuates significantly
from place to place. This creates relatively large fluctua-
tions of mass density in Q-balls across both subhorizon and
superhorizon distances. Since the energy density of a gas of
Q-balls redshifts as mass, it can come to dominate the
energy density temporarily, until the Q-balls decay,
returning the Universe to a radiation dominated era. The
growth of structure during the Q-ball dominated phase can

lead to copious production of primordial black holes. In this
paper we investigate this scenario in further detail.
Formation of Q-balls requires nothing more than some

scalar field with a relatively flat potential at the end of
inflation. For example, supersymmetric theories predict the
existence of scalar fields with flat potentials. PBH for-
mation in supersymmetric theories is, therefore, likely, even
if the scale of supersymmetry (SUSY) breaking exceeds the
reach of existing colliders.
A similar process can occur with topological defects,

which can also lead to relatively large inhomogeneities.
The discussion of topological defects is complicated by
their nontrivial evolution. We focus primarily on Q-balls,
and briefly comment on topological defects.
The format of this paper is as follows: in Sec. II, we

describe the fragmentation of the condensate and the
production of Q-balls; then in Sec. III we derive the
formalism for calculating the statistical moments of col-
lections of Q-balls. In Sec. IV we use the results of the
previous section to calculate the expected PBH density
and mass spectrum, and in Sec. V we account for the effects
on cosmological thermal history and evolve the PBH
distribution to the present day. In Sec. VI, we then compare
our results with current observational constraints, and in
Sec. VII explore the available parameter space. In Sec. VIII,
we comment on the applicability of this mechanism to
topological defects.

II. FORMATION OF Q-BALLS

Formation of a scalar condensate after inflation and its
fragmentation [24] is a fairly generic phenomenon. While
supersymmetry is a well-motivated theory for scalar fields
carrying global charges and having flat potentials [22,25],
our discussion can be easily generalized to an arbitrary
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scalar field with a global U(1) symmetry in the potential.
Supersymmetric potentials generically contain flat direc-
tions that are lifted only by supersymmetry breaking terms.
Some of the scalar fields that parametrize the flat directions
carry a conserved U(1) quantum number, such as the
baryon or lepton number. During inflation, these field
develop a large vacuum expectation value [20–23], leading
to a large, nonzero global charge density. When inflation is
over, the scalar condensate ϕðtÞ ¼ ϕ0ðtÞ expfiθðtÞg relaxes
to the minimum of the potential by a coherent classical
motion with _θ ≠ 0 due to the initial conditions and possible
CP violation at a high scale.
The initially homogeneous condensate is unstable with

respect to fragmentation into nontopological solitons,
Q-balls [26]. Q-balls exist in the spectrum of every super-
symmetric generalization of the standard model [27,28],
and they can be stable or long lived along a flat direction
[24,29]. In the case of a relatively large charge density
(which is necessary for Affleck-Dine baryogenesis
[22,25]), the stability of Q-balls can be analyzed analyti-
cally [24,30,31]; these results agree well with numerical
simulations [32]. One finds that the almost homogeneous
condensate develops an instability with wave numbers in
the range 0 < k < kmax, where kmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − V 00ðϕ0Þ

p
, and

ω ¼ _θ. The fastest growing modes of instability have a
wavelength ∼10−2�1 of the horizon size at the time of
fragmentation, and they create isolated lumps of conden-
sate that evolve into Q-balls. Numerical simulations [32,33]
indicate that most of the condensate ends up in lumps.
However, since the mass of Q-balls is a nonlinear function
of the Q-ball size, Q-ball formation, in general, leads to a
nonuniform distribution of energy density in the matter
component represented by the scalar condensate. Q-balls
can also form when the charge density is small or 0, in
which case both positively and negatively charged Q-balls
are produced [32]; here we do not consider this possibility.
Depending on the potential, the Q-balls with a global

charge Q have the following properties [24,29,34,35]:

ω ∼ ΛQα−1; R ∼ jQjβ=Λ; ð1Þ

ϕ0 ∼ ΛjQj1−α; M ∼ ΛjQjα; ð2Þ

where Λ is the energy scale associated with the scalar
potential, Q is the global U(1) charge and 0 < α < 1,
0 < β < 1 denotes which type of Q-ball is under
consideration (and also depends on the form of the scalar
potential). For “flat direction” Q-balls, α ¼ 3=4 (β ¼ 1=4),
and for “curved direction” Q-balls, α ¼ 1 (β ¼ 1=3)
[24,29].

III. Q-BALL CHARGE/MASS DISTRIBUTIONS

Numerical simulations of condensate fragmentation and
Q-ball formation have been performed in the past, from

which we are able to determine the resulting charge and
mass distributions [33,36]. These distributions appear to be
very sensitive to initial conditions in the condensate, such
as the ratio of energy to charge density (x ¼ ρ=mq), and to
the details of the scalar potential. In addition, the resultant
charge distribution can be very non-Gaussian due to the
high degree of nonlinearity and chaos in the fragmentation
process.
It should be understood that the results of these simu-

lations are statistical in nature: a large number of Q-balls
are created within the simulation volume so that the charge
distribution tends towards a statistical average. In reality, if
one were to perform a large simulation and look at the
charge distributions in a number of small subvolumes, one
would find a large degree of variation, with more variation
on smaller scales due to small sample sizes (this is not to
say that the variance will be larger, just that the differences
between distributions are large), as can be seen in Fig. 1. It
is these large fluctuations relative to the mean that will be
the source of density perturbations.
Once the resultant charge distribution of Q-balls

fQðQÞdQ has been calculated from these numerical simu-
lations, we can use this to calculate the mass distribution for
single Q-balls using M ¼ ΛjQjα (we absorb all numerical
factors into the definition of Λ without loss of generality),

fMðMÞ¼ M
1−α
α

αΛ1=α ½fQððM=ΛÞ1=αÞþfQð−ðM=ΛÞ1=αÞ�: ð3Þ

It is important to note that a distribution well localized in
charge is also well localized in mass. We can also use
probability theory to calculate the mass of a collection of
Q-balls. Under the assumption that a charge Qtot is distrib-
uted amongst N Q-balls whose distribution is described by
fQðQÞ, the probability distribution function (PDF) for the
total mass of this collection of Q-balls is given by

