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A global network of advanced interferometric gravitational wave detectors is expected to be on-line
soon. Coherent observation of gravitational waves from a distant compact binary coalescence with a
network of interferometers located in different continents gives crucial information about the source, such
as its location and polarization. In this paper we compare different multidetector network detection statistics
for compact binary coalescence searches. In maximum likelihood ratio based detection approaches, the
likelihood ratio is optimized to obtain the best model parameters, and the best likelihood ratio value is used
as a statistic to make decisions regarding the presence of signals. However, an alternative Bayesian
approach involves the marginalization of the likelihood ratio over the parameters and obtains the average
likelihood ratio test. We obtain an analytical expression for the Bayesian statistic using the two effective
synthetic data streams for targeted searches of nonspinning compact binary systems with an uninformative
prior on the parameters. Simulations are carried out to test the validity of the approximation and compare
the detection performance with the maximum likelihood ratio and the “hybrid” statistic. We observe that the
hybrid statistic gives comparable or better performance with respect to the Bayesian statistic.
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I. INTRODUCTION

A new exciting era of gravitational wave (GW)
astronomy has begun with the direct detection of GW
signals from binary black hole merger events [1,2] by
U.S.-based advanced laser interferometric detectors LIGO-
Hanford and LIGO-Livingston [3,4]. The Advanced Virgo
detector [5,6] joined the LIGO network and made the first
join detection of GW in August 2017 [7]. With upcoming
detectors like Japanese cryogenic detector KAGRA [8,9]
and U.S.-Indian detector LIGO-India [10], the global
network of broadband advanced GW detectors will be
able explore the universe in the GW window.
Compact binary coalescences (CBC) with neutron stars

and black holes are prime sources of gravitational waves
for a ground-based advanced detector network. Based on
LIGO’s first detections, we expect to see 30 or more binary
black hole mergers in the nine-month observation run in
2017–2018 [1]. By 2019, with their design sensitivity,
Advanced LIGO detectors could additionally observe ∼40
neutron star binary events and ∼10 neutron star–black hole
(NS-BH) events per year [11] along with a hundred or more
binary black hole mergers. These numbers would further
improve with the new detectors in the global interferometric
network.
The classical procedure of detecting GW in interfero-

metric data involves defining a detection statistic, which is a
function of data and is compared with a threshold. If all the

signal parameters are known, by Neyman-Pearson lemma,
any monotonic function of the likelihood ratio λðxÞ—the
ratio between probabilities of hypotheses, HS: the data x
contains signal andHN : the datax contains purely noise—is
the most powerful detection statistic [12]. Where

λðxÞ ¼ PðxjHSÞ
PðxjHNÞ

: ð1Þ

However, in the GW detection problem, the signal
parameters are unknown. Thus, HS is a composite hypoth-
esis rather than a simple hypothesis. There are two distinct
statistics used to address the composite hypothesis testing
problem [12].
(a) T maximum log likelihood ratio (MLR) statistic LðxÞ

is the maximum of the log of likelihood ratio in the
multidimensional signal parameter space fΘg. If Θ̂ is
the point in the signal parameter space at which the
likelihood ratio in Eq. (1) is maximum, then

LðxÞ ¼ ln λðx; Θ̂Þ: ð2Þ
(b) The Bayesian detection statistic or Bayes factor

statistic BðxjΠÞ is obtained by marginalizing the
likelihood ratio over the parameters Θ with a prior
distribution PðΘjΠÞ, where the symbol Π denotes all
the prior information and assumptions, i.e.,

BðxjIÞ ¼ ln
Z
Θ

PðxjΘÞ
PðxjHNΠÞ

PðΘjΠÞ dΘ

¼ ln
Z
Θ
λðx;ΘÞPðΘjΠÞ dΘ: ð3Þ*haris@iisertvm.ac.in
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The multidetector MLR approach for CBC signals has
been developed in the literature by various groups [13–15].
In this paper we explore the Bayesian approach in the
context of multidetector CBC searches.
The paper is divided as follows. In Sec. II, we review the

multidetector MLR approach. We show that the multi-
detector MLR statistic is a Bayesian statistic with an
unphysical prior. In Sec. III, we derive an approximate
analytic expression for the multidetector Bayesian
detection statistic. In Sec. IV, we derive the Bayesian
detection statistic tuned for face-on/off binaries and con-
struct a “hybrid” statistic. In Sec. V, we assess the perfor-
mance of the statistics by comparing the receiver operator
characteristic (ROC) curves. Finally in Sec. VI, we sum-
marize and conclude.

