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A method is described for the detection and estimation of transient chirp signals that are characterized by
smoothly evolving, but otherwise unmodeled, amplitude envelopes and instantaneous frequencies. Such
signals are particularly relevant for gravitational wave searches, where they may arise in a wide range of
astrophysical scenarios. The method uses splines with continuously adjustable breakpoints to represent the
amplitude envelope and instantaneous frequency of a signal, and estimates them from noisy data using
penalized least squares and model selection. Simulations based on waveforms spanning a wide
morphological range show that the method performs well in a signal-to-noise ratio regime where the
time-frequency signature of a signal is highly degraded, thereby extending the coverage of current
unmodeled gravitational wave searches to a wider class of signals.
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I. INTRODUCTION

The tally of confirmed direct gravitational wave (GW)
detections now stands at five events. Across two observing
runs, the twin Advanced Laser Interferometer Gravitational-
Wave Observatory (LIGO) [1] detectors found GW 150914
[2], GW151226 [3], and GWI170104 [4] in two-way
coincidence. All three signals are consistent with binary
black hole (BBH) mergers. (A fourth BBH merger,
LVT151012, was discovered in the first observing run but
with marginal significance.) These were followed by an
additional BBH merger signal, GW 170814 [5], that was also
the first event to be discovered in a three-way coincidence
between the LIGO and Advanced Virgo [6] detectors. The
second observing run concluded with the remarkable dis-
covery by LIGO and Virgo of GW170817 [7], a binary
neutron star inspiral.

Along with further improvements in the sensitivity of the
LIGO and Virgo detectors, additional second -generation
detectors—KAGRA [8] and LIGO-India [9]—are sched-
uled to come online over the next several years. Besides
significantly enhancing overall search sensitivity, combin-
ing the data from the upcoming network of detectors will
better localize sources on the sky, thereby increasing the
chances of finding their electromagnetic counterparts.

The type of signals detected by LIGO so far have
waveforms that can be calculated theoretically as a function
of system parameters, allowing parametric data analysis
methods, such as matched filtering [10], to be used for their
detection and estimation. This approach is inapplicable,
however, to astrophysical sources that are unanticipated or
that emit inherently unpredictable signals. Search methods
for such unmodeled signals—known as GW bursts when
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they are transient—must use minimal prior assumptions
about their waveforms.

Due to their broad scope, burst search methods can
also detect sufficiently strong parametric signals. In fact,
GWI150914 was first detected [11] by a burst search
method [12] that implements a regularized maximum
likelihood analysis [13-15] of data from a network of
detectors. Refined estimates of the source parameters,
such as the component masses, were obtained subsequently
using parametric methods.

Among burst signals, the most challenging to search for
are those that do not have compact time-frequency sig-
natures. We know of several possible astrophysical scenar-
ios where such signals may arise. Among these are (i) the
post core-bounce phase of a core-collapse supernova
(CCSN)[16,17], (ii)) dynamical instabilities in rotating
newborn neutron stars [18,19], and (iii) clump formation
or dynamical instabilities in the accretion disc surrounding
a newly formed black hole in a collapsar [20,21]. Such
signals may be generic to GW emissions powered by the
rotational energy of a compact engine.

In many of these scenarios, the burst signals spread their
total energy over well-defined “tracks” in the time-
frequency plane. Such signals are generally called chirps
in the signal processing literature. (BBH merger signals are
examples of parametric chirps.) Taking the analytic repre-
sentation, a(r)exp(i¢(t)), of a signal s(¢), one expects a
track-like feature in the time-frequency representation of
s(#) when the amplitude envelope a(z) and instantaneous
frequency f(r) = ¢(t) evolve adiabatically—f(¢) > a/a
and f2(r) > f(r)—relative to the instantaneous period
1/f(z). The sharpness of the track is determined by a(7),
with a smaller a leading to a sharper track.

Several search methods have been developed in the GW
data analysis literature for short duration (~1 sec) unmod-
eled chirps for which a(t), or f(z), or both are unknown.
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The track-search method [22] uses an image processing
approach to search for track-like features in the Wigner-
Ville (WV) time-frequency distribution [23]. This method
can detect signals with arbitrary a(¢) and f () provided its
track is distinguishable from the spurious features that
appear in the WV transform due to its nonlinear nature.
A significant advance has recently been made in mitigating
these spurious features by applying sparsity regularization
to the WV transform [24] but it remains to be integrated
with methods such as track-search.

A natural approach to the detection of unmodeled chirps
is to approximate f(¢) by a piecewise linear curve. Each
piece represents a transient linear chirp signal, called a
chirplet, and the signal is assumed to be a sequence of
connected chirplets called a chirplet chain. [Note that a
chirplet chain only approximates f(¢) and that additional
degrees of freedom are needed to model a(r).] The main
challenge in this approach is the extremely high computa-
tional cost of searching the space of all chirplet chains to
find the one that best fits the data. Different methods have
been proposed to address this issue.

The best chirplet chain method [25] approximates the
chirplet chain approach, for the special case where the
duration (or scale) of chirplets and the length of a chain
(number of chirplets) are fixed, with path integrals of the
WV transform. The chirplet path pursuit (CPP) method
[26], uses a different approach in which the chains are
constructed out of a discrete set of multiscale chirplets. The
use of multiscale chirplets allows greater flexibility in the
signal model since slowly evolving parts of f(z) can be
approximated by longer chirplets. This leads to chains with
variable lengths and a selection of the best-fit chirplet chain
requires balancing the fitness of a chain against its com-
plexity using a penalty on the chain length.

Track detection [27] or path integrals [28] have also been
studied for detecting long duration (10 sec) GW bursts in
data from multiple detectors. Unlike the single detector
methods mentioned above, these methods use the short-
time cross-spectra of data from pairs of GW detectors. In
the following, we consider only the single detector case,
leaving multiple detectors to future work.

While the chirplet chain approach is designed to
approximate f(t), it is important to consider a(t) also.
In particular, there is no reason for a(f) to remain constant
over the duration of a single chirplet. This issue was
addressed in CPP by allowing the amplitude of each
chirplet to evolve as a polynomial in time. However, the
degree of the polynomial is fixed for all the chirplets at a
given scale and has to be prescribed in advance. This is
difficult to do when a(#) has an unknown and complex
evolution.

In this paper, we present a search method for chirp
signals that explicitly takes amplitude modulation into
account. The structure of the method follows logically
from modeling a(¢) and f(¢) as independent splines and
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seeking a computationally feasible solution to the resulting
high-dimensional nonlinear regression problem. Early and
intermediate steps in the development of the method were
reported in Refs. [29-31].

The detection and estimation performance of the method
is quantified using simulated data, incorporating a wide
range of signal waveform morphologies, in a signal-to-
noise ratio (SNR) regime where the signal track in the time-
frequency plane is easily disrupted and masked by noise.
To keep computational costs under control, we focus only
on signals with durations of O(1) sec in this paper
although the general idea can, in principle, be applied to
much longer signals.

The rest of the paper is organized as follows. Section II
sets up the notation and the models used in this paper for
noise and signal. Section III presents a description of the
method. The simulation setup used in assessing its detec-
tion and estimation performance is described in Sec. IV.
The results obtained from the simulations are presented in
Sec. V. Section VI compares the performance of the method
with that of time-frequency clustering, a key component of
the burst search methods currently used in LIGO. This is
followed, in Sec. VII, by comparisons with track-search
and CPP. Section VIII presents the conclusions from
our study.

II. STATISTICAL MODEL

In the following, a symbol such as 5 € RY denotes a row
vector with N elements, and s;, j =0,1,...,N — 1, or [E]j,
denotes its jth element. When § is a finite length discrete-
time sequence of sample values of an underlying continu-
ous-time function s(z), the sampling times are denoted by
t;, i=0,1,....,N—1, and s; = 5(¢;). A symbol such as §
denotes either a solution to an optimization problem or a
quantity estimated from data.

Boldface symbols, such as A, denote matrices with the
element in its ith row and jth column denoted by A;; or
[A];;- The identity matrix is denoted by I.

We use § to denote the discrete Fourier transform (DFT)
of s,

5T == Fs7, (1)
ka — e—Zm'km/N’ (2)
with §; being its jth element. The inverse DFT is given by,

1 _.
F! =_—F, 3
N ()

The symbol “./” denotes element-by-element division, and
the supremum of integers less than or equal to x € R is
denoted by |x].
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A. Noise model

We will denote a segment of GW detector output,
sampled uniformly with a sampling frequency f,, by
y € R". Under the null and alternative hypotheses, denoted
by H, and H, respectively,

_ {’_1 s Hy, ()
Y= s+n ;Hl’

where 5 is a GW signal and 7 is a realization of noise.
Our noise model assumes that 7 is drawn from a zero
mean, Gaussian, stationary stochastic process. Let C,
C;; = E[n;n;], where E[A] denotes the ensemble average
of a random variable A, be the covariance matrix of the
noise segment.

Since C is symmetric and positive definite, an inner
product can be defined on RV,

(x.3) =xC7y". (5)

The norm induced by this inner product will be denoted by
IX]|> = (X, X). It can be shown that

1

%11 = ¥ (FCE~) 7' %"
1

Nfs

X(x./8T), (6)

~
~

where § is the two-sided power spectral density of the noise
defined by

1 1
Si: E ;liz - — FCF_l ii* 7
NT. [17:]°] fs( ) (7)
It follows that,
N-1
8 Sy =0 (8)
m=0

where o7 is the variance of the noise and op = fs/N is the
spacing between consecutive frequencies in the DFT.
The approximation in Eq. (6) arises from neglecting off-
diagonal terms in FCF~!. However, the approximation
approaches equality very rapidly with an increase in N.

