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General relativity’s no-hair theorem states that isolated astrophysical black holes are described by only
two numbers: mass and spin. As a consequence, there are strict relationships between the frequency and
damping time of the different modes of a perturbed Kerr black hole. Testing the no-hair theorem has been a
long-standing goal of gravitational-wave astronomy. The recent detection of gravitational waves from black
hole mergers would seem to make such tests imminent. We investigate how constraints on black hole
ringdown parameters scale with the loudness of the ringdown signal—subject to the constraint that the
postmerger remnant must be allowed to settle into a perturbative, Kerr-like state. In particular, we require
that—for a given detector—the gravitational waveform predicted by numerical relativity is indistinguish-
able from an exponentially damped sine after time tcut. By requiring the postmerger remnant to settle into
such a perturbative state, we find that confidence intervals for ringdown parameters do not necessarily
shrink with louder signals. In at least some cases, more sensitive measurements probe later times without
necessarily providing tighter constraints on ringdown frequencies and damping times. Preliminary
investigations are unable to explain this result in terms of a numerical relativity artifact.
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I. INTRODUCTION

The no-hair theorem is a remarkable prediction of general
relativity (GR), which states that black holes are described
by only three parameters. For astrophysical black holes there
are only two: mass and dimensionless spin. The resulting
spacetime is described by the Kerr metric. It has long been
recognized that gravitational waves may provide an oppor-
tunity to test the no-hair theorem; see, e.g. [1]. The basic idea
is that the remnant black hole created following a merger
event rings down with characteristic frequencies and damp-
ing times determined entirely by the mass and spin of the
black hole. By testing that postmerger black holes ring at the
correct frequencies and damping times, it ought to be
possible to test the validity of the no-hair theorem.
The recent detections of gravitational waves from stellar-

mass black hole mergers [2–5] would seem to suggest that a
test of the no-hair theorem might be around the corner.
Observational papers already place constraints on param-
eters of black hole ringdowns [6–8]. A number of recent
papers highlight the possibilities of ringdown measure-
ments afforded by the expected treasure trove of upcoming
merger detections [9–12]. This recent work builds on an

already significant body of research on tests of the no-hair
theorem, e.g. [13–15].
Perturbations of the Kerr metric result in gravitational

waves given by a sum of damped sinusoids,

hðtÞ ¼
X
lm

clme−t=τlm sinð2πflmtþ ϕlmÞ: ð1Þ

The sum runs over spheroidal harmonic mode parameters
lm. The dominant mode is lm ¼ 22. The next-leading
order mode depends on details of the astrophysical system,
but, for a merger event, it can be lm ¼ 33. Both clm and
ϕlm depend on the details of how the black hole is
perturbed. In contrast, the ringdown frequencies flm and
damping times τlm depend only on the mass and spin of
the remnant black hole. In this way, the no-hair theorem
places stringent requirements on the asymptotic behavior of
perturbed black holes. In this paper, the part of the
gravitational-wave signal described by Eq. (1) is said to
be associated with the “perturbative state”.
We note that Eq. (1) employs a simplifying assumption.

In addition to the sum over lm modes, black hole
perturbation theory requires for additional sum over n
tones. Equation (1) assumes that the signal consists of the
n ¼ 0 primary tones and that the n ≥ 1 overtones are
negligible. This is a reasonable assumption because the
damping times of the overtones are typically small
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compared to the primary tones and so Eq. (1) becomes an
accurate description at late times. For the remnant of
GW150914 [2], for example, GR predicts primary tones
[13] of ðτ220; τ330Þ ¼ ð3.6 ms; 3.5 msÞ versus overtones
of ðτ221; τ331Þ ¼ ð1.2 ms; 1.2 msÞ.
The above assumption is not only reasonable, it is also

necessary for our present task. Numerical relativity simu-
lations are able to isolate different lm modes, but they do
not provide a means of separating out the contributions
from different tones. This means that we have no way of
telling the difference between the presence of superposi-
tions of linear overtones and nonlinear perturbations left-
over from the merger. Since the no-hair theorem concerns
itself with linear perturbations, the safe course of action
seems to be to focus exclusively on the primary tones.
While the postmerger remnant approaches the perturba-

tive state asymptotically, at no point in time is the postmerger
waveform precisely described by the perturbative state. At
finite times, there is always a deviation, however small, left
over from the merger. Moreover, the ringdown signal
becomes weaker as it settles into the form described by
Eq. (1). This leads to tension: on the one hand we want to
maximize the signal-to-noise ratio of our observation. On
the other hand, wewant towait for the remnant black hole to
settle to the perturbative state where the no-hair theorem
applies. In this paper, we show that this tension leads to
surprising scaling relations. For some merger events, con-
fidence intervals on ringdown parameters do not necessarily
shrink monotonically with increasing loudness.
The remainder of this paper is organized as follows.