FIG. 1. Schematic illustration of four histograms each contain-
ing 100 samples from the same Poisson distribution (λ ¼ 100).
The differences due to fluctuations are clearly visible.
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fMðM;Qtot; NÞ ¼ ψðM;Qtot; NÞR
dMψðM;Qtot; NÞ ; ð4Þ

ψðM;Qtot; NÞ ¼
Z �YN

i¼1

dQifQðQiÞ
�

× δ

�
M − Λ

XN
i¼1

jQijα
�
δ

�
Qtot −

XN
i¼1

Qi

�
;

ð5Þ

where ψ admits a simple-looking Fourier transform in M
and Qtot,

~ψðξM; ξQtot
; NÞ ¼

�Z
dQeiðξM jQjαþξQtotQÞfQðQÞ

�
N
: ð6Þ

The power of α prevents analytic calculation of this PDF
for all but the simplest charge distributions. Specifically, if
we take the charge distribution to be a delta function,
fQðQÞ ¼ δðQ −Q0Þ, then the mass distribution is also a
delta function, fMðM;Qtot; NÞ ¼ δðM − NM0Þ, where
M0 ¼ ΛQα

0, and Q0 ¼ Qtot=N to satisfy charge conserva-
tion (this constraint comes from a mathematical issue that
arises due to the canceling of a delta function of the form
δðQtot − NQ0Þ=δðQtot − NQ0Þ; we can see that if we
consider δðxÞ as the limit of a smooth function that
approaches this distribution, then this ratio is unity provided
Q0 ¼ Qtot=N).
For ease of computation, we assume the delta function

charge/mass distribution for the rest of this paper. This
also has good theoretical motivation, as the Affleck-Dine
baryogenesis scenario requires a large nonzero charge
density, which tends to result in a highly localized charge
distribution.

A. Single length scale

One should notice that the mass distribution function
calculated earlier is also a function of both the total charge
Qtot and the number of Q-balls N. During the chaotic
fragmentation procedure, the number of Q-balls fluctuates
between horizons. So in order to get a full description of the
fluctuations, we must supplement the mass distribution
with a number distribution pðNÞ. This can be calculated
from a simulation by simply counting the number of
Q-balls within the simulation volume. Here, we assume
that the number of Q-balls per horizon N is described by a
Poisson distribution, as is typical for a random process such
as fragmentation,

pðNÞ ¼ e−Nf
NN

f

N!
; ð7Þ

where Nf is the average number of Q-balls per horizon at
fragmentation. We then combine Eqs. (4) and (7) to create a

joint PDF that describes the distribution of mass M within
a horizon composed of N Q-balls (we also set Qtot ¼ Qf,
the total charge on the horizon at tf): FQðM;NÞ ¼
fMðM;Qf; NÞpðNÞ. This is manifestly normalized sinceP

N

R
dMFQ ¼ P

Nð
R
dMfMÞp ¼ P

Np ¼ 1. We can
then use this to calculate statistical moments such as the
average horizon mass, average horizon Q-ball number,
RMS fluctuations, etc.

hMi ¼
X∞
N¼1

Z
∞

0

dMMFQðM;Qf; NÞ ≈Mf; ð8Þ

hNi ¼
X∞
N¼1

Z
∞

0

dMNFQðM;Qf;NÞ ¼ Nf; ð9Þ

NRMS ¼
�X∞
N¼1

Z
∞

0

dMN2FQðM;Qf; NÞ
�
1=2

¼ Nf; ð10Þ

where Mf ¼ ΛQα
fN

1−α
f is the horizon mass of Q-balls at tf

(the first relation is only approximate because hN1−αi≈
N1−α

f , though the relative error scales as jhN1−αi−
N1−α

f j=hN1−αi ≈ 1=10Nf, so is totally negligible for
large Nf).

B. Multiple length scales

The previous treatment has the shortcoming that it can
only describe Q-ball distributions with spatial extent the
size of the horizon at the time of fragmentation. We now
generalize this to handle distributions on an arbitrary scale.
First, when considering a physical volume V at the time of
fragmentation, the charge contained within this volume
(assuming initial uniformity of the condensate) is given by
Qtot ¼ QV ¼ QfðV=VfÞ, where Vf ¼ 4π

3
t3f is the horizon

volume at tf. Second, the number distribution is altered so
that the number of Q-balls within volume V (assuming the
same average number density nf ¼ Nf=Vf across all
scales) is described by

pðN;VÞ ¼ e−NfV=Vf
ðNfV=VfÞN

N!
: ð11Þ

The joint PDF for a mass M composed of N Q-balls
contained within a volume V at the time of fragmentation tf
is then given by

FQðM;V;NÞ ¼ δ

�
M −Mf

�
N
Nf

�
1−α

�
V
Vf

�
α
�
pðN;VÞ:

ð12Þ

Note that if V ¼ Vf, this reduces to the single-scale,
horizon-size treatment.
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In addition to being able to calculate quantities on each
scale V individually, we also want to sum the contributions
from each scale in some cases (such as contributions to the
PBH density from both subhorizon and superhorizon
modes). To do so, we sum over all volume scales from
Vmin toVmax using a coarse-grainingmethod.We consider an
arbitrary function of volume gðVÞ. The sum of the contri-
butions from each scale Vi ¼ Vmax=χi−1 is then given by

X
fVg

gðVÞ ¼
X⌊1þlogχ

Vmax
Vmin

⌋

i¼1

gðViÞ ð13Þ

≈
Z

1þlogχ
Vmax
Vmin

1

di gðVmax=χi−1Þ ð14Þ

¼ 1

ln χ

Z
Vmax

Vmin

dV
V

gðVÞ; ð15Þ

where we have used Euler-Maclaurin to approximate the
sum, and χ ∼ few is a parameter of the spacing between
intervals of the coarse-graining procedure. We take χ ¼ e
from now on for simplicity; another choice does not
significantly affect the outcome provided it is not too close
to unity. Vmin is the smallest volume under consideration;
there is a natural cutoff due to the fact that Q-balls have a
finite size, and so this scale is generally defined as the
volume that contains some number Nmin ∼ 10 Q-balls on
average, Vmin=Nmin ¼ Nf=Vf.