B. Signal model

As discussed earlier, the amplitude envelope a(f) and

instantaneous frequency f(¢) = ¢(¢) of a chirp signal
evolve smoothly on the time scale of the instantaneous
period 1/f(r). We model this smoothness behavior by
prescribing a(z) and f() to be splines. The motivation
behind using splines in particular is discussed further in
Sec. III. Appendix A provides a brief review of splines and
B-spline functions.
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Let a(t; &, 7,,) denote the spline for a(t), where 7, are the
breakpoints,

M-1
a(t;a,7,) = Z%‘Bj,k(fﬁa)v )
Jj=0

and B; (:7,) is a B-spline function [32] of order k. Since
B-splines have compact support, a(t;a,7,) =0 for
1€[t,0, Tam—1], Where 7,; = [7,];. As we will see later,
the linear dependence of a(z;@,7,) on a allows consid-
erable simplification in the analysis.

Let f(#;7,7,) be the spline corresponding to f(¢), where
7, € R and 7 € R¥ denote the breakpoints and corre-
sponding instantaneous frequencies that the spline must
interpolate. Unlike a(7; @, 7,), there is no particular advan-
tage gained by expressing f(#;7,7;) in terms of B-spline
functions. We use Steffen’s method [33] for spline inter-
polation, which guarantees the monotonicity of the inter-
polating function between given data points, in order to
prevent spurious oscillations in f(#;7,7;).

With 7, 7,, and 7 denoted collectively by 0, the signal
model is given by,

s(ti@, 0, o) = a(t;@.7,) sin(p(1;; 0, ) + o), (10)
O, 1< Ta.0s
“U. T = 11
(1,0, Tf) { Tta.(] drf(t;o, %f)v 1< Topot- (11)
Let X, and X; denote matrices given by
[XO(é)]jm = j,k(tm; <%a> Sin(gb(tm;l_@ %f))’ (12)
and
[Xl (é)]pn = Bj,k(tm; %a) COS(d)(lm; 777 %f)) (13)
In terms of these matrices, the signal sequence is,
5(a.0. ¢) = pX(0). (14)
B = &(po,
D, = (cos ol singyI), (15)
. X, (0
X(0) = ( 0(_)>. (16)
X;(6)

While the signal model in Eq. (10) captures the basic idea
of smoothness in the evolution of a(¢) and f(¢), it does
not enforce the adiabaticity requirement. This is mainly
because it is technically difficult to incorporate this con-
straint at present. As a result, the scope of the model
actually encompasses a broader set of signals than just
well-defined chirps.

102008-3



SOUMYA D. MOHANTY
III. DESCRIPTION OF THE METHOD

Based on the fundamental use of splines in the signal
model given by Eq. (10) and the fact that the model
represents signals that are effectively, but not only, chirps,
we call the method presented here “Spline Enabled
Effectively-Chirp Regression” (SEECR).

Some of the principal design choices behind SEECR are
motivated by issues encountered in the simpler problem of
fitting a smooth curve to noisy data. We briefly review these
issues first before presenting a description of SEECR.

A formal approach to the problem of fitting a smooth
curve to noisy data is to use regularized least-squares with a
roughness penalty [34],

N-1 -
3(t) = arg min Z(yi -5+ /1/ " des?(¢).  (17)
s() =0 fo

This method is known as smoothing spline [35,36] since the
solution turns out to be a cubic spline with the sampling
times #;, i = 0,1, ..., N, as the breakpoints. The influence
of the roughness penalty on the solution §(¢) is controlled
by the regulator gain A. For 4 = 0, the best-fit solution
simply matches the data itself, while for 1 — oo, it
approaches a straight line. Between these two extremes
lies a solution that is useful for drawing meaningful
inferences from the data.

The natural emergence of splines under a smoothness
requirement is the main motivation behind our modeling
the amplitude envelope and instantaneous frequency of a
chirp as splines. However, estimating these components by
directly applying the roughness penalty on them appears to
be technically difficult. Instead, we take recourse to another
smoothness regularization approach that forms the bases of
the regression spline [37] method. In this method, regu-
larization is achieved by choosing s(z) to be a spline
ab initio but limiting the number of breakpoints to be < N.

A disadvantage of the regression spline method is that
the regularization parameter, namely the number of break-
points, is now discrete and, hence, does not allow fine-
grained control over smoothness. Moreover, the placement
of the breakpoints now plays an important role in deter-
mining the quality of the fit.

For a predetermined placement of a limited number of
breakpoints, the penalized spline method [38] allows
continuous control of smoothness. In the context of the
simple curve fitting problem, the penalized spline method
models the curve as a linear combination of B-splines and
solves

N-1

a=argminy_ (v, - @A(z,))* +4aa’,  (18)
R
where A, = B, i (t,: 7).

Finding the optimum placement of breakpoints is a
challenging nonlinear and nonconvex problem. Methods
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proposed in the literature to address this problem generally
follow the approach of knot insertion and deletion. Only
recently have optimization methods been developed that
are capable of treating breakpoints as completely free
parameters. In particular, particle swarm optimization
(PSO) [39,40] has been applied to this problem [29,41]
and found to have a good performance.

Along with the placement of breakpoints, the number of
breakpoints and the regulator gain have a significant effect
on the quality of estimation. For determining the regulator
gain, generalized cross-validation (GCV) [42] provides a
fast method. The number of breakpoints can be selected
using the Akaike information criterion (AIC) [43].

SEECR combines the different elements outlined above,
namely, penalized spline, GCV, breakpoint optimization
using PSO, and AIC. The description of the algorithm now
follows.

A. Regression using penalized spline

The signal model in Eq. (14) is estimated in SEECR by
minimizing the penalized least-squares function,

A@, 0, poly. 2) = R(@. 0, poly) + 2aa”,  (19)

where

R(@.0.¢o|y) = Iy — 5(a. 6, ) I, (20)

is the residual norm squared, over all the signal parameters.
Henceforth, we drop the explicit listing of parameters
wherever it aids clarity.

The positivity of the amplitude envelope, a(¢) > 0, and
B-splines, B, (#:7,) > 0, V t, (see Appendix A) requires
that the minimization of A be performed under a positivity
constraint on a.

The estimate of the signal model is obtained using the
following program of nested minimizations:

min A = min(min(minA)), (21)
a.0.¢ 6 o @
@ >0, Vi (22)

The order of minimization above, from inner to outer,
corresponds to parameters that can be treated semianalyti-
cally to those that need a fully numerical approach. The
steps in solving the program are described below, starting
from the innermost minimization. As mentioned earlier, the
regulator gain, A, is determined using GCV, which is
merged into the minimization program at the second step.

B. Innermost minimization

First, we address the unconstrained minimization over a.
To do so, we use Egs. (14)—(16) to rewrite A in a more
convenient form:
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A= |3|1> + aKa' - 2ga’, (23)
K = &,G®],

G = XC'X” + I, (24)
q = n9;, (25)
i =yC'X" (26)

K is symmetric and positive definite since XKx! =
¥Gx'T > 0 for any X, where ¥'7 = ®yx”. It then follows
that

7 =arg minA = gK~!, (27)
a

is the solution to the unconstrained inner minimization.

The solution to the constrained minimization problem
can be obtained from the Karush-Kuhn-Tucker conditions
[44]. These conditions essentially state that the solution is
either already in the convex cone of RM defined by a; > 0,
Vi, or on one of its faces.

Thus, given the unconstrained minimizer 7 in Eq. (27), if
r; >0,V i, then 7 itself is the constrained minimizer. If not,
one has to find the projection of 7 on the faces. (The inner
product to use for the projection is (¥,w) = xKw’.) For
this task, we use the mixed primal-dual bases algorithm
developed by Fraser and Massam [45], which returns the
edge vectors of the face of the cone that contains the
projection of 7.

Let the projection operator for the subspace £ spanned
by these edge vectors be P,. Then the solution to the
constrained minimization problem is

(28)

and the estimated signal at this step in the minimization
program is,

AT =T
al,% = PEV R

3‘1’4)0 = )7H,€¢O, (29)
H!, = C'X"&]K~'PLoX. (30)

The subscripts in &{ s> S1.9, and H; 4 make the depend-
ence of these quantities on A and ¢, explicit.

C. Minimization over ¢, and GCV

Consider the simpler case where GCV is used to
determine A before the minimization over ¢, Let
Agev (o) be the resulting value. Then,

Acev (o) = arg;ninGCV(/l;qﬁO), (31)

R(& ., 0. ¢oly)
(1 =Tr(H,,,)/N)*’

GCV (4 o) = (32)

where Tr(H, 4 ) is the trace of Hj ;4 .
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Numerical experiments show that computing Agcy (o)
before minimizing ¢, gives very unstable results. This is
because the positivity constraint can introduce abrupt
changes in the projection &/{ #,» DY making it switch from
one face of the convex cone to another, as ¢, is varied.
Independently of this empirical reason, putting GCV out-
side the minimization over ¢, also makes sense because it
is an approximation to cross-validation, and the right place
for the latter is always after minimization over all relevant
signal parameters.