First, we introduce the GRþ formalism, designed to isolate
the part of black hole ringdown waveform that is indis-
tinguishable from the perturbative regime. This establishes
a framework in which we can carry out unbiased parameter
estimation. We investigate how constraints on ringdown
parameters scale with the loudness of the signal. We
document how confidence intervals on flm; τlm scale with
increasingly loud signals. We conclude with a discussion of
the implications.

II. PARAMETER ESTIMATION WITH GR +

Following a binary merger, the frequency and damping
time of a black hole ringdown are entirely determined by
the properties of the progenitor binary. That is, ðflm; τlmÞ
are not free parameters. In order to be able to treat them as
such, it is necessary to introduce a parametrization. The
GRþ parametrization states that each lm mode can be
written as

hGRþlm ðt; flm; τlmÞ

¼
�
hGRlmðtÞ t < tcutlm

clme−t=τlm sinð2πflmtþ ϕlmÞ t > tcutlm

: ð2Þ

The first part of the waveform, up to time tcutlm, is described
by hGRlmðtÞ—the waveform predicted by GR (and calculated

with numerical relativity). After tcutlm, the waveform is
described by a damped sine. The amplitude clm and phase
ϕlm are determined by requiring continuity of hGRþlm ðtÞ and
its first derivative at tcutlm.
We determine each tcutlm by insisting that the parametrized

component of thewaveform is applied only after the remnant
black hole has settled into the perturbative state—as ascer-
tained by a measurement with a gravitational-wave detector.
In particular, we require that hGRþlm ðt; fGRlm; τGRlmÞ is indistin-
guishable fromhGRlmðtÞ. In the frequentist framework, the time
series hGRþlm and hGRlm are indistinguishable if the residuals

δhlm ≡ hGRþlm − hGRlm; ð3Þ

are not detectable. We can use a matched filter template to
detect nonzero residuals δhlm in our data. The expectation
value of the signal-to-noise ratio for our matched filter is
given by

Dlm ≡ ðδhlmjδhlmÞ1=2: ð4Þ

The parentheses denote an inner product

ðajbÞ≡ 4Re
XM
k¼1

~aðfÞ ~b⋆ðfÞ
σ2hðfÞ

; ð5Þ

where σhðfÞ is the noise amplitude spectral density. The
index k labels frequency bins of which there areM. In order
to define the perturbative portion of the waveform, we
require: Dlm < 1.
Note that the value of tcutlm is detector dependent. The

more sensitive the measurement, the larger the value of tcutlm.
There is a different value of tcutlm for each lm mode, the set
of which form a vector denoted tcut. Similarly, we introduce
vectors f and τ. The GR waveform is practically indis-
tinguishable from GRþ evaluated at fGR; τGR. This method
of choosing tcut ought to produce the smallest possible
ðf ; τÞ confidence intervals subject to the constraint that any
bias—arising from the fact that the GR waveform is not a
perfect exponentially damped sinusoid—is small. Some of
the ingredients for GRþ are already in the literature. For
example, previous observational results on the ringdown
parameters ðf22; τ22Þ provide constraints as a function of
tcut22 ; see, e.g. Fig. 5 of [6]. One could choose the confidence
interval in this figure corresponding to the GRþ value
of tcut22 .
One may ask if Eq. (4) provides a suitable method for

determining tcutlm. If we were to choose tcutlm such that
Dlm ≫ 1—and assuming that GR is correct—we would
see with high statistical confidence that the data are not
consistent with the perturbative state described by Eq. (1).
It seems undesirable to carry out fits for ringdown param-
eters using data, which is manifestly inconsistent with a
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Kerr ringdown. Therefore, we argue that theD < 1method
is suitable.
Throughout this paper, we use GW150914 as our

fiducial merger event. We use waveforms [16] from the
SXS Collaboration [17] consistent with the best-fit param-
eters [18] of GW150914 [19]. For a GW150914-like event
at d ¼ 410 Mpc, and assuming the two-detector LIGO
network operating at design sensitivity [20], tcut22 ≈ 8 ms
and tcut33 ≈ 5 ms. Of course, if GW150914 had been closer,
the signal would have been louder, and these values of tcutlm
would have to be bigger to ensure Dlm < 1.
In order to investigate scaling behavior, we introduce a