IV. Q-BALL AND PBH DENSITIES

Using the framework of Sec. III, we are now in a position
to begin calculating the energy densities associated with the
Q-balls, fluctuations in that energy density, and the result-
ing density of black holes.

A. Q-ball density at fragmentation

Using the formalism of Sec. III B, we can calculate
the background energy density (over the largest scales) of
Q-balls at tf,

hρQðtfÞi ¼ lim
V→∞

hMi
V

¼ Mf

Vf
; ð16Þ

which is important in the discussion of density perturba-
tions in Sec. IV. Since Q-balls are formed at rest, the
evolution of the Q-ball density after fragmentation is
simply that of decaying nonrelativistic matter hρQðtÞi ¼
hρQðtfÞiðaf=aÞ3eðtf−tÞ=τQ , where τQ ¼ 1=ΓQ is the lifetime
of the Q-balls. Q-balls are generally considered stable with
respect to decay into the quanta of the scalar field, but it is
possible to decay through other processes. For example, if a
coupling of the scalar field to a light fermion with mass
m < ω exists, Q-balls can decay to these fermions through

an evaporation process [37–39]. Q-balls can also decay if
the U(1) symmetry is broken by some higher-dimension
operators [34,35,40,41]. We define ΓQ to include all such
decay channels.

B. Q-ball density perturbations due to fluctuations

Due to the stochastic nature of the fragmentation
process, volumes of space can arise within which the
number density of Q-balls exceeds the average number
density. Due to the nonlinear relationship between Q-ball
mass and charge M ¼ ΛjQjα, this also gives rise to
fluctuations in the energy density within that volume.
The density contrast in Q-balls at fragmentation δðtfÞ
for a volume V containing mass M is defined as

δðtfÞ ¼
δρQ
hρQi

¼ M=V
hρQi

− 1 ¼
�
N=Nf

M=Mf

�1−α
α

− 1 ð17Þ

where in the last line we have used the argument of the delta
function in Eq. (12) to eliminate V (this will be justified by
an integral over V later). Note that if the Q-ball mass-charge
relationship were linear (α ¼ 1), the perturbations would
vanish identically.
The subhorizon density perturbations (V < Vf) are

frozen during the initial radiation dominated era, but
they grow linearly in the scale factor during the Q-ball
dominated epoch: δðtÞ¼δðtfÞða=aQÞ¼δðtfÞ¼ðt=tQÞ2=3,
where tQ is the beginning of the era of Q-ball domination.
The structure growth generally goes nonlinear and decou-
ples from the expansion around δ > δc ∼ 1.7, at which
point the overdense regions collapse and become gravita-
tionally bound. However, some structures with δ < δc can
still collapse, and not all structures with δ > δc are
guaranteed to collapse into black holes. Due to nonspher-
icity of the gravitationally bound structures, only a fraction
β ¼ γδ13=2ðtRÞðM=MQÞ13=3 (where γ ≈ 0.02 is a factor due
to the nonsphericity, MQ ¼ MfðtQ=tfÞ3=2 is the horizon
mass at the beginning of the Q-ball dominated era, and tR is
the end of the Q-ball dominated era, when the radiation
comes to dominate again) will actually collapse to black
holes [9,42,43] by the end of the Q-ball dominated era. We
assume that structures with δ ≥ δc do not continue to grow
past the point of nonlinearity, as they have already
collapsed and had their chance to form a PBH; for these
perturbations we set β ¼ γδ13=2c ðM=MQÞ13=3 for δðtRÞ > δc.
This refinement may not be necessary, as the average
density perturbations are generally so small they never
reach δc, and indeed, changing the value of δc does not
seem to significantly alter the outcome.
Additional care must be taken to extend this to scales

which enter the horizon at later times, and thus may not be
subject to the same amount of growth as subhorizon modes.
Those that enter the horizon between tf < t < tQ can be
treated as effectively subhorizon since they enter the
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horizon before the Q-ball dominated epoch begins, and thus
fluctuations are subject to the same amount of amplification
as initially subhorizon modes. This includes all volumes
V < VQ, where VQ ¼ 4π

3
t3Qðtf=tQÞ3=2 is defined as the

(initially superhorizon) physical volume at tf which enters
the horizon at tQ: ðaQ=afÞ3VQ ¼ 4π

3
t3Q. Fluctuations

which enter the horizon during the Q-ball dominated
epoch are treated slightly differently, as they are only
subjected to amplification from the time they enter the
horizon th until the radiation comes to dominate again
at tR. We can account for this by calculating th for a given
scale V via ðaðthÞ=afÞ3V¼ 4π

3
t3h [which gives us th¼

ð3=4πÞðV=t3=2f t1=2Q Þ], and then replacing the scale factor
aR=aQ with aR=aðthÞ in the definition of β above. This
treatment is valid for all scales between VQ < V < VR,
where VR ¼ ð4π=3Þt3RðtQ=tRÞ2ðtf=tQÞ3=2 is the physical
volume at tf which enters the horizon at tR.
In addition to these details, we also enforce the constraint

β ≤ 1 in order to prevent PBH production probabilities over
unity, though this does not become relevant unless the
Q-ball dominated era is extremely long.