Thus, the regulator gain in SEECR is determined as
follows:

Agev = argmin GCV (4; ¢y (1)), (33)
A

$o(4) = arg¢min A8 ,.0. o). (34)

Both of the minimizations above are performed numerically.

D. Outer minimization
Let

a= A/lccv-lﬁo(ﬁccv)’ (35)

and let the corresponding value of A be denoted by

F(0]5) = MA@, 0. ¢o(Acev)[P), (36)
which we call the fitness function in the following. The next
step in the program given by Eq. (21) is the minimization of
the fitness function over the parameters 7,,, v,and 7.

There are two principal challenges in this task. One is the
high dimensionality, given by M + 2K, of the search space,
and the other is the degeneracy caused by different permu-
tations of the breakpoint sequences giving rise to the same
splines. Degeneracies create strong local minima which
increase the difficulty of locating the global minimum.

To address the issue of high dimensionality, we lower the
number of parameters as follows. First, we set [7/]y = 7,0
and [77]x_; = 7,1 because the amplitude envelope
spline, and hence the signal itself, is zero outside the
interval [z, T4 07-1)-

Second, based on the Cramer-Rao lower bound on the
estimation error in the amplitude of a monochromatic
signal being higher than its frequency, we can expect that
the error in the estimation of the amplitude envelope a(z) of
a chirp is higher than its instantaneous frequency f (7). (This
is illustrated later in Sec. V C.) A corollary is that one need
not invest as much effort in modeling the a(t) spline as the
f(#) one. Therefore, we can simplify the placement of
breakpoints for a(t) considerably, and we do so by spacing
them uniformly. This reduces the number of free a(r)
breakpoints from M to just two, namely, 7,y and 7, ;.
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The total dimensionality of the search space for the outer
minimization now reduces to 2K: the two end breakpoints
for the a(z) spline, the K — 2 interior breakpoints for the
f () spline, and the K instantaneous frequency values in .

One approach to addressing the issue of degeneracy
arising from the permutation symmetry of breakpoints is to
constrain the two breakpoint sequences to be monotonic.
That is, we enforce 7, y_| > 7,9 and [7]; > [7f]; fori > j
when searching for the minimum of the fitness function.
However, this means that the search volume no longer has
the simple shape of a box, a factor that is known to be
detrimental to the performance of PSO.

An alternative is to reparametrize breakpoints such that
every point in the new search space is guaranteed to be a
monotonic sequence. For any breakpoint sequence
7 = (79,71, ---»Tp_1), & simple reparametrization that leads
to monotonicity is,

Xo = 70, (37)
T, —Ti—1

Xo<i<P-1 = ﬁ (38)
i

The new parameters X = (xg, Xy, ...,xp_;) for i >0 are
simply distance ratios, with x,.o € [0,1] (and x, €
[0, ty—1)). The search space in X is a box and no additional
constraints are needed to ensure the monotonicity of a
breakpoint sequence.

There is, however, a disadvantage to the reparametriza-
tion scheme presented above, which is that a uniformly
spaced breakpoint sequence is pushed towards the
boundary of the box. This is not of much concern for
the amplitude envelope spline since we have reduced the
number of free breakpoints to just two. However, the
variant of PSO used in this paper is generally known to
perform better if a global minimum is located towards the
central region of a search space. Hence, its performance
would suffer with the above reparametrization if an
instantaneous frequency spline were best represented by
uniformly spaced breakpoints.

A clever scheme that circumvents this problem, while
still preserving monotonicity, was proposed in Ref. [46]:

Xo = 70, (39)
T, —Ti—
Xi<isp-2 = T—Tll (40)
i+ i
Xp-1 = Tp-1- (41)

Here, the distance ratios in Eq. (40) are relative to the gap
between the enclosing knots rather than, as in Eq. (38), a
knot and the end point of the data.

With the reparametrization in Egs. (39)—(41), no obvious
degeneracy is left in the fitness function. However, that
does not mean that there are no local minima in the fitness

PHYSICAL REVIEW D 96, 102008 (2017)

function. In fact, as with the estimation of any oscillatory
signal, multiple local minima may be expected that may be
scattered widely in the search space. Therefore, the search
for the global minimum cannot be performed with deter-
ministic local minimizers and a method such as PSO must
be used. (Despite the reduction in the number of param-
eters, the dimensionality of the search space is high enough
that grid-based search strategies would simply be computa-
tionally infeasible.)

E. Model selection

All of the preceding description relates to fixed numbers,
M and K respectively, of breakpoints for the amplitude
envelope and instantaneous frequency splines. The final
step in SEECR is an automated determination of their best
values using AIC. The general expression for AIC is

AIC = 2N pyams — 2In L, (42)

where Npuams 18 the total number of free parameters

involved in a given model and [ is the maximum value,
over the space of these parameters, of the likelihood
function. The best among a set of models is the one that
has the minimum AIC value.

In our case, Nygams =M + 2K + 1, where M is the
number of B-spline coefficients @, 2K is the total number of
breakpoints and corresponding instantaneous frequency
values (Sec. III D), and 1 is for the ¢, parameter.

For Gaussian stationary noise, the log-likelihood can be
expressed as —2R(a, 0, ¢y|¥) [see Eq. (20)]. Hence, maxi-
mizing the former is equivalent to minimizing the latter.
In the case of SEECR, R(@&,0,¢|y) is replaced by
A@, 0, ¢o|y) [see Eq. (19)]. Its minimization over the
parameters @ and ¢, yields the fitness function, F(0|y),
defined in Eq. (36). Thus, —2In L in Eq. (42) is replaced by
the minimum value, F m.x» of the fitness function,

FM,K = minF(0]y). (43)
0

Hence, the value of AIC in our case is given by
AIC = 2(M + 2K) + Fy k. (44)

where we have dropped constants that do not affect the
minimization of AIC. The number of breakpoints in the
model that minimizes AIC will be denoted by M and K in
the following.

F. Amplitude envelope and instantaneous
frequency estimates

Let the final estimated signal sequence, obtained from
the best model selected by AIC, be denoted by 5. To obtain
the best-fit sequences for the amplitude envelope, a, and
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A

instantaneous frequency, f, we construct the analytic

sequence $(0),

sl — 5 4 iH[s], (45)

where H is the discrete Hilbert transform [47] operator.
Then

&j — |§§an1t) , (46)
fi= M (47)
tivg — 1
A A (anl
b= arg(sﬁ. I>), (48)
where j =0,1,...,N—1,i=0,1,...,N — 2, and continu-

ity is enforced across jumps of £z in ¢.

We do not obtain & and f directly from their respective
estimated splines because the two interact nonlinearly in §
to give a better estimate of the signal than what is possible
with the splines alone. However, a minor downside of using

the Hilbert transform is that it creates artifacts in f. Usually
these are samples that are negative or very close to the
Nyquist rate, and easily eliminated by setting them to zero.
The a sequence generally does not present such artifacts.

In the following, exactly the same process as above is
used to get the amplitude envelope and instantaneous
frequency of the true signal.

G. Evolution of SEECR

As mentioned earlier, SEECR is the culmination of a
sequence of intermediated methods [29-31]. Here, we
briefly summarize the similarities and differences between
SEECR and the preceding methods.

In Ref. [29], the simple problem of fitting data with a
spline was considered. Thus, the signal model used was,
s(ta, 7,) = a(t;a,7,), with a(t;a,7,) given by Eq. (9).
PSO was proposed for optimizing the residual norm
squared [Eq. (20)] over 7, without a monotonicity
([Za)i=j > [7a];) constraint. (In addition, the variant of
PSO used in Ref. [29] is different from the one used in
SEECR.)

The signal model used here [Eq. (10)] was introduced in
a more restricted form in Ref. [30]: it was assumed that
¢(1) = 2rfot + p(1), with ¢(¢) changing over a much
longer time scale than the period, 1/ f, of the carrier. This
restriction allows the signal to be heterodyned, yielding the
two quadratures a(r) cos ¢(t) and a(¢) sin ¢(¢). The method
in Ref. [29] was then used to estimate the quadratures
independently. While the importance of modeling both the
amplitude and phase evolution of a signal through splines
was emphasized in Ref. [30], the heterodyning approach is
completely different from what is done in SEECR.
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In Ref. [31], the signal model was generalized to
essentially match Eq. (10). However, the initial phase
parameter, ¢y, was not included in the model, which
simplifies the steps involved in Sec. III B considerably.
In addition f(7) was modeled with a linear, not cubic,
spline. The number of breakpoints, M and K, were not
varied and model selection (see Sec. III E) was not used.
The use of GCV was introduced but did not face the
complication, described in Sec. III C, involved in meshing
it with the minimization over ¢.

IV. DESCRIPTION OF THE SIMULATIONS

We quantify the performance of SEECR using sta-
tistically independent simulated data realizations corre-
sponding to the data model in Eq. (4). H, data
realizations are drawn from a zero mean Gaussian white
noise process with unit variance [i.e., an ii.d N(0,1)
sequence]. There is no loss of generality because the inner
product in Eq. (5) is equivalent in the Fourier domain to the
Euclidean inner product of a white noise sequence with a
whitened signal. Since the choice of waveforms for
unmodeled signals is arbitrary to begin with, they can be
assumed to be those of the whitened signals.