II. MLR DETECTION APPROACH
FOR CBC SEARCH

The GW signal from a nonspinning compact binary
source such as, NS-NS or NS-BH binaries with negligible
spin, are characterized by a set of nine parameters
fm1; m2;A; ta;ϕa; ϵ;Ψ; θ;ϕg, where ðm1; m2Þ are the com-
ponent masses and A is the constant overall amplitude. The
phase ϕa is the waveform phase at the time of arrival ta.
ðϵ;ΨÞ are the binary inclination angle and polarization
angle, respectively. ðθ;ϕÞ characterizes the location of the
source on the celestial globe in geocentric coordinates.
The time domain GW signal at any mth detector can be
written as [15]

smðtÞ ¼ FþmhþðtÞ þ F×mh×ðtÞ; ð4Þ

where the antenna patterns Fþm and F×m are functions of
source location ðθ;ϕÞ and the detector Euler angles in
geocentric coordinates. A detailed description of coordinates
are given in [16].1 The 3.5 PN restricted nonspinning
GW polarizations hþðtÞ and h×ðtÞ are functions of
fm1; m2;A; ta;ϕa; ϵ;Ψg. The parameters A, ϵ, Ψ, ta, and
ϕa appear in the signal as either a scale or a time/frequency
shift. Hence, they are termed as extrinsic parameters.
The phase evolution of waveform is characterized by the
masses fm1; m2; g, which are thus termed as intrinsic
parameters.
For a global network of I interferometric detectors with

uncorrelated noise, the optimum network matched filter

SNR square can be expressed as sum of squares of SNRs of
individual detectors,2 i.e.,

ρ2s ¼
XI

m¼1

hsmjsmi: ð5Þ

The corresponding log likelihood ratio for Gaussian noise
is given by

ln λðXÞ ¼
XI

m¼1

hxmjsmi −
1

2
hsmjsmi: ð6Þ

The maximization or marginalization of the likelihood
ratio over extrinsic parameters fA;ϕa; cos ϵ;Ψg can be
done in a straightforward fashion compared to intrinsic
parameters. As intrinsic parameters alter the shape of the
waveform, maximization/marginalization is a numerical
problem. The statistic, which is obtained by either maxi-
mizing or marginalizing the likelihood ratio over extrinsic
parameters, is then used to search over the remaining
intrinsic parameters.
In the following sections we derive and compare MLR

and Bayes factor statistics for targeted nonspinning inspiral
searches with the multidetector network.

A. Review of coherent multidetector MLR statistic

In this section we review the coherent multidetector
network MLR analysis for CBC signal.
The log of network likelihood ratio for I interferometric

detectors in the network with uncorrelated Gaussian noises
can be written in terms of a pair of synthetic streams as [15],

lnλðXÞ¼
�
ρLhzLjh0eiΦLi−ρL2

2

�
þ
�
ρRhzRjh0eiΦRi−ρR2

2

�
;

ð7Þ

Here the overwhitened synthetic streams ~~zL;R are construed

as a linear combination of overwhitened data ~~xm from
individual detectors as below,

1Formally, the parameters ðθ;ϕÞ are functions of time due to
the motion of earth and hence the antenna pattern functions Fþm
and F×m change over time. However, the duration of the binary
inspiral signal in the frequency band of the ground-based
detectors are very small. Hence, for the case of binary inspiral
signals, the antenna pattern functions can be taken as constants
over the duration of the signal.

2The scalar product of a and b is defined as

hajbi ¼ 4ℜ

�Z
∞

0

~~aðfÞ ~b�ðfÞdf
�
;

where ~~aðfÞ ¼ ~aðfÞ=SnðfÞ is the double-whitened version of
frequency series ~aðfÞ. The SnðfÞ is the one-sided noise power
spectral density (PSD) of a detector. In discrete domain,

hajbi ¼ 4ℜ

�XN
j¼1

~~aj ~b
�
j

�
;

where j is the frequency index.
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~~zLðfÞ ¼
XI

m¼1

Fþm

∥F0þ∥
~~xmðfÞ; ~~zRðfÞ ¼

XI

m¼1

F×m
∥F0

×∥
~~xmðfÞ:

ð8Þ

F ¼ Fþ þ iF× is the complex network antenna pattern
vector in a dominant polarization frame and F0 ¼ F0þ þ
iF0

× ≡ fgmFmg is the noise weighted version of the same,
with the noise weight gm ¼ hh0jh0im. The dominant
polarization frame is the wave frame in which the plus
and cross noise weighted antenna pattern vectors are
orthogonal to each other in the network space [17]. The
dominant polarization frame allows the network log like-
lihood ratio to be written as a sum of log likelihood ratios of
a pair of synthetic detectors. The symbol ∥ · ∥ denotes the
Euclidean norm of an I-dimensional vector.
The relation between the new set of derived extrinsic

parameters fρL; ρR;ΦL;ΦRg and physical extrinsic param-
eters fA;ϕa; cos ϵ;Ψg is given in Appendix A. The ρL;R
and ΦL;R act as the SNRs and overall phases of two
effective synthetic detectors respectively.
The maximum log likelihood ratio LðXÞmaximized over

these derived parameters is then a sum of quadratures of the
two synthetic streams as given below [14,15],

LðXÞ ¼ hzLjh0i2 þ hzLjhπ=2i2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρ̂2L

þ hzRjh0i2 þ hzRjhπ=2i2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρ̂2R

;

ð9Þ

where ~h0 and ~hπ=2 ¼ −i ~h0 are the two GW phases.
The ρ̂L;R are the maximum likelihood estimates of ρL;R,

the SNRs of the synthetic streams. The estimates of ΦL;R

are given by

Φ̂L;R ¼ arg
�XN
j¼1

~~zL;Rj ~h
�
0j

�
: ð10Þ

B. MLR as viewed in Bayesian framework

In this subsection, we show that the MLR statistic L can
be understood as a B statistic with an unphysical prior
Πunph over the extrinsic parameters.
If we choose the prior on fρL; ρR;ΦL;ΦRg as