C. Primordial black hole density

We are now in a position to calculate the average energy
density in PBH created during the Q-ball dominated era.
We do this by calculating the energy density of Q-balls at tf
that will eventually form black holes by tR by weighting the
Q-ball energy density M=V by the collapse fraction/
probability β evaluated at tR, summing over all scales V,
and then redshifting this value appropriately. The expres-
sion for this procedure is given by

hρBHðtRÞi¼
�
af
aR

�
3X∞
N¼1

Z
VR

Vmin

dV
V

Z
∞

0

dM

�
β
M
V

�
FQ; ð18Þ

where it should be understood that the integral over V is
broken up into two separate domains, ½Vmin; VQ� and
½VQ; VR�, where separate definitions of β apply, as
described in Sec. IV B. Due to the complicated piecewise
nature of the function β, the authors are unaware of any
analytic solution, and further progress must be made
numerically.
We find that Eq. (18) can be rewritten in such a way that

it only depends on the dimensionless numbers Nf,
rf ¼ tQ=tf, and r ¼ tR=tQ. rf and r can be interpreted
as measures of the duration of the era between the
fragmentation and the beginning of Q-ball domination,
and the length of the Q-ball dominated era, respectively.
The effect of these parameters on the black hole density can
be seen in Fig. 2. Larger rf will reduce the fraction of
Q-ball energy that goes into making black holes due to the
dilution of the number density and increased horizon mass
at tQ due to the delay of the Q-ball dominated era. Larger r

leads to an increased fraction of Q-ball energy that
goes into black holes due to more amplification of the
density perturbations, leading to a higher probability of
PBH formation. Larger Nf reduces the fraction because
of higher suppression of fluctuations due to the Poisson
statistics. The form of the contours in this plot
suggests that this ratio roughly scales as hρBHi=hρQi∼
ð4.6 × 10−4Þr−5.9f r4.4N−3.7

f .

D. Black hole mass spectrum

One can derive the mass spectrum of the black holes by
not integrating over M in Eq. (18),

dhρBHi
dM

¼
�
af
aR

�
3X∞
N¼1

Z
VR

Vmin

dV
V

�
β
M
V

�
FQ: ð19Þ

This yields the differential black hole energy density
dhρBHi=dM. We find that the spectrum can be rewritten
in terms of the parameter η ¼ M=Mf (fraction of horizon
mass at tf), along with the previously mentioned param-
eters rf ¼ tQ=tf, r ¼ tR=tQ, and Nf. Calculation of this
function can be done by evaluating Eq. (19) at multiple
values of η and then interpolating. An example is given in
Fig. 3. First, it is obvious from the normalization of each
curve that the lower the number of Q-balls per horizon, the
more black holes that are created. This is expected, as the
Poisson statistics suppress the density fluctuations for large
Q-ball number. The normalization also increases with r, as
explained in Fig. 2. Second, there is a hard lower cutoff in
the PBH mass, which occurs at η ¼ Nmin=Nf, which is due
to the lower cutoff in the volume mentioned earlier. Above
that, the BH number sharply increases with a power law
∝ η2.85�0.15; the extent of this region depends on the
magnitude of r, with larger values leading to a larger
range. We suspect that this is due to the fact that the

FIG. 2. Fraction of Q-ball energy that goes into black holes. The
ratio roughly scales as hρBHi=hρQi∼ð4.6×10−4Þr−5.9f r4.4N−3.7

f .
The thick black line is the unity bound where 100% of the Q-ball
energy goes into creating black holes.
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small-scale density fluctuations have already reached their
critical value δc and can no longer continue growing,
whereas the large-scale fluctuations (which started out
smaller) still have room to do so. Above that, the spectrum
becomes approximately flat (∝η−0.15), meaning that the
number of black holes in each decade of mass are
comparable. Of course, the upper end of this range
dominates the energy density of the distribution. Then,

at aroundM ¼ MQ, there is a sharp transition and the slope
becomes strongly negative (∝η−4.5) due to the reduced
growth the superhorizon modes are subject to. Then, there
is an upper exponential cutoff at η ∼ 108=Nf due once
again to the Poisson statistics (the cutoff appears to take
precedence over previously mentioned transitions).

V. COSMOLOGICAL HISTORY

We now give a detailed account of how the Q-balls,
radiation, and black holes evolve throughout the history of
the Universe up until the present day, as seen in Fig. 4. In
summary, we assume an initial period of inflation and
reheating in order to create a radiation dominated era with a
uniform charged scalar field as a subdominant component
of the energy density. The scalar field fragments into
Q-balls at tf, which then come to dominate the energy
density at tQ. During the Q-ball dominated epoch, primor-
dial black holes are produced, and at tR, their density is
frozen in and evolves as nonrelativistic matter. After this
initial matter dominated epoch, the standard model of
cosmology resumes, and evolves through all the eras we
are familiar with (BBN, matter-radiation equality, etc.) up
to the present day.
The functions used to model the energy density evolu-

tion for each species are summarized in Appendix.

A. Initial radiation dominated era

After the end of inflation, the Universe enters a brief
matter dominated era due to the coherent oscillations of the

FIG. 3. Differential PBH/Q-ball density ratio as a function of
η ¼ M=Mf . The density of black holes at tR has been blueshifted
back to tf for comparison with the initial Q-ball density. The
integral of these curves over η is the fraction of energy in Q-balls
that goes into black holes, as shown in Fig. 2. Notice that as r
increases, the flat region shrinks. Parameters for the given spectra
are shown in the lower left corner. FIG. 4. Evolution of energy density over cosmological history.

The evolution of three “species” is plotted: radiation ρR (orange,
long dash), Q-balls hρQi (blue, short dash), and black holes hρBHi
(black, solid). The inset in the upper right corner is a zoomed-in
view of the Q-ball dominated era (tQ < t < tR). The vertical axis
is scaled by a factor of a3, so that the decay of the Q-balls is
evident (nondecaying matter would be represented by a straight
horizontal line). The parameters of this model are Nf ¼ 106,
tf ¼ 9.7 × 10−18 s, rf ¼ 10, and r ¼ 1.3 × 104, which corre-
sponds to production of PBH with peak mass of 4.4 × 1020 g
making up 100% of the dark matter.
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inflaton field. The decay of the quanta of this field at
time tRH ¼ Γ−1

I reheats the Universe, which enters
a radiation dominated epoch with temperature TRH ¼
0.55g−1=4� ðΓIMpÞ1=2 and radiation energy density