A. Simulated signal waveforms

We use the following simulated signal waveforms,
covering a wide range in the behavior of the amplitude
envelope and instantaneous frequency. Each signal is
assigned a label followed by pertinent information about
it. For the signals where expressions for a(¢) and ¢(¢) are
given, s(¢) = a(t)sin(¢(r)). We have taken care to set
some of the signal parameters, such as the start time or the
carrier frequency, at values that are not related in a special
way to the sampling grid in either the temporal or the
Fourier domain. All data realizations containing the signals
listed below have a duration of 2.0 sec with a sampling
frequency of 4096 Hz.

TS: Transient sinusoid with a(r) =1 for r€[0.4,1.4]

sec and zero otherwise. (1) = 2zfo(t — 1), with
f(t) = fo =473.0 Hz, and 7, = 0.4 sec.

SG: Sine-Gaussian signal with constant f(7) = fy =
204.8 Hz and a(r) having a Gaussian shape that
is symmetric with respect to the midpoint of
the signal. a(t) = exp (=(t —t)*/(2 x (FWHM/
2.355)?)), for t € [0.4,0.9] sec and zero otherwise.
The peak of a(r) is at t, = 0.65 sec and FWHM =
0.29 sec is its full width at half maximum.
$(1) = 2xfo(t —19) + /2.

3PS: Monochromatic signal with three Gaussian peaks in
the amplitude envelope. This signal is obtained by
concatenating three SG signals. (The middle signal is
the negative of the SG in order to reduce the effect of
phase discontinuities at its boundaries.) a() # 0 for
t € ]0.3, 1.8] sec and zero otherwise.
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FIG. 1. (Top) Spectrogram of the CC signal showing the

behavior of its instantaneous frequency f(z). (Bottom) The
amplitude envelope, a(t), of the CC signal for SNR = 15.
The locations of the minima in f(7) and a(z) do not coincide,
leading to the lopsided distribution of signal power, with the part
after the minimum in f(¢) being stronger.

LC: Linear chirp (quadratic phase) with constant am-
plitude. ¢ (1) = 2z(fot + f11*), with f, =200 Hz
and f, =300 Hz?, and a(t) =1 for 1€[0.4,1.4]
sec and zero otherwise.

QC: Quadratic chirp (cubic phase) with constant
amplitude as defined in Ref. [26]. ¢(1) =
2z(fot + f17), where fy = (27)7'256 Hz and

1= (27)71(512/3) HZ. a(t)=1 for t€[0.4,1.4]
and zero otherwise. The start and end frequencies
are 40.7 and 122.2 Hz respectively.

CC: Cosine phase chirp with cosine modulated ampli-
tude as defined in Ref. [26]. a(f) =2+
cos(2zfo(t — 1) + n/4) for t € [0.4,1.4] sec and
zero otherwise. Here, fo = 1 Hz and 1, = 0.4 sec.
P(1) = ¢y sin(2zfo(t — 1)) + 22f (1 = 1p), with
¢,, = 1024/zrad and f, = 400 Hz. The behavior
of f(#) can be seen from its spectrogram in Fig. 1.
(See Appendix B for the precise definition of a
spectrogram as used in this paper.)

s1IWW: A CCSN waveform obtained from Ref. [48]
corresponding to the acoustic supernova model
[16]. The waveform time series was antialiased
and downsampled to f, = 4096 Hz, leaving no
discernible changes as most of the power in the
signal lies below ~1.5 kHz. Both a(z) and f(¢)
have a complex evolution for this waveform due to
the simultaneous presence of multiple chirping
components as can be seen from the spectrogram
of this signal in Fig. 2. However, there is a single
component that dominates in power, making the
single chirp model assumed in SEECR a good fit.
In each data realization, the signal starts at
t = 0.4 sec and terminates at 1.173 sec.
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FIG. 2. (Top) Spectrogram of the sIIWW signal with the
magnitude shown on a log scale in order to elucidate the multiple
chirping components more clearly. (Bottom) The signal time
series where the amplitude has been scaled such that SNR = 1.

When constructing an H; data realization, the signal
amplitude is normalized such that it has a certain matched
filtering SNR. The SNR of a signal characterizes the
performance of the optimal statistic, namely the log-
likelihood ratio (LLR), for the binary hypotheses test
where there is only one signal waveform and it is
completely known a priori. For the Gaussian white noise
process used in the simulations,

E[LLR|H,] — E[LLR|H,]
[E[(LLR — E[LLR|H,])?|H,]]*’

- {NZ 7| " (49)

i=0

SNR =

where E[LLR|H;], i =0 or 1, denotes expectation under
hypothesis H;. For generating data realizations under H,
we use three SNR values, SNR = 10, 12, 15, for each of the
simulated signals.

B. GW150914 analysis

The simulated waveforms listed so far have durations of
> 1 sec, with the exception of SG that has a duration of
0.5 sec. Although the main target for SEECR are signals
in this duration range, it is interesting to quantify its
performance for a significantly shorter chirp.

For this purpose, we simply use the real event,
GW150914, which furnishes a chirp of duration < 0.2 sec.
However, GW150914 had an exceptionally high observed
network SNR of 24, and a single detector SNR of ~20 [49]
in the Hanford detector, making it an easy case for burst
search algorithms. To test if SEECR could have detected
this signal at weaker strengths, we use the real GW150914
data as a seed to generate new realizations in which the
observed SNR is reduced to ~10.
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FIG. 3. The thick gray curve is the GW150914 data from the

Hanford detector. The solid black curve is the signal estimated by
SEECR. The dashed curve shows the residual after subtracting
the estimated signal from the data.

First, we take the time series from the Hanford detector,
shown in Fig. 1 of Ref. [2] and estimate the standard
deviation of the noise in the data. This is done by estimating
the signal using SEECR and subtracting it from the data to
obtain the residual. Figure 3 shows the data, the estimated
signal, and the residual. The residual has a sample standard
deviation of 0.16.

Next, a realization of pseudorandom noise is generated
and added to the original data. The noise realization is first
generated as white noise with unit variance and then low-
pass filtered, using an order 40 finite impulse response
filter, to the band [0, 450] Hz. The resulting time series,
having a standard deviation of ogy, is then scaled by
[vV/3 x 0.16/65,]. Modulo the sampling error in the stan-
dard deviation estimate, the observed SNR of the signal in
the new realization is reduced by a factor of 2. To generate
H, data, we follow the same procedure but use a scaling
factor of 2 x 0.16/ ;.

As with the simulated signals, independent realizations
of H and H data are generated for GW150914. Each data
realization has a duration of 0.21 sec with a sampling
frequency of 4096 Hz. Figure 4 compares the original data
with one such realization.

C. SEECR parameter settings

The principal user-determined parameters governing
SEECR are the number of breakpoints, M and K, for
the amplitude envelope and instantaneous frequency
splines respectively. The user provides a set of values
for M and K and, as described in Sec. III E, AIC is used to
pick the best combination.

In principle, one need only specify the maximum values
of M and K and let AIC examine all the integers below
them. However, this is wasteful since the signal estimates,
and hence the AIC values, may not differ much between
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FIG. 4. GW150914 data from the Hanford detector compared
with a realization obtained by adding excess pseudorandom
white noise. The first and second panels from the top show the
spectrogram, obtained with a window length of 128 and overlap
between consecutive windows of 127 samples, and the data time
series respectively. The bottom two panels are the corresponding
plots for a data realization where the observed SNR has been
reduced by a factor of 2. In all panels, the horizontal axis shows
time in seconds. The vertical axes in the case of spectrograms
shows frequency (Hz). In the time series plots, the vertical axis
shows the (whitened) GW strain (x1072").

nearby models. This is particularly true at higher values for
the number of breakpoints where nearby models start
differing less and less in their fit quality. Hence, computa-
tional costs can be reduced substantially by spacing models
out judiciously.

Based on the above and keeping computational costs in
mind, we arrived at the sets {5,6,7,9,11} and {3,4,5,7}
for M and K respectively, resulting in 20 different models,
that are kept fixed throughout this paper.

Besides the above parameters, there are the parameters
associated with PSO and the range, [Vpin, Umax)» for the K
instantaneous frequency values v;, that it needs to search.
(The range for the amplitude envelope end breakpoint
parameters is set so that the entire data segment is covered.)
A virtue of the PSO algorithm is the robustness of its
parameter settings. This allows us to simply keep the same
settings [50] as used in Ref. [51], to which we refer the
reader for further details. For the above set of K values, the
dimensionality of the search space for PSO ranges between
6 and 14.

Like all stochastic global optimizers, PSO is not guar-
anteed to converge to the global minimum. However,
the probability of success can be increased exponentially
by doing multiple runs of PSO, with statistically inde-
pendent initial states, on the same data realization and
picking the run that returns the best fitness value. The
number of independent PSO runs is set to eight in this

paper.
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We keep v, slightly below the Nyquist frequency of the
data to prevent too many PSO particles from escaping the
search region to explore physically invalid frequencies.
Except Sec. VII, where v, = 510 Hz, we set v, =0
and v, = 2000 Hz.

Finally, we use splines of order 4 (cubic splines) for both
the amplitude envelope and instantaneous frequency.

V. RESULTS

The presentation of the simulation results is organized as
follows. In Sec. VA, we focus on the detection perfor-
mance of SEECR. Section V B describes its performance in
estimating the amplitude envelope and instantaneous fre-
quency of a signal. The results in Sec. VA and Sec. V B use
the set of signals described in Sec. IV A with 500 realiza-
tions of Hy and a minimum of 50 realizations of H data for
each signal and each SNR. Section V C presents results
from the GW150914 analysis described in Sec. IV B. For
these results we use 100 H, and 50 H, data realizations.