PðρL;R;ΦL;RjΠunphÞ ¼ CρLρR;

�
ρL;R ∈ ½0;∞Þ;
ΦL;R ∈ ½0; 2πÞ; ð11Þ

the closed-form expression for the Bayesian statistic can be
obtained in a straightforward way. The C is a normalization
constant. As described earlier, the ρL;R are the synthetic
SNRs and ΦL;R are the effective phases, and hence take
values in the entire range.
Substituting Eqs. (7), (9), (10), and (11) into Eq. (3),

we get

Exp½BðXjΠunphÞ�

¼ C
Z

∞

0

dρL

Z
2π

0

dΦLρLeρLρ̂L cosðΦL−Φ̂LÞ−
ρ2
L
2

×
Z

∞

0

dρR

Z
2π

0

dΦRρReρRρ̂R cosðΦR−Φ̂RÞ−
ρ2
R
2 : ð12Þ

By rearranging terms, the integral in Eq. (12) can be
converted into a product of four Gaussian integrals, and
thus the statistic can be written as

Exp½BðXjΠunphÞ� ¼ 4π2Ce
ρ̂2
L
þρ̂2

R
2

¼ 4π2CeLðXÞ=2; ð13Þ
i.e.,

BðXjΠunphÞ ¼
LðXÞ
2

þ 4π2C: ð14Þ
Eq. (14) clearly indicates that the MLR LðXÞ is propor-
tional to the Bayesian statistic BðXÞ with a prior Πunph.
To understand the physical meaning of the prior

Πunph, we obtain corresponding probability distribution of
physical parameters fA;ϕa; cos ϵ;Ψg. From Eq. (11), the
probability distribution function of physical parameters is
given by

PðA;ϕa; cos ϵ;ΨjΠunphÞ ¼ CρLρRjJj

¼ A3∥F0þ∥2∥F0
×∥2

4
ð1 − cos2ϵÞ3:

ð15Þ

Here jJj is the determinant of the Jacobian of transformation
fromparameter setfρL;ΦL;ρR;ΦRg tofA;ϕa; cos ϵ;Ψg, i.e.,

jJj ¼
���� det

�∂fρL;ΦL; ρR;ΦRg
∂fA;ϕa; cos ϵ;Ψg

�����
¼ A3∥F0þ∥2∥F0

×∥2ð1 − cos2ϵÞ3
4ρLðA;ϕa; cos ϵ;ΨÞρRðA;ϕa; cos ϵ;ΨÞ

: ð16Þ

(See Appendix A for details.) A close look at Eq. (15) shows
that the assumed prior distribution in Eq. (11) is more biased
towards the edge-on case compared to the face-on case.
However, in reality we expect more binary events from face-
on/off systems due to high SNR compared to the edge-on.
A similar observation was made in [18] for the case of
continuous wave sources, where the connection between
the MLR statistic and B statistic was first obtained in the
literature.

III. BAYESIAN STATISTIC FOR A
PHYSICAL PRIOR Πph

In this section we derive a B statistic for a physical prior.
We use an uninformative flat prior for the physical
parameters due to lack of any prior information. Making
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use of viable approximations, we solve the integral in
Eq. (3) to obtain the B statistic. In the remaining part of the
paper the notation B represents the Bayesian statistic with
physical prior Πph unless and until specified.

A. Physical prior Πph

The inclination angle ϵ and polarization angleΨ together
form a spherical polar coordinate pair in the “polarization
sphere,” in which ϵ acts as the polar angle and Ψ acts as the
corresponding azimuthal angle.Weuniformly sample points
from this sphere. We note that Fþ;×ðΨÞ ¼ −Fþ;×ðΨþ π

2
Þ,

i.e., 2Ψ has π=2 symmetry in the GW signal. Therefore we
choose,

Pðcos ϵjΠphÞ ¼
1

2
; cos ϵ ∈ ½−1; 1�;

PðΨjΠphÞ ¼
2

π
; Ψ ∈

�
−
π

4
;
π

4

�
: ð17Þ

The probability distributions of the amplitude A and the
initial phase ϕa are chosen to be uniform for simplicity, i.e.,

PðϕajΠphÞ ¼
1

2π
; ϕa ∈ ½0; 2π�;

PðAjΠphÞ ¼
1

Amax ; A ∈ ½0;Amax�; ð18Þ

where Amax is the upper limit for the amplitude.

Thus, the combined prior distribution is

PðA;ϕa; cos ϵ;ΨjΠphÞ ¼
1

2π2Amax ≡ C0: ð19Þ

Using jJj in Eq. (A2), we obtain the corresponding
distribution for the new extrinsic parameters PðρL; ρR;ΦL;
ΦRjΠphÞ as

PðρL;ρR;ΦL;ΦRjΠphÞ¼
C0ρLρR

���ρ2Le2iΦL

∥F0
þ∥2

þ ρ2Re
2iΦR

∥F0
×∥2

���−3
2

2∥F0þ∥2∥F0
×∥2

: ð20Þ

If
��� ρ2Le2iΦL

∥F0
þ∥

2 þ ρ2Re
2iΦR

∥F0
×∥2

��� ¼ 0, the probability distribution

PðρL; ρR;ΦL;ΦRjΠphÞ in Eq. (20) diverges. For that case,
the determinant of the Jacobian jJj vanishes, i.e., the trans-
formation between fA;ϕa; cos ϵ;Ψg and fρL; ρR;ΦL;ΦRg
is invalid. This happens for the face-on/off case, where
ρL

∥F0
þ∥

¼ ρR
∥F0

×∥
and Φ̂L ¼ Φ̂R � π

2
. In this case, theGWbecomes

circularly polarized, whereΨ andϕa become degenerate.We
exclude this case from the below derivation ofB statistic. We
treat face-on/off as a special case and obtain theB statistic for
face-on/off in Sec. IV.