ρRðtRHÞ ¼
π2

30
g�ðTRHÞT4

RH ≈
π2

327
Γ2
IM

2
p; ð20Þ

where ΓI ∼ 1=tRH is the decay width of the inflaton
oscillations. The radiation density redshifts as ρRðtÞ ¼
ρRðtRHÞðaRH=aÞ4 ¼ ρRðtRHÞðtRH=tÞ2 during this epoch,
which ends up canceling the factor of ΓI to give us

ρRðtÞ ¼
π2M2

p

327t2
; tRH < t < tQ: ð21Þ

At some point tf, the scalar condensate fragments into
Q-balls, resulting in an energy density given by Eq. (16).
The Q-balls then redshift as decaying nonrelativistic matter,

hρQðtÞi ¼ hρQðtfÞi
�
af
a

�
3

e−ðt−tfÞ=τQ ð22Þ

¼ 3ΛQα
fN

1−α
f

4πt3=2f t3=2
e−ðt−tfÞ=τQ ; tf < t < tQ: ð23Þ

B. Q-ball dominated era

At some point tQ, the Q-balls come to dominate the
energy density. This time is defined by ρRðtQÞ ¼ hρQðtQÞi,
using the equations of the previous section. During this
era, Q-ball decays begin to affect the radiation density,
causing the radiation temperature to decrease less slowly
than it normally would due to the expansion. Following
the analysis of Scherrer and Turner [44], the radiation
density in this epoch due to the decay of the Q-balls can be
modeled as

ρRðtÞ ¼
�
ρRðtQÞ þ hρQðtQÞi

Z
x

x0

dx0zðx0Þe−x0
�
z−4; ð24Þ

where x≡ ΓQt, x0 ¼ ΓQtQ, and z ¼ ðx=x0Þ2=3. The Q-balls
continue to redshift and decay, leading to

hρQðtÞi¼
3ΛQα

fN
1−α
f t1=2Q

4πt3=2f t2
e−ðt−tfÞ=τQ ; tQ <t< tR: ð25Þ

As the Q-balls decay, eventually the radiation comes to
dominate again at tR, defined by ρRðtRÞ ¼ hρQðtRÞi. Using
Eqs. (21), (22), (24) and (25), this gives us the relation

1þ
�
tR
τQ

�
−2=3

Γ
�
5

3
;
tQ
τQ

;
tR
τQ

�
¼

�
tR
tQ

�
2=3

eðtQ−tRÞ=τQ; ð26Þ

where Γ is the generalized incomplete gamma function.
This allows us to solve (numerically) for rQ ≡ τQ=tQ as a
function of r ¼ tR=tQ. At this point, if we specify tf, rf and
r, we can calculate the other parameters tQ, tR, τQ, and
ΛQα

f via

tQ ¼ tfrf; tR ¼ tfrfr; τQ ¼ tfrfrQðrÞ; ð27Þ

ΛQα
f ¼ 4πM2

ptf
3 · 327r1=2f N1−α

f

eð1−1=rfÞ=rQðrÞ; ð28Þ

from which we can calculate all other quantities of interest
(Mf ¼ ΛQα

fN
1−α
f , MQ ¼ Mfr

3=2
f , etc.).

C. Standard cosmological era

After the Q-balls have decayed sufficiently, the Universe
returns to a radiation dominated era, and the standard
cosmology begins. In order to evolve the radiation,
Q-ball, and black hole densities to the present day, one
would naïvely use a1=a2 ¼ ðt1=t2Þn, where n ¼ 1

2
ð2
3
Þ in a

radiation (matter) dominated era, keeping in mind that the
Universe transitions between the two at zeq ≈ 3360, or
teq ≈ 4.7 × 104 yr. However, due to the extended era of
matter domination, the time at which cosmological events
(such as BBN, matter-radiation equality, or recombination)
occur are not the same as in the standard cosmology.
Instead, one must evolve according to the Universe’s
thermal history, where cosmological events occur at spe-
cific temperatures. In this case, one must use a1=a2 ¼
g1=3�S ðT2ÞT2=g

1=3
�S ðT1ÞT1 and evolve from TR [defined by

ρRðtRÞ ¼ ðπ2=30Þg�ðTRÞT4
R] to T0 ¼ 2.7K ¼ 2.3 meV.

This has the advantage of accurately accounting for any
deviation from cosmological history. We can then find
the time at which some event X occurs by solving
ρRðtXÞ ¼ ðπ2=30Þg�ðTXÞT4

X ¼ ρRðTRÞðaðtRÞ=aðtÞÞ4. In
order to ensure that this early matter dominated era does
not spoil the canonical cosmological thermal history, we
enforce an additional constraint TR > TBBN ∼MeV, so that
the entropy injection from Q-ball decays does not interfere
with nucleosynthesis.

VI. OBSERVATIONAL CONSTRAINTS

We now examine the observational constraints on
primordial black holes and where our results fit in. The
constraints come from a wide variety of sources, such as
extragalactic gamma rays from evaporation [45,46], fem-
tolensing of gamma ray bursts [47], capture by white
dwarfs [48], microlensing observations from HSC [49],
Kepler [50,51], and EROS/MACHO/OGLE [52], measure-
ments of distortion of the cosmic microwave background
(CMB) [53,54], and bounds on the number density of
compact x-ray objects [55] (constraints summarized
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in [6,56,57]). The constraints are typically expressed in a
form that assumes a monochromatic distribution of PBH
masses. However, in the case of an extended mass
distribution (such as we have in this scenario), care must
be taken to apply the limits correctly. To do this, we follow
the procedure outlined in [9,57], which amounts to dividing
the mass spectrum into a number of bins (labeled by the
index i), then integrating the dark matter fraction over the
interval contained in the bin,

fi ¼
1

ρDM

Z
Miþ1

Mi

dM
dhρBHðt0Þi

dM
; ð29Þ

which is then compared with the constraints on a bin-by-bin
basis. We find that for sufficient choices of the parameters
Nf, tf, rf, and r, our model can produce black holes over
practically the entire parameter space allowed by the
constraints (see Fig. 5). Notably, this figure illustrates
two interesting points: (1) that this mechanism is capable
of generating black holes which can account for both 100%
of the dark matter in the regionM ∼ 1020 g and production
or r-process elements [18], and (2) it is also capable of
generating black holes with sufficient mass to explain the
recent LIGO observation GW150914 [58]. Some studies
have even argued that PBH can account for 100% of the
DM in this range by contesting the CMB constraints [15].
The three contours in Fig. 5 are, however, simply chosen by

hand for illustrative purposes, and are therefore not
representative of the entire parameter space allowed to
this mechanism, which is much wider than suggested by the
given parameters.