A. Detection performance

For SEECR to function as a detector, we must choose a
detection statistic, and a natural choice for it is the LLR
evaluated at the best-fit model. Following the discussion in
Sec. Il E regarding the relation between the log-likelihood
and Fj; ¢ [defined in Eq. (43)],

LLR = [I5]* - Fy ¢ (50)

To obtain the threshold corresponding to a given false alarm
probability, we estimate the probability density function
(PDF) of LLR from the H, data realizations. Figure 5
shows the estimated PDF along with the best-fit lognormal
PDF. We pick the lognormal PDF,

L exp (-W) (51)

xo\/2rx

p(x) =

because it provides a good match to the asymmetry of the
estimated distribution around its mode, as well as its heavy
tail, with only two free parameters.

We quote detection probabilities at two values of the
false alarm probability: 1/500 =2 x 1073 and 2 x 107%.
Since each data realization is 2 sec long, the values of the
false alarm rate (FAR) are 1073 and 10~ events/ sec
respectively. (The resulting FAR for coincidence-based
detection between a pair of GW detectors is discussed in
Sec. VIIL.) The corresponding thresholds on LLR obtained
from the best-fit lognormal are 80.3 and 86.9 respectively.

Table I reports the detection probabilities for the simu-
lated signals in Sec. IV A at the different SNR values used
in this study. The error interval associated with each
detection probability corresponds to 1o, where
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FIG. 5. Estimated distribution of the SEECR detection statistic,
LLR, under the null hypothesis. The distribution is estimated
from 500 realizations of an i.i.d N(0, 1) sequence with 8192
samples. The bars show the histogram, with the count in each bin
normalized to represent the PDF. The solid curve shows the best-
fit lognormal PDF, obtained for y = 4.04563, and ¢ = 0.11836.

o= [p<1 _p>/Ntrials]1/2’ (52)

with p being the estimated detection probability and N yu
being the number of H | data realizations used. Note that the
estimated detection probability does not have a normal
distribution, and the error interval above is not strictly
appropriate, for p close to unity or zero. For extreme values
of p, one may use the Clopper-Pearson confidence interval
[52] to assess the error in p. In our case, the extreme value
of concern is p = 1, for which the interval is given by
((a/2)1/Nuis) 1), where « is the confidence level. For a =
0.95 and Ny > 50, the interval is (> 0.9852,1). Here,
and in the rest of the paper, a quoted estimated detection
probability of unity is understood to refer to the above
confidence interval.

TABLE 1. Estimated detection probabilities, and their 1o error
intervals at two different false alarm rates. The detection probability
for each SNR value is estimated using 50 H, data realizations
except for QC and CC, where the number of realizations is 120.
The detection probability at SNR = 15 is unity at both FARs for
every signal and, hence, not listed explicitly.

FAR = 1073 events/sec FAR = 107* events/ sec

Signal SNR =10 SNR =12 SNR=10 SNR=12
TS 0.98+0.02 1.00£0.00 0.96+0.03 1.00=+ 0.00
SG 1.00£0.00 1.00+0.00 0.98+0.02 1.00 £ 0.00
3PS 0.84 £0.05 094+£0.03 0.82£0.05 0.92+£0.04
LC 0.524+0.07 090+0.04 0.40=£0.07 0.84 £0.05
QC 0.61+£0.04 097+£0.01 0.48£0.05 0.95=£0.02

0.68 +0.04 0.092 £0.03 0.53 +£0.05
0.98+0.02 0.72+0.06 0.98 £+ 0.02

CcC 0.22 £ 0.04
sITWW  0.86 £+ 0.05
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FIG. 6. Two-dimensional (2D) histogram of estimated instanta-
neous frequencies for (left panel) H, data realizations containing
the CC signal with SNR = 10, and (right panel) H, data. Each
histogram is constructed by plotting all the estimated frequencies
and counting the number of plotted points in a regular grid of 2D
bins. There are 50 bins along each dimension. For the left panel,
only those data realizations are included that had LLR values less
than the detection threshold. All realizations of H, data are used
for the right panel. The counts in each panel are normalized by the
respective number of trials used.

We see that, at SNR = 10 and a FAR of 10~ events/ sec,
SEECR attains a detection probability of 0.5 for all the
signals except CC. In itself, the reduced power for this signal
is not surprising given that it has the most extreme amplitude
and instantaneous frequency variation. However, an addi-
tional reason appears to be the lopsided distribution of signal
power as seen in Fig. 1. Its effect on the estimated signal is
shown in Fig. 6. We see that the estimated instantaneous
frequency tends to match only the part of the signal that is
louder, and the initial half of the signal is missed completely.

Figure 6 also shows the estimated instantaneous frequen-
cies from H data. It is interesting that the imprint of the
signal on the distribution of estimated instantaneous
frequencies is quite clear even at SNR = 10.

The detection probability of the CC signal is reduced
substantially for the FAR of 10~* events/sec but then
climbs to 0.53 £0.05 at SNR = 12. SEECR achieves a
detection probability 0.8 for all the other signals at
SNR = 12 for this FAR.

B. Estimation performance

Gauging the performance of any method on the estima-
tion of chirp signals requires metrics that go beyond the
simple mean squared error (MSE) ||5 — §||> between the
true signal, 5, and its estimate §. This is because, as
discussed in Sec. III D, the error in estimating the amplitude
envelope a(t) of a chirp can be significantly higher than
that for its instantaneous frequency f(z) but they are
conflated in the MSE without any kind of weighting.
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Moreover, going by the case of binary inspiral signals,
most of the physically important information carried by a
GW chirp is likely to reside in f(z) and one would like to
study the error in estimating it independently of a(). This
motivates the introduction of a set of metrics to separately
quantify the estimation performance for a(r) and f(z).

1. Estimation metrics

The metrics proposed here are based on the physically
relevant information one would like to extract from any
estimated signal. At the most basic level, this consists of
the time of arrival, the duration, and as much of f(7) as
possible.

In a parametric search method, the time of arrival and
duration are explicit parameters of the signal model and
are measured as such. In the case of unmodeled chirps,
however, the measured quantities are a() and f(¢), and the
time of arrival and duration must be derived from them.
Among the two, it is natural to use a(¢) for this inference
but due account must be taken of estimation error, which
can be expected to be higher where the true a(t) is smaller.
Therefore, for example, simply using the start time of the
estimated a(¢) as the time of arrival is not a good idea
because the start of a signal is precisely where the true a(r)
decays to zero and the estimation error is likely to be
highest.

Consider a finite duration amplitude envelope a(7), with
a(t) = 0 for t&[t, 1,]. Given that a(¢) > 0 everywhere and
integrable, one can normalize it to construct a PDF over ¢,

a(t)
Pa(t) = Z——- (53)
2 dta(r)
We define the time of arrival, denoted by 7,, as the median
of this PDF,

/ " ()dt = % (54)

The duration 7, is defined as the interquartile range (IQR)—
the difference between the first and the third quartiles—of
the PDF,

tp = q(0.75) = (0.25), (55)

()
/ " dtpa(r) = . (56)
f

The median is preferable to the mean of p,(f) as an
estimator of 7, because it is more robust against the
increased error in the tails of p,(f) near the start and
end of a signal. Generally, these errors need not be equal at
the two ends, giving rise to a larger bias in the mean than in
the median. For the same reason, the IQR is a more robust
measure of the duration than the standard deviation. For
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reference, the IQR of a normal distribution with standard
deviation ¢ is 1.340.

We denote the metrics associated with the time of arrival
and duration by 67, and 8D respectively. The metric ¢, is
simply the offset

ot, =1, —t,, (57)

where 7, and ¢, are the times of arrival associated with the
estimated and true amplitude envelopes respectively.
Similarly, the metric 6D is

5D :?D—ID, (58)

where 7, and t, are the interquartile ranges associated with
the estimated and true amplitude envelopes respectively.

For f(t), we adopt the following metric. Let F be the set
of time samples within the start and stop times of the true
signal. Let f and f be the estimated and true instantaneous
frequency sequences respectively. Note that the set of time
instants over which each is supported will not be identical
in general. Define

- A

Gler) = {ilti € F.|[f1; = [f1il < e} (59)

In words, G(ey) is that part of the true signal where the
estimated and true instantaneous frequencies differ by less
than +e;. The metric is then defined as,

Ziecj(ef)az2

Zie]—'azz

The numerator is the squared norm of the true amplitude
envelope, @, restricted to the samples in the set G(e/). The
denominator is the squared norm of the full a.

The metric p(e) takes account of the fact that the error in
frequency estimation can be expected to be larger where the
true signal amplitude is weaker. Thus, we must somehow
weight the error by the instantaneous amplitude of the
signal before combining them. However, a straightforward

weighted average of f — f, with the weight given by p, (),
is not found to perform well. This is because SEECR does
not put any constraint on how fast f() can vary and this
allows the estimated frequency to change rapidly near the
beginning and end of a signal where its true amplitude is
small (or zero). (This effect is visible as a flaring of the
estimates in Fig. 6 around the end of the signal.) The
resulting errors turn out to be too large to be compensated
by the decaying amplitude envelope near these locations.
By confining our attention to the interval G(ey), where the
estimated and true instantaneous frequencies agree well,
and constructing the metric out of the amplitude envelope,
we cut out these spurious end effects and fold in the
required weighting at the same time.