B. Bayesian statistic BðXjΠphÞ
In this subsection, we derive an analytic approxi-

mation for the B statistic. Substitution of Eq. (20) into
Eq. (3) gives

Exp½BðXjΠphIÞ� ¼
C0

2∥F0þ∥2∥F0
×∥2

Z
∞

0

dρL

Z
∞

0

dρR

Z
2π

0

dΦL

Z
2π

0

dΦRρLρR

���� ρ2L
∥F0þ∥2

e2iΦL þ ρ2R
∥F0

×∥2
e2iΦR

����−
3
2

× Exp

�
ρLρ̂L cosðΦL − Φ̂LÞ −

1

2
ρ2L

�
Exp

�
ρRρ̂R cosðΦR − Φ̂RÞ −

1

2
ρ2R

�
: ð21Þ

In Eq. (21), the numerator contains a product of two
separate exponential functions in fρL;ΦLg and fρR;ΦRg.
Compared to these exponential terms, all the remaining
terms vary slowly in the parameter range. The product of
exponential terms together has a single maximum at the
maximum likelihood point ðρ̂L; ρ̂R; Φ̂L; Φ̂RÞ. Assuming
the denominator is stationary (slowly varying) around the
maximum likelihood point and using Gaussian integral
approximation, we can approximate the integral in
Eq. (21) as

Exp½BðXjΠphÞ� ≈
2π2C0e

ρ̂2
L
þρ̂2

R
2

��� ρ̂2L
∥F0

þ∥2
e2iΦ̂L þ ρ̂2R

∥F0
×∥2

e2iΦ̂R

���−3
2

∥F0þ∥2∥F0
×∥2

;

ð22Þ

or

BðXÞ ≈ LðXÞ
2

−
3

2
ln

���� ρ̂
2
Le

2iΦ̂L

∥F0þ∥2
þ ρ̂2Re

2iΦ̂R

∥F0
×∥2

����þ const: ð23Þ

The detailed derivation of this integral is given in
Appendix B.
To summarize, the approximation used in the derivation

of BðXÞ depends on two conditions:
(a) The denominator of the integrand is not equal to zero

around the maximum likelihood point, i.e., the GW
signal is not from a face-on/off binary. As mentioned
earlier we treat this case in Sec. IV.

(b) Both synthetic stream matched filter SNRs, ρ̂L and ρ̂R
are reasonably high, or else the corresponding
Gaussian integral assumption used in the integration
breaks down.
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C. B statistic in fAL;ARg coordinates

In this subsection, we re-express the B statistic in
Eq. (23) in terms of a pair of amplitude coordinates,
namely AL;R≡Að1� cosϵÞ=2 instead of fρL; ρR;ΦL;ΦRg.
From Eq. (A1), we can relate fρL; ρR;ΦL;ΦRg to

fAL;ARg as,

j∥F0
×∥2ρ2Le2iΦL þ ∥F0þ∥2ρ2Re2iΦR j≡ ∥F0þ∥2∥F0

×∥2ALAR:

ð24Þ
Then by substituting Eq. (24) into Eq. (23), BðXjΠphÞ

can be rewritten as

BðXjΠphÞ ¼
LðXÞ
2

−
3

2
ln ½ÂLÂR� þ const: ð25Þ

This is an alternative representation of the statistic
in terms of ÂL;R. In [19], the authors obtained a closed-
form expression for the B statistic with prior Πph in the
continuous waves search context by Taylor expanding the
likelihood ratio about its maximum value. The above
equation is similar to Eq. (5.37) of [19], which is obtained
for continuous GW source context.

D. Validity of the approximation

As described in the previous subsection, the validity of
the analytical approximation crucially depends on two
conditions. The first one is that the SNR of the signal
should be high, and the second one is that the source should
not be face-on/off.
In Fig. 1, we have plotted the variation of BðXjΠphÞ

along the inclination angle ϵ of the source for various
network SNRs in the absence of noise. The numerical B
statistic is obtained by Monte Carlo (MC) simulation. We
used 106 MC points for this simulation.
From Fig. 1(b), we note that for all values of SNR ρs, the

fractional error diverges as the inclination angle ϵ

approaches, 0° or 180° (face-on/off). This is expected as
jJj is zero at these points.
The fractional error in the analytic approximation reduces

as ρs increases. For example, at ϵ ¼ 45°, the percentage of
fractional errors corresponding to ρs ¼ 12, 10, 8, 6 are 1.8%,
3.1%, 7%, and 19%, respectively. As the ρs increases, for a
given fractional error, the validity region of this analytic
expression increases. For a percentage fractional error of
5%, validity regions vary as ϵ∈ ð48°;131°Þ, ϵ ∈ ð40°; 139°Þ,
and ϵ ∈ ð33°; 147°Þ for ρs ¼ 8, 10, and 12, respectively.