VII. PARAMETER SPACE

We now explore the parameter space available to this
mechanism in which it is possible to account for a
considerable fraction of the dark matter while avoiding
observational constraints. To do so, we develop an algo-
rithm to accomplish this task in the following manner:
since the function ððaf=aRÞ3=hρQðtfÞiÞðdhρBHðtRÞi=dηÞ is
determined solely by the parameters rf and r, we generate
a list of such functions by sampling the r − rf plane at various
points. Then, for each ðr; rfÞ pair, we vary tf using aweighed
bisection method until maxðj1−fi=fconðMiÞjÞ<ϵ¼ 10−1,
with fi given by Eq. (29). This determines the value of tf
which gives themaximumdarkmatter fraction allowedby the
constraints for the givenvalues of r and rf. Once that has been
determined, we can calculate all other relevant quantities of
interest, such as MBH;peak, TR, and the dark matter fraction
f ¼ ΩPBH=ΩDM. The results for Nf ¼ 106 are shown in
Fig. 6.
We can see from this figure that the contours of constant

f are highly correlated with the values of MBH;peak. This is
due to the fact that the observational constraints are solely a

FIG. 5. Comparison of observational PBH constraints
fconðMÞ ¼ ΩPBHðMÞ=ΩDM (orange, shaded) with the dark matter
fraction per logarithmic interval (black), defined by fðMÞ ¼
M
ρDM

dhρBHðt0Þi
dM . This is a crude comparison, and to be rigorous one

should use the procedure outlined by the use of Eq. (29).
Parameters for the three curves are tf¼1.12×10−17 s, rf ¼ 1.1,
r¼ 4.47×102, Nf ¼ 106, f ¼ 1 (solid line), tf ¼ 2.0 × 10−11 s,
rf ¼ 1.1, r ¼ 1.58 × 103, Nf ¼ 106, f ¼ 0.2 (dashed line), and
tf ¼ 1.0 × 10−3 s, rf¼1.1, r¼ 4.47×102, Nf ¼ 105, f ¼ 0.001
(dot-dashed line). Also shown is the boundary of the parameter
range (dark green) above which PBH collisions with neutron
stars can account for all r-process element production in the
Milky Way [18].

FIG. 6. Parameter space available to the model with Nf ¼ 106.
Color gradient denotes the peak black hole mass MBH;peak

(warmer colors denote higher masses), and the black contours
are surfaces of constant f ¼ ΩPBH=ΩDM. Different levels of
cross-hatching between f contours indicate the range of maxi-
mum f values, with the densest corresponding to f ≥ 1 (highly
correlated with MBH;peak¼1020 g), the next dense 10−1 < f < 1,
and so on, down to f < 10−3. Pink shaded region to the bottom
right is ruled out due to TR ≥ 1 MeV for that set of parameters.
Jagged edges of the contours are likely due to shortcomings of the
interpolation method.
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function of M, and the calculated spectrum fðMÞ is quite
sharply peaked at MBH;peak. The region of f ≥ 1 roughly
follows the contour of MBH;peak ¼ 1020 g, where the con-
straints are weakest, due to this fact. The general tendency
appears to be that for increasing r, the spectrum favors
heavier black holes, while for increasing rf, it favors lighter
black holes. This is because the longer the period of
structure formation, the more the large mass perturbations
(which initially have small δ) grow, increasing the prob-
ability that they collapse to black holes, whereas the longer
the period between fragmentation and Q-ball domination,
the more the energy density of Q-balls is diluted, so that the
value of tf has to be lower in order to achieve the same
value of f that one would with smaller rf. The smaller the
tf, the smaller the horizon mass, and the smaller the PBH
masses. This can be quantified, as the contours of constant
f very roughly follow r0.63=rf ∼ const.
However, at around r≳ 3.2 × 105, the character of the

plot changes so that the spectrum appears to no longer
depend on r, only on rf. This is likely due to the definition
of β discussed in Sec. IV B, in which density perturbations
are not allowed to grow past δc, which makes it so that
further increases in r have no effect on the spectrum.
Further increases in rf, however, serve to further dilute the
Q-ball density before structure formation can occur, low-
ering the necessary tf as mentioned above.
The pink region where TR > 1 MeV is ruled out since in

this region Q-ball decays begin to interfere with nucleo-
synthesis. We can see that it is correlated with high mass, as
the later the fragmentation (meaning larger horizon mass),
the less time there is for the Q-balls to dominate before the
Universe cools sufficiently enough that nucleosynthesis
begins. One might notice that the mass of the black holes
seen at LIGO in the GW150914 event lies beyond the range
indicated in this figure, but in Fig. 5 we have plotted a
contour that has MBH;peak ∼ 30M⊙. This is because the
contour in Fig. 5 is for Nf ¼ 105, whereas Fig. 6 has Nf

fixed at 106. We can see in Fig. 3 that the density spectrum
has a peak at higher masses for lower values of Nf, so that
the equivalent plot to Fig. 6 for Nf < 106 would see the
TR < 1 MeV constraint pushed to higher values of
MBH;peak, enough so that they could explain the 30M⊙
black holes while avoiding the nucleosynthesis constraint.