“loudness” parameter,

loudness ¼ 410 Mpc
distance

∝ ρ ∝ σ−1h ∝ N1=2: ð6Þ

Doubling the loudness of the waveform is equivalent to
halving the distance d to the event, or alternatively,
doubling the matched filter signal-to-noise ratio ρ, or
equivalently, halving the detector noise σh. We can also
think of boosting the signal by stacking data from an
ensemble of GW150914-like mergers. In this case, loud-
ness scales like the square root of the number of events N;
see, e.g. [11].
Using GRþ, and assuming Gaussian noise, the log

likelihood function is

lnLðsjf ; τÞ ∝ −
1

2

XM
k¼1

j~sk − ~ukðf ; τÞj2
σ2h;k

; ð7Þ

where ~sk ¼ ~hk þ ~nk is the (Fourier transform of the) strain
data consisting of signal ~hk and noise ~nk. The variable
~ukðf ; τÞ is the predicted GRþ waveform. The posteriors for
the Kerr ringdown parameters are

pðf jsÞ ∝
Z

dτLðsjf ; τ; tcutÞpðτÞpðf Þ ð8Þ

pðτjsÞ ∝
Z

dfLðsjf ; τ; tcutÞpðτÞpðf Þ: ð9Þ

Here pðτÞ and pðf Þ are priors on ringdown parameters,
which we take to be flat [21]. We calculate posteriors using
MultiNest [22,23].

III. RESULTS

We are now ready to use the GRþ formalism to see how
constraints on ðf ; τÞ scale with loudness. The results are
pertinent if we wish to know what kind of measurement is
required in order for detectors such as LIGO to measure
ringdown parameters to some tolerance, thereby validating
the no-hair theorem; see, e.g. [12]. We consider a range of
loudness between (1,45). For each value of loudness, we
determine tcutlm using Eq. (4). We perform separate calcu-
lations for the lm ¼ 22 and lm ¼ 33 modes. For the sake
of simplicity, we ignore the difficulties that arise from
trying to separate these two modes and assume they can be
isolated; see [9]. Using tcutlm, we calculate posteriors for
ðflm; τlmÞ with Eqs. (8)–(9), which, in turn, we use to
derive 95% confidence intervals. The confidence intervals

FIG. 1. Scaling of GRþ confidence intervals with loudness (defined in Eq. (6)). The left-hand side are results for lm ¼ 22 while the
right-hand side is for lm ¼ 33. The top (middle) panels plot ringdown frequency (damping time) as a function of loudness. The red
shading shows the 95% confidence regions for GRþ. The blue shading shows the 95% confidence region when tcutlm ¼ 6.5 ms. The
dashed black lines indicate the true parameter value. The red GRþ interval does not shrink monotonically suggesting a limit to our ability
to measure ringdown parameters. The blue tcutlm ¼ 6.5 ms interval shrinks monotonically, but exhibits a bias so that the confidence
interval eventually excludes the true value. The dashed red curves show the confidence intervals using the lower-resolution L5
waveform. The dashed green curves show the confidence intervals taking into account spheroidal-harmonic corrections. The bottom
panels show tcutlm (Eq. (4)).
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are calculated assuming Gaussian, Advanced LIGO design-
sensitivity noise [20]. Following common practice, we use
the median noise realization such that ~nk ¼ 0.
The results are summarized in Fig. 1. The left-hand side

shows the results for lm ¼ 22 while the right shows results
for lm ¼ 33. Each panel is a function of loudness (Eq. (6).
The top (middle) panel shows the 95% confidence intervals
on flm (τlm) obtained with GRþ in red. The true value of
flm (τlm) is indicated with dashed black lines. The GRþ
confidence interval does not shrink monotonically with
loudness.
The shaded blue region shows the confidence interval we

obtain by arbitrarily setting tcutlm ¼ 6.5 ms. In contrast to the
red GRþ confidence interval, the blue tcutlm ¼ 6.5 ms con-
fidence interval shrinks monotonically with loudness.
However, it eventually excludes the true value of
ðflm; τlmÞ in dashed black because the nonlinear part of
the waveform gives us a bias estimate of ðflm; τlmÞ.
This serves as a reminder of the motivation for introducing
GRþ in the first place: we require a means of carrying out
unbiased parameter estimation. The bottom panel shows tcutlm.
As noted above, Fig. 1 is generated using numerical

relativity waveforms from the SXS collaboration. The
shaded red region, in particular, is calculated using
the highest-resolution L6 waveform. In order to test if
the nonmonotonic scaling is a result of a numerical
relativity artifact, we repeat the calculation using the
lower-resolution L5 waveform (dashed red line). The L5
waveform employs a spectral adaptive-mesh-refinement
error tolerance that is a factor of e larger than that of
L6. The dashed red curves track the solid red. The most
significant disagreement, near loudness ¼ 8 is slight. If the
scaling were the result of a numerical relativity artifact, we
would have expected a more significant change.