IV. DETECTION STATISTICS FOR
FACE-ON/OFF BINARIES

We recall fromprevious section that theB statistic obtained
with prior Πph is invalid for the face-on/off cases. This is
because, at face-on/off, the signal becomes purely circularly
polarized and thus the polarization angle and initial phase are
indistinguishable from each other [21]. At ϵ ¼ 0, π the
extrinsic parameters in Eq. (A1) can be reduced to

ρL ¼ A∥F0þ∥; ρR ¼ A∥F0
×∥

ΦL ¼ χ þ ϕa; ΦR ¼ χ þ ϕa ∓ π

2
; ð26Þ

where χ ≡Ψþ δ=4. The angle δ is a function of source
location and the multidetector network configuration on
Earth. For the detailed description of δ, please refer [15].
The amplitudes ρL;R are constant times the signal amplitudeA
andΦR is π=2 out of phasewithΦL. As described earlier, the
polarization angle Ψ and the initial phase ϕa are degenerate.
Due to this degeneracy, the log likelihood ratio for face-on/off
binaries can be expressed in terms of only two effective
parameters, fρ;ΦLg, as [21]

ln λ0;πðXÞ ¼ ρhz0;πjh0eiΦLi − 1

2
ρ2; ð27Þ

FIG. 1. (a) BðXjΠphÞ as a function of binary inclination angle ϵ. The dashed curve (solid curve) corresponds to the BðXjΠphÞ
computed numerically (analytically). We assume the data X is purely the signal. (b) Variation of fractional error in analytic
approximation with ϵ. The plots are generated for a three detector network LHV. The signal is from (2–10 M⊙) NS-BH system optimally
located at ðθ ¼ 140°;ϕ ¼ 100°Þ with an arbitrary polarization angle ψ ¼ 45°. We assume “zero-detuning, high power”Advanced LIGO
power spectral density [20] for all detectors.
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with ρ≡ A∥F0∥ and

~~z0ðfÞ≡XI

m¼1

Fm
∥F0∥

~~xmðfÞ; ~~zπðfÞ≡XI

m¼1

F�m
∥F0∥

~~xmðfÞ:

ð28Þ

A. MLR statistic

In [21,22], the maximization of ln λ0;πðXÞ over ρ and ΦL
is obtained. The MLR is given by,

L0;πðXÞ ¼ hz0;πjh0i2 þ hz0;πjhπ=2i2; ð29Þ

with

ρ̂ ¼ 4

����X
N

j¼1

~~z0;πj
~h�0j

����; Φ̂L ¼ arg
�XN
j¼1

~~z0;πj
~h�0j

�
; ð30Þ

as the maximum likelihood estimates of ρ and ΦL.
In contrast with the two-stream generic MLR statistic

LðXÞ, the MLR statistics tuned for face-on/face-off systems
L0;πðXÞ are single stream statistics and reduces the false
alarm rate. In [21], the authors show that either L0ðXÞ or
LπðXÞ capture more than 98% of network matched filter
SNR for a wide range of binary inclination angles and
polarization angles. Because of the above two properties, a
new hybrid statistic, LmxðXÞ, was proposed as the maxi-
mum of L0ðXÞ and LπðXÞ. The simulations show that the
hybrid statistic gives better performance for a wide range of
binary inclinations and polarizations [21]. In [22], the
authors used a face on/off tuned MLR statistic (single
stream) for the GW follow-up search of short gamma ray
bursts (GRBs) of InterPlanetary Network (IPN) triggers,
which are expected to have small opening angles.

B. Bayesian statistic

In this subsection, we marginalize the likelihood ratio
tuned for face-on/off binaries over ρ and ΦL with the
physical prior Πph discussed in Sec. III A. For face-on/off
binaries, the physical prior Πph in Eq. (18) reduces to

Pðρ;ΦLjΠphÞ ¼
1

2πρmax ; ð31Þ

with ρmax ≡Amax∥F0∥. Using Eq. (3), Eq. (27), and
Eq. (30), the Bayesian statistic for face-on/off binaries
can be written as

Exp½B0;πðXÞ�

¼
Z

2π

0

dΦL

Z
ρmax

0

dρ
Exp½ρρ̂ cosðΦL − Φ̂LÞ − 1

2
ρ2�

2πρmax

≈
1ffiffiffiffiffiffi

2π
p

ρmax

Z
2π

0

dΦLExp

�
1

2
ρ̂2cos2ðΦL − Φ̂LÞ

�
; ð32Þ

provided ρ̂ cosðΦL − Φ̂LÞ is not close to zero. This
condition is reasonable and is satisfied for signals with
high SNR, since the integrand will be significant only in a
small window of ΦL around Φ̂L.
We can approximate cosðΦL − Φ̂LÞ by 1 − ðΦL−Φ̂LÞ2

2
and

approximate the ΦL integral by a Gaussian integral. Thus,
B0;π can be approximated as

Exp½B0;πðXÞ� ≈
ffiffiffi
2

p
Exp½ρ̂2

2
�

ρ̂ρmax ð33Þ

and

B0;πðXÞ ¼ ρ̂2

2
− ln ½ρ̂ρmax=

ffiffiffi
2

p
�;