P*(e £) = (60)
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FIG. 7. The instantaneous frequency, f, of the s1IWW signal
(in gray) and its running average (in black). f is obtained from the
analytic form of the signal as described in Sec. III F. The large
spikes in f, that cross a band of ~ % 300 Hz around the running
average, are artifacts of this process and should be ignored.
The running average is computed over a block of ten samples.
The slope of the trend changes from positive to negative some-
where in the interval [0.75, 0.77] sec. Over this interval, the
sample standard deviation of f is 98.3 Hz.

While p(es) as defined above is appropriate for a
smoothly evolving instantaneous frequency, it needs to
be modified for signals where this is not true. As can be
seen from Fig. 7, the s11WW signal presents such a
situation, where, In addition to an underlying trend, a fair
amount of scatter (excluding the spurious spikes) is evident
in the true instantaneous frequency. The trend can be
elucidated by taking a running average, which is also
shown in the figure. The scatter must be accounted for
when comparing estimated and true instantaneous frequen-
cies because no semiparametric method, such as SEECR,
can hope to match the scatter in detail without having a
degree of freedom that is so large as to make it practically
useless.

For the s1IWW signal, therefore, p(ey) is calculated
with f replaced in Eq. (59) by its running average. It should
be noted that setting e, to be less than the standard
deviation of the running average itself will again show
up as an apparent loss in performance. The running average
used here is computed over a block of ten samples, and
given that the standard deviation of f; around the running
average is ~100 Hz, the standard deviation of the running
average itself is ~30 Hz.

2. Metric distributions

Figures 8, 9, and 10 summarize the sampling distribu-
tions of 6t,, 6D, and p(e) respectively in the form of box-
and-whisker plots. For each box, the “©®” mark indicates
the median of the distribution, while the bottom and top
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FIG. 8. Box-and-whisker plots of the metric 6¢,. Each box-and-
whisker summarizes the sampling distribution, as described in
Sec. VB 2, of 6t, for one signal and one SNR. The name of the
signal is shown on the x axis. The box-and-whisker plots
corresponding to the same SNR are grouped in one panel. From
left to right, the panels correspond to SNR values of [10, 12, 15]
respectively.
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FIG.9. Box-and-whisker plots of the metric 6D. Each box-and-
whisker summarizes the sampling distribution, as described in
Sec. VB 2, of 6D for one signal and one SNR. The name of the
signal is shown on the x axis. The box-and-whisker plots
corresponding to the same SNR are grouped in one panel. From
left to right, the panels correspond to SNR values of [10, 12, 15]
respectively.

edges correspond to its 25th and 75th percentiles respec-
tively. Thus, the length of a box corresponds to the IQR and
contains 50% of the probability. The whiskers (thin lines)
extend to the extreme data points that are not outliers. A
sample value is deemed to be an outlier if it is separated
from the median by more than twice the IQR. (Outliers are
shown as open circles that are dithered horizontally by
small amounts to aid visual clarity.)

For reference, the length of each whisker is 2.68¢ for a
normal distribution having a standard deviation o. As such,
more than 99% of the probability under a normal distri-
bution is contained between the ends of the two whiskers.
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FIG. 10. Box-and-whisker plots of the metric p(e;) for
€y = 64 Hz. Bach box-and-whisker summarizes the sampling
distribution, as described in Sec. VB 2, of p(ef) for one signal
and one SNR. The name of the signal is shown on the x axis.
The box-and-whisker plots corresponding to the same SNR are
grouped in one panel. From left to right, the panels correspond to

SNR values of [10, 12, 15] respectively.

While this is also true for the observed distributions in
general, there are some exceptions. The correct probability
coverage in such cases can be obtained by simply counting
the number of outliers in the plot and subtracting it from the
number of trials (see Table I for the exact number of trials).

The distributions of 6¢, and 6D show that reducing the
errors in time of arrival and duration, if they are obtained
from the estimated amplitude envelope, to levels where
they are significantly smaller than the duration of the
signals requires SNRZ15. The lowest error at this SNR
is in the range +0.08 sec, with a probability of Z0.99, for
the sITWW signal (1 sec duration). With the same
probability, QC shows the broadest range for the error at
about +0.24 sec.

While the time of arrival is generally estimated with
negligible bias, it is significant for the CC signal due to its
partial reconstruction (see Fig. 6). However, the bias is
fairly independent of SNR and, hence, will not affect the
offsets between the estimated times of arrivals for CC
signals in a network of detectors. Excluding CC, the largest
range (=0.99 probability) in time of arrival error at
SNR = 10, which occurs for the QC signal, is £0.5 sec.

The bias in duration estimation, on the other hand, is
non-negligible for several signals even at SNR = 15. The
anomaly in the duration estimation is the SG signal, for
which the error has a distinctly asymmetrical distribution
around the median. This is because the estimated amplitude
envelope for this signal has a peak that is well localized
around that of the true signal, as evident from its oz,
distribution, but it is biased away from having a symmet-
rical shape around the peak. This illustrates the problem,
mentioned earlier, with using the start and stop times of the
estimated amplitude envelope directly for deriving duration
and time of arrival.
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FIG. 11. Box-and-whisker plots of the metric p(e) for
¢y =4 Hz. Each box-and-whisker summarizes the sampling
distribution, as described in Sec. V B 2, of p(ef) for one signal
and one SNR. The name of the signal is shown on the x axis.
The box-and-whisker plots corresponding to the same SNR are
grouped in one panel. From left to right, the panels correspond to

SNR values of [10, 12, 15] respectively.

From Fig. 10, we see that with a tolerance of ¢, = 64 Hz
in frequency estimation error, SEECR is able to recover
260% of the frequency evolution at the lowest SNR with
20.99 probability. The only exception is the CC signal and
the reason is again its partial reconstruction. Excluding this
signal, the whiskers of all the distributions lie above ~70%
at SNR = 12 and ~80% at SNR = 15.

Figure 11 shows the distribution of p(e;) for a much
tighter tolerance of €, =4 Hz. The distribution for the
s1TWW signal is not included in this figure because € is
smaller than the standard deviation of the running average
of its instantaneous frequency (see Sec. VB 1). The
changes in the distributions of p(e;) are relatively small
for all the other signals and Z75% of frequency evolution is
still recovered at SNR = 15 with 0.99 probability.

C. GW150914 analysis

As described in Sec. IV B, pseudorandom noise was
added to GW150914 data to reduce the observed SNR of
the signal by a factor of 2. Figure 12 shows the cumulative
distribution function of the LLR [Eq. (50)] under H, along
with a lognormal fit, and H,. The two distributions do not
overlap. Based on the lognormal fit, SEECR can detect a
signal like GW150914 at an SNR = 10 with a probability
of unity even at a false alarm probability of 2 x 107!°
(corresponding to a threshold of LLR = 50).

Figures 13 and 14 show the 2D histograms, following the
construction described in Fig. 6, of all the estimated
amplitude envelopes and instantaneous frequencies respec-
tively, along with box-and-whisker plots of the metrics ¢,
and p(es). Comparison of the 2D histograms clearly
illustrates the discussion in Sec. III D that the estimation
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FIG. 12. Estimated cumulative distribution functions (CDFs) of
the LLR obtained from the SEECR analysis of GW150914 data.
The CDF on the left (solid curve) is estimated from noise-only
data (generated independently of GW 150914 data) while the one
on the right corresponds to the real GW150914 data with added
pseudorandom noise. Also shown on the left (dotted curve) is the
CDF of the best lognormal fit.

error for the amplitude envelope of a chirp is significantly
higher than that for its instantaneous frequency.

From the 6¢, distribution, we conclude that, with a
probability of about ~0.5 and ~0.99 respectively, SEECR

0.01f
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FIG. 13. The 2D histogram of estimated amplitude envelopes
(left panel) using 50 data realizations of GW150914 data with
added pseudorandom noise. The histogram is constructed by
plotting all the estimated amplitude envelopes and counting the
number of plotted points in a regular grid of 2D bins. There are 50
bins along each dimension. The counts have been normalized by
the number of realizations used. The distribution of the metric,
ot,, is shown as a box-and-whisker plot (right panel). The true
time of arrival was taken to be the one associated with the signal
estimated by SEECR from the original GW150914 data.
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FIG. 14. The 2D histogram of estimated instantaneous frequen-
cies (top panel) using 50 data realizations of GW150914 data
with added pseudorandom noise. The histogram is constructed by
plotting all the estimated instantaneous frequencies and counting
the number of plotted points in a regular grid of 2D bins. There
are 50 bins along each dimension. The counts have been
normalized by the number of realizations used. The distribution
of the metric, p(e;), is shown as box-and-whisker plots (bottom
panel) for e, € {1,2,4,8,16,32,64} Hz. For the calculation of
p(er), the true amplitude envelope was taken to be that of the
signal estimated by SEECR from the original GW150914 data.

was able to pin down the time of arrival of the signal to
within about +2.5 and £10 msec. This is a vast improve-
ment over the situation seen in Sec. V B 2 for the case of
long-duration signals. The p(e;) distribution, on the other
hand, shows a worsening relative to the longer duration
signals. For example, compared to the SG signal at
SNR = 10, which shows §90% recovery with 0.99
probability for e, =4 Hz, the same performance for
GW150914 requires an error tolerance of €, 16 Hz.