VIII. TOPOLOGICAL DEFECTS

Topological defect formation can also lead to the
production of PBHs if the topological defects come to
dominate the energy density. The analysis is sufficiently
different from that of Q-balls, primarily because typically
only one defect per horizon is produced at the time of
formation due to the Kibble mechanism [59]. However,
the general mechanism remains the same: small number
densities of defects lead to large fluctuations relative to the

background density, these fluctuations become gravitation-
ally bound and collapse to form black holes once the relic
density has come to dominate, and the relics decay due to
some instability (such as gravitational waves or decay to
Nambu-Goldstone bosons in the case of cosmic strings). In
order to accurately model production of PBHs from these
defects, one should calculate the expected density pertur-
bations on initially superhorizon scales, which only begin
to grow once these scales pass back within the horizon and
the defects come to dominate the Universe’s energy density.
Cosmic strings are probably the most likely candidate for

primordial relics due to the fact that they are typically
cosmologically safe, as the energy density in string loops is
diluted during expansion at the same rate as radiation, a−4

[60,61]. In contrast, the string “network” (i.e. infinitely
long strings) energy density redshifts as a−2 so that they
quickly come to dominate the Universe’s energy density.
However, once long strings start intercommuting to pro-
duce loops, and these loops subsequently self-intersect to
fragment into smaller loops, the string network approaches
a scaling solution which leads to the a−4 dilution of string
loops [62].
However, this scaling solution critically relies on the

probability of string intercommutation being very close to
unity so that the long strings can efficiently break into small
loops. If this probability was sufficiently low, then the
string density could redshift as a−2 or a−3, survive until a
matter/string dominated era, initiate structure formation,
collapse to form PBHs, and then subsequently decay. As
long as these conditions are satisfied, cosmic strings could
act as a source of PBH. In addition, there exists a large class
of solutions to the string equations of motion which never
self-intersect [63], making this scenario plausible.

IX. DISCUSSION

The mechanism we have discussed has a number of
advantages over some other models. It is extremely
effective in creating primordial black holes across a broad
range of masses, and it does not require the tuning of the
inflaton potential [4,8,10,11]. In addition, we did not have
to make any ad hoc assumptions regarding density contrast
fluctuations; the fluctuations are calculable from first
principles.
The mechanism is also generally applicable to practically

any complex scalar field with a conserved global charge
and flat potential, so that the formation of PBH is now a
general prediction of any theory containing such charged
scalars. In particular, supersymmetric extensions to the
standard model typically have such fields, making the
production of primordial black holes a general prediction of
such theories. For the case of supersymmetric Q-balls with
the SUSY-breaking scale ΛSUSY > 10 TeV, the fragmen-
tation time cannot be much longer than the Hubble time
H−1 ∼Mp=g

1=2
� ΛSUSY ≲ 8 × 10−15 s, which corresponds
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to peak PBH masses of about 1023 g (assuming Nf ∼ 106).
The solid black curve illustrated in Fig. 5 satisfies this
bound; thus primordial black holes from supersymmetric
Q-balls can account for 100% of the dark matter.
Supersymmetric Q-balls themselves have been sug-

gested as the source of dark matter in models where they
are entirely stable [24,27,34,35,39]. However, the stability
is model dependent, and it only applies to Q-balls carrying
baryonic charge (so-called B-balls), since those carrying
leptonic charge (L-balls) would quickly evaporate to
neutrinos [37]. In our scenario, a short evaporation time
scale is precisely what is needed to end the early era of
Q-ball domination before nucleosynthesis begins. The
L-balls would then be composed of slepton fields which
subsequently decay to neutrinos at an early time. Since
neutrinos do not decouple from the plasma until just before
nucleosynthesis (T ≳ few MeV), they thermalize quickly.
If they decay early enough, it may even be possible to
generate the baryon asymmetry through conversion of
lepton number to baryon number via sphaleron processes
during the electroweak phase transition [64].
Just like the typical scenario for PBH formation during

the radiation dominated era, the primary factor in determin-
ing the mass of the resultant PBH is the horizon mass at the
time of PBH production. In Fig. 3, you can see that the peak
BHmass is typically within an order of magnitude or two of
the horizon mass at the time of fragmentation (η ¼ 1) (since
the curves plotted are dρBH=dη, one must multiply by η to
get an idea of the total PBH density within a specific mass
interval, which puts the peak of ηdρBH=dη near the location
of the exponential cutoff as you go to higher η). The
variation in the location of the peak for different Nf can be
explained due to the observation that smaller numbers of
Q-balls lead to higher initial density contrast, which makes
it easier to form larger black holes, and in greater numbers.
Larger numbers of Q-balls per horizon would have the
opposite effect. But the mass of the horizon at fragmenta-
tion remains the primary factor. The horizon mass at the
time of fragmentation is simply the energy density of
Q-balls (which is diluted by t−2) times the horizon volume
(which scales as t3), though in order to calculate this in a
self-consistent way that takes the parameters of this
mechanism into account we can use Eq. (27) along with
the comment immediately following it. The main takeaway
is that it is linear in t, so that later fragmentation leads to
larger black holes in general. Though the value ofMpeak has
a very large range, it cannot be made arbitrarily high.
Specifically, the constraint that fragmentation (and decay)
of the Q-balls must occur before BBN acts as a constraint
on the horizon mass at fragmentation, and therefore
restricts the masses of the largest black holes produced
to be less than about 10M⊙.
There are some remaining open questions, such as how

well the assumption that all Q-balls within the volume V are
the same charge models this scenario. Simulations show

that for scalar condensates with a high ratio of charge
density to energy density, this is a good prediction, as all the
Q-balls formed from this initial condition typically have
similar sizes. This is also theoretically understood for a
scalar condensate with a sufficiently large charge density
[24,25,30]. However, condensates with a large energy
density and small charge density generally produce broad
charge distributions, nearly symmetric about Q ¼ 0, since
the excess energy cannot be contained in Q-balls with the
same sign of Q while also conserving charge. We suspect
that in this scenario the production of PBH will be reduced,
since the charge conservation does not play as significant a
role. Loss of energy due to scalar radiation in the frag-
mentation process may still be able to produce energy
density inhomogeneities, but this will require further study.
In the same manner, the production of oscillons from the
fragmentation of a real scalar field may be able to produce
significant numbers of PBH as well.
One may also wonder what sort of mechanism is needed

in order to ensure the Q-balls decay at the correct time. As
an example, following the work of [35], the lifetime of a
Q-ball with initial chargeQ0 decaying to pseudo-Goldstone
bosons through the effects of a charge-violating operator of
the form V=QðϕÞ ¼ gϕnðϕ�Þm=Λnþm−4� þ c:c: is given by