¼ 1

2
L0;πðXÞ − ln

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0;πðXÞ

q
ρmax=

ffiffiffi
2

p i
: ð34Þ

This implies that the B0;π statistic can be approximated
by the MLR statistic L0;π with a small logarithmic
correction. In the same spirit of LmxðXÞ, we can define
a hybrid Bayesian statistic Bmx as

BmxðXjΠphÞ ¼ max ½B0ðXÞ;BπðXÞ�: ð35Þ

V. SIMULATIONS AND DISCUSSION

In this section, we carry out numerical simulations for
three detector network LHV with LIGO-Livingston (L),
LIGO-Hanford (H) and Virgo (V) as the constituent
detectors to test the validity of analytical B statistics and
compare the performance of detection statistics using the
ROC curve, which is the plot between false alarm prob-
ability (FAP) and detection probability (DP). All the
detectors are assumed to have additive Gaussian random
noise with the noise power spectral density (PSD) follow-
ing the zero-detuning high power Advanced LIGO noise
curve [20]. The simulations are performed for a (2–10 M⊙)
NS-BH nonspinning binary signal with fixed optimum
network matched filter SNR ρs ¼ 6.
In this exercise we have used exactly matching mass

templates [i.e., (2–10 M⊙)] to filter the data and construct
the detection statistics. However, in real searches, one needs
to distribute signal templates in mass parameter space and
search for the optimum template point.We understand that a
template-based search increases the false alarms. However,
this is applicable to all the likelihood based statistics.
Therefore, the relative detection efficiency study between
the likelihood ratio–based statistics will not be affected
significantly by fixing the mass parameters of the templates.

A. Performance comparison for fixed injection

In Fig. 2, we have plotted the ROC curves corresponding
to MLR based statistics L and Lmx, and the Bayesian
statistics BðXjΠphÞ and BmxðXjΠphÞ for fixed signal with
SNR ρs ¼ 6 optimally located at ðθ ¼ 140°;ϕ ¼ 100°Þ.
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The simulations are performed for six binary inclination
angles, namely ϵ ¼ 0°, 45°, 70°, 90°, 110°, 180° and the
ROC curves are shown in panels (a), (b), (c), (d), (e), (f) of
Fig. 2, respectively. For all cases the binary polarization
angle Ψ is arbitrarily fixed to be equal to 45°.
For drawing ROC curves, we have taken 2 × 106

Gaussian noise realizations. For each noise realization,
all the statistics are computed with and without signal
injection. For each statistic the FAP and DP are computed
for different threshold values by counting the number of
times each statistic crosses that threshold value when the
data contains only the noise as well as when the data
contains signal plus noise, respectively.
The ROC curves of the generic MLR statistic L show

small variation with ϵ. On the other hand, the hybrid MLR
statistic Lmx shows a preference near the face-on/off region.
In [21], we show that the Lmx improves over L in a wide
range of inclination angles except the window 70°–110°.
As we have discussed earlier in Sec. III D, the analytical

approximation of the generic Bayesian statistic, BðXjΠphÞ,
is reasonably valid only in the neighborhood of ϵ ¼ 90°.
We have plotted the ROC curves corresponding to both the
numerically calculated Bayesian statistic Bnum (dashed red
curve) and its analytic approximation B given in Eq. (23)
(solid red curve). The numerical Bayesian statistics are
obtained by numerically integrating the likelihood ratio
using the Monte Carlo method with 106 random draws. For
a fixed network optimum matched filter SNR ρs ¼ 6, the
ROC curves corresponding to analytic approximation

deviate from Bnum for all inclination angles. The detection
probability corresponding to the analytical B always falls
below that of Bnum.
For all inclination angles except ϵ ¼ 90°, the Bayesian

statistic (numerical) performs better than the MLR statistic.
At edge-on,L performs better thanB. This is expected, as the
L statistic is a Bayesian statistic obtained with an unphysical
prior, which is more biased towards edge-on case as
described in Sec. II B [see Eq. (14)]. On the other hand,
the B statistic is derived for a flat prior on the polarization
sphere. Compared to the hybrid MLR statistic, the Bayesian
statistic shows improvement only for the edge-on signal.
The performance of the hybrid Bayesian statistic Bmx

alwaysmatches with that ofLmx. This is because, as one can
note in Eq. (34), the Bayesian statistic tuned for face-on/off
B0;π is equal toL0;π with a very small logarithmic correction.
As Bmx is defined as the maximum of B0 and Bπ , it is
expected that Bmx shows the same behavior asLmx. Further,
the ROC curve corresponding to the analytical approxima-
tion of Bmx matches very well that of the numerically
evaluatedBmx for all cases. Since theROCcurves ofLmx and
Bmx overlap very well, in the figures we explicitly plot the
ROC curve corresponding to Bmx only for the ϵ ¼ 0.
In summary,

(a) Near face-on/off cases, the hybrid statistics perform
better than the generic statistic L as well as B.

(b) Near the edge-on case, the generic MLR statistic out-
performs all other statistics because of the inbuilt un-
physical prior,which is skewed towards the edge-on case.