VI. COMPARISON WITH TIME-FREQUENCY
CLUSTERING

All of the principal search algorithms used in LIGO for
GW burst search [12,53,54] use some form of time-
frequency (or time-scale) clustering. It is assumed that
the presence of a signal in noisy data produces areas of
locally high power, or clusters, in the time-frequency plane.
Depending on the properties used for distinguishing
between signal and noise-induced clusters, there is a wide
variation in how clustering is implemented, ranging from
a nearest-neighbor-based approach [55] to a proximity
prior [53].

For a given SNR, the sensitivity of any clustering-based
method is naturally lower for signals that do not produce
strong clusters. This is a particularly relevant issue for
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FIG. 15. Scatterplot of detection probability attained by time-
frequency clustering (x axis) and SEECR (y axis) for the
simulated signals (see Sec. IV) and SNR = 10, 12, 15. (The
axes have been extended beyond a probability of unity for
clarity.) The marker shapes correspond to the signal waveforms
as follows: TS (*), SG (%), 3PS (4A), LC (OJ), QC (<), CC (o),
sITWW (>). The color of a marker indicates the SNR with the
correspondence 10 (red), 12 (blue), and 15 (black). The error bars
in each direction correspond to the respective lo intervals
[cf., Eq. (52)].

chirps since they spread their total energy over an extended
track. Therefore, it is interesting to compare the perfor-
mance of SEECR with time-frequency clustering.

Since a full-fledged comparison with the search methods
used in LIGO is outside the scope of this paper, we
construct an ad hoc clustering-based search method that
is simpler but, at the same time, captures the principal
features of clustering used in the more sophisticated
methods. We refer the reader to Appendix D for a
description of the clustering-based search method. Here,
we focus entirely on the results obtained with this method
and its comparison with SEECR.

To quantify the performance of the clustering-based
search method, we generate data realizations in exactly
the same way as described in Sec. V. However, due to the
use of multiresolution analysis (see Appendix D), the
overall FAR is split across the different resolution levels
and, consequently, a much larger number of data realiza-
tions is required to reduce sampling errors. Consequently,
we generate 10* and 10° H, and H, data realizations
respectively. For the same reason, we only compare the
clustering-based method and SEECR at the larger FAR
of 1073 events/sec.

Figure 15 shows a scatterplot of the detection probability
attained by SEECR (from Table I) and the clustering-based
method across all signals and SNR values. We see from the
points that are far away from the line of equal detection
probabilities that the performance of SEECR is significantly

102008-15



SOUMYA D. MOHANTY

0.7 T T
@
I\
- 06 1 \\ =
9 / \\
T 05 | - 8
2 / N
5 04F ] 8
o \
5 031 \ .
o] | %
€ 02t 7 \ 8
=] / \
b4 ) \
01t 2 v 1
- \B,
0 - el Ll o
10° 10 10° 10*
Window Length
T .
0.7 b
06t % . .
_05f — i J
=& o4l ! i J
031 ! 8
01F — + 4
L =256 L=512
FIG. 16. The top panel shows the number of time-frequency

events found, as a fraction of the number of data realizations
(=1000), for each of the window lengths, L =?2",
n=>5,6,....,11, used in the clustering-based search method.
Each data realization contains the LC signal with an SNR = 15.
(The dashed line is included as a visual aid only, with the actual
data points shown as open circles.) The bottom panel shows the
distribution of p%, for L = 256 and L = 512, the window lengths
that produce the bulk of detected events, in the form of box-and-
whisker plots. In these plots, the median is indicated by the red
line in each box. The edges of each box and the size of the
whisker carry the same meaning as described in Sec. VB 2.
Outliers are denoted by the “+” marker.

better than clustering for the CC and LC signals. For the
remaining signals, the two have essentially the same
performance.

At SNR = 15, the detection probabilities attained by
clustering for the LC and CC signals are 0.71 + 0.014 and
0.72 £ 0.014 respectively while they are unity for SEECR
in both cases. The performance of clustering worsens
rapidly for these signals as SNR is reduced, with the
detection probabilities at SNR = 12 being 0.133 £ 0.011
and 0.174 £0.011 for LC and CC respectively. (The
corresponding probabilities are 0.90 £0.04 and 0.68 +
0.04 for SEECR.) While a reduction in performance of
clustering is expected, due to the spreading of signal power
across a track, the extent to which it degrades for a simple
signal such as LC is quite surprising.

While clustering is a detection, not an estimation,
method, estimation is possible as a follow-up step to
clustering-based detections. However, if the estimation
algorithm focuses on only the time-frequency regions
identified as significant by the clustering step, the errors
in the estimation can become quite large. This is evident
from Fig. 16 where we have taken the case of data
realizations containing the LC signal at SNR = 15 and
analyzed the associated time-frequency events as described
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below. (See Appendix C for the definition of a time-
frequency event.)

Let C§ be the set of spectrogram columns constituting
the support of the true signal for window length L, and let
C* be the set of columns constituting an event. The ratio
n(CENCE)/n(CE), where n(A) is the cardinality of a set A,
is a simple measure of how well clustering can indicate the
time-frequency region for follow-up analysis by estimation
algorithms. For a signal such as LC that has a constant
amplitude envelope over its entire duration, this ratio is
equivalent to the metric p(ey) defined in Eq. (60) but with
€y set to be the entire frequency range of the spectrogram.
To indicate this connection, we denote the ratio above
as pk.

As can be seen from the box-and-whisker plots in
Fig. 16, for the window lengths L = 256 and L =512
that produce the bulk of the detected events, pL is $0.3
with a probability of 0.75 and, consequently, clustering
flags $30% of the region of the time-frequency plane
containing the true signal. (This fraction would be reduced
further if the error in frequency estimation is also taken into
account.) In contrast, we see from Fig. 11 that SEECR
recovers ~90% of the LC signal at the same SNR and
probability with a frequency estimation error of +4 Hz.

VII. COMPARISON WITH
TRACK-SEARCH AND CPP

The GW150914 system, with each of its components
having a measured mass of ~30 M, falls within the range
of simulated BBH signals used in Ref. [22] for analyzing
the performance of track-search. Hence, the results in
Sec. V C pertaining to the analysis of GW150914 data
at an observed SNR = 10 can be used to compare the
performance of SEECR with that of track-search.

The analysis in Ref. [22] used a false alarm probability
of 3.4 x 107 for segments that are 0.415 sec long, sampled
at a frequency of 9868.42 Hz. This corresponds to a FAR
of 8.2 x 107> events/ sec. Assuming that the FAR scales
linearly with the frequency search range, and that the
range used in track-search extended to the Nyquist fre-
quency of 4934.21 Hz, the equivalent FAR for SEECR is
(450/4934.21) x8.2x 107> =7.5x 10 % events/sec. Here,
we have used the actual bandwidth of [0, 450] Hz of the
GW150914 data even though SEECR was run with a
frequency search range that extends to 2000 Hz. Finally,
translating this FAR back to false alarm probability for
the GW150914 data segment length of 0.21 sec, we get
1.6 x 1079,

Based on the log-normal fit in Fig. 12, the false alarm
probability derived above corresponds to a threshold of
30.4 on the LLR statistic. At this threshold, the detection
probability attained by SEECR is unity. The detection
probability for track-search can be read off from Fig. 5 of
Ref. [22] to be ~0.8 for a system with a total mass of
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60 M, at SNR = 10. With the caveat that a proper
comparison requires analysis of the same data realizations
with compatible search parameter settings and a wide range
of waveform morphologies, we find that SEECR has a
performance that is comparable to or better than that of
track-search.

For comparing SEECR with CPP, we use a different
simulation setup than the one in Sec. IVA. This was
necessitated by the high RAM requirement of the public
domain CPP code (CHIRPLAB), which results in very large
execution times when applied to the data realizations in
Sec. IV. Each data realization is now shorter, with a
duration of 0.5 sec at a sampling frequency of 2048 Hz,
leading to 1024 samples per realization.

We generate 500 realizations of H, data following the
same noise model as in Sec. IV. For H, data, we use a
Newtonian inspiral signal that starts at 0.1 sec and lasts
0.24 sec. This signal corresponds to an equal-mass binary
with a total mass of 45.0 M, and a lower frequency cutoff
of 40 Hz. To stay within the range of signal strengths used
in Ref. [26], the signal is normalized to have a value of 0.25
for the SNR as defined in Ref. [26], which corresponds to
SNR = 5.5 as per the definition in this paper. (The latter is
a factor of VN higher than the former, where N = 492 is
the number of samples in the signal waveform.)

We use the best path statistic [26] for path lengths
[1,2,4,8,16] and the routines provided in CHIRPLAB for
estimating detection probability. At a false alarm proba-
bility of 0.05, which is the fiducial value used in Ref. [26],
CPP is found to attain a detection probability of 0.242.
Within sampling error, and for the same false alarm
probability, SEECR gives a nearly identical detection
probability of 0.25. Thus, CPP and SEECR seem to be
comparable in performance.

The CPP algorithm assumes that the signal waveform
occupies the whole of the data segment being analyzed.
Although this condition is violated by the H; data
described above, it provides a more realistic test since
the true duration of an unmodeled signal is unknown by
definition. That said, a version of CPP that is not limited by
the above assumption should be used in future studies for a
fair comparison.