IV. DISCUSSION

Can the scaling behavior in Fig. 1 be explained in terms
of a numerical relativity effect? We comment on a few
possibilities. First, Boyle has pointed out that small drifts in
the center-of-mass coordinate lead to Bondi-Metzner-Sachs
(BMS) supertranslations, which induce mode mixing [24].
For the waveform considered here, this effect is estimated
to be negligible, though, perhaps small, uncorrected center-
of-mass motion is sufficiently large to produce the scaling
observed in Fig. 1.
Second, each ringdown mode is associated with a

different spin-weighted spheroidal harmonic −2Slm.
Numerical relativity extraction, however, is typically car-
ried out with spherical harmonics −2Ylm. London et al.
have pointed out that conflating spheroidal and spherical
harmonics can lead to non-negligible mode-mixing [25].
One can show that pure, perturbation-theory modes hPTlm are
linear combinations of numerical relativity waveforms hNRlm
extracted with spherical harmonics [26]. Since

h ¼ hþ þ ih× ¼
X
lm

hNRlm−2Ylm ¼
X
l0m

hPTlm−2Sl0m; ð10Þ

it follows from the orthogonality of −2Ylm that

hNRlm ¼
X
l0

hPTl0mκlml0 ; ð11Þ

where κlml0 ≡ R
dΩ−2Y

�
lm−2Sl0m is an integral over solid

angle Ω. We can therefore write, e.g.

hNR22 ¼ κ222hPT22 þ κ223hPT32 þ κ224hPT42 þ � � � ð12Þ

FIG. 2. The absolute value of the strain time series for the lm ¼
22 mode (top) and lm ¼ 33 mode (bottom). The solid blue
curves show the numerical relativity waveforms jhNRlmðtÞj from
[16]. The dashed red curves show the residuals of the GRþ fit
jhNRlmðtÞ − hGRþlm ðtÞj with tcut ¼ 10 ms. The dotted green curves
show the residuals of the spheroidal-spherical mismatch
jhNRlmðtÞ − hPTlmðtÞj. Deviation from linear perturbation theory is
visible by eye in the envelope of the 33 mode (bottom blue).
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In this expression, κ222 is close to unity and the other κlml0

are small. Working to first order in small κlml0 , we can
make the approximations hPT32 ≈ hNR32 and hPT42 ≈ hNR42 . Thus,

hPT22 ≈ κ−1222h
NR
22 − κ223=κ222hNR32 − κ224=κ222hNR42 ð13Þ

hPT33 ≈ κ−1333h
NR
33 − κ334=κ333hNR43 − κ335=κ333hNR53 : ð14Þ

In order to estimate the size of this effect, we calculate [27]
κlml0 using publicly available code in the LSC Algorithm
Library (LAL) [28]. We repeat the analysis using hPTlm.
The dashed green curve in Fig. 1 shows the resulting
confidence intervals. We observe only a marginal change,
suggesting that spheroidal-spherical mismatch is not
responsible for the scaling behavior. The relative smallness
of this effect is highlighted in Fig. 2 where we compare
hPTlmðtÞ with hNRlmðtÞ.
Third, there are a number of other systematic effects,

which could in principle complicate the characterization of
ringdown parameters including nonlinear memory [29] and
late-time power-law tails [30]. Neither of these seem to us
to be likely explanations for Fig. 1. They seem too small
and the time scales do not fit. We also attempted to account
for ringdown backreaction, in which the mass and spin of
the black hole change over time due to the emission of
gravitational waves. Waveforms designed to take into
account ringdown backreaction did not yield superior fits.

V. CONCLUSIONS

Motivated by the desire to rigorously test the no-hair
theorem in the domain in which it applies, we introduce the
GRþ. This formalism enables us to carry out unbiased
parameter estimation of black hole ringdowns. The GRþ
formalism provides a method for testing the no-hair

theorem using only data from after the remnant black hole
has settled into a perturbative state.
We investigate how GRþ confidence regions scale

with signal loudness and observe nonmonotonic behavior.
By insisting that the remnant black hole settles into the
perturbative state, louder signals can, in at least some cases,
probe later times without necessarily yielding tighter
constraints on ringdown parameters. It is not clear the
extent to which this behavior can be attributed to a
numerical relativity artifact, in which case it might be
possible to remedy. A less appealing alternative hypothesis
is that residual nonlinearity in the postmerger signal decays
on a time scale comparable to the linear signal we seek to
measure.
It is hard to say conclusively that this effect is physical

and not a numerical relativity artifact. However, since we
observe comparable scaling behavior in two waveforms
from simulations with different grid resolutions, we cur-
rently have no evidence in favor of the numerical relativity
error hypothesis. Further work should be carried out to see
if this scaling holds for additional numerical relativity
waveforms calculated using different prescriptions and
with higher resolution.
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