FIG. 2. ROC plots of the statistics corresponding to a network LHV for fixed injections with different values of ϵ. The signal with SNR
ρs ¼ 6 is from (2–10M⊙) NS-BH systems optimally located at ðθ ¼ 140°;ϕ ¼ 100°Þ with an arbitrary polarization angle ψ ¼ 45°. We
assume “zero-detuning high power” Advanced LIGO PSD [20] for all detectors. As one can see in panel (a), the ROC curve of Bmx

overlaps with that of Lmx. Thus, we omit the ROC curve of Bmx from the remaining panels.
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B. Performance comparison for
injections sampled from a distribution

In this simulation, the injected binary parameters, incli-
nation angle ϵ, polarization angle Ψ, and source location
ðθ;ϕÞ are sampled from a given distribution. The masses of
the binary systems are fixed to be (2–10 M⊙) with the
optimum network SNR ρs ¼ 6. The source location ðθ;ϕÞ
is drawn uniformly from celestial sphere and polarization
angle Ψ is sampled uniformly from ½0°; 90°�. We perform
this exercise for two distinct distributions, Dist-1 and
Dist-2 of inclination angle ϵ.
The Dist-1 distribution draws cos ϵ uniformly from

½−1; 1� and is denoted by a green (solid) line in panel
(a) of Fig. 3. As seen in the figure, the population of
random samples drawn from this distribution contains more
edge-on sources than that of face-on.
In Dist-2, the ϵ follows the distribution proposed in

Eq. (28) of [23] [see green (dashed) line in panel (a) of
Fig. 3]. The distribution is given by

PðϵÞ ¼ 0.076076ð1þ 6 cos2 ϵþ cos4 ϵÞ3=2 sin ϵ: ð36Þ

Dist-2 is a realistic distribution of ϵ, where the SNR
information is folded into the distribution along with the
geometric prior. Since we know that the edge-on sources
have less SNR than face-on/off sources, we expect to see
less edge-on systems than face-on/off ones. As a result,
there would be a dip in the curve (dashed line) with respect
to the Dist -1 (solid line).
Figure 3(b) gives the ROC curves corresponding to

Dist-1, and Fig. 3(c) gives the ROC curves corresponding
to Dist-2.
ForDist-1, the numerical B statistic outperforms both the

generic MLR statistic and hybrid statistics. However, the
ROC curve for analytical approximation of the B statistic
does not match with that of the numerically computed B
statistic. ForDist-2, the ROC curves of Bnum and the hybrid
statistics overlap well.

VI. CONCLUSION

The prime motivation behind this work is to develop a
Bayesian statistic with a physical prior of the signal
parameters as an alternative to the MLR statistic along the
lines of [18,19], where the authors develop a Bayesian
statistic for the search of continuous gravitational wave
signals and compare its performance with the MLR
statistic.
In Sec. II B, we have shown that the well-established

MLR statistic used for the targeted coherent search of
compact binary inspirals is equivalent to a marginalized
Bayesian statistic with an unphysical prior over the signal
parameters. Further, we obtain an analytic approximation
for an alternative Bayesian statistic for the targeted
inspiral search with a uniform prior on extrinsic param-
eters. We also derive a Bayesian statistic tuned for face-
on/off binaries and construct a hybrid Bayesian statistic
complimentary to the hybrid MLR statistic derived
in [21].
We compare the new Bayesian statistics with the

coherent MLR-based statistics developed in [13–15]
and used for the targeted IPN GRB searches in the
LIGO science runs [24,25]. We have demonstrated that
the Bayesian statistic shows an improvement of ∼5% in
detection probability over the MLR statistic for a false
alarm probability of 10−5 for the search of near face-on/
face-off binary systems. For the sake of completeness, we
also compared it with the recently developed hybrid
statistic [21]. The hybrid statistic is a phenomenologically
developed statistic and is shown to perform better than the
MLR statistic for IPN GRB follow-up searches [22]. We
observe that the Bayesian statistic shows comparable
performance with the hybrid statistic in near face-on/
face-off regions.
It is a common belief that MLR statistic is the best

possible analytic detection statistic for composite hypoth-
esis testing. However, in this paper we demonstrate that
improved closed-form detection statistics are possible by
carefully choosing the prior distribution.

FIG. 3. Panel (a) is the plot of two sampling distributions of ϵ. Panel (b) gives the ROC plots for four different statistics corresponding
to a network LHV when the injected signal’s inclination angle ϵ is drawn from Dist-1, and Panel (c) gives the ROC plots for injections
with ϵ drawn from Dist-2. In both cases sky location and polarization angles are sampled uniformly. The injections are with SNR ρs ¼ 6
and are from (2–10M⊙) NS-BH systems. We assume “zero-detuning high power" Advanced LIGO PSD [20] for all detectors.
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Though the coincidence search is established in
practice, the benefits of coherent search are well known.
The simulations show that the coherent scheme gives
∼10–40% improvement in sensitivity compared to the
coincidence approach in binary neutron star searches
[14,26,27]. However, due to the higher computational cost
of coherent schemes, currently most of the searches are
carried out using coincident scheme–based search pipelines.
The coherent pipelines are used in the targeted follow-up
searches of IPN GRBs [24,25]. The higher computational
cost of coherent searches is largely due to the implementation
of various χ2 tests to veto out non-Gaussian glitches from
thedata.However, bydevising efficient hierarchical schemes
wecan reduce this cost significantly. In hierarchical pipelines
we first apply SNR bounds on triggers from individual
detectors followed by computation of multidetector
coherent detection statistics and less expensive vetoes before
computing more accurate expensive vetoes. Thus, in the era
of more detectors and high performance computing clusters,
the computational cost of coherent schemes is less signifi-
cant when compared with the advantage in detection
efficiency.
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APPENDIX A: RELATION BETWEEN
fA;ϕa; ϵ;Ψg AND fρL; ρR;ΦL;ΦRg