τ ≈
1 −Q1−a

0

ða − 1ÞΓ0

; ð30Þ

where

a ¼ 1

4
ð7þ 2ðnþm − 2ÞÞ; ð31Þ

Γ0 ¼ 112.7jgj2e−0.236ðnþmÞðn −mÞ2JnmΛðΛ=Λ�Þ2ðnþmÞ−8;

ð32Þ

and Jnm ∼Oð10−7 − 10−6Þ. For g ∼ 0.1, Λ� ∼ 1016 GeV,
and Λ ∼ 109 GeV, the lifetime of a Q-ball decaying
through an operator with ðn;mÞ ¼ ð2; 3Þ is about τ ∼
10−13 s, which is sufficient to explain the curve of
Fig. 4 (and satisfies the SUSY bound). Decay through
these higher-dimension operators is not the only way to
induce the decay of Q-balls though; many other scenarios
have been explored in the literature [34,40,41].
This work also begs the question of what possible

observables exist that could show the Q-ball clusters
collapse to black holes. We assume that the collapse will
produce a stochastic gravitational wave background [65],
which could be detected by future observatories (or put
constraints on the model). Further evolution of the PBH
population could see successive mergers, which in addition
to creating another stochastic GW background [66], could
also alter the distribution of black hole masses (in addition
to evaporation/accretion effects [67,68]). We propose to
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calculate the gravitational wave spectrum in a future
publication.

X. CONCLUSION

In summary, we have shown that the number density
fluctuations of a Q-ball population in the early universe can
lead to production of primordial black holes with sufficient
abundance to explain the dark matter. Scalar fields and
Q-ball formation are general features of supersymmetric
extensions to the standard model, which provides a good
motivation for this mechanism. A similar mechanism using
solitons, topological defects, or other compact objects
associated with scalar fields in the early universe can also
lead to a copious production of primordial black holes.
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APPENDIX: EVOLUTION
OF ENERGY DENSITIES

Here we tabulate the functional form of the energy
density for each species (radiation, Q-ball, black hole) up
until the present day. The values for tf, tQ, tR, and τQ are
taken as input parameters (subject to some self-consistency
conditions), while the values of teq and t0 are calculated
from the procedure described in Sec. V C.

1. Radiation

The radiation density begins after reheating and is given
by Eq. (21). From this point we evolve it through time to
the present day, taking into account the contribution due to
Q-ball decays during the period tQ < t < tR.

ρRðtÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

π2M2
p

327t2 tRH < t < tQ

π2M2
p

327t2Q

h
1þ

�
τQ
t

�
2=3

Γ
�
5
3
; tQτQ ;

t
τQ

���
tQ
t

�
8=3

tQ < t < tR

π2M2
p

327t2Q

h
1þ

�
τQ
tR

�
2=3

Γ
�
5
3
; tQτQ ;

tR
τQ

���
tQ
tR

�
8=3

�
tR
t

�
2

tR < t < teq

π2M2
p

327t2Q

h
1þ

�
τQ
tR

�
2=3

Γ
�
5
3
; tQτQ ;

tR
τQ

���
tQ
tR

�
8=3

�
tR
teq

�
2
�
teq
t

�
8=3

teq < t < t0:

ðA1Þ

2. Q-balls

The Q-balls are created at the time of fragmentation tf, and evolve as decaying nonrelativistic matter. The magnitude of
the energy density becomes insignificant shortly after tR. Mf ¼ ΛjQfjαN1−α

f can be determined from specifying tf, rf, r,
and Nf, as given in Sec. V.

hρQðtÞi ¼

8>>>>>>>>><
>>>>>>>>>:

3Mf

4πt3f

�
tf
t

�
3=2

e−ðt−tfÞ=τQ tf < t < tQ

3Mf

4πt3f

�
tf
tQ

�
3=2

�
tQ
t

�
2
e−ðt−tfÞ=τQ tQ < t < tR

3Mf

4πt3f

�
tf
tQ

�
3=2

�
tQ
tR

�
2
�
tR
t

�
3=2

e−ðt−tfÞ=τQ tR < t < teq

3Mf

4πt3f

�
tf
tQ

�
3=2

�
tQ
tR

�
2
�
tR
teq

�
3=2

�
teq
t

�
2
e−ðt−tfÞ=τQ teq < t < t0:

ðA2Þ

3. Black holes

The black holes are created towards the end of the initial Q-ball dominated era, and their density at tR is given by Eq. (18),

hρBHðtRÞi ¼
�
af
aR

�
3X∞
N¼1

Z
VR

Vmin

dV
V

Z
∞

0

dM

�
β
M
V

�
FQ ðA3Þ

¼
�
t3=2f t1=2Q

t2R

�
Mf

Vf

X∞
N¼1

Z
xR

xmin

dxβðx; NÞxNþα−2e−x; ðA4Þ
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where

βðx; NÞ ¼

8><
>:

��
N
x

�
1−α

− 1
��

tR
t�

�
2=3

≥ δc∶min
�
1; γδ13=2c

�
N
Nf

xα
Nα

�
13=3

r−13=2f

�
��

N
x

�
1−α

− 1
��

tR
t�

�
2=3

< δc∶min
�
1; γ

��
N
x

�
1−α

− 1
�
13=2

�
tR
t�

N
Nf

xα
Nα

�
13=3

r−13=2f

� ðA5Þ

and

t� ¼
8<
:

tQ xmin < x < xQ
3Vfx

4πNft
3=2
f t1=2Q

xQ < x < xR;
ðA6Þ

where xmin ¼ NfVmin=Vf ¼ Nmin, xQ ¼ NfVQ=Vf, and xR ¼ NfVR=Vf. After this has been evaluated, the evolution of
the black hole density is fairly straightforward,

hρBHðtÞi ¼
8<
:

hρBHðtRÞi
�
tR
t

�
3=2

tR < t < teq

hρBHðtRÞi
�
tR
teq

�
3=2

�
teq
t

�
2

teq < t < t0:
ðA7Þ
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