VIII. CONCLUSIONS

We have presented a novel algorithm, called SEECR, for
the detection and estimation of unmodeled transient chirp
signals. The algorithm makes no assumptions about the
time evolution of the amplitude envelope, a(t), or the
instantaneous frequency, (), of a chirp signal except that
they are smooth. The smoothness requirement is incorpo-
rated by modeling a(¢) and f(¢) with mutually independent
splines. An important feature of SEECR is its small number
of free parameters. Given enough computing power, these
can be reduced to just two, namely, the maximum number
of breakpoints to use for the two splines.
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SEECR was tested on seven chirp signals spanning a
wide range of amplitude and frequency evolution morphol-
ogy, and found to achieve a detection probability 0.5 in
the low SNR range (10 < SNR < 12) at a FAR between
10~3 and 10~* events/ sec. Hence, it is capable of achiev-
ing good sensitivity at astrophysically realistic signal
strengths.

In terms of estimation, the instantaneous frequency of a
signal is estimated much better, as expected, than the
amplitude envelope. For example, excluding the CC signal
due to its partial reconstruction, more than 60% of the
instantaneous frequency evolution of a signal can be
recovered with an error of £64 Hz at SNR = 10.

Errors in the time of arrival were found to depend
strongly on the true signal duration. For example, the
smallest error range found is about +80 msec for the
s TWW signal (1 sec duration) at SNR = 15 but it reaches
the £10 msec level, comparable to the maximum light
travel time between the two LIGO detectors, for
GW150914 (0.2 sec duration) at a lower SNR of 10.

If SEECR is used in a temporal coincidence scheme
across two GW detectors with an acceptance window of
+0.5 sec, which is the largest error range at the lowest
SNR, the coincidence FAR becomes (107#)? events/ sec,
or 1 event in 3.17 years, for a single detector FAR of
10~* events/ sec. At SNR = 12, the lowest corresponding
two-detector coincidence detection probability, excluding
the CC signal, is 0.84% ~ 0.7 for the LC signal.

The coincidence FAR can be reduced substantially if
instead of a temporal scheme, coincidence is imposed on
the estimated frequency evolution. However, we did not
explore coincidence schemes further in this paper because
it is not the optimal way to utilize multiple GW detectors.
The proper generalization of SEECR, which is a major
future direction for its evolution, is coherent network
analysis where each of the two GW polarizations is an
independent instance of the single-detector signal model
used in this paper. An early step in this direction was
reported in Ref. [46] for the much simplified case where
each GW polarization waveform itself is assumed to be a
spline.

Based on an ad hoc time-frequency clustering method,
we found that SEECR significantly outperforms a cluster-
ing-based search for some of the signal waveforms (CC and
LC). At a FAR of 1072 events/sec and SNR = 12, the
clustering-based method could only achieve detection
probabilities in the [0.133 +0.011,0.174 £ 0.011] range
while SEECR achieved [0.90 4 0.04,0.68 & 0.04]. Our
clustering method fully incorporates multiresolution analy-
sis, which is the main driver of performance for such
methods. Hence, we do not expect a significantly different
outcome for more sophisticated approaches to the produc-
tion of time-frequency clusters.

Since clustering is a key component of the burst search
methods used by LIGO, SEECR can complement current
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searches by extending their coverage of GW waveform
morphologies. We also compared SEECR to track-search
and CPP and found that it is comparable in performance to
these methods.

The metrics proposed here to quantify the estimation
performance of SEECR can prove useful for a comparative
study of algorithms that target long-duration (1 sec)
chirp signals. Similarly, the set of waveforms used here
can serve as a benchmarking test bed.
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APPENDIX A: B-SPLINE FUNCTIONS

A spline is a piecewise polynomial function defined over
a set of adjacent intervals, where the end points of the
intervals are called breakpoints. The coefficients of the
polynomials are determined by specifying conditions,
such as continuity and differentiability, at the breakpoints.
Additional conditions at a breakpoint can be specified by
expanding the sequence of breakpoints into a sequence of
knots, where multiple consecutive knots can have the same
breakpoint value.

For a fixed set of L knots 7 = (7, 7y, ..., T;_; ), the set of
all splines defined by 7 and having polynomial order
k (=4 for a cubic polynomial) is a linear vector space
of dimensionality L — k. The set of B-spline functions,
denoted by B;(#;7), i =0,1,...,L —k — 1, constitutes a
basis for this space. They can be obtained using the
recursion relations [56],

1, 7.<=t<7;,
Bt ={, " (A1)
0, else,
Bin(r:7) = —— By (1)
k(67) = ————— B (67
" T =T
Tivk — 1 .
+—————Bia(t7).  (A2)
Titk — Tit1

From Eq. (Al), B;;(t) =0 when 7; =t =7;,,, and any
term in Eq. (A2) that has a zero in the denominator (due to
knot multiplicity) will be set to zero by this condition. It can
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be shown that B, ;(#;7) = 0 for 1&[z;, 7;,;) and is positive
in the interior of this interval.

For generating B-splines numerically, we use routines in
the GNU Scientific Library (GSL) [57]. In these routines,
the end knots have a multiplicity of k for a spline of order k.
Thus, the number of B-splines generated is two more than
the number of breakpoints. However, since the B-splines
in this scheme at the end breakpoints are discontinuous,
we always set their corresponding coefficients to zero.
Therefore, the amplitude envelope spline is a linear
combination of M B-splines as shown in Eq. (9).

APPENDIX B: SPECTROGRAM

For a given data sequence X of length N, define the
windowed sequence XL of length L < N and offset a,

xL = (x40 X4i1s oo Xgir-1)s 0<a<N-L. Then a
spectrogram, S’, is given by,
[S ] = |[F (" % 35,17 (BI)

where Wl is a window sequence of length L,

m=0,1,...,|L/2], and n=0,K,2K,....|(N-L)/K| -1
with 1 < K < L. Here, L — K specifies the overlap between
consecutive windowed sequences. In this paper, Wk is
always a Hamming window and K = [0.25L|. An element
at row i and column j of S* is called a pixel, (i, ), and
[S*];; is its amplitude.

APPENDIX C: TIME-FREQUENCY CLUSTERING

We present the definition of a time-frequency cluster as
used in this paper as well as the algorithm used for
producing clusters. See Appendix B for the notation used
here.

Given a spectrogram St and a threshold 7%, define the
binary matrix BZ,

(B, = {0 (8" <"

1 [SE],.. =1 ()

mn

One can represent B as an image with pixels colored black
when they have amplitude 1 and white otherwise. This has
led to the common terminology, following Ref. [55], where
a pixel with amplitude 1 is called a black pixel (BP), B is
called the BP map, and 5" is called the BP threshold.

Define pixels (i, j) and (p, ¢) to be nearest neighbors if
(p—i,g—j)e€{-1,0,1} x {-1,0,1}. We call a non-
empty sequence of pixels a path if it is a sequence of
only nearest neighbors, and two pixels are connected if they
are members of a path. A nonempty set of black pixels is
defined to be a cluster if each element of the set is
connected to every element of the set by a path that
consists of only the elements of the set.
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To distinguish noise and signal-induced clusters, we put
a threshold on the cluster integrated power P%, which is
defined as

Pé = Z [SL]ij'

(i.j)eC

(C2)

For a given data realization and window length L, the union
of pixels from all the clusters for which P% exceeds some
threshold is called a time-frequency event, or just an event
when there is no scope for confusion.

APPENDIX D: CLUSTERING-BASED SEARCH
METHOD

The steps below describe the clustering-based search
method used in this paper and how it is initialized in our
simulations. See Appendices B and C for the notation
used here.

(1) Choose a set of values of L to allow multiresolution
analysis. The frequency spacing between pixels in a
column of S’ is given by f,/L Hz, where f, =
4096 Hz is the sampling frequency (see Sec. IV).
Following the frequency resolutions used in the
analysis of GW150914 by the coherent WaveBurst
algorithm [2], we pick L =2", n=5,6,...,11,
leading to frequency spacings of 128,64,32,16,8,4,
and 2 Hz respectively.

(2) Obtain the BP threshold, ~, for a target BP rate, rkp,
in H, data. For the noise model used here, [S%],,,, has
an exponential distribution, and assuming that pixels
are statistically independent, the BP threshold is
given by
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’7L _ ”wL”z In (( LL/ZJ rg})l))([](vj\;f_s L)/KJ> (Dl)

We set rkp = 1000/7 BP/ sec, leading to an overall
rate of 1000 BP/sec across all seven window
lengths.

(3) Estimate the threshold on cluster integrated power,
PL. We use a target rate of 1072/7 clusters/ sec for
each L in H, data. This results in &3 as the expected
number of noise-induced clusters over the entire
2 x 10* sec of H,, data for each L. The correspond-
ing threshold on Pé is, therefore, taken to be the
third largest integrated power over all the clusters
found for that L.

With the thresholds determined as described above, we run
the method on realizations of H; data for each signal and
each SNR.

For estimating detection probability, we count events
found across all the values of L for a single data realization
as one instance of detection. This grouping is an essential
part of any multiresolution analysis since the same signal
can produce clusters across multiple levels of resolution.

Strictly speaking, the same grouping should also be used
for clusters obtained from H( data realizations but this is
unnecessary in practice because the probability of clusters
appearing across multiple values of L for a single H,
realization, at the low rate of 1073/7 clusters/ sec per L, is
extremely small. Hence, at low rates of cluster production
in H, data, individual clusters can be identified with
instances of detection. Thus, the overall rate of
1073 clusters/ sec that was set above matches the FAR
of 1073 events/ sec used for SEECR in Sec. VA.
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