The derived parameters fρL; ρR;ΦL;ΦRg are related to
the physical parameters fA;ϕa; ϵ;Ψg as follows:

ρLeiΦL ¼ A∥F0þ∥eiϕa

�
1þ cos2ϵ

2
cos 2χ þ i cos ϵ sin 2χ

�
;

ρReiΦR ¼ A∥F0
×∥eiϕa

�
1þ cos2ϵ

2
sin 2χ − i cos ϵ cos 2χ

�
:

ðA1Þ
The explicit expressions of fρL; ρR;ΦL;ΦRg are given in
Eq. (B1) of [15]. The determinant of the Jacobian of
transformation from fρL; ρR;ΦL;ΦRg to fA;ϕa; ϵ;Ψg is
given by

jJj ¼
���� det

�∂fρL;ΦL; ρR;ΦRg
∂fA;ϕa; cos ϵ;Ψg

�����
¼

2∥F0þ∥2∥F0
×∥2

��� ρ2Le2iΦL

∥F0
þ∥

2 þ ρ2Re
2iΦR

∥F0
×∥2

���3=2
ρLρR

¼ A3∥F0þ∥2∥F0
×∥2ð1 − cos2ϵÞ3

4ρLðA;ϕa; cos ϵ;ΨÞρRðA;ϕa; cos ϵ;ΨÞ
: ðA2Þ

APPENDIX B: APPROXIMATION FOR THE
BðXjΠphÞ INTEGRATION

Equation (21) gives the integral as

Exp½BðXjΠphIÞ� ¼
C0

2∥F0þ∥2∥F0
×∥2

Z
∞

0

dρL

Z
∞

0

dρR

Z
2π

0

dΦL

Z
2π

0

dΦRρLρR

���� ρ2L
∥F0þ∥2

e2iΦL þ ρ2R
∥F0

×∥2
e2iΦR

����−
3
2

× Exp
�
ρLρ̂L cosðΦL − Φ̂LÞ −

1

2
ρ2L

�
Exp

�
ρRρ̂R cosðΦR − Φ̂RÞ −

1

2
ρ2R

�
: ðB1Þ

The denominator is slowly varying along ΦL compared
to the exponential term in the numerator. If ρLρ̂L is not
small, then Exp½ρLρ̂L cosðΦL − Φ̂LÞ� will be significant
only in a very small range of ΦL around Φ̂L. Thus, we can

approximate cosðΦL − Φ̂LÞ by 1 − ðΦL−Φ̂LÞ2
2

. By this expan-
sion, the numerator becomes a Gaussian function in ΦL

centered at Φ̂L. Since the denominator is a slowly varying
function of ΦL compared to the exponential term in the
numerator, we can replace ΦL in the denominator with Φ̂L
and then approximate the integral by Gaussian integral.
Applying a similar argument for ΦR integration, the B
statistic finally becomes

Exp½BðXjΠphÞ� ≈
πC0

∥F0þ∥2∥F0
×∥2

Z
∞

0

dρL

Z
∞

0

dρR

ffiffiffiffiffiffiffiffiffiffi
ρLρR
ρ̂Lρ̂R

r
Exp½ρLρ̂L − ρ2L

2
�Exp½ρRρ̂R − ρ2R

2
���� ρ2L

∥F0
þ∥2

e2iΦ̂L þ ρ2R
∥F0

×∥2
e2iΦ̂R

���3=2 : ðB2Þ

Please note this approximation is valid only if the denom-
inator of Eq. (B2) is nonzero.
As one can see in Eq. (B2), the numerator of the

integrand can be converted to a product of Gaussian

functions in ρL and ρR centered at ρ̂L and ρ̂R, respectively.
If ρ̂L and ρ̂R are large enough, by assuming stationarity for
the remaining part of the integrand around ðρ̂L; ρ̂RÞ, we can
approximate the integrals as
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Exp½BðXjΠphÞ� ¼
2π2C0e

ρ̂2
L
þρ̂2

R
2

��� ρ̂2L
∥F0

þ∥2
e2iΦ̂L þ ρ̂2R

∥F0
×∥2

e2iΦ̂R

���−3
2

∥F0þ∥2∥F0
×∥2

:

ðB3Þ

Now the nonvanishing condition on the denominator of
the integrand reduces to

���� ρ2L
∥F0þ∥2

e2iΦ̂L þ ρ2R
∥F0

×∥2
e2iΦ̂R

���� ≠ 0: ðB4Þ

In other words, both ρL
∥F0

þ∥
− ρR

∥F0
×∥

and Φ̂L − Φ̂R � π
2
are not

equal to zero simultaneously. This happens when the signal
is either face-on or face-off